1
|
Jenkins AR, Radl DB, Kornecook TJ, Pizzagalli DA, Bergman J, Buhl DL, O'Donnell P, Kangas BD. Environmental determinants of ketamine's prohedonic and antianhedonic efficacy: Persistence of enhanced reward responsiveness is modulated by chronic stress. J Pharmacol Exp Ther 2025; 392:103572. [PMID: 40288209 DOI: 10.1016/j.jpet.2025.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Ketamine, a dissociative anesthetic with well documented abuse liability, can also provide rapid-onset and persistent antidepressant effects and is currently used for the management of treatment-resistant depression. Although the precise neurobiological mechanisms underlying its antidepressant actions are not fully determined, a critical feature of ketamine's clinical efficacy may be its antianhedonic action. Anhedonia is an endophenotype of depression defined by decreased responsivity to previously rewarding stimuli and is generally not ameliorated by conventional antidepressants, emphasizing the need to examine underlying behavioral mechanisms of action. In this study, the probabilistic reward task, a reverse-translated assay originally designed to objectively quantify anhedonic phenotypes in human subjects, was used in rats to examine ketamine's effects on reward responsiveness under conditions without programmed stressors (3.2-32.0 mg/kg) or during ongoing chronic exposure to ecologically relevant stress (10.0 mg/kg). Results showed that under conditions without programmed stress, ketamine produced significant prohedonic effects in the probabilistic reward task, defined by increases in reward responsiveness that dissipated within 24 hours. In rats exposed to ongoing chronic stress, ketamine produced significant antianhedonic effects, defined by the rescue of blunted reward responsiveness, that persisted for nearly 1 week. Taken together, the prolonged antianhedonic effects of ketamine in rats experiencing chronic stress, compared with the shorter-lived prohedonic effects in subjects without exposure to programmed stressors, are striking and highlight the role of environmental determinants in the effects of ketamine on behavioral processes. Moreover, the translational nature of this experimental design may offer the opportunity to accelerate development of novel antianhedonic therapeutics. SIGNIFICANCE STATEMENT: Although ketamine is used for the management of treatment-resistant depression, its precise behavioral mechanisms of action are not fully delineated. Emerging evidence suggests the attenuation of anhedonia plays a key role in its rapid-acting therapeutic efficacy. To evaluate this possibility, the effects of ketamine were studied using a reverse-translated assay of reward responsiveness in rats and documented to be short-lived (prohedonic) under nonstressful conditions and persistent (antianhedonic) under stressful conditions, informing ketamine effects in healthy versus depressed individuals.
Collapse
Affiliation(s)
- Amaya R Jenkins
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | | | | | | | - Jack Bergman
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Derek L Buhl
- Takeda Pharmaceuticals, Cambridge, Massachusetts
| | | | - Brian D Kangas
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
2
|
Stein G, Aly JS, Lange L, Manzolillo A, Riege K, Brancato A, Hübner CA, Turecki G, Hoffmann S, Engmann O. Npbwr1 signaling mediates fast antidepressant action. Mol Psychiatry 2025; 30:1828-1835. [PMID: 39433904 PMCID: PMC12015170 DOI: 10.1038/s41380-024-02790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Chronic stress is a major risk factor for depression, a leading cause of disability and suicide. Because current antidepressants work slowly, have common side effects, and are only effective in a minority of patients, there is an unmet need to identify the underlying molecular mechanisms. Here, we identify the receptor for neuropeptides B and W, Npbwr1, as a key regulator of depressive-like symptoms. Npbwr1 is increased in the nucleus accumbens of chronically stressed mice and postmortem in patients diagnosed with depression. Using viral-mediated gene transfer, we demonstrate a causal link between Npbwr1, dendritic spine morphology, the biomarker Bdnf, and depressive-like behaviors. Importantly, microinjection of the synthetic antagonist of Npbwr1, CYM50769, rapidly ameliorates depressive-like behavioral symptoms and alters Bdnf levels. CYM50769 is selective, well tolerated, and shows effects up to 7 days after administration of a single dose. In summary, these findings advance our understanding of mood and chronic stress and warrant further investigation of CYM50769 as a potential fast-acting antidepressant.
Collapse
Affiliation(s)
- Gregor Stein
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Janine S Aly
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Lisa Lange
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Annamaria Manzolillo
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Olivia Engmann
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany.
| |
Collapse
|
3
|
Wang J, Chen W, Zhu Q, Liu Y, Kang Z, Liu D, Zeng G. Effects of Qingyangshen glycosides on neuroplasticity in a mouse model of social defeat. Animal Model Exp Med 2025; 8:581-594. [PMID: 39921215 PMCID: PMC12008452 DOI: 10.1002/ame2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Qingyangshen (Cynanchum otophyllum C.K. Schneid) is a folk drug for treating depression and other mental disorders induced by social defeat stress. Neuroplasticity in the hippocampus is essential for the modulation of cognition and emotion, and its impairment may contribute to the development and progression of depression. Our previous studies have found that Qingyangshen glycosides (QYS) can improve depression-like behavior in social failure mouse models, mainly through PGC-1α/FNDC5/BDNF signaling pathways activation, but its effects and mechanisms on hippocampal neuroplasticity remain unknown. METHODS Chronic social defeat stress (CSDS) was used to induce social defeat in mice. Morphological changes in the hippocampus were observed by H&E staining and Golgi staining. Immunofluorescence double staining was used to detect the expression of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95), while western blot was employed to evaluate PSD-95, SYN, and doublecortin (DCX) proteins. The pathological processing of social defeat and the therapeutic effects of QYS on it was confirmed through behavioral assessment associated with morphologic observation. RESULTS During the whole study, the sucrose preference indices and OFT activity time of CSDS mice were significantly decreased (p ≤ 0.05), and the tail suspension immobility time was significantly increased (p ≤ 0.05), suggesting that the mice had significant depressive symptoms. Treatment with QYS (25, 50, and 100 mg/kg) significantly alleviated depressive symptoms in CSDS mice, which was demonstrated by significantly (p ≤ 0.05 or p ≤ 0.01) reducing the duration of tail-hanging immobility and increasing the tendency of sucrose preference indices and OFT activity time. QYS treatment also significantly increased the expression of DCX, PSD-95, and SYN proteins, which play a crucial role in depression. CONCLUSIONS QYS alleviated these symptoms by enhancing hippocampal neuroplasticity through upregulating the expression of synapse-associated proteins (SAPs). The therapeutic mechanism of QYS may involve modulating the neuroplasticity of hippocampus neurons by altering the expression of SAPs.
Collapse
Affiliation(s)
- Jingru Wang
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Weishi Chen
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Zhu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yao Liu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zheng Kang
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dingding Liu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guirong Zeng
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
4
|
Fischer L, Paschke B, Gareis F, Schumacher M, Liere P, Hiergeist A, Gessner A, Rupprecht R, Neumann ID, Bosch OJ. The translocator protein 18 kDa (TSPO) ligand etifoxine in an animal model of anxiety: Line- and sex-dependent effects on emotionality, stress reactivity, spine density, oxytocin receptors, steroids, and microbiome composition. Neuropharmacology 2025; 266:110282. [PMID: 39725124 DOI: 10.1016/j.neuropharm.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.
