1
|
Malone SG, Tavakoli NS, Keller PS, Bardo MT, Ortinski PI. Calcium imaging of central amygdala activity after escalation of fentanyl self-administration. Neuropharmacology 2025; 271:110370. [PMID: 39988277 PMCID: PMC11930605 DOI: 10.1016/j.neuropharm.2025.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
The central amygdala (CeA) is involved in opioid relapse-associated behaviors. This study determined if escalation of fentanyl intake as modeled by long-access (LgA) self-administration (SA) alters ex vivo neuronal activity in CeA in response to fentanyl during acute withdrawal and protracted abstinence. Adult male and female Sprague-Dawley rats were trained to self-administer fentanyl or saline across 7 daily 1-h short access (ShA) sessions, followed by 21 6-h long access (LgA) sessions. Following acute (17 h) or protracted (30 days) withdrawal, withdrawal signs were assessed and rats were euthanized for CeA calcium imaging in brain slices. Fentanyl rats demonstrated reduced basal frequency of activity after 30 days withdrawal, but not after 17 h withdrawal. Regardless of SA group, acute fentanyl application in slices reduced activity (frequency, duration, active cell number) of CeA neurons. In acute withdrawal, the magnitude to which acute fentanyl suppressed CeA neuronal activity was smaller in fentanyl SA rats, relative to saline SA controls. However, the magnitude of acute fentanyl effect on suppression of CeA activity was greater in fentanyl SA rats (vs. saline SA controls) after protracted abstinence.
Collapse
Affiliation(s)
- Samantha G Malone
- University of Kentucky, Department of Psychology, Lexington, KY, USA
| | - Navid S Tavakoli
- University of Kentucky, Department of Neuroscience, Lexington, KY, USA
| | - Peggy S Keller
- University of Kentucky, Department of Psychology, Lexington, KY, USA
| | - Michael T Bardo
- University of Kentucky, Department of Psychology, Lexington, KY, USA
| | - Pavel I Ortinski
- University of Kentucky, Department of Neuroscience, Lexington, KY, USA.
| |
Collapse
|
2
|
Schaefke B, Li J, Zhao B, Wang L, Tseng YT. Slumber under pressure: REM sleep and stress response. Prog Neurobiol 2025; 249:102771. [PMID: 40273975 DOI: 10.1016/j.pneurobio.2025.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Sleep, a state of reduced responsiveness and distinct brain activity, is crucial across the animal kingdom. This review explores the potential adaptive functions of REM sleep in adapting to stress, emphasizing its role in memory consolidation, emotional regulation, and threat processing. We further explore the underlying neural mechanisms linking stress responses to REM sleep. By synthesizing current findings, we propose that REM sleep allows animals to "rehearse" or simulate responses to danger in a secure, offline state, while also maintaining emotional balance. Environmental factors, such as predation risk and social dynamics, further influence REM sleep. This modulation may enhance survival by optimizing stress responses while fulfilling physiological needs in animals. Insights into REM sleep's role in animals may shed light on human sleep in the context of modern stressors and sleep disruptions. This review also explores the complex interplay between stress, immunity, sleep disruptions-particularly involving REM sleep-and their evolutionary underpinnings.
Collapse
Affiliation(s)
- Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jingfei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Science, Beijing 10049, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Searles CT, Vogt ME, Adedokun I, Murphy AZ. Disrupted maternal behavior in morphine-dependent pregnant rats and anhedonia in their offspring. Neuropharmacology 2025; 270:110372. [PMID: 39971232 PMCID: PMC11885001 DOI: 10.1016/j.neuropharm.2025.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats. Young adult female rats were administered morphine via programmable, subcutaneous micro-infusion pumps before, during, and through one week post gestation. For the first two postnatal weeks, maternal behavior was examined for fragmentation and unpredictability. Unpredictable behavioral patterns were quantitatively characterized as entropy scores. Offspring were assessed for sucrose preference, social behavior, and stress responsivity. Overall, dams that received morphine across gestation displayed significantly less pup-directed behavior with increased fragmentation for nursing and higher entropy scores. In adolescence, male and female rat offspring exposed to morphine displayed reduced sucrose preference and, as adults, spent significantly less time interacting with familiar conspecifics. Changes in social behaviors were linked to increased activity in nondopaminergic cells of mesolimbic reward brain regions. Although no treatment effects were observed in forced swim test performance, corticosterone levels were significantly increased in POE adult males. Together, these results suggest that perinatal morphine exposure promotes anhedonic behavior, possibly due to fragmented and unpredictable maternal behavior in opioid-dependent dams.
Collapse
Affiliation(s)
- Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA
| | - Iyanuoluwa Adedokun
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA.
| |
Collapse
|
4
|
Han J, Suh B, Han JH. A top-down insular cortex circuit crucial for non-nociceptive fear learning. SCIENCE ADVANCES 2025; 11:eadt6996. [PMID: 40344067 PMCID: PMC12063665 DOI: 10.1126/sciadv.adt6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Understanding how threats drive fear memory formation is crucial to understanding how organisms adapt to environments and treat threat-related disorders such as PTSD. While traditional Pavlovian conditioning studies have provided valuable insights, the exclusive reliance on electric shock as a threat stimulus has limited our understanding of diverse threats. To address this, we developed a conditioning paradigm using a looming visual stimulus as an unconditioned stimulus (US) in mice and identified a distinct neural circuit for visual threat conditioning. Parabrachial CGRP neurons were necessary for both conditioning and memory retrieval. Upstream neurons in the posterior insular cortex (pIC) responded to looming stimuli, and their projections to the parabrachial nucleus (PBN) induced aversive states and drove conditioning. However, this pIC-to-PBN pathway was not required for foot-shock conditioning. These findings reveal how non-nociceptive visual stimuli can drive aversive states and fear memory formation, expanding our understanding of aversive US processing beyond traditional models.
Collapse
Affiliation(s)
- Junho Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Boin Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
5
|
Liu X, Lai J, Han C, Zhong H, Huang K, Liu Y, Zhu X, Wei P, Tan L, Xu F, Wang L. Neural circuit underlying individual differences in visual escape habituation. Neuron 2025:S0896-6273(25)00301-0. [PMID: 40347942 DOI: 10.1016/j.neuron.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/28/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Emotions like fear help organisms respond to threats. Repeated predator exposure leads to adaptive responses with unclear neural mechanisms behind individual variability. We identify two escape behaviors in mice-persistent escape (T1) and rapid habituation (T2)-linked to unique arousal states under repetitive looming stimuli. Combining multichannel recording, circuit mapping, optogenetics, and behavioral analyses, we find parallel pathways from the superior colliculus (SC) to the basolateral amygdala (BLA) via the ventral tegmental area (VTA) for T1 and via the mediodorsal thalamus (MD) for T2. T1 involves heightened arousal, while T2 features rapid habituation. The MD integrates SC and insular cortex inputs to modulate arousal and defensive behaviors. This work reveals neural circuits underpinning adaptive threat responses and individual variability.
