1
|
Sackeim HA, Conway CR, Aaronson ST, Bunker MT, Gordon C, Lee YCL, Shy O, Majewski S, Tran Q, Rush AJ. Characterizing the effects of vagus nerve stimulation on symptom improvement in markedly treatment-resistant major depressive disorder: A RECOVER trial report. J Affect Disord 2025; 380:135-145. [PMID: 40127770 DOI: 10.1016/j.jad.2025.03.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND The RECOVER trial randomized 493 patients with markedly treatment-resistant major depressive disorder to treatment-as-usual with or without active vagus nerve stimulation (VNS Therapy). While the primary outcome measure did not statistically separate the treatment conditions, the field may lack optimal metrics for quantifying symptom improvement in markedly treatment-resistant patients. METHODS This study examined the impact of three factors on sensitivity to clinical improvement across the total RECOVER sample and to differences in the effectiveness of the randomized conditions, systematically varying outcome classification (remission, response, and partial response), observation period (3-12 months, 6-12 months, 10-12 months and last observation), and depression rating scale. RESULTS Effect sizes for detecting therapeutic change across the total sample and the difference in effectiveness between the randomized groups were markedly higher for partial response than response or remission classifications. Longer observation periods produced larger therapeutic effects across the sample, but the effect sizes for the randomized treatment differences were substantially higher in the final 10-12 month period. The MADRS showed the least sensitivity to change across the sample and between the treatment groups. Using the partial response classification and the 10-12 month observation period, a significant difference between the groups was obtained for 3 of 4 depression scales. LIMITATIONS The findings derive from a retrospective assessment of alternative outcome metrics. CONCLUSION In a large randomized controlled trial of VNS for markedly treatment-resistant depression, the magnitude of therapeutic effects and separation of treatment groups differed as a function of outcome classification, measurement period, and rating scale.
Collapse
Affiliation(s)
- Harold A Sackeim
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Charles R Conway
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Scott T Aaronson
- Department of Clinical Research, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Mark T Bunker
- LivaNova PLC (or a subsidiary), London, United Kingdom
| | | | | | - Olivia Shy
- LivaNova PLC (or a subsidiary), London, United Kingdom
| | | | - Quyen Tran
- LivaNova PLC (or a subsidiary), London, United Kingdom
| | | |
Collapse
|
2
|
Zhong C, Yang K, Wang N, Yang L, Yang Z, Xu L, Wang J, Zhang L. Advancements in Surgical Therapies for Drug-Resistant Epilepsy: A Paradigm Shift towards Precision Care. Neurol Ther 2025; 14:467-490. [PMID: 39928287 PMCID: PMC11906941 DOI: 10.1007/s40120-025-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects millions worldwide, with a significant proportion resistant to pharmacological treatments. Surgical interventions have emerged as pivotal in managing drug-resistant epilepsy (DRE), aiming to reduce seizure frequency or achieve seizure freedom. Traditional resective surgeries have evolved with technological advances, enhancing precision and safety. Neurostimulation techniques, such as responsive neurostimulation (RNS) and deep brain stimulation (DBS), now provide personalized, real-time seizure management, offering alternatives to traditional surgery. Minimally invasive ablative methods, such as laser interstitial thermal therapy (LITT) and Magnetic Resonance-guided Focused Ultrasound (MRgFUS), allow for targeted destruction of epileptogenic tissue with reduced risks and faster recovery times. The use of stereo-electroencephalography (SEEG) and robotic assistance has further refined surgical precision, enhancing outcomes. These advancements mark a paradigm shift towards precision medicine in epilepsy care, promising improved seizure management and quality of life for patients globally. This review outlines the latest innovations in epilepsy surgery, emphasizing their mechanisms and clinical implications to improve outcomes for patients with DRE.
Collapse
Affiliation(s)
- Chen Zhong
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Kang Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Nianhua Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The 3rd Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuanyi Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lixin Xu
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Jun Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China.