Collapse
Affiliation(s)
- Lilith Fischer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Bjarne Paschke
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Franziska Gareis
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 Rue Du Général Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Gutiérrez MC, Comas Mutis RG, Perondi MC, Calfa GD, Valdomero A. Perinatal Protein Restriction Induces Anhedonic-Like Behavior: Disturbed Hippocampal Neurotrophic Signaling and Neuronal Structural Plasticity in Adult Offspring. Hippocampus 2025; 35:e70003. [PMID: 39949067 DOI: 10.1002/hipo.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 05/09/2025]
Abstract
Early protein malnutrition has been shown to affect the brain reward circuitry, leading to enduring molecular, neurochemical, and behavioral alterations. This study explored how maternal protein restriction contributes to anhedonia, a key depression symptom, focusing on the hippocampal BDNF-TrkB signaling and structural plasticity changes in the CA1 subregion of the dorsal hippocampus (DH). To achieve our goal, adult rats submitted to a protein restriction schedule from the 14th day of gestation up to 30 days of age (PR-rats) were subjected to the sucrose preference test (SPT) and compared with animals fed a normoprotein diet. Immediately after SPT, we assessed the levels of BDNF and its receptor TrkB and structural plasticity changes. Interestingly, PR-rats showed a significant decrease in sucrose preference. Furthermore, perinatal protein-restriction-induced anhedonia correlated with decreased BDNF and p-TrkB levels in the DH, alongside reduced dendritic spine density in CA1 pyramidal neurons, particularly mature spines (i.e., stubby and mushroom spines). These findings suggest that decreased hippocampal BDNF-TrkB signaling accompanied by structural remodeling in the CA1 pyramidal neurons may contribute to the reduced ability of undernourished animals to respond to rewarding stimuli, increasing their vulnerability to anhedonia later in life.
Collapse
Affiliation(s)
- María C Gutiérrez
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Ramiro G Comas Mutis
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - María C Perondi
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Gastón D Calfa
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Analía Valdomero
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| |
Collapse
|
6
|
Pe’er-Nissan H, Shirel Itzhak P, Gispan I, Ofir R, Yadid G. Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy. Int J Mol Sci 2024; 26:234. [PMID: 39796091 PMCID: PMC11720280 DOI: 10.3390/ijms26010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving. The results revealed an addiction-stage and region-specific impairment in microglia following chronic cocaine exposure, with deficits observed in the Nucleus Accumbens (NAc) during the maintenance stage and in both the NAc and Dentate Gyrus (DG) during the extinction and reinstatement stages. Furthermore, PLX-PAD cell therapy demonstrated a significant reduction in cocaine craving and seeking behavior, interestingly accompanied by the prevention of Iba-1 level decrease and restoration of microglial activity in the NAc and DG. These findings highlight the unique role of microglia in modulating cocaine addiction behaviors through their influence on synaptic plasticity and neuronal remodeling associated with memory formation. They also suggest that PLX-PAD therapy may mitigate the detrimental effects of chronic cocaine exposure on microglia, underscoring the importance of incorporating microglia in comprehensive addiction rehabilitation strategies.
Collapse
Affiliation(s)
- Hilla Pe’er-Nissan
- Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.P.-N.); (P.S.I.); (I.G.)
| | - Pnina Shirel Itzhak
- Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.P.-N.); (P.S.I.); (I.G.)
| | - Iris Gispan
- Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.P.-N.); (P.S.I.); (I.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Racheli Ofir
- Pluristem Therapeutics Inc., Haifa 3508409, Israel;
| | - Gal Yadid
- Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.P.-N.); (P.S.I.); (I.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
7
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
9
|
Hong H, Gao M, Zhou M, Wang A, Hua R, Ma Z, Wang Y, Xu Y, Bai Y, Huang G, Yu Y, Tan H. Ethyl acetate extract of Nymphaea candida Presl: A potential anti-depressant and neuroprotective treatment strategy. Biomed Pharmacother 2024; 179:117304. [PMID: 39178813 DOI: 10.1016/j.biopha.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Nymphaea candida Presl (NC), traditionally used in medicine for heat syndrome-related ailments, possesses antioxidative, anti-inflammatory, hepatoprotective, and neuroprotective properties. This research investigates the antidepressant and neuroprotective effects and mechanisms of Nymphaea candida Presl ethyl acetate (NCEA). Primary components of NCEA were identified as phenolic acids and flavonoids through UPLC-MS/MS analysis. The depression mouse model was induced via intracerebroventricular injection of Lipopolysaccharide (LPS), followed by oral administration of fluoxetine and NCEA for one week. Biochemical assays and HE staining confirmed NCEA's non-toxicity and protective effects on the liver and lungs. NCEA administration mitigated LPS-induced depressive behaviors, decreased IL-1β, TNF-α levels in the hippocampus, suppressed microglial activation, reduced Iba-1 expression, and increased NA, brain-derived neurotrophic factor (BDNF), and dendritic spine density in the hippocampus. Furthermore, NCEA enhanced cell viability in a CORT-induced PC12 cell model, decreased lactate dehydrogenase (LDH) release rate, total superoxide dismutase (SOD) inhibition rate, intracellular nitric oxide (NO) release, and reduced reactive oxygen species (ROS) production. Our research findings suggest that NCEA exhibits significant antidepressant effects, which may be attributed to its reduction of neuroinflammation, improvement in neurotransmitter levels, neuronal protection, and antioxidative stress properties.
Collapse
Affiliation(s)
- Huixia Hong
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ming Gao
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Min Zhou
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ao Wang
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ruimao Hua
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Ziwei Ma
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| | - Yachao Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China; The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yanwen Xu
- Translational Medicine Institute, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, China.
| | - Yu Bai
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China; The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yuming Yu
- College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Xinjiang University, Urumqi, Xinjiang 830017, China.
| | - Hui Tan
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, 518026, China.
| |
Collapse
|
10
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 PMCID: PMC11804209 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
11
|
Afzal S, Dürrast N, Hassan I, Soleimanpour E, Tsai PL, Dieterich DC, Fendt M. Probing cognitive flexibility in Shank2-deficient mice: Effects of D-cycloserine and NMDAR signaling hub dynamics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111051. [PMID: 38849086 DOI: 10.1016/j.pnpbp.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) have a heterogeneous etiology but are largely associated with genetic factors. Robust evidence from recent human genetic studies has linked mutations in the Shank2 gene to idiopathic ASD. Modeling these Shank2 mutations in animal models recapitulates behavioral changes, e.g. impaired social interaction and repetitive behavior of ASD patients. Shank2-deficient mice exhibit NMDA receptor (NMDAR) hypofunction and associated behavioral deficits. Of note, NMDARs are strongly implicated in cognitive flexibility. Their hypofunction, e.g. observed in schizophrenia, or their pharmacological inhibition leads to impaired cognitive flexibility. However, the association between Shank2 mutations and cognitive flexibility is poorly understood. Using Shank2-deficient mice, we explored the role of Shank2 in cognitive flexibility measured by the attentional set shifting task (ASST) and whether ASST performance in Shank2-deficient mice can be modulated by treatment with the partial NMDAR agonist D-cycloserine (DCS). Furthermore, we investigated the effects of Shank2 deficiency, ASST training, and DCS treatment on the expression level of NMDAR signaling hub components in the orbitofrontal cortex (OFC), including NMDAR subunits (GluN2A, GluN2B, GluN2C), phosphoglycerate dehydrogenase and serine racemase. Surprisingly, Shank2 deficiency did not affect ASST performance or alter the expression of the investigated NMDAR signaling hub components. Importantly, however, DCS significantly improved ASST performance, demonstrating that positive NMDAR modulation facilitates cognitive flexibility. Furthermore, DCS increased the expression of GluN2A in the OFC, but not that of other NMDAR signaling hub components. Our findings highlight the potential of DCS as a pharmacological intervention to improve cognitive flexibility impairments downstream of NMDAR modulation and substantiate the key role of NMDAR in cognitive flexibility.