Collapse
Affiliation(s)
- Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuanliang Han
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kang Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanming Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xutao Zhu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liming Tan
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China
| | - Fuqiang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Fisher AA, Gonzalez LS, Cappel ZR, Grover KE, Waclaw RR, Robinson JE. Dopaminergic encoding of future defensive actions in the mouse nucleus accumbens. PNAS NEXUS 2025; 4:pgaf128. [PMID: 40321418 PMCID: PMC12046218 DOI: 10.1093/pnasnexus/pgaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Dopamine release in the nucleus accumbens (NAc) plays a critical role in the motivation to perform actions that promote survival. However, the NAc dopamine response to innately threatening visual stimuli, such as predators descending from above, and the innate behaviors they promote has not been fully characterized. Using the genetically encoded sensor dLight1, we investigated looming visual threat-evoked dopamine release in the lateral (LNAc) and medial NAc shell (NAcS) regions in freely moving mice during performance of a looming stimulus assay. We found that dopamine release related to visual threat perception in the NAcS, but not in the LNAc, predicts the timing and vigor of a future defensive action, yet dopamine released during the performance of the action itself does not. Optogenetic inhibition of dopaminergic terminals in the NAcS at visual stimulus onset prevented escape, confirming a role for ventral striatal dopamine in promoting threat-related behaviors.
Collapse
Affiliation(s)
- Austen A Fisher
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - L Sofia Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zoe R Cappel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kassidy E Grover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - J Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Contestabile A, Kojovic N, Casarotto G, Delavari F, Hagmann P, Schaer M, Bellone C. Translational research approach to social orienting deficits in autism: the role of superior colliculus-ventral tegmental pathway. Mol Psychiatry 2025:10.1038/s41380-025-02962-w. [PMID: 40188311 DOI: 10.1038/s41380-025-02962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/20/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction and repetitive behaviors. A key characteristic of ASD is a decreased interest in social interactions, which affects individuals' ability to engage with their social environment. This study explores the neurobiological basis of these social deficits, focusing on the pathway between the Superior Colliculus (SC) and the Ventral Tegmental Area (VTA). Adopting a translational approach, our research used Shank3 knockout mice (Shank3-/-), which parallel a clinical cohort of young children with ASD, to investigate these mechanisms. We observed consistent deficits in social orienting across species. In children with ASD, fMRI analyses revealed a significant decrease in connectivity between the SC and VTA. Additionally, using miniscopes in mice, we identified a reduction in the frequency of calcium transients in SC neurons projecting to the VTA, accompanied by changes in neuronal correlation and intrinsic cellular properties. Notably, the interneuronal correlation in Shank3-/- mice and the functional connectivity of the SC to VTA pathway in children with ASD correlated with the severity of social deficits. Our findings underscore the potential of the SC-VTA pathway as a biomarker for ASD and open new avenues for therapeutic interventions, highlighting the importance of early detection and targeted treatment strategies.
Collapse
Affiliation(s)
- Alessandro Contestabile
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Nada Kojovic
- Department of Psychiatry, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Casarotto
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Farnaz Delavari
- Department of Psychiatry, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Patric Hagmann
- Department of Radiology, University Hospital of Lausanne and University of Lausanne, Lausanne (CHUV-UNIL), Vaud, Switzerland
| | - Marie Schaer
- Department of Psychiatry, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Camilla Bellone
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Pradel K, Tymorek A, Marzec M, Chrobok Ł, Solecki W, Błasiak T. Superior Colliculus Controls the Activity of the Substantia Nigra Pars Compacta and Ventral Tegmental Area in an Asymmetrical Manner. J Neurosci 2025; 45:e1976222024. [PMID: 39819512 PMCID: PMC11968530 DOI: 10.1523/jneurosci.1976-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025] Open
Abstract
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region that processes information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats. We explored the circuit's anatomy using transsynaptic viral tract-tracing and its physiology using in vivo single-unit and ex vivo multi-electrode array recordings of SNc and VTA neuronal activity combined with optogenetic stimulation of either the ipsilateral or contralateral SC or its terminals. During the experiments, DA neurons were identified optogenetically (in vivo recordings) or pharmacologically (ex vivo recordings). Anatomical findings revealed a bilateral innervation pattern of the lateral SC to the ventral midbrain, with a significantly stronger ipsilateral connection, particularly evident in the SNc, involving both DA and non-DA neurons. This anatomical asymmetry was also expressed during in vivo and ex vivo recordings, which showed a predominance of ipsilateral connections, especially within the SNc. Ex vivo recordings also confirmed that this lateralized pathway is direct. The described features of the SC→VTA/SNc neuronal circuit, particularly its anatomical and physiological asymmetry, suggest its involvement in orienting and approach behaviors guided by the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Adrian Tymorek
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Martyna Marzec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Łukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Kraków 30-348, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
9
|
Gonzalez LS, Fisher AA, Grover KE, Robinson JE. Examining the role of the photopigment melanopsin in the striatal dopamine response to light. Front Syst Neurosci 2025; 19:1568878. [PMID: 40242043 PMCID: PMC12000111 DOI: 10.3389/fnsys.2025.1568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The mesolimbic dopamine system is a set of subcortical brain circuits that plays a key role in reward processing, reinforcement, associative learning, and behavioral responses to salient environmental events. In our previous studies of the dopaminergic response to salient visual stimuli, we observed that dopamine release in the lateral nucleus accumbens (LNAc) of mice encoded information about the rate and magnitude of rapid environmental luminance changes from darkness. Light-evoked dopamine responses were rate-dependent, robust to the time of testing or stimulus novelty, and required phototransduction by rod and cone opsins. However, it is unknown if these dopaminergic responses also involve non-visual opsins, such as melanopsin, the primary photopigment expressed by intrinsically photosensitive retinal ganglion cells (ipRGCs). In the current study, we evaluated the role of melanopsin in the dopaminergic response to light in the LNAc using the genetically encoded dopamine sensor dLight1 and fiber photometry. By measuring light-evoked dopamine responses across a broad irradiance and wavelength range in constitutive melanopsin (Opn4) knockout mice, we were able to provide new insights into the ability of non-visual opsins to regulate the mesolimbic dopamine response to visual stimuli.
Collapse
Affiliation(s)
- L. Sofia Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Austen A. Fisher
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kassidy E. Grover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Yang L, Tang M, Nüssler AK, Liu L, Yang W. Regulation of PVT-CeA Circuit in Deoxynivalenol-Induced Anorexia and Aversive-Like Emotions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417068. [PMID: 40019402 PMCID: PMC12021098 DOI: 10.1002/advs.202417068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Neuronal plasticity in the central amygdala (CeA) is essential for modulating feeding behaviors and emotional responses, potentially influencing reactions to Deoxynivalenol (DON). Acute oral administration of DON elicits a dose-responsive reduction in food intake, accompanied by pronounced alterations in locomotor activity and feeding frequency. This study investigates circuitry adaptations that mediate DON's effects on feeding, by targeting of GABA neurons in the CeA. Following exposure to DON, an increase in connectivity between the paraventricular nucleus of the thalamus (PVT) and CeAGABA neurons is observed, suggesting the involvement of this pathway in DON's adverse effects on feeding and emotional states. Chemogenetic and optogenetic manipulations of CeAGABA neurons resulted in substantial alterations in mice's feeding and overall activity. These findings suggest that CeAGABA neurons are involved in DON-induced anorexia and aversive-like emotional responses. Additionally, the administration of the SCN10A antagonist (A-803467) effectively mitigated DON-induced anorexia and aversive-like emotions, highlighting the pivotal role of the PVT-CeA circuit and CeAGABA neurons in regulating the physiological and emotional impacts of DON. These findings have significant implications for public health and clinical interventions, offering potential therapeutic strategies to mitigate DON's adverse effects on human health.