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
3
|
Łysik A, Logoń K, Szczygieł A, Wołoszczak J, Wrześniewska M, Leszek J. Innovative approaches in the treatment-resistant depression: exploring different therapeutic pathways. GeroScience 2025:10.1007/s11357-025-01615-8. [PMID: 40131590 DOI: 10.1007/s11357-025-01615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Treatment-resistant depression (TRD) remains a vital challenge in psychiatry, affecting a significant number of patients with major depressive disorder. Current pharmacological approaches often do not provide sufficient therapeutic results, prompting the need for innovative treatments. This review summarizes recent advances in TRD management, including non-pharmacological therapies such as transcranial magnetic stimulation, deep brain stimulation, electroconvulsive therapy, and vagus nerve stimulation, and describes their mechanisms of action. Novel pharmacotherapies, particularly glutamatergic modulators like ketamine and esketamine, have shown promising results with esketamine being available to eligible patients in Poland since 2023 within a drug program. Electroconvulsive therapy remains an effective treatment for TRD, usually with small side effects mainly including transient memory impairment, headache, or cardiovascular changes. Transcranial magnetic stimulation is a non-invasive procedure with proven efficacy; therefore several psychiatric organizations recommend it as a treatment option for major depressive disorder in their clinical guidelines. Deep brain stimulation is a relatively new treatment modality for TRD, with its primary risk being associated with the required neurosurgical procedure. Vagus nerve stimulation seems to be a promising adjunctive treatment for TRD, showing significant improvements in depressive symptoms, especially at higher electrical doses but with no side effects. While these treatments appear to have potential, personalized approaches are crucial for optimizing outcomes. Future research should focus on refining the techniques, improving safety profiles, and validating the long-term efficacy.
Collapse
Affiliation(s)
- Anna Łysik
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland.
| | - Katarzyna Logoń
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Aleksandra Szczygieł
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Julia Wołoszczak
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Martyna Wrześniewska
- Faculty of Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, Wyb. L. Pasteura 10, 50-367, Wrocław, Poland
| |
Collapse
|
4
|
Wang W, Li R, Li C, Liang Q, Gao X. Advances in VNS efficiency and mechanisms of action on cognitive functions. Front Physiol 2024; 15:1452490. [PMID: 39444752 PMCID: PMC11496278 DOI: 10.3389/fphys.2024.1452490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This systematic review aims to comprehensively analyze the efficacy and underlying mechanisms of vagus nerve stimulation (VNS) in enhancing cognitive functions and its therapeutic potential for various cognitive impairments. The review focuses on the impact of VNS on emotional processing, executive functions, learning, memory, and its clinical applications in conditions such as epilepsy, depression, Alzheimer's disease, and other neurological disorders. Methods A systematic search of electronic databases (PubMed, Scopus, Web of Science) was conducted using the keywords "vagus nerve stimulation," "cognitive enhancement," "emotional processing," "executive function," "learning and memory," "epilepsy," "depression," "Alzheimer's disease," "neurological disorders," "attention-deficit/hyperactivity disorder," "sleep disorders," and "long COVID." The inclusion criteria encompassed controlled trials, longitudinal studies, and meta-analyses published in English between 2000 and July 2024. Results A comprehensive review of 100 articles highlighted the cognitive effects of Vagus Nerve Stimulation (VNS). Studies show that VNS, especially through transcutaneous auricular VNS (taVNS), enhances emotional recognition, particularly for facial expressions, and improves selective attention under high cognitive demands. Additionally, VNS enhances learning and memory, including associative memory and spatial working memory tasks. In clinical applications, VNS exhibits promising benefits for improving cognitive functions in treatment-resistant epilepsy, depression, and Alzheimer's disease. Conclusion VNS represents a promising therapeutic approach for enhancing cognitive function across diverse patient populations. The reviewed evidence highlights its efficacy in modulating cognitive domains in healthy individuals and improving cognition in neurological conditions. However, the comparative effectiveness of different VNS modalities and the differential effects of online versus offline VNS on cognitive psychology require further investigation. Future research should focus on optimizing VNS protocols and elucidating specific cognitive domains that benefit most from VNS interventions. This ongoing exploration is essential for maximizing the therapeutic potential of VNS in clinical practice.