Collapse
Affiliation(s)
- Samia Afzal
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Nora Dürrast
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Iman Hassan
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Pei-Ling Tsai
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Yount ST, Wang S, Allen AT, Shapiro LP, Butkovich LM, Gourley SL. A molecularly defined orbitofrontal cortical neuron population controls compulsive-like behavior, but not inflexible choice or habit. Prog Neurobiol 2024; 238:102632. [PMID: 38821345 PMCID: PMC11332912 DOI: 10.1016/j.pneurobio.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Habits are familiar behaviors triggered by cues, not outcome predictability, and are insensitive to changes in the environment. They are adaptive under many circumstances but can be considered antecedent to compulsions and intrusive thoughts that drive persistent, potentially maladaptive behavior. Whether compulsive-like and habit-like behaviors share neural substrates is still being determined. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice demonstrate habitual response biases and compulsive-like grooming behavior that was reversible by fluoxetine and ketamine. They also suffer dendritic spine attrition on excitatory neurons in the orbitofrontal cortex (OFC). Nevertheless, synaptic melanocortin 4 receptor (MC4R), a factor implicated in compulsive behavior, is preserved, leading to the hypothesis that Mc4r+ OFC neurons may drive aberrant behaviors. Repeated chemogenetic stimulation of Mc4r+ OFC neurons triggered compulsive and not inflexible or habitual response biases in otherwise typical mice. Thus, Mc4r+ neurons within the OFC appear to drive compulsive-like behavior that is dissociable from habitual behavior. Understanding which neuron populations trigger distinct behaviors may advance efforts to mitigate harmful compulsions.
Collapse
Affiliation(s)
- Sophie T Yount
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Silu Wang
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Aylet T Allen
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Lauren P Shapiro
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Laura M Butkovich
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Shannon L Gourley
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
13
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
14
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
15
|
Buhusi M, Brown CK, Buhusi CV. NrCAM-deficient mice exposed to chronic stress exhibit disrupted latent inhibition, a hallmark of schizophrenia. Front Behav Neurosci 2024; 18:1373556. [PMID: 38601326 PMCID: PMC11004452 DOI: 10.3389/fnbeh.2024.1373556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The neuronal cell adhesion molecule (NrCAM) is widely expressed and has important physiological functions in the nervous system across the lifespan, from axonal growth and guidance to spine and synaptic pruning, to organization of proteins at the nodes of Ranvier. NrCAM lies at the core of a functional protein network where multiple targets (including NrCAM itself) have been associated with schizophrenia. Here we investigated the effects of chronic unpredictable stress on latent inhibition, a measure of selective attention and learning which shows alterations in schizophrenia, in NrCAM knockout (KO) mice and their wild-type littermate controls (WT). Under baseline experimental conditions both NrCAM KO and WT mice expressed robust latent inhibition (p = 0.001). However, following chronic unpredictable stress, WT mice (p = 0.002), but not NrCAM KO mice (F < 1), expressed latent inhibition. Analyses of neuronal activation (c-Fos positive counts) in key brain regions relevant to latent inhibition indicated four types of effects: a single hit by genotype in IL cortex (p = 0.0001), a single hit by stress in Acb-shell (p = 0.031), a dual hit stress x genotype in mOFC (p = 0.008), vOFC (p = 0.020), and Acb-core (p = 0.032), and no effect in PrL cortex (p > 0.141). These results indicating a pattern of differential effects of genotype and stress support a complex stress × genotype interaction model and a role for NrCAM in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | | | - Catalin V. Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
16
|
Tan Y, Xu M, Lin D. Review of research progress on intestinal microbiota based on metabolism and inflammation for depression. Arch Microbiol 2024; 206:146. [PMID: 38462572 DOI: 10.1007/s00203-024-03866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
Depression is a prevalent mental illness, affecting a significant portion of the global population. Recent research has highlighted the crucial role of the gut microbiota in both metabolic and central nervous health. By reviewing literature from various databases, including Pubmed, Science Direct, Web of Science, and Scopus, spanning the years 2005-2023, a comprehensive search was conducted using keywords such as "Depression" and "Gut Microbiota". The gut microbiota acts as a "second brain" in humans and can communicate bidirectionally with the brain through the Brain-gut-microbiota axis pathway. This communication involves the immune and nervous systems. However, there are challenges in detecting and treating depression effectively. To address these limitations, researchers have been exploring the relationship between gut microbiota and depression. Studies have shown that gut microbial metabolites, such as lipopolysaccharides and short-chain fatty acids, can induce pro-inflammatory cytokines that contribute to neuroinflammation and increase the risk of depression. The kynurenine pathway, triggered by gut microbial metabolites, has also been associated with neuroinflammation. Thus, investigating these microbial metabolites can provide insights into depression treatment. This review focuses on analyzing the connection between gut microbial metabolites, inflammation, and depression. It explores novel mechanisms contributing to depression, specifically focusing on the mediation of inflammation through the release of pro-inflammatory cytokines. The objective is to provide valuable insights into the mechanisms underlying depression and to propose potential treatments.
Collapse
Affiliation(s)
- Yunxiang Tan
- School of Life Sciences, Fudan University, Shanghai, 200438, China
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Mengyu Xu
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Deng Lin
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511466, Guangdong, China.
- Beijing Research Center for Chinese Classic Science and Technology, Beijing, 102425, China.