Collapse
Affiliation(s)
- Liu‐Nan Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Mingmeng Tang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Andreas K. Nüssler
- Department of TraumatologyBG Trauma CenterUniversity of TübingenSchnarrenbergstr. 9572076TübingenGermany
| | - Liegang Liu
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Wei Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| |
Collapse
|
11
|
Liu Y, Zhou ZX, Lv Q, Huang G, Zhang H, Wang YQ, Chen JG, Wang F. A superior colliculus-originating circuit prevents cocaine reinstatement via VR-based eye movement desensitization treatment. Natl Sci Rev 2025; 12:nwae467. [PMID: 40160681 PMCID: PMC11951104 DOI: 10.1093/nsr/nwae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 04/02/2025] Open
Abstract
While Virtual Reality (VR) technology shows promise in the management of substance use disorders, the development of an effective VR-based extinction procedure remains lacking. In this study, we developed a VR-based eye movement desensitization and reprocessing extinction training program tailored for mice. We found that this VR treatment during cocaine extinction prevents reinstatement by suppressing the hyperactivation of glutamatergic excitatory neurons in the intermediate layers of the superior colliculus (SCiCaMKIIα) during exposure to environmental cues. Additionally, SCiCaMKIIα neurons innervate tyrosine hydroxylase-positive neurons in the locus coeruleus (LCTH). Environmental cues trigger stronger phasic activation of LCTH neurons through this SCiCaMKIIα→LCTH projection, leading to increased dopamine release onto the dorsal CA3 (dCA3) region, thereby facilitating reinstatement. Furthermore, we demonstrate that VR treatment effectively inhibits the neural circuitry involving SCiCaMKIIα→LCTH→dCA3 in response to environmental cues, thus preventing cocaine reinstatement. Our findings suggest that VR treatment may represent a promising strategy for achieving drug abstinence.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Xiang Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye-Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| |
Collapse
|
12
|
Sun Z, Gu Y. A Potentially Shared Neural Basis Linking Rapid Saccades and Avoidance Initiation in the Superior Colliculus Driven by Visual Threats. Neurosci Bull 2025:10.1007/s12264-025-01389-1. [PMID: 40156664 DOI: 10.1007/s12264-025-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/27/2025] [Indexed: 04/01/2025] Open
Affiliation(s)
- Zhou Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Broersen R, Thompson G, Thomas F, Stuart GJ. Binocular processing facilitates escape behavior through multiple pathways to the superior colliculus. Curr Biol 2025; 35:1242-1257.e9. [PMID: 39983730 DOI: 10.1016/j.cub.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
The superior colliculus (SC) is the main brain region regulating defensive behaviors to visual threats. Yet, how the SC integrates binocular visual information and to what extent binocular vision drives defensive behaviors remains unknown. Here, we show that SC neurons respond to binocular visual input with diverse synaptic and spiking responses, summating visual inputs largely sublinearly. Using pathway-specific optogenetic silencing, we find that contralateral and ipsilateral visual information is carried to binocular SC neurons through retinal, interhemispheric, and corticotectal pathways. These pathways carry binocular visual input to the SC in a layer-specific manner, with superficial layers receiving visual information through retinal input, whereas intermediate and deep layers rely on interhemispheric and corticotectal pathways. We further show that binocular vision facilitates visually evoked escape behavior. Together, our data shed light on the cellular and circuit mechanisms underlying binocular visual processing in the SC and its role in defensive behaviors to visual threats.
Collapse
Affiliation(s)
- Robin Broersen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Genevieve Thompson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Felix Thomas
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Physiology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
14
|
Morris LS, Beltrán JM, Murrough JW, Morel C. Cross-species dissection of the modular role of the ventral tegmental area in depressive disorders. Neuroscience 2025; 569:248-266. [PMID: 39914519 PMCID: PMC11885014 DOI: 10.1016/j.neuroscience.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Depressive disorders, including major depressive disorder (MDD), represent one of the most prevalent set of disorders worldwide. MDD is characterized by a range of cognitive, behavioral, and neurobiological changes that contribute to the vast array of symptom profiles that make this disorder particularly difficult to treat. A multitude of established evidence suggests a role for the dopamine system, stemming in part from the ventral tegmental area (VTA), in mediating symptoms and behavioral changes that underlie depression. Developments in cutting-edge technologies in pre-clinical models of depressive phenotypes, such as retrograde tracing, electrophysiological recordings, immunohistochemistry, and molecular profiling, have allowed a deeper characterization of singular VTA neuron molecular, physiological, and projection properties. These developments have highlighted that the VTA is not a homogenous cell population but instead comprises vast cellular diversity that underscores its modular role across various functions related to reward processing, aversion, salience processing, learning and motivation. In this review, we begin by introducing the various cell types and brain regions that comprise the VTA circuitry. Then, we introduce the role of the VTA in reward processing as it compares to aversion processing. Next, we characterize distinct neural pathways within the VTA circuitry to understand the effects of chronic social and non-social stress and tie together how these neurobiological changes manifest into specific behavioral phenotypes. Finally, we relate these preclinical findings to clinical findings to parse the heterogeneity of depressive phenotypes and explain the efficacy of recent novel pharmacological interventions that may target the VTA in MDD.
Collapse
Affiliation(s)
- L S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK.
| | - J M Beltrán
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States
| | - J W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States; VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center Bronx NY United States
| | - C Morel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States.
| |
Collapse
|
15
|
Gu H, Zhao F, Liu Z, Cao P. Defense or death? A review of the neural mechanisms underlying sensory modality-triggered innate defensive behaviors. Curr Opin Neurobiol 2025; 92:102977. [PMID: 40015135 DOI: 10.1016/j.conb.2025.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Defense or death presents a canonical dilemma for animals when encountering predators. Threatening sensory cues provide essential information that signals predator presence, driving the evolution of a spectrum of defensive behaviors. In rodents, these behaviors, as described by the classic "predatory imminence continuum" model, range from risk assessment and freezing to rapid escape responses. During the pre-encounter phase, risk assessment and avoidance responses are crucial for monitoring the environment with vigilance and cautiousness. Once detected during the post-encounter phase or physically attacked during the circa-strike phase, multiple sensory systems are rapidly activated, triggering escape responses to increase the distance from the threat. Although there are species-specific variations, the brain regions underpinning these defensive strategies, including the thalamus, hypothalamus, and midbrain, are evolutionarily conserved. This review aims to provide a comprehensive overview of the universal innate defensive circuit framework to enrich our understanding of how animals respond to life-threatening situations.
Collapse
Affiliation(s)
- Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiran Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhihui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
16
|
Jiang Q, Bakhurin KI, Hughes RN, Lu B, Ruan S, Yin HH. GABAergic neurons in the ventral tegmental area represent and regulate force vectors. Cell Rep 2025; 44:115313. [PMID: 39937645 PMCID: PMC11997961 DOI: 10.1016/j.celrep.2025.115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, contains mostly dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction signal, which is used in computing a reward prediction error. In this study, by using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we identify distinct populations of VTA GABA neurons that exhibit precise force tuning independently of learning, reward prediction, and outcome valence. Their activity usually precedes force exertion, and selective optogenetic manipulations of these neurons systematically modulate force exertion without influencing reward prediction. Together, these findings show that VTA GABA neurons can continuously regulate force vectors during motivated behavior.