Collapse
Affiliation(s)
- Wendi Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Rui Li
- School of Exercise Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Chuangtao Li
- School of Physical Education and Sport Science, Fujian Normal University, Fujian, China
| | - Qimin Liang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiaolin Gao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
Rykov YG, Ng KP, Patterson MD, Gangwar BA, Kandiah N. Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning. Comput Biol Med 2024; 180:108959. [PMID: 39089109 DOI: 10.1016/j.compbiomed.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Neuropsychiatric symptoms (NPS) and mood disorders are common in individuals with mild cognitive impairment (MCI) and increase the risk of progression to dementia. Wearable devices collecting physiological and behavioral data can help in remote, passive, and continuous monitoring of moods and NPS, overcoming limitations and inconveniences of current assessment methods. In this longitudinal study, we examined the predictive ability of digital biomarkers based on sensor data from a wrist-worn wearable to determine the severity of NPS and mood disorders on a daily basis in older adults with predominant MCI. In addition to conventional physiological biomarkers, such as heart rate variability and skin conductance levels, we leveraged deep-learning features derived from physiological data using a self-supervised convolutional autoencoder. Models combining common digital biomarkers and deep features predicted depression severity scores with a correlation of r = 0.73 on average, total severity of mood disorder symptoms with r = 0.67, and mild behavioral impairment scores with r = 0.69 in the study population. Our findings demonstrated the potential of physiological biomarkers collected from wearables and deep learning methods to be used for the continuous and unobtrusive assessments of mental health symptoms in older adults, including those with MCI. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05059353) on September 28, 2021, titled "Effectiveness and Safety of a Digitally Based Multidomain Intervention for Mild Cognitive Impairment".
Collapse
Affiliation(s)
- Yuri G Rykov
- Neuroglee Therapeutics, 2 Venture Dr, #08-18, Singapore, 608526
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, 11 Jln Tan Tock Seng, 308433, Singapore; Duke-NUS Medical School, 8 College Rd, 169857, Singapore
| | | | - Bikram A Gangwar
- Neuroglee Therapeutics, 2 Venture Dr, #08-18, Singapore, 608526.
| | - Nagaendran Kandiah
- Dementia Research Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Level 18 308232, Singapore
| |
Collapse
|
6
|
Zhu Z, Yan Z, Ni S, Yang H, Xie Y, Wang X, Zou D, Tao C, Jiang W, Jiang J, Su Z, Xia Y, Zhou Z, Sun L, Fan C, Tao TH, Wei X, Qian Y, Liu K. Tissue/Organ Adaptable Bioelectronic Silk-Based Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405892. [PMID: 39036824 DOI: 10.1002/adma.202405892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.
Collapse
Affiliation(s)
- Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Yating Xie
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Dujuan Zou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Chen Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Jianbo Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zexi Su
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Yuxin Xia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200040, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| |
Collapse
|
7
|
Davani AJ, Richardson AJ, Vodovozov W, Sanghani SN. Neuromodulation in Psychiatry. ADVANCES IN PSYCHIATRY AND BEHAVIORAL HEALTH 2024; 4:177-198. [DOI: 10.1016/j.ypsc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Rajkumar RP. The Advantages of Combining Therapies in Treating Psychiatric Patients. Brain Sci 2024; 14:708. [PMID: 39061448 PMCID: PMC11274852 DOI: 10.3390/brainsci14070708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Mental illnesses are among the leading causes of morbidity and disability worldwide, and the burden associated with these disorders has increased steadily over the past three decades [...].
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| |
Collapse
|
9
|
Liu J, Grayden DB, Keast JR, Booth LC, May CN, John SE. Feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array. J Neural Eng 2024; 21:036034. [PMID: 38776894 DOI: 10.1088/1741-2552/ad4f16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Electrical stimulation of peripheral nerves has long been a treatment option to restore impaired neural functions that cannot be restored by conventional pharmacological therapies. Endovascular neurostimulation with stent-mounted electrode arrays is a promising and less invasive alternative to traditional implanted electrodes, which typically require invasive implantation surgery. In this study, we investigated the feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array and compared its performance to that of a commercially available pacing catheter.Approach.In acute animal experiments, a pacing catheter was implanted unilaterally in the femoral artery to stimulate the femoral nerve in a bipolar configuration. Electromyogram of the quadriceps and electroneurogram of a distal branch of the femoral nerve were recorded. After retrieval of the pacing catheter, a bipolar stent-mounted electrode array was implanted in the same artery and the recording sessions were repeated.Main Results.Stimulation of the femoral nerve was feasible with the stent-electrode array. Although the threshold stimulus intensities required with the stent-mounted electrode array (at 100-500µs increasing pulse width, 2.17 ± 0.87 mA-1.00 ± 0.11 mA) were more than two times higher than the pacing catheter electrodes (1.05 ± 0.48 mA-0.57 ± 0.28 mA), we demonstrated that, by reducing the stimulus pulse width to 100µs, the threshold charge per phase and charge density can be reduced to 0.22 ± 0.09µC and 24.62 ± 9.81µC cm-2, which were below the tissue-damaging limit, as defined by the Shannon criteria.Significance.The present study is the first to reportin vivofeasibility and efficiency of peripheral nerve stimulation using an endovascular stent-mounted electrode array.