| |
Collapse
|
17
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
18
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
19
|
Warner-Schmidt J, Stogniew M, Mandell B, Rowland RS, Schmidt EF, Kelmendi B. Methylone is a rapid-acting neuroplastogen with less off-target activity than MDMA. Front Neurosci 2024; 18:1353131. [PMID: 38389788 PMCID: PMC10882719 DOI: 10.3389/fnins.2024.1353131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a highly prevalent psychiatric disorder that can become chronic and debilitating when left untreated. Available pharmacotherapies are limited, take weeks to show modest benefit and remain ineffective for up to 40% of patients. Methylone is currently in clinical development for the treatment of PTSD. Preclinical studies show rapid, robust and long-lasting antidepressant-like and anxiolytic effects. The mechanism of action underlying these effects is not yet fully understood. This study investigated the downstream gene expression changes and signaling pathways affected by methylone in key brain areas linked to PTSD and MDD. It also sought to determine whether neuroplasticity-related genes were involved. We compared effects of methylone with MDMA to explore similarities and differences in their brain effects because MDMA-assisted psychotherapy has recently shown benefit in clinical trials for PTSD and methylone is a structural analog of MDMA. Methods Monoamine binding, uptake and release studies were performed and a high-throughput-screen evaluated agonist/antagonist activities at 168 GPCRs in vitro. We used RNA sequencing (RNA-seq) to probe drug-induced gene expression changes in the amygdala and frontal cortex, two brain areas responsible for emotional learning that are affected by PTSD and MDD. Rats were treated with methylone or MDMA (both 10 mg/kg, IP), and their responses were compared with controls. We performed functional enrichment analysis to identify which pathways were regulated by methylone and/or MDMA. We confirmed changes in gene expression using immunohistochemistry. Results Methylone, a monoamine uptake inhibitor and releaser, demonstrated no off-target effects at 168 GPCRs, unlike MDMA, which showed activity at 5HT2A and 5HT2C receptors. RNA-seq results revealed significant regulation of myelin-related genes in the amygdala, confirmed by immunohistochemistry. In the frontal cortex, methylone significantly upregulated genes implicated in neuroplasticity. Conclusion Results suggest that (1) methylone is a rapid-acting neuroplastogen that affects key brain substrates for PTSD and MDD and that (2) methylone appears to exhibit higher specificity and fewer off-target effects than MDMA. Together, these results are consistent with the reported clinical experiences of methylone and MDMA and bolster the potential use of methylone in the treatment of PTSD and, potentially, other neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- US Department of Veterans Affairs, National Center for PTSD Clinical Neurosciences Division, West Haven, CT, United States
| |
Collapse
|
20
|
Garman A, Ash AM, Kokkinos EK, Nerland D, Winter L, Langreck CB, Forgette ML, Girgenti MJ, Banasr M, Duric V. Novel hippocampal genes involved in enhanced susceptibility to chronic pain-induced behavioral emotionality. Eur J Pharmacol 2024; 964:176273. [PMID: 38135263 DOI: 10.1016/j.ejphar.2023.176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Altered mood and psychiatric disorders are commonly associated with chronic pain conditions; however, brain mechanisms linking pain and comorbid clinical depression are still largely unknown. In this study, we aimed to identify whether key genes/cellular mechanisms underlie susceptibility/resiliency to development of depressive-like behaviors during chronic pain state. Genome-wide RNA-seq analysis was used to examine the transcriptomic profile of the hippocampus, a limbic brain region that regulates mood and stress responses, from male rats exposed to chronic inflammatory pain. Pain-exposed animals were separated into either 'resilient' or 'susceptible' to development of enhanced behavioral emotionality based on behavioral testing. RNA-seq bioinformatic analysis, followed by validation using qPCR, revealed dysregulation of hippocampal genes involved in neuroinflammation, cell cycle/neurogenesis and blood-brain barrier integrity. Specifically, ADAM Metallopeptidase Domain 8 (Adam8) and Aurora Kinase B (Aurkb), genes with functional roles in activation of the NLRP3 inflammasome and microgliosis, respectively, were significantly upregulated in the hippocampus of 'susceptible' animals expressing increased behavioral emotionality. In addition, genes associated with blood-brain barrier integrity, such as the Claudin 4 (Cldn4), a tight junction protein and a known marker of astrocyte activation, were also significantly dysregulated between 'resilient' or 'susceptible' pain groups. Furthermore, differentially expressed genes (DEGs) were further characterized in rodents stress models to determine whether their hippocampal dysregulation is driven by common stress responses vs. affective pain processing. Altogether these results continue to strengthen the connection between dysregulation of hippocampal genes involved in neuroinflammatory and neurodegenerative processes with increased behavioral emotionality often expressed in chronic pain state.
Collapse
Affiliation(s)
- Adam Garman
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Allison M Ash
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Ellesavette K Kokkinos
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Dakota Nerland
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Lori Winter
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Cory B Langreck
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
| | - Morgan L Forgette
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06508, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada; Department of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Vanja Duric
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA.
| |
Collapse
|
21
|
Ribeiro-Davis A, Al Saeedy DY, Jahr FM, Hawkins E, McClay JL, Deshpande LS. Ketamine Produces Antidepressant Effects by Inhibiting Histone Deacetylases and Upregulating Hippocampal Brain-Derived Neurotrophic Factor Levels in a Diisopropyl Fluorophosphate-Based Rat Model of Gulf War Illness. J Pharmacol Exp Ther 2024; 388:647-654. [PMID: 37863487 PMCID: PMC10801753 DOI: 10.1124/jpet.123.001824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/22/2023] Open
Abstract
Approximately one-third of Gulf War veterans suffer from Gulf War Illness (GWI), which encompasses mood disorders and depressive symptoms. Deployment-related exposure to organophosphate compounds has been associated with GWI development. Epigenetic modifications have been reported in GWI veterans. We previously showed that epigenetic histone dysregulations were associated with decreased brain-derived neurotrophic factor (BDNF) expression in a GWI rat model. GWI has no effective therapies. Ketamine (KET) has recently been approved by the Food and Drug Administration for therapy-resistant depression. Interestingly, BDNF upregulation underlies KET's antidepressant effect in GWI-related depression. Here, we investigated whether KET's effect on histone mechanisms signals BDNF upregulations in GWI. Male Sprague-Dawley rats were injected once daily with diisopropyl fluorophosphate (DFP; 0.5 mg/kg, s.c., 5 days). At 6 months following DFP exposure, KET (10 mg/kg, i.p.) was injected, and brains were dissected 24 hours later. Western blotting was used for protein expression, and epigenetic studies used chromatin immunoprecipitation methods. Dil staining was conducted for assessing dendritic spines. Our results indicated that an antidepressant dose of KET inhibited the upregulation of histone deacetylase (HDAC) enzymes in DFP rats. Furthermore, KET restored acetylated histone occupancy at the Bdnf promoter IV and induced BDNF protein expression in DFP rats. Finally, KET treatment also increased the spine density and altered the spine diversity with increased T-type and decreased S-type spines in DFP rats. Given these findings, we propose that KET's actions involve the inhibition of HDAC expression, upregulation of BDNF, and dendritic modifications that together ameliorates the pathologic synaptic plasticity and exerts an antidepressant effect in DFP rats. SIGNIFICANCE STATEMENT: This study offers evidence supporting the involvement of epigenetic histone pathways in the antidepressant effects of ketamine (KET) in a rat model of Gulf War Illness (GWI)-like depression. This effect is achieved through the modulation of histone acetylation at the Bdnf promoter, resulting in elevated brain-derived neurotrophic factor expression and subsequent dendritic remodeling in the hippocampus. These findings underscore the rationale for considering KET as a potential candidate for clinical trials aimed at managing GWI-related depression.
Collapse
Affiliation(s)
- Ana Ribeiro-Davis
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dalia Y Al Saeedy
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Fay M Jahr
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Elisa Hawkins
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph L McClay
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Laxmikant S Deshpande
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
22
|
Won J, Lee S, Ahmad Khan Z, Choi J, Ho Lee T, Hong Y. Suppression of DAPK1 reduces ischemic brain injury through inhibiting cell death signaling and promoting neural remodeling. Brain Res 2023; 1820:148588. [PMID: 37742938 DOI: 10.1016/j.brainres.2023.148588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
The role of death-associated protein kinase1 (DAPK1) in post-stroke functional recovery is controversial, as is its mechanism of action and any neural remodeling effect after ischemia. To assess the debatable role of DAPK1, we established the middle cerebral artery occlusion (MCAo) model in DAPK1 knockout mice and Sprague-Dawley (SD) rats. We identified that the genetic deletion of the DAPK1 as well as pharmacological inhibition of DAPK1 showed reduced brain infarct volume and neurological deficit. We report that DAPK1 inhibition (DI) reduces post-stroke neuronal death by inhibiting BAX/BCL2 and LC3/Beclin1 mediated apoptosis and autophagy, respectively. Histological analysis displayed a reduction in nuclear condensation, neuronal dissociation, and degraded cytoplasm in the DI group. The DI treatment showed enhanced dendrite spine density and neurite outgrowth, upregulated neural proliferation marker proteins like brain-derived neurotrophic factor, and reduced structural abnormalities of the cortical pyramidal neurons. This research shows that DAPK1 drives cell death, its activation exacerbates functional recovery after cerebral ischemia and shows that oxazolone-based DI could be an excellent candidate for stroke and ischemic injury intervention.