Collapse
Affiliation(s)
- Qiaochu Jiang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Bryan Lu
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Shaolin Ruan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
17
|
Trier HA, Khalighinejad N, Hamilton S, Harbison C, Priestley L, Laubach M, Klein-Flügge M, Scholl J, Rushworth MFS. A distributed subcortical circuit linked to instrumental information-seeking about threat. Proc Natl Acad Sci U S A 2025; 122:e2410955121. [PMID: 39813246 PMCID: PMC11761969 DOI: 10.1073/pnas.2410955121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward. Both tracking of threat and switching to a vigilant mode in which people sought more information about potential threats were associated with specific but distributed patterns of activity spanning habenula, dorsal raphe nucleus (DRN), anterior cingulate cortex, and anterior insula cortex. Different aspects of the distributed activity patterns were linked to monitoring the threat level, seeking information about the threat, and actual threat detection. A distinct pattern of activity in the same circuit and elsewhere occurred during returns to reward-oriented behavior. Individual variation in DRN activity reflected individual variation in the seeking of information about threats.
Collapse
Affiliation(s)
- Hailey A. Trier
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Sorcha Hamilton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Mark Laubach
- Department of Neuroscience, American University, Washington, DC20016
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center U1028 UMR5292, PsyR2 Team, Centre Hospitalier Le Vinatier, 9678Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
18
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Aguado C, Luján R, Wickman K. Chronic ethanol exposure in mice evokes pre- and postsynaptic deficits in GABAergic transmission in ventral tegmental area GABA neurons. Br J Pharmacol 2025; 182:69-86. [PMID: 39358985 PMCID: PMC11831720 DOI: 10.1111/bph.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE GABAergic neurons in mouse ventral tegmental area (VTA) exhibit elevated activity during withdrawal following chronic ethanol exposure. While increased glutamatergic input and decreased GABAA receptor sensitivity have been implicated, the impact of inhibitory signaling in VTA GABA neurons has not been fully addressed. EXPERIMENTAL APPROACH We used electrophysiological and ultrastructural approaches to assess the impact of chronic intermittent ethanol vapour exposure in mice on GABAergic transmission in VTA GABA neurons during withdrawal. We used CRISPR/Cas9 ablation to mimic a somatodendritic adaptation involving the GABAB receptor (GABABR) in ethanol-naïve mice to investigate its impact on anxiety-related behaviour. KEY RESULTS The frequency of spontaneous inhibitory postsynaptic currents was reduced in VTA GABA neurons following chronic ethanol treatment and this was reversed by GABABR inhibition, suggesting chronic ethanol strengthens the GABABR-dependent suppression of GABAergic input to VTA GABA neurons. Similarly, paired-pulse depression of GABAA receptor-dependent responses evoked by optogenetic stimulation of nucleus accumbens inputs from ethanol-treated mice was reversed by GABABR inhibition. Somatodendritic currents evoked in VTA GABA neurons by GABABR activation were reduced following ethanol exposure, attributable to the suppression of GIRK (Kir3) channel activity. Mimicking this adaptation enhanced anxiety-related behaviour in ethanol-naïve mice. CONCLUSIONS AND IMPLICATIONS Chronic ethanol weakens the GABAergic regulation of VTA GABA neurons in mice via pre- and postsynaptic mechanisms, likely contributing to their elevated activity during withdrawal and expression of anxiety-related behaviour. As anxiety can promote relapse during abstinence, interventions targeting VTA GABA neuron excitability could represent new therapeutic strategies for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Eric H. Mitten
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anna Souders
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Carolina Aguado
- Instituto de Biomedicina de la UCLM (IB‐UCLM), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB‐UCLM), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Kevin Wickman
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
19
|
Searles CT, Vogt ME, Adedokun I, Murphy AZ. Disrupted Maternal Behavior in Morphine-Dependent Pregnant Rats and Anhedonia in their Offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630830. [PMID: 39803520 PMCID: PMC11722226 DOI: 10.1101/2024.12.30.630830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats. Young adult female rats were administered morphine via programmable, subcutaneous micro-infusion pumps before, during, and through one week post gestation. Maternal behavior was examined for fragmentation and entropy for the first two postnatal weeks; offspring were assessed for sucrose preference, social behavior, and stress responsivity. Overall, dams that received morphine across gestation displayed significantly less pup-directed behavior with increased fragmentation for nursing and higher entropy scores. In adolescence, male and female rat offspring exposed to morphine displayed reduced sucrose preference and, as adults, spent significantly less time socially interacting with familiar conspecifics. Changes in social behaviors were linked to increased activity in nondopaminergic mesolimbic reward brain regions. Although no treatment effects were observed in forced swim test performance, corticosterone levels were significantly increased in POE adult males. Together, these results suggest that perinatal morphine exposure results in anhedonic behavior, possibly due to fragmented and unpredictable maternal behavior in opioid-dependent dams.
Collapse
Affiliation(s)
| | - Meghan E. Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Iyanuoluwa Adedokun
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
20
|
Jiang Q, Bakhurin KI, Hughes RN, Lu B, Ruan S, Yin HH. GABAergic neurons from the ventral tegmental area represent and regulate force vectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627361. [PMID: 39713374 PMCID: PMC11661075 DOI: 10.1101/2024.12.07.627361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence. Their activity usually preceded force exertion, and selective optogenetic manipulations of these neurons systematically modulated force exertion without influencing reward prediction. Together, these findings show that VTA GABA neurons continuously regulate force vectors during motivated behavior.
Collapse
|
21
|
Yuan M, Tan G, Cai D, Luo X, Shen K, Deng Q, Lei X, Zeng WB, Luo MH, Huang L, Ren C, Shen Y. GABAergic Retinal Ganglion Cells Projecting to the Superior Colliculus Mediate the Looming-Evoked Flight Response. Neurosci Bull 2024; 40:1886-1900. [PMID: 39285154 PMCID: PMC11625033 DOI: 10.1007/s12264-024-01295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 12/08/2024] Open
Abstract
The looming stimulus-evoked flight response to approaching predators is a defensive behavior in most animals. However, how looming stimuli are detected in the retina and transmitted to the brain remains unclear. Here, we report that a group of GABAergic retinal ganglion cells (RGCs) projecting to the superior colliculus (SC) transmit looming signals from the retina to the brain, mediating the looming-evoked flight behavior by releasing GABA. GAD2-Cre and vGAT-Cre transgenic mice were used in combination with Cre-activated anterograde or retrograde tracer viruses to map the inputs to specific GABAergic RGC circuits. Optogenetic technology was used to assess the function of SC-projecting GABAergic RGCs (scpgRGCs) in the SC. FDIO-DTA (Flp-dependent Double-Floxed Inverted Open reading frame-Diphtheria toxin) combined with the FLP (Florfenicol, Lincomycin & Prednisolone) approach was used to ablate or silence scpgRGCs. In the mouse retina, GABAergic RGCs project to different brain areas, including the SC. ScpgRGCs are monosynaptically connected to parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of scpgRGCs triggers GABA-mediated inhibition in SC neurons. Ablation or silencing of scpgRGCs compromises looming-evoked flight responses without affecting image-forming functions. Our study reveals that scpgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.