Collapse
Affiliation(s)
- JingYang Liu
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Lindsea C Booth
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Clive N May
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sam E John
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ribeiro M, Andreis FR, Jabban L, Nielsen TGNDS, Smirnov SV, Lutteroth C, Proulx MJ, Rocha PRF, Metcalfe B. Ex-vivo systems for neuromodulation: A comparison of ex-vivo and in-vivo large animal nerve electrophysiology. J Neurosci Methods 2024; 406:110116. [PMID: 38548122 DOI: 10.1016/j.jneumeth.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Little research exists on extending ex-vivo systems to large animal nerves, and to the best of our knowledge, there has yet to be a study comparing these against in-vivo data. This paper details the first ex-vivo system for large animal peripheral nerves to be compared with in-vivo results. NEW METHOD Detailed ex-vivo and in-vivo closed-loop neuromodulation experiments were conducted on pig ulnar nerves. Temperatures from 20 °C to 37 °C were evaluated for the ex-vivo system. The data were analysed in the time and velocity domains, and a regression analysis established how evoked compound action potential amplitude and modal conduction velocity (CV) varied with temperature and time after explantation. MAIN RESULTS Pig ulnar nerves were sustained ex-vivo up to 5 h post-explantation. CV distributions of ex-vivo and in-vivo data were compared, showing closer correspondence at 37 °C. Regression analysis results also demonstrated that modal CV and time since explantation were negatively correlated, whereas modal CV and temperature were positively correlated. COMPARISON WITH EXISTING METHODS Previous ex-vivo systems were primarily aimed at small animal nerves, and we are not aware of an ex-vivo system to be directly compared with in-vivo data. This new approach provides a route to understand how ex-vivo systems for large animal nerves can be developed and compared with in-vivo data. CONCLUSION The proposed ex-vivo system results were compared with those seen in-vivo, providing new insights into large animal nerve activity post-explantation. Such a system is crucial for complementing in-vivo experiments, maximising collected experimental data, and accelerating neural interface development.
Collapse
Affiliation(s)
- Mafalda Ribeiro
- Centre for Accountable, Responsible, and Transparent AI (ART-AI), Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Felipe R Andreis
- Centre for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260, Gistrup, Denmark
| | - Leen Jabban
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Thomas G N dS Nielsen
- Centre for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260, Gistrup, Denmark
| | - Sergey V Smirnov
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Christof Lutteroth
- Centre for Accountable, Responsible, and Transparent AI (ART-AI), Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Michael J Proulx
- Centre for Accountable, Responsible, and Transparent AI (ART-AI), Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Paulo R F Rocha
- Centre for Functional Ecology - Science for People & the Planet (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Benjamin Metcalfe
- Centre for Accountable, Responsible, and Transparent AI (ART-AI), Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Bath Institute for the Augmented Human, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
11
|
Liu HL, Sun J, Meng SF, Sun N. Physiotherapy for patients with depression: Recent research progress. World J Psychiatry 2024; 14:635-643. [PMID: 38808078 PMCID: PMC11129148 DOI: 10.5498/wjp.v14.i5.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a common mental illness, seriously affects the health of individuals and has deleterious effects on society. The prevention and treatment of depression has drawn the attention of many researchers and has become an important social issue. The treatment strategies for depression include drugs, psychotherapy, and physiotherapy. Drug therapy is ineffective in some patients and psychotherapy has treatment limitations. As a reliable adjuvant therapy, physiotherapy compensates for the shortcomings of drug and psychotherapy and effectively reduces the disease recurrence rate. Physiotherapy is more scientific and rigorous, its methods are diverse, and to a certain extent, provides more choices for the treatment of depression. Physiotherapy can relieve symptoms in many ways, such as by improving the levels of neurobiochemical molecules, inhibiting the inflammatory response, regulating the neuroendocrine system, and increasing neuroplasticity. Physiotherapy has biological effects similar to those of antidepressants and may produce a superimposed impact when combined with other treatments. This article summarizes the findings on the use of physiotherapy to treat patients with depression over the past five years. It also discusses several methods of physiotherapy for treating depression from the aspects of clinical effect, mechanism of action, and disadvantages, thereby serving as a reference for the in-depth development of physiotherapy research.