Collapse
Affiliation(s)
- Jinyoung Won
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, South Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, South Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, South Korea
| | - Seunghoon Lee
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, South Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, South Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, South Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, South Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, South Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, South Korea
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, South Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, South Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, South Korea
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, South Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, South Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, South Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, South Korea.
| |
Collapse
|
23
|
Codeluppi SA, Xu M, Bansal Y, Lepack AE, Duric V, Chow M, Muir J, Bagot RC, Licznerski P, Wilber SL, Sanacora G, Sibille E, Duman RS, Pittenger C, Banasr M. Prefrontal cortex astroglia modulate anhedonia-like behavior. Mol Psychiatry 2023; 28:4632-4641. [PMID: 37696873 PMCID: PMC10914619 DOI: 10.1038/s41380-023-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Reductions of astroglia expressing glial fibrillary acidic protein (GFAP) are consistently found in the prefrontal cortex (PFC) of patients with depression and in rodent chronic stress models. Here, we examine the consequences of PFC GFAP+ cell depletion and cell activity enhancement on depressive-like behaviors in rodents. Using viral expression of diphtheria toxin receptor in PFC GFAP+ cells, which allows experimental depletion of these cells following diphtheria toxin administration, we demonstrated that PFC GFAP+ cell depletion induced anhedonia-like behavior within 2 days and lasting up to 8 days, but no anxiety-like deficits. Conversely, activating PFC GFAP+ cell activity for 3 weeks using designer receptor exclusively activated by designer drugs (DREADDs) reversed chronic restraint stress-induced anhedonia-like deficits, but not anxiety-like deficits. Our results highlight a critical role of cortical astroglia in the development of anhedonia and further support the idea of targeting astroglia for the treatment of depression.
Collapse
Affiliation(s)
- S A Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Y Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - A E Lepack
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - V Duric
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Physiology and Pharmacology, Des Moines University, West Des Moines, IA, USA
| | - M Chow
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - J Muir
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - R C Bagot
- Department of Psychology, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - P Licznerski
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - S L Wilber
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - G Sanacora
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - E Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - R S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - C Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - M Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
25
|
Vega-Rivera NM, González-Trujano ME, Luna-Angula A, Sánchez-Chapul L, Estrada-Camarena E. Antidepressant-like effects of the Punica granatum and citalopram combination are associated with structural changes in dendritic spines of granule cells in the dentate gyrus of rats. Front Pharmacol 2023; 14:1211663. [PMID: 37900157 PMCID: PMC10613096 DOI: 10.3389/fphar.2023.1211663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.
Collapse
Affiliation(s)
- Nelly-Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alexandra Luna-Angula
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| |
Collapse
|
26
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
27
|
Meneses-San Juan D, Lamas M, Ramírez-Rodríguez GB. Repetitive Transcranial Magnetic Stimulation Reduces Depressive-like Behaviors, Modifies Dendritic Plasticity, and Generates Global Epigenetic Changes in the Frontal Cortex and Hippocampus in a Rodent Model of Chronic Stress. Cells 2023; 12:2062. [PMID: 37626872 PMCID: PMC10453847 DOI: 10.3390/cells12162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is the most common affective disorder worldwide, accounting for 4.4% of the global population, a figure that could increase in the coming decades. In depression, there exists a reduction in the availability of dendritic spines in the frontal cortex (FC) and hippocampus (Hp). In addition, histone modification and DNA methylation are also dysregulated epigenetic mechanisms in depression. Repetitive transcranial magnetic stimulation (rTMS) is a technique that is used to treat depression. However, the epigenetic mechanisms of its therapeutic effect are still not known. Therefore, in this study, we evaluated the antidepressant effect of 5 Hz rTMS and examined its effect on dendritic remodeling, immunoreactivity of synapse proteins, histone modification, and DNA methylation in the FC and Hp in a model of chronic mild stress. Our data indicated that stress generated depressive-like behaviors and that rTMS reverses this effect, romotes the formation of dendritic spines, and favors the presynaptic connection in the FC and DG (dentate gyrus), in addition to increasing histone H3 trimethylation and DNA methylation. These results suggest that the antidepressant effect of rTMS is associated with dendritic remodeling, which is probably regulated by epigenetic mechanisms. These data are a first approximation of the impact of rTMS at the epigenetic level in the context of depression. Therefore, it is necessary to analyze in future studies as to which genes are regulated by these mechanisms, and how they are associated with the neuroplastic modifications promoted by rTMS.
Collapse
Affiliation(s)
- David Meneses-San Juan
- National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Mónica Lamas
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | | |
Collapse
|
28
|
Aguiar AFL, Campos RMP, Isaac AR, Paes-Colli Y, Carvalho VM, Sampaio LS, de Melo Reis RA. Long-Term Treatment with Cannabidiol-Enriched Cannabis Extract Induces Synaptic Changes in the Adolescent Rat Hippocampus. Int J Mol Sci 2023; 24:11775. [PMID: 37511537 PMCID: PMC10380262 DOI: 10.3390/ijms241411775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endocannabinoid system (eCS) is widely distributed in mammalian tissues and it is classically formed by cannabinoid receptors, endogenous bioactive lipids and its synthesis and degradation enzymes. Due to the modulatory role of eCS in synaptic activity in the Central Nervous System (CNS), phytocannabinoids have been increasingly used for the treatment of neurological disorders, even though little is known in terms of the long-term effect of these treatments on CNS development, mainly in the timeframe that comprises childhood and adolescence. Furthermore, an increased number of clinical trials using full-spectrum Cannabis extracts has been seen, rather than the isolated form of phytocannabinoids, when exploring the therapeutical benefits of the Cannabis plant. Thus, this study aims to evaluate the effect of cannabidiol (CBD)-enriched Cannabis extract on synaptic components in the hippocampus of rats from adolescence to early adulthood (postnatal day 45 to 60). Oral treatment of healthy male Wistar rats with a CBD-enriched Cannabis extract (3 mg/kg/day CBD) during 15 days did not affect food intake and water balance. There was also no negative impact on locomotor behaviour and cognitive performance. However, the hippocampal protein levels of GluA1 and GFAP were reduced in animals treated with the extract, whilst PSD95 levels were increased, which suggests rearrangement of glutamatergic synapses and modulation of astrocytic features. Microglial complexity was reduced in CA1 and CA3 regions, but no alterations in their phagocytic activity have been identified by Iba-1 and LAMP2 co-localization. Collectively, our data suggest that CBD-enriched Cannabis treatment may be safe and well-tolerated in healthy subjects, besides acting as a neuroprotective agent against hippocampal alterations related to the pathogenesis of excitatory and astrogliosis-mediated disorders in CNS.
Collapse
Affiliation(s)
- Andrey F L Aguiar
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Raquel M P Campos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Yolanda Paes-Colli
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Virgínia M Carvalho
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Luzia S Sampaio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Ricardo A de Melo Reis
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| |
Collapse
|
29
|
Codeluppi S, Xu M, Bansal Y, Lepack A, Duric V, Chow M, Muir. J, Bagot R, Licznerski P, Wilber S, Sanacora G, Sibille E, Duman R, Pittenger C, Banasr M. Prefrontal Cortex Astroglia Modulate Anhedonia-like Behavior. RESEARCH SQUARE 2023:rs.3.rs-3093428. [PMID: 37461693 PMCID: PMC10350119 DOI: 10.21203/rs.3.rs-3093428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Reductions of astroglia expressing glial fibrillary acidic protein (GFAP) are consistently found in the prefrontal cortex (PFC) of patients with depression and in rodent chronic stress models. Here, we examine the consequences of PFC GFAP+ cell depletion and cell activity enhancement on depressive-like behaviors in rodents. Using viral expression of diphtheria toxin receptor in PFC GFAP+ cells, which allows experimental depletion of these cells following diphtheria toxin administration, we demonstrated that PFC GFAP+ cell depletion induced anhedonia-like behavior within 2 days and lasting up to 8 days, but no anxiety-like deficits. Conversely, activating PFC GFAP+ cell activity for 3 weeks using designer receptor exclusively activated by designer drugs (DREADDs) reversed chronic restraint stress-induced anhedonia-like deficits, but not anxiety-like deficits. Our results highlight a critical role of cortical astroglia in the development of anhedonia and further support the idea of targeting astroglia for the treatment of depression.