Collapse
Affiliation(s)
- Man Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Danrui Cai
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xue Luo
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Kejiong Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinlan Lei
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Lu Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
22
|
Li PY, Jing MY, Cun XF, Wu N, Li J, Song R. The neural circuit of Superior colliculus to ventral tegmental area modulates visual cue associated with rewarding behavior in optical intracranial Self-Stimulation in mice. Neurosci Lett 2024; 842:137997. [PMID: 39326778 DOI: 10.1016/j.neulet.2024.137997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Visual system is the most important system of animal to cognize the information in outside world, and reward-related visual cues are the key factors in the consolidation and retrieval of reward memory. However, the neural circuit mechanism is still unclear. Superior Colliculus (SC) receive direct input from the retina and belong to the earliest stages of visual processing. Recent studies identified a specific pathway from SC to ventral tegmental area (VTA) that underlie specific innate behaviors, eg. flight or freezing, approach behaviors and so on. In present research, we investigated that inhibition of SC to VTA circuit with chemogenetics suppressed light cue-associated reward-seeking behaviors, while activation of the SC-VTA circuit with chemogenetic technology triggered the reward-seeking behaviors in optical intracranial self-stimulation for VTA DA neurons (oICSS) in mice. These findings suggest that neural circuit of SC-VTA mediates the retrieval of reward memory associated with visual cues, which will provide a new field for revealing the neural mechanism of pathological memory such as addiction.
Collapse
Affiliation(s)
- Pei-Yun Li
- Nanjing University of Chinese Medicine, Nanjing 210029, China; Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Man-Yi Jing
- Department of Pharmacy, the Medical Support Center of PLA General Hospital, Beijing, 100853, China
| | - Xing-Fang Cun
- Nanjing University of Chinese Medicine, Nanjing 210029, China; Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Rui Song
- Nanjing University of Chinese Medicine, Nanjing 210029, China; Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
23
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Jung K, Krüssel S, Yoo S, An M, Burke B, Schappaugh N, Choi Y, Gu Z, Blackshaw S, Costa RM, Kwon HB. Dopamine-mediated formation of a memory module in the nucleus accumbens for goal-directed navigation. Nat Neurosci 2024; 27:2178-2192. [PMID: 39333785 PMCID: PMC11537966 DOI: 10.1038/s41593-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Spatial memories guide navigation efficiently toward desired destinations. However, the neuronal and circuit mechanisms underlying the encoding of goal locations and its translation into goal-directed navigation remain unclear. Here we demonstrate that mice rapidly form a spatial memory of a shelter during shelter experiences, guiding escape behavior toward the goal location-a shelter-when under threat. Dopaminergic neurons in the ventral tegmental area and their projection to the nucleus accumbens (NAc) encode safety signals associated with the shelter. Optogenetically induced phasic dopamine signals are sufficient to create a place memory that directs escape navigation. Converging dopaminergic and hippocampal glutamatergic inputs to the NAc mediate the formation of a goal-related memory within a subpopulation of NAc neurons during shelter experiences. Artificial co-activation of this goal-related NAc ensemble with neurons in the dorsal periaqueductal gray was sufficient to trigger memory-guided, rather than random, escape behavior. These findings provide causal evidence of cognitive circuit modules linking memory with goal-directed action.
Collapse
Affiliation(s)
- Kanghoon Jung
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
- Allen Institute, Seattle, WA, USA.
| | - Sarah Krüssel
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sooyeon Yoo
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Myungmo An
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Benjamin Burke
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicholas Schappaugh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Youngjin Choi
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zirong Gu
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rui M Costa
- Allen Institute, Seattle, WA, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
25
|
Bak C, Boutin A, Gauzin S, Lejards C, Rampon C, Florian C. Age-associated alteration of innate defensive response to a looming stimulus and brain functional connectivity pattern in mice. Sci Rep 2024; 14:25323. [PMID: 39455881 PMCID: PMC11511918 DOI: 10.1038/s41598-024-76884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Innate defensive behaviors are essential for species survival. While these behaviors start to develop early in an individual's life, there is still much to be understood about how they evolve with advancing age. Considering that aging is often accompanied by various cognitive and physical declines, we tested the hypothesis that innate fear behaviors and underlying cerebral mechanisms are modified by aging. In our study we investigated this hypothesis by examining how aged mice respond to a looming visual threat compared to their younger counterparts. Our findings indicate that aged mice exhibit a different fear response than young mice when facing this imminent threat. Specifically, unlike young mice, aged mice tend to predominantly display freezing behavior without seeking shelter. Interestingly, this altered behavioral response in aged mice is linked to a distinct pattern of functional brain connectivity compared to young mice. Notably, our data highlights a lack of a consistent brain activation following the fear response in aged mice, suggesting that innate defensive behaviors undergo changes with aging.
Collapse
Affiliation(s)
- Célia Bak
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Aroha Boutin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Sébastien Gauzin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Camille Lejards
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Claire Rampon
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Cédrick Florian
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France.
| |
Collapse
|
26
|
Molas S, Williams E, Snively L, O'Meara B, Jacobs H, Kolb M, Zhao-Shea R, Baratta M, Tapper A. Interpeduncular GABAergic neuron function controls threat processing and innate defensive adaptive learning. RESEARCH SQUARE 2024:rs.3.rs-4661779. [PMID: 39372946 PMCID: PMC11451651 DOI: 10.21203/rs.3.rs-4661779/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The selection of appropriate defensive behaviors in the face of potential threat is fundamental to survival. However, after repeated exposures to threatening stimuli that did not signal real danger, an animal must learn to adjust and optimize defensive behaviors. Despite extensive research on innate threat processing, little is known how individuals change their defensive behaviors when presented with recurrent threat exposures without evidence of a real risk. Insight into this process is critical as its dysregulation may contribute to neuropsychiatric conditions, such as anxiety disorders. Here, we used the visual looming stimulus (VLS) paradigm in mice to investigate innate threat processing and adaptive defensive learning. Repeated exposure to VLS over consecutive sessions reduced immediate freezing responses and time spent inside a sheltered area upon VLS events, leading to an increase in foraging behaviors. Fiber photometry recordings and optogenetic manipulations revealed that VLS innate adaptive defensive learning is associated with reduced recruitment of the midbrain interpeduncular nucleus (IPN), a structure associated with fear and anxiety-related behaviors. Functional circuit-mapping identified a role for select IPN projections to the laterodorsal tegmental nucleus in gating defensive learning. Finally, we uncovered a subpopulation of IPN neurons that express the neuropeptide somatostatin and encode safety- and avoidance signals in response to VLS. These results identify critical behavioral signatures of innate defensive responses and a circuit that regulates the essential features of threat processing.
Collapse
|
27
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
28
|
Kim EJ, Kong MS, Park S, Cho J, Kim JJ. Periaqueductal gray activates antipredatory neural responses in the amygdala of foraging rats. eLife 2024; 12:RP88733. [PMID: 39133827 PMCID: PMC11318971 DOI: 10.7554/elife.88733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an 'approach food-avoid predator' task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok John Kim
- Department of Psychology, University of WashingtonSeattleUnited States
- Program in Neuroscience, University of WashingtonSeattleUnited States
| |
Collapse
|
29
|
Lei J, Zhang P, Li T, Cui C, Li M, Yang X, Peng X, Ren K, Yang J, Shi Y, Luo G, Yao Y, Tian B. Alternating bilateral sensory stimulation alleviates alcohol-induced conditioned place preference via a superior colliculus-VTA circuit. Cell Rep 2024; 43:114383. [PMID: 38923461 DOI: 10.1016/j.celrep.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol is the most widely used addictive substance, potentially leading to brain damage and genetic abnormalities. Despite its prevalence and associated risks, current treatments have yet to identify effective methods for reducing cravings and preventing relapse. In this study, we find that 4-Hz alternating bilateral sensory stimulation (ABS) effectively reduces ethanol-induced conditioned place preference (CPP) in male mice, while 4-Hz flash light does not exhibit therapeutic effects. Whole-brain c-Fos mapping demonstrates that 4-Hz ABS triggers notable activation in superior colliculus GABAergic neurons (SCGABA). SCGABA forms monosynaptic connections with ventral tegmental area dopaminergic neurons (VTADA), which is implicated in ethanol-induced CPP. Bidirectional chemogenetic manipulation of SC-VTA circuit either replicates or blocks the therapeutic effects of 4-Hz ABS on ethanol-induced CPP. These findings elucidate the role of SC-VTA circuit for alleviating ethanol-related CPP by 4-Hz ABS and point to a non-drug and non-invasive approach that might have potential for treating alcohol use disorder.
Collapse
Affiliation(s)
- Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, P.R. China.
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xueke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yulong Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Gangan Luo
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yibo Yao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, P.R. China.
| |
Collapse
|
30
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Wickman K. Stress-induced anxiety-related behavior in mice is driven by enhanced excitability of ventral tegmental area GABA neurons. Front Behav Neurosci 2024; 18:1425607. [PMID: 39086371 PMCID: PMC11288924 DOI: 10.3389/fnbeh.2024.1425607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Stress and trauma are significant risk factors for many neuropsychiatric disorders and diseases, including anxiety disorders. Stress-induced anxiety symptoms have been attributed to enhanced excitability in circuits controlling fear, anxiety, and aversion. A growing body of evidence has implicated GABAergic neurons of the ventral tegmental area (VTA) in aversion processing and affective behavior. Methods We used an unpredictable footshock (uFS) model, together with electrophysiological and behavioral approaches, to investigate the role of VTA GABA neurons in anxiety-related behavior in mice. Results One day after a single uFS session, C57BL/6J mice exhibited elevated anxiety-related behavior and VTA GABA neuron excitability. The enhanced excitability of VTA GABA neurons was correlated with increased glutamatergic input and a reduction in postsynaptic signaling mediated via GABAA and GABAB receptors. Chemogenetic activation of VTA GABA neurons was sufficient to increase anxiety-related behavior in stress-naïve mice. In addition, chemogenetic inhibition of VTA GABA neurons suppressed anxiety-related behavior in mice exposed to uFS. Discussion These data show that VTA GABA neurons are an early substrate for stress-induced anxiety-related behavior in mice and suggest that approaches mitigating enhanced excitability of VTA GABA neurons may hold promise for the treatment of anxiety provoked by stress and trauma.
Collapse
Affiliation(s)
- Eric H. Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Zhou X, Xiao Q, Liu Y, Chen S, Xu X, Zhang Z, Hong Y, Shao J, Chen Y, Chen Y, Wang L, Yang F, Tu J. Astrocyte-mediated regulation of BLA WFS1 neurons alleviates risk-assessment deficits in DISC1-N mice. Neuron 2024; 112:2197-2217.e7. [PMID: 38642554 DOI: 10.1016/j.neuron.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qian Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaohui Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Shuai Chen
- University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Xirong Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Zhigang Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Jie Shao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuewen Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Fan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Tu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
32
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
33
|
Kim EJ, Kong MS, Park S, Cho J, Kim JJ. Periaqueductal gray activates antipredatory neural responses in the amygdala of foraging rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541463. [PMID: 38559038 PMCID: PMC10979854 DOI: 10.1101/2023.05.19.541463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an 'approach food-avoid predator' task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory defensive functioning.
Collapse
|
34
|
Thieu MK, Ayzenberg V, Lourenco SF, Kragel PA. Visual looming is a primitive for human emotion. iScience 2024; 27:109886. [PMID: 38799577 PMCID: PMC11126809 DOI: 10.1016/j.isci.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The neural computations for looming detection are strikingly similar across species. In mammals, information about approaching threats is conveyed from the retina to the midbrain superior colliculus, where approach variables are computed to enable defensive behavior. Although neuroscientific theories posit that midbrain representations contribute to emotion through connectivity with distributed brain systems, it remains unknown whether a computational system for looming detection can predict both defensive behavior and phenomenal experience in humans. Here, we show that a shallow convolutional neural network based on the Drosophila visual system predicts defensive blinking to looming objects in infants and superior colliculus responses to optical expansion in adults. Further, the neural network's responses to naturalistic video clips predict self-reported emotion largely by way of subjective arousal. These findings illustrate how a simple neural network architecture optimized for a species-general task relevant for survival explains motor and experiential components of human emotion.
Collapse
Affiliation(s)
| | - Vladislav Ayzenberg
- Emory University, Atlanta, GA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Skyberg RJ, Niell CM. Natural visual behavior and active sensing in the mouse. Curr Opin Neurobiol 2024; 86:102882. [PMID: 38704868 PMCID: PMC11254345 DOI: 10.1016/j.conb.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
In the natural world, animals use vision for a wide variety of behaviors not reflected in most laboratory paradigms. Although mice have low-acuity vision, they use their vision for many natural behaviors, including predator avoidance, prey capture, and navigation. They also perform active sensing, moving their head and eyes to achieve behavioral goals and acquire visual information. These aspects of natural vision result in visual inputs and corresponding behavioral outputs that are outside the range of conventional vision studies but are essential aspects of visual function. Here, we review recent studies in mice that have tapped into natural behavior and active sensing to reveal the computational logic of neural circuits for vision.
Collapse
Affiliation(s)
- Rolf J Skyberg
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA. https://twitter.com/SkybergRolf
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA.
| |
Collapse
|
36
|
Song RX, Zhou TT, Jia SY, Li WG, Wang J, Li BD, Shan YD, Zhang LM, Li XM. Hydrogen sulfide mitigates memory impairments via the restoration of glutamatergic neurons in a mouse model of hemorrhage shock and resuscitation. Exp Neurol 2024; 376:114758. [PMID: 38513970 DOI: 10.1016/j.expneurol.2024.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased β power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored β power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased β power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Ting-Ting Zhou
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Wen-Guang Li
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China.
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou No.2 Hospital, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Resrearch, Cangzhou, China.
| |
Collapse
|
37
|
DePiero VJ, Deng Z, Chen C, Savier EL, Chen H, Wei W, Cang J. Transformation of Motion Pattern Selectivity from Retina to Superior Colliculus. J Neurosci 2024; 44:e1704232024. [PMID: 38569924 PMCID: PMC11097260 DOI: 10.1523/jneurosci.1704-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The superior colliculus (SC) is a prominent and conserved visual center in all vertebrates. In mice, the most superficial lamina of the SC is enriched with neurons that are selective for the moving direction of visual stimuli. Here, we study how these direction selective neurons respond to complex motion patterns known as plaids, using two-photon calcium imaging in awake male and female mice. The plaid pattern consists of two superimposed sinusoidal gratings moving in different directions, giving an apparent pattern direction that lies between the directions of the two component gratings. Most direction selective neurons in the mouse SC respond robustly to the plaids and show a high selectivity for the moving direction of the plaid pattern but not of its components. Pattern motion selectivity is seen in both excitatory and inhibitory SC neurons and is especially prevalent in response to plaids with large cross angles between the two component gratings. However, retinal inputs to the SC are ambiguous in their selectivity to pattern versus component motion. Modeling suggests that pattern motion selectivity in the SC can arise from a nonlinear transformation of converging retinal inputs. In contrast, the prevalence of pattern motion selective neurons is not seen in the primary visual cortex (V1). These results demonstrate an interesting difference between the SC and V1 in motion processing and reveal the SC as an important site for encoding pattern motion.