Collapse
Affiliation(s)
- S.A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - M. Xu
- Department of Psychiatry, Yale University, New Haven, USA
| | - Y. Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - A.E. Lepack
- Department of Psychiatry, Yale University, New Haven, USA
| | - V. Duric
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Physiology and Pharmacology, Des Moines University, Iowa, USA
| | - M. Chow
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - J. Muir.
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - R.C. Bagot
- Department of Psychology, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - P. Licznerski
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, USA
| | - S.L. Wilber
- Department of Psychiatry, Yale University, New Haven, USA
| | - G. Sanacora
- Department of Psychiatry, Yale University, New Haven, USA
| | - E. Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R.S. Duman
- Department of Psychiatry, Yale University, New Haven, USA
| | - C. Pittenger
- Department of Psychiatry, Yale University, New Haven, USA
| | - M. Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, Yale University, New Haven, USA
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Meng P, Zhang X, Liu TT, Liu J, Luo Y, Xie MX, Yang H, Fang R, Guo DW, Zhong ZY, Wang YH, Ge JW. A whole transcriptome profiling analysis for antidepressant mechanism of Xiaoyaosan mediated synapse loss via BDNF/trkB/PI3K signal axis in CUMS rats. BMC Complement Med Ther 2023; 23:198. [PMID: 37322430 DOI: 10.1186/s12906-023-04000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease resulting from deteriorations of molecular networks and synaptic injury induced by stress. Traditional Chinese formula Xiaoyaosan (XYS) exert antidepressant effect, which was demonstrated by a great many of clinical and basic investigation. However, the exact mechanism of XYS has not yet been fully elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) rats were used as a model of depression. Behavioral test and HE staining were used to detect the anti-depressant effects of XYS. Furthermore, whole transcriptome sequencing was employed to establish the microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and mRNA profiles. The biological functions and potential mechanisms of XYS for depression were gathered from the GO and KEGG pathway. Then, constructed the competing endogenous RNA (ceRNA) networks to illustrate the regulatory relationship between non-coding RNA (ncRNA) and mRNA. Additionally, longest dendrite length, total length of dendrites, number of intersections, and density of dendritic spines were detected by Golgi staining. MAP2, PSD-95, SYN were detected by immunofluorescence respectively. BDNF, TrkB, p-TrkB, PI3K, Akt, p-Akt were measured by Western Blotting. RESULTS The results showed that XYS could increase the locomotor activity and sugar preference, decreased swimming immobility time as well as attenuate hippocampal pathological damage. A total of 753 differentially expressed lncRNAs (DElncRNAs), 28 circRNAs (DEcircRNAs), 101 miRNAs (DEmiRNAs), and 477 mRNAs (DEmRNAs) were identified after the treatment of XYS in whole transcriptome sequencing analysis. Enrichment results revealed that XYS could regulate multiple aspects of depression through different synapse or synaptic associated signal, such as neurotrophin signaling and PI3K/Akt signaling pathways. Then, vivo experiments indicated that XYS could promote length, density, intersections of synapses and also increase the expression of MAP2 in hippocampal CA1, CA3 regions. Meanwhile, XYS could increase the expression of PSD-95, SYN in the CA1, CA3 regions of hippocampal by regulating the BDNF/trkB/PI3K signal axis. CONCLUSION The possible mechanism on synapse of XYS in depression was successfully predicted. BDNF/trkB/PI3K signal axis were the potential mechanism of XYS on synapse loss for its antidepressant. Collectively, our results provided novel information about the molecular basis of XYS in treating depression.
Collapse
Affiliation(s)
- Pan Meng
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Tong-Tong Liu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Jian Liu
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yan Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Ming-Xia Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Hui Yang
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China
| | - Dong-Wei Guo
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Zi-Yan Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Yu-Hong Wang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China.
| | - Jin-Wen Ge
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China.
| |
Collapse
|
31
|
Lin Z, Chan YH, Cheung BMY. Dissecting Relations between Depression Severity, Antidepressant Use, and Metabolic Syndrome Components in the NHANES 2005-2020. J Clin Med 2023; 12:3891. [PMID: 37373586 PMCID: PMC10299566 DOI: 10.3390/jcm12123891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
We aimed to dissect the complex relations between depressive symptoms, antidepressant use, and constituent metabolic syndrome (MetS) components in a representative U.S. population sample. A total of 15,315 eligible participants were included from 2005 to March 2020. MetS components were defined as hypertension, elevated triglycerides, reduced high-density lipoprotein cholesterol, central obesity, and elevated blood glucose. Depressive symptoms were classified as mild, moderate, or severe. Logistic regression was used to evaluate the relationship between depression severity, antidepressant use, individual MetS components and their degree of clustering. Severe depression was associated with the number of MetS components in a graded fashion. ORs for severe depression ranged from 2.08 [95%CI, 1.29-3.37] to 3.35 [95%CI, 1.57-7.14] for one to five clustered components. Moderate depression was associated with hypertension, central obesity, raised triglyceride, and elevated blood glucose (OR = 1.37 [95%CI, 1.09-1.72], 1.82 [95%CI, 1.21-2.74], 1.63 [95%CI, 1.25-2.14], and 1.37 [95%CI, 1.05-1.79], respectively). Antidepressant use was associated with hypertension (OR = 1.40, 95%CI [1.14-1.72]), raised triglyceride (OR = 1.43, 95%CI [1.17-1.74]), and the presence of five MetS components (OR = 1.74, 95%CI [1.13-2.68]) after adjusting for depressive symptoms. The depression severity and antidepressant use were associated with individual MetS components and their graded clustering. Metabolic abnormalities in patients with depression need to be recognized and treated.