Collapse
Affiliation(s)
- Victor J DePiero
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - Zixuan Deng
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - Elise L Savier
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Hui Chen
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - Wei Wei
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
38
|
Zhang Y, Wang J, Pang R, Zhang Y, Deng Q, Liu X, Zhou Y. A method for studying escape behavior to terrestrial threats in rodents. J Neurosci Methods 2024; 405:110099. [PMID: 38417713 DOI: 10.1016/j.jneumeth.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Escape is one of the most essential behaviors for an animal's survival because it could be a matter of life and death. Much of our current understanding of the neural mechanisms underlying escape is derived from the looming paradigm, which mimics a diving aerial predator. Yet, the idea of the looming paradigm does not account for all types of threats like lions hunting antelopes or cats stalking mice. Escape responses to such terrestrial threats may require different strategies and neural mechanisms. NEW METHODS Here, we developed a real-time interactive platform to study escape behavior to terrestrial threats in mice. A closed-loop controlled robot was magnetically pulled to mimic a terrestrial threat that chases a mouse. By using strong magnets and high-precision servo motors, the robot is capable of moving precisely with a high spatial-temporal resolution. Different algorithms can be used to achieve single approach or persistent approach. RESULTS Animal experiments showed that mice exhibited consistent escape behavior when exposed to an approaching robotic predator. When presented with a persistently approaching predator, the mice were able to rapidly adapt their behavior, as evidenced by a decrease in startle responses and changes in movement patterns. COMPARISON WITH EXISTING METHODS In comparison to existing methods for studying escape behavior, such as the looming paradigm, this approach is more suitable for investigating animal behavior in response to sustained threats. CONCLUSION In conclusion, we have developed a flexible platform to study escape behavior to terrestrial threats in mice.
Collapse
Affiliation(s)
- Yueting Zhang
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China; Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jincheng Wang
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China; Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ruiqi Pang
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China; Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yanjie Zhang
- Department of Military Common and Force Management, Guard Training Base, Army Medical University, Chongqing 400038, China; Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Qiyue Deng
- Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
| | - Xue Liu
- Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhou
- Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
39
|
Zambon A, Rico LC, Herman M, Gundacker A, Telalovic A, Hartenberger LM, Kuehn R, Romanov RA, Hussaini SA, Harkany T, Pollak DD. Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior. Mol Psychiatry 2024; 29:859-873. [PMID: 35581295 PMCID: PMC9112243 DOI: 10.1038/s41380-022-01602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Immune activation is one of the most common complications during pregnancy, predominantly evoked by viral infections. Nevertheless, how immune activation affects mother-offspring relationships postpartum remains unknown. Here, by using the polyinosinic-polycytidylic acid (Poly I:C) model of gestational infection we show that viral-like immune activation at mid-gestation persistently changes hypothalamic neurocircuit parameters in mouse dams and, consequently, is adverse to parenting behavior. Poly I:C-exposed dams favor non-pup-directed exploratory behavior at the expense of pup retrieval. These behavioral deficits are underlain by dendrite pruning and lesser immediate early gene activation in Galanin (Gal)+ neurons with dam-specific transcriptional signatures that reside in the medial preoptic area (mPOA). Reduced activation of an exclusively inhibitory contingent of these distal-projecting Gal+ neurons allows for increased feed-forward inhibition onto putative dopaminergic neurons in the ventral tegmental area (VTA) in Poly I:C-exposed dams. Notably, destabilized VTA output specifically accompanies post-pup retrieval epochs. We suggest that gestational immunogenic insults bias both threat processing and reward perception, manifesting as disfavored infant caregiving.
Collapse
Affiliation(s)
- Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mathieu Herman
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amina Telalovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lisa-Marie Hartenberger
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rebekka Kuehn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - S Abid Hussaini
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Zhao H, Liu J, Shao Y, Feng X, Zhao B, Sun L, Liu Y, Zeng L, Li XM, Yang H, Duan S, Yu YQ. Control of defensive behavior by the nucleus of Darkschewitsch GABAergic neurons. Natl Sci Rev 2024; 11:nwae082. [PMID: 38686177 PMCID: PMC11057443 DOI: 10.1093/nsr/nwae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Jinrong Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Binhan Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
41
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
42
|
Amo R, Uchida N, Watabe-Uchida M. Glutamate inputs send prediction error of reward, but not negative value of aversive stimuli, to dopamine neurons. Neuron 2024; 112:1001-1019.e6. [PMID: 38278147 PMCID: PMC10957320 DOI: 10.1016/j.neuron.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024]
Abstract
Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs), but the mechanisms underlying RPE computation, particularly the contributions of different neurotransmitters, remain poorly understood. Here, we used a genetically encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons in mice. We found that glutamate inputs exhibit virtually all of the characteristics of RPE rather than conveying a specific component of RPE computation, such as reward or expectation. Notably, whereas glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli into more positive responses, whereas excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
Liu D, Hu SW, Wang D, Zhang Q, Zhang X, Ding HL, Cao JL. An Ascending Excitatory Circuit from the Dorsal Raphe for Sensory Modulation of Pain. J Neurosci 2024; 44:e0869232023. [PMID: 38124016 PMCID: PMC10860493 DOI: 10.1523/jneurosci.0869-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The dorsal raphe nucleus (DRN) is an important nucleus in pain regulation. However, the underlying neural pathway and the function of specific cell types remain unclear. Here, we report a previously unrecognized ascending facilitation pathway, the DRN to the mesoaccumbal dopamine (DA) circuit, for regulating pain. Chronic pain increased the activity of DRN glutamatergic, but not serotonergic, neurons projecting to the ventral tegmental area (VTA) (DRNGlu-VTA) in male mice. The optogenetic activation of DRNGlu-VTA circuit induced a pain-like response in naive male mice, and its inhibition produced an analgesic effect in male mice with neuropathic pain. Furthermore, we discovered that DRN ascending pathway regulated pain through strengthened excitatory transmission onto the VTA DA neurons projecting to the ventral part of nucleus accumbens medial shell (vNAcMed), thereby activated the mesoaccumbal DA neurons. Correspondingly, optogenetic manipulation of this three-node pathway bilaterally regulated pain behaviors. These findings identified a DRN ascending excitatory pathway that is crucial for pain sensory processing, which can potentially be exploited toward targeting pain disorders.
Collapse
Affiliation(s)
- Di Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
44
|
Guo F, Zou J, Wang Y, Fang B, Zhou H, Wang D, He S, Zhang P. Human subcortical pathways automatically detect collision trajectory without attention and awareness. PLoS Biol 2024; 22:e3002375. [PMID: 38236815 PMCID: PMC10795999 DOI: 10.1371/journal.pbio.3002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.