Collapse
Affiliation(s)
- Ziying Lin
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Yap-Hang Chan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Bernard Man Yung Cheung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
32
|
Zhu J, Guo S, Hu S, Chen Q. The 2210408F21Rik/miR-1968-5p/Hras axis regulates synapse-related proteins in a mouse model of depressive-like behaviors through a ceRNA mechanism. Behav Brain Res 2023; 447:114440. [PMID: 37075955 DOI: 10.1016/j.bbr.2023.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) has been correlated with depressive disorders, but limited data are available on the lncRNA-microRNA (miRNA/miR)-messenger RNA (mRNA) competitive endogenous RNA (ceRNA) mechanism in depression. Herein, we address this issue based on transcriptome sequencing and in vitro experiments. Mouse hippocampus tissues were obtained from chronic unpredictable mild stress (CUMS)-induced mice to screen out differentially expressed mRNAs and lncRNAs based on the transcriptome sequencing. Next, the depression-related differentially expressed genes (DEGs) were obtained, followed by Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) enrichment analysis. A total of 1018 differentially expressed mRNAs, 239 differentially expressed lncRNAs, and 58 DEGs related to depression were acquired. The miRNAs targeting Harvey rat sarcoma virus oncogene (Hras) and miRNAs sponged by Hras-related lncRNA were intersected to identify the ceRNA regulatory network. In addition, the synapse-related genes related to depression were acquired by bioinformatics analysis. Hras was identified as the core gene related to depression, mainly related to neuronal excitation. We also found that 2210408F21Rik competitively bound to miR-1968-5p that targeted Hras. The effects of 2210408F21Rik/miR-1968-5p/Hras axis on neuronal excitation were verified in primary hippocampal neurons. The experimental data indicated that the downregulation of 2210408F21Rik increased the level of miR-1968-5p to diminish Hras expression, thereby affecting neuronal excitation in CUMS mice. In conclusion, the 2210408F21Rik/miR-1968-5p/Hras ceRNA network can potentially affect the expression of synapsia-related proteins and is a promising target for preventing and treating depression.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| | - Sen Guo
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical College, Chengde 067000, China; Department of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde 067000, China
| | - Shaofu Hu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Qihang Chen
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| |
Collapse
|
33
|
Li Z, Ma Y, Dong B, Hu B, He H, Jia J, Xiong M, Xu T, Xu B, Xi W. Functional magnetic resonance imaging study on anxiety and depression disorders induced by chronic restraint stress in rats. Behav Brain Res 2023; 450:114496. [PMID: 37201894 DOI: 10.1016/j.bbr.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Persistent and negative stress stimulation is one of the most important factors leading to anxiety and depression in individuals, and it can negatively affect the normal function and structure of brain-related regions. However, the maladaptive changes of brain neural networks in anxiety and depression induced by chronic stress have not been explored in detail. In this study, we analyzed the changes in global information transfer efficiency, stress related blood oxygen level dependent (BOLD)- and diffusion tensor imaging (DTI)- signals and functional connectivity (FC) in rat models based on resting-state functional magnetic resonance imaging (rs-fMRI). The results showed that compared to control group, rats treated with chronic restraint stress (CRS) for 5 weeks had reconstructed the small-world network properties. In addition, CRS group had increased coherence and activity in bilateral Striatum (ST_R & L), but decreased coherence and activity in unilateral (left) Frontal Association Cortex (FrA_L) and unilateral (left) Medial Entorhinal Cortex (MEC_L). DTI analysis and correlation analysis confirmed the disrupted integrity of MEC_L and ST_R & L and their correlation to anxiety- and depressive-liked behaviors. Functional connectivity further showed these regions of interest (ROI) had decreased positive correlations with several brain areas, respectively. Our study comprehensively revealed the adaptive changes of brain neural networks induced by chronic stress and emphasized the abnormal activity and functional connectivity of ST_R & L and MEC_L in the pathological condition.
Collapse
Affiliation(s)
- Zhaoju Li
- The First School of Clinical Medicine, Southern Medical University, Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China; Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Yongyuan Ma
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Bo Dong
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R.China
| | - Bo Hu
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China.
| | - Huan He
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Ji Jia
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| | - Ming Xiong
- Department of Anesthesiology & Peri-Operative Medicine, New Jersey Medical School, Newark, NJ, USA
| | - Ting Xu
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R.China.
| | - Bo Xu
- The First School of Clinical Medicine, Southern Medical University, Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China; Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China.
| | - Wenbin Xi
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou 510010, P.R. China
| |
Collapse
|
34
|
Barrutieta-Arberas I, Ortuzar N, Vaquero-Rodríguez A, Picó-Gallardo M, Bengoetxea H, Guevara MA, Gargiulo PA, Lafuente JV. The role of ketamine in major depressive disorders: Effects on parvalbumin-positive interneurons in hippocampus. Exp Biol Med (Maywood) 2023; 248:588-595. [PMID: 37158084 PMCID: PMC10350797 DOI: 10.1177/15353702231170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Major depressive disorder (MDD) is a complex illness that is arising as a growing public health concern. Although several brain areas are related to this type of disorders, at the cellular level, the parvalbumin-positive cells of the hippocampus interplay a very relevant role. They control pyramidal cell bursts, neuronal networks, basic microcircuit functions, and other complex neuronal tasks involved in mood disorders. In resistant depressions, the efficacy of current antidepressant treatments drops dramatically, so the new rapid-acting antidepressants (RAADs) are being postulated as novel treatments. Ketamine at subanesthetic doses and its derivative metabolites have been proposed as RAADs due to their rapid and sustained action by blocking N-methyl-d-aspartate (NMDA) receptors, which in turn lead to the release of brain-derived neurotrophic factor (BDNF). This mechanism produces a rapid plasticity activation mediated by neurotransmitter homeostasis, synapse recovery, and increased dendritic spines and therefore, it is a promising therapeutic approach to improve cognitive symptoms in MDD.
Collapse
Affiliation(s)
- I Barrutieta-Arberas
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - N Ortuzar
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - A Vaquero-Rodríguez
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - M Picó-Gallardo
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - H Bengoetxea
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - MA Guevara
- Laboratory of Neurosciences and Experimental Psychology, Area of Pharmacology, Department of Pathology, Faculty of Medical Sciences, National Council of Scientific and Technical Research, National University of Cuyo, 5502 Mendoza, Argentina
| | - PA Gargiulo
- Laboratory of Neurosciences and Experimental Psychology, Area of Pharmacology, Department of Pathology, Faculty of Medical Sciences, National Council of Scientific and Technical Research, National University of Cuyo, 5502 Mendoza, Argentina
| | - JV Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
35
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
36
|
Stachowicz K. Physicochemical Principles of Adhesion Mechanisms in the Brain. Int J Mol Sci 2023; 24:ijms24065070. [PMID: 36982145 PMCID: PMC10048821 DOI: 10.3390/ijms24065070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The brain functions through neuronal circuits and networks that are synaptically connected. This type of connection can exist due to physical forces that interact to stabilize local contacts in the brain. Adhesion is a fundamental physical phenomenon that allows different layers, phases, and tissues to connect. Similarly, synaptic connections are stabilized by specialized adhesion proteins. This review discusses the basic physical and chemical properties of adhesion. Cell adhesion molecules (CAMs) such as cadherins, integrins, selectins, and immunoglobulin family of cell adhesion molecules (IgSF) will be discussed, and their role in physiological and pathological brain function. Finally, the role of CAMs at the synapse will be described. In addition, methods for studying adhesion in the brain will be presented.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
37
|
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Popoli M, Musazzi L. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry 2023; 13:62. [PMID: 36806044 PMCID: PMC9938874 DOI: 10.1038/s41398-023-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Facchinetti
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Nathalie Sala
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulia Frumento
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Elona Ndoj
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Valenza
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Caterina Paoli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.5602.10000 0000 9745 6549Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Ieraci
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy ,grid.449889.00000 0004 5945 6678Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Carola Torazza
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Michele Guerinoni
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Nadeem Muhammad
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Isabella Russo
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy ,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Scuderi
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Alessandro Barbon
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Steardo
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Giambattista Bonanno
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
38
|
Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, Akiki RM, Cho JY, Carter JS, Snyder KK, Assali A, Scofield MD, Cowan CW, Taniguchi M. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. eLife 2023; 12:e75631. [PMID: 36780219 PMCID: PMC9925055 DOI: 10.7554/elife.75631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/29/2023] [Indexed: 02/14/2023] Open
Abstract
Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Benjamin M Siemsen
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
| |
Collapse
|
39
|
Involvement of miR-135a-5p Downregulation in Acute and Chronic Stress Response in the Prefrontal Cortex of Rats. Int J Mol Sci 2023; 24:ijms24021552. [PMID: 36675068 PMCID: PMC9865685 DOI: 10.3390/ijms24021552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.
Collapse
|
40
|
Jia YZ, Li HT, Zhang GM, Wu HY, Zhang SS, Zhi HW, Wang YH, Zhu JW, Wang YF, Xu XQ, Tian CJ, Cui WQ. Electroacupuncture alleviates orofacial allodynia and anxiety-like behaviors by regulating synaptic plasticity of the CA1 hippocampal region in a mouse model of trigeminal neuralgia. Front Mol Neurosci 2022; 15:979483. [PMID: 36277498 PMCID: PMC9582442 DOI: 10.3389/fnmol.2022.979483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Trigeminal neuralgia (TN), one of the most severe and debilitating chronic pain conditions, is often accompanied by mood disorders, such as anxiety and depression. Electroacupuncture (EA) is a characteristic therapy of Traditional Chinese Medicine with analgesic and anxiolytic effects. This study aimed to investigate whether EA ameliorates abnormal TN orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1. Materials and methods A mouse infraorbital nerve transection model (pT-ION) of neuropathic pain was established, and EA or sham EA was used to treat ipsilateral acupuncture points (GV20-Baihui and ST7-Xiaguan). Golgi-Cox staining and transmission electron microscopy (TEM) were administrated to observe the changes of synaptic plasticity in the hippocampus CA1. Results Stable and persistent orofacial allodynia and anxiety-like behaviors induced by pT-ION were related to changes in hippocampal synaptic plasticity. Golgi stainings showed a decrease in the density of dendritic spines, especially mushroom-type dendritic spines, in hippocampal CA1 neurons of pT-ION mice. TEM results showed that the density of synapses, membrane thickness of the postsynaptic density, and length of the synaptic active zone were decreased, whereas the width of the synaptic cleft was increased in pT-ION mice. EA attenuated pT-ION-induced orofacial allodynia and anxiety-like behaviors and effectively reversed the abnormal changes in dendritic spines and synapse of the hippocampal CA1 region. Conclusion EA modulates synaptic plasticity of hippocampal CA1 neurons, thereby reducing abnormal orofacial pain and anxiety-like behavior. This provides evidence for a TN treatment strategy.
Collapse
Affiliation(s)
- Yu-Zhi Jia
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Tao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Shuo Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Wei Zhi
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Wen Zhu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fan Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai-Jun Tian
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, Bijata M, Włodarczyk J, Szafarz M, Wyska E, Muszyńska B, Krakowska A, Opoka W, Nowak G, Szewczyk B. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol 2022; 13:933364. [PMID: 36091748 PMCID: PMC9448861 DOI: 10.3389/fphar.2022.933364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25–6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Julia Masternak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Ewa Bączyńska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Krystian Bijata
- Faculty of Chemistry, University of Warsaw, Warszawa, Poland
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| |
Collapse
|
42
|
Bernardo A, Lee P, Marcotte M, Mian MY, Rezvanian S, Sharmin D, Kovačević A, Savić MM, Cook JM, Sibille E, Prevot TD. Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress. Neuropsychopharmacology 2022; 47:1608-1619. [PMID: 35701547 PMCID: PMC9283409 DOI: 10.1038/s41386-022-01360-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/27/2022]
Abstract
Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.
Collapse
Affiliation(s)
- Ashley Bernardo
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Philip Lee
- grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Michael Marcotte
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Md Yeunus Mian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Sepideh Rezvanian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Dishary Sharmin
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Aleksandra Kovačević
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Miroslav M. Savić
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - James M. Cook
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Thomas D. Prevot
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
44
|
Guanosine as a promising target for fast-acting antidepressant responses. Pharmacol Biochem Behav 2022; 218:173422. [PMID: 35732211 DOI: 10.1016/j.pbb.2022.173422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.
Collapse
|
45
|
Wang G, Liu Y, Zhu X, Lin K, Li M, Wu Z, Zhang R, Zheng Q, Li D, An T. Knockdown of miRNA-134-5p rescues dendritic deficits by promoting AMPK-mediated mitophagy in a mouse model of depression. Neuropharmacology 2022; 214:109154. [PMID: 35659969 DOI: 10.1016/j.neuropharm.2022.109154] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
Neuronal dendrites and dendritic spines are essential for normal synaptic transmission and may be critically involved in the pathophysiology of various neurological disorders, including depression. Emerging data supports the role of mitochondria in dendritic protrusions in modulating the development and morphological plasticity of spines. Mitophagy, a mitochondria-specific form of autophagy, is the fundamental process of clearing damaged mitochondria to maintain cellular homeostasis. As a brain-specific microRNA, miR-134 is localized to the synaptodendritic compartment of hippocampal neurons and negatively regulates the development of dendritic spines. However, the role of miR-134 in mitophagy related to dendritic deficits in the pathophysiology of depression remains unclear. In this study, we showed that miR-134-5p knockdown abrogated depressive-like behavioral symptoms and corrected aberrant spine morphology in hippocampal neurons of chronic unpredictable mild stress (CUMS) mice. Moreover, knockdown of miR-134-5p triggered autophagy in dendrites, improved mitochondrial impairment, and induced the generation of autophagosomes in the hippocampus of CUMS mice. We further found that AMP-activated protein kinase (AMPK), which mediates the impairment of defective mitochondria via mitophagy, can bind directly to miR-134-5p and is negatively regulated by this miRNA. This study demonstrates that miR-134-5p exerts an enormous effect on dendritic deficits by promoting AMPK-mediated mitophagy and provides a potential new target for antidepressant drug research and development.
Collapse
Affiliation(s)
- Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China; Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Ying Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Mingkai Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Zhenke Wu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China
| | - Ronghua Zhang
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China; Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China; Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China.
| | - Tianyue An
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China; Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, PR China.
| |
Collapse
|
46
|
Mai Le N, Li J. Ras-related C3 botulinum toxin substrate 1 role in Pathophysiology of Neurological diseases. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
de Sousa Maciel I, Sales AJ, Casarotto PC, Castrén E, Biojone C, Joca SRL. Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats. Eur J Neurosci 2022; 55:2421-2434. [PMID: 33170977 DOI: 10.1111/ejn.15042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor nω -propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.
Collapse
Affiliation(s)
- Izaque de Sousa Maciel
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | - Amanda J Sales
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | | | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Finland
| | | | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto -SP, Brazil
| |
Collapse
|
48
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
49
|
Kim SJ, Woo Y, Kim HJ, Goo BS, Nhung TTM, Lee SA, Suh BK, Mun DJ, Kim JH, Park SK. Retinoic acid-induced protein 14 controls dendritic spine dynamics associated with depressive-like behaviors. eLife 2022; 11:77755. [PMID: 35467532 PMCID: PMC9068211 DOI: 10.7554/elife.77755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are the central postsynaptic machinery that determines synaptic function. The F-actin within dendritic spines regulates their dynamic formation and elimination. Rai14 is an F-actin-regulating protein with a membrane-shaping function. Here, we identified the roles of Rai14 for the regulation of dendritic spine dynamics associated with stress-induced depressive-like behaviors. Rai14-deficient neurons exhibit reduced dendritic spine density in the Rai14+/- mouse brain, resulting in impaired functional synaptic activity. Rai14 was protected from degradation by complex formation with Tara, and accumulated in the dendritic spine neck, thereby enhancing spine maintenance. Concurrently, Rai14 deficiency in mice altered gene expression profile relevant to depressive conditions and increased depressive-like behaviors. Moreover, Rai14 expression was reduced in the prefrontal cortex of the mouse stress model, which was blocked by antidepressant treatment. Thus, we propose that Rai14-dependent regulation of dendritic spines may underlie the plastic changes of neuronal connections relevant to depressive-like behaviors.
Collapse
Affiliation(s)
- Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
50
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|