Collapse
Affiliation(s)
- Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyou Zou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Ye Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boyan Fang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Huanfen Zhou
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
45
|
Ho PC, Hsiao FY, Chiu SH, Lee SR, Yau HJ. A nigroincertal projection mediates aversion and enhances coping responses to potential threat. FASEB J 2023; 37:e23322. [PMID: 37983662 DOI: 10.1096/fj.202201989rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Recent studies have shown that the non-DA neurons in the ventral tegmental area (VTA) and substantia nigra (SN) not only modulate motivational behaviors but also regulate defensive behaviors. While zona incerta (ZI) is a threat-responsive substrate and receives innervations from the ventral midbrain, the function of the ventral midbrain-to-ZI connection remains poorly defined. Here, we demonstrate that the ZI receives heterogenous innervations from the ventral midbrain. By utilizing a retrograde AAV preferentially labeling non-DA neurons in the ventral midbrain, we found that ZI-projecting non-DA cells in the ventral midbrain are activated by restraint stress. We focused on the SN and found that SN-to-ZI GABAergic input is engaged by a predatory odor. Sustained pan-neuronal SN-to-ZI activation results in aversion and enhances defensive behaviors, likely through a disinhibition mechanism to recruit downstream brain regions that regulate defensive behaviors. Collectively, our results reveal a novel role of nigroincertal projection in mediating negative valence and regulating defensive behaviors.
Collapse
Affiliation(s)
- Ping-Chen Ho
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Fu-Yun Hsiao
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Shi-Hong Chiu
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Syun-Ruei Lee
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Hau-Jie Yau
- The Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Wilczkowski M, Karwowska K, Kielbinski M, Zajda K, Pradel K, Drwięga G, Rajfur Z, Blasiak T, Przewlocki R, Solecki WB. Recruitment of inhibitory neuronal pathways regulating dopaminergic activity for the control of cocaine seeking. Eur J Neurosci 2023; 58:4487-4501. [PMID: 36479859 DOI: 10.1111/ejn.15885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Drug seeking is associated with the ventral tegmental area (VTA) dopaminergic (DA) activity. Previously, we have shown that brief optogenetic inhibition of VTA DA neurons with 1 s pulses delivered every 9 s attenuates cocaine seeking under extinction conditions in rats without producing overt signs of dysphoria or locomotor sedation. Whether recruitment of neuronal pathways inhibiting VTA neuronal activity would suppress drug seeking remains unknown. Here, we asked if optogenetic stimulation of the lateral habenula (LHb) efferents in the rostromedial tegmental nucleus (RMTg) as well as RMTg efferents in VTA would reduce drug seeking. To investigate this, we measured how recruitment of elements of this inhibitory pathway affects cocaine seeking in male rats under extinction conditions. The effectiveness of brief optogenetic manipulations was confirmed electrophysiologically at the level of electrical activity of VTA DA neurons. Real-time conditioned place aversion (RT-CPA) and open field tests were performed to control for potential dysphoric/sedating effects of brief optogenetic stimulation of LHb-RMTg-VTA circuitry. Optogenetic stimulation of either RMTg or LHb inhibited VTA DAergic neuron firing, whereas similar stimulation of RMTg efferents in VTA or LHb efferents in RMTg reduced cocaine seeking under extinction conditions. Moreover, stimulation of LHb-RMTg efferents produced an effect that was maintained 24 h later, during cocaine seeking test without stimulation. This effect was specific, as brief optogenetic stimulation did not affect locomotor activity and was not aversive. Our results indicate that defined inhibitory pathways can be recruited to inhibit cocaine seeking, providing potential new targets for non-pharmacological treatment of drug craving.
Collapse
Affiliation(s)
- Michał Wilczkowski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
- Department of Brain Biochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Karolina Karwowska
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Gniewosz Drwięga
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Department of Biosystems Physics, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Tomasz Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
47
|
Wu K, Wang D, Wang Y, Tang P, Li X, Pan Y, Tao HW, Zhang LI, Liang F. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions. Neuron 2023; 111:3650-3667.e6. [PMID: 37652003 PMCID: PMC10990237 DOI: 10.1016/j.neuron.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.
Collapse
Affiliation(s)
- Kaibin Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Peiwen Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Xuan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China; Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Amo R, Uchida N, Watabe-Uchida M. Glutamate inputs send prediction error of reward but not negative value of aversive stimuli to dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566472. [PMID: 37986868 PMCID: PMC10659341 DOI: 10.1101/2023.11.09.566472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs) but the mechanisms underlying RPE computation, particularly contributions of different neurotransmitters, remain poorly understood. Here we used a genetically-encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons. We found that glutamate inputs exhibit virtually all of the characteristics of RPE, rather than conveying a specific component of RPE computation such as reward or expectation. Notably, while glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli toward more positive responses, while excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
49
|
Tseng YT, Schaefke B, Wei P, Wang L. Defensive responses: behaviour, the brain and the body. Nat Rev Neurosci 2023; 24:655-671. [PMID: 37730910 DOI: 10.1038/s41583-023-00736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
50
|
Tsou JH, Lee SR, Chiang CY, Yang YJ, Guo FY, Ni SY, Yau HJ. Negative Emotions Recruit the Parabrachial Nucleus Efferent to the VTA to Disengage Instrumental Food Seeking. J Neurosci 2023; 43:7276-7293. [PMID: 37684032 PMCID: PMC10621778 DOI: 10.1523/jneurosci.2114-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The parabrachial nucleus (PBN) interfaces between taste and feeding systems and is also an important hub for relaying distress information and threats. Despite that the PBN sends projections to the ventral tegmental area (VTA), a heterogeneous brain region that regulates motivational behaviors, the function of the PBN-to-VTA connection remains elusive. Here, by using male mice in several behavioral paradigms, we discover that VTA-projecting PBN neurons are significantly engaged in contextual fear, restraint or mild stress but not palatable feeding, visceral malaise, or thermal pain. These results suggest that the PBN-to-VTA input may relay negative emotions under threat. Consistent with this notion, optogenetic activation of PBN-to-VTA glutamatergic input results in aversion, which is sufficient to override palatable feeding. Moreover, in a palatable food-reinforced operant task, we demonstrate that transient optogenetic activation of PBN-to-VTA input during food reward retrieval disengages instrumental food-seeking behaviors but spares learned action-outcome association. By using an activity-dependent targeting approach, we show that VTA DA neurons are disengaged by the PBN afferent activation, implicating that VTA non-DA neurons may mediate PBN afferent regulation. We further show that optogenetic activation of VTA neurons functionally recruited by the PBN input results in aversion, dampens palatable feeding, and disengages palatable food self-administration behavior. Finally, we demonstrate that transient activation of VTA glutamatergic, but not GABAergic, neurons recapitulates the negative regulation of the PBN input on food self-administration behavior. Together, we reveal that the PBN-to-VTA input conveys negative affect, likely through VTA glutamatergic neurons, to disengage instrumental food-seeking behaviors.SIGNIFICANCE STATEMENT The PBN receives multiple inputs and thus is well positioned to route information of various modalities to engage different downstream circuits to attend or respond accordingly. We demonstrate that the PBN-to-VTA input conveys negative affect and then triggers adaptive prioritized responses to address pertinent needs by withholding ongoing behaviors, such as palatable food seeking or intake shown in the present study. It has evolutionary significance because preparing to cope with stressful situations or threats takes priority over food seeking to promote survival. Knowing how appropriate adaptive responses are generated will provide new insights into circuitry mechanisms of various coping behaviors to changing environmental stimuli.
Collapse
Affiliation(s)
- Jen-Hui Tsou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Syun-Ruei Lee
- Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Ying Chiang
- Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Jie Yang
- Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Fong-Yi Guo
- Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Ying Ni
- School of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hau-Jie Yau
- Laboratory for Neural Circuits and Behaviors, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- PhD Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|