Collapse
Affiliation(s)
- Hui-Ling Liu
- Department of Mental Health, First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Jing Sun
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Shi-Feng Meng
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ning Sun
- Department of Mental Health, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
12
|
Jo D, Lee H, Jang Y, Oh P, Kwon Y. The Development of a New Vagus Nerve Simulation Electroceutical to Improve the Signal Attenuation in a Living Implant Environment. SENSORS (BASEL, SWITZERLAND) 2024; 24:3172. [PMID: 38794024 PMCID: PMC11125165 DOI: 10.3390/s24103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
An electroceutical is a medical device that uses electrical signals to control biological functions. It can be inserted into the human body as an implant and has several crucial advantages over conventional medicines for certain diseases. This research develops a new vagus nerve simulation (VNS) electroceutical through an innovative approach to overcome the communication limitations of existing devices. A phased array antenna with a better communication performance was developed and applied to the electroceutical prototype. In order to effectively respond to changes in communication signals, we developed the steering algorithm and firmware, and designed the smart communication protocol that operates at a low power that is safe for the patients. This protocol is intended to improve a communication sensitivity related to the transmission and reception distance. Based on this technical approach, the heightened effectiveness and safety of the prototype have been ascertained, with the actual clinical tests using live animals. We confirmed the signal attenuation performance to be excellent, and a smooth communication was achieved even at a distance of 7 m. The prototype showed a much wider communication range than any other existing products. Through this, it is conceivable that various problems due to space constraints can be resolved, hence presenting many benefits to the patients whose last resort to the disease is the VNS electroceutical.
Collapse
Affiliation(s)
- Daeil Jo
- Department of Industrial Engineering, Ajou University, Suwon 16499, Republic of Korea;
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Hyunung Lee
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Youlim Jang
- Oceans Bio Co., Ltd., Seoul 04303, Republic of Korea; (H.L.); (Y.J.)
| | - Paul Oh
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Yongjin Kwon
- Department of Industrial Engineering, Ajou University, Suwon 16499, Republic of Korea;
| |
Collapse
|
13
|
Galin S, Keren H. The Predictive Potential of Heart Rate Variability for Depression. Neuroscience 2024; 546:88-103. [PMID: 38513761 DOI: 10.1016/j.neuroscience.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Heart rate variability (HRV),a measure of the fluctuations in the intervals between consecutive heartbeats, is an indicator of changes in the autonomic nervous system. A chronic reduction in HRV has been repeatedly linked to clinical depression. However, the chronological and mechanistic aspects of this relationship, between the neural, physiological, and psychopathological levels, remain unclear. In this review we present evidence by which changes in HRV might precede the onset of depression. We describe several pathways that can facilitate this relationship. First, we examine a theoretical model of the impact of autonomic imbalance on HRV and its role in contributing to mood dysregulation and depression. We then highlight brain regions that are regulating both HRV and emotion, suggesting these neural regions, and the Insula in particular, as potential mediators of this relationship. We also present additional possible mediating mechanisms involving the immune system and inflammation processes. Lastly, we support this model by showing evidence that modification of HRV with biofeedback leads to an improvement in some symptoms of depression. The possibility that changes in HRV precede the onset of depression is critical to put to the test, not only because it could provide insights into the mechanisms of the illness but also because it may offer a predictive anddiagnosticphysiological marker for depression. Importantly, it could also help to develop new effective clinical interventions for treating depression.
Collapse
Affiliation(s)
- Shir Galin
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel; Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Hanna Keren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel; Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
14
|
Stecher C, Cloonan S, Domino ME. The Economics of Treatment for Depression. Annu Rev Public Health 2024; 45:527-551. [PMID: 38100648 DOI: 10.1146/annurev-publhealth-061022-040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The global prevalence of depression has risen over the past three decades across all socioeconomic groups and geographic regions, with a particularly rapid increase in prevalence among adolescents (aged 12-17 years) in the United States. Depression imposes large health, economic, and societal costs, including reduced life span and quality of life, medical costs, and reduced educational attainment and workplace productivity. A wide range of treatment modalities for depression are available, but socioeconomic disparities in treatment access are driven by treatment costs, lack of culturally tailored options, stigma, and provider shortages, among other barriers. This review highlights the need for comparative research to better understand treatments' relative efficacy, cost-effectiveness, scalability, and potential heterogeneity in efficacy across socioeconomic groups and country and cultural contexts. To address the growing burden of depression, mental health policy could consider reducing restrictions on the supply of providers, implementing digital interventions, reducing stigma, and promoting healthy lifestyles.
Collapse
Affiliation(s)
- Chad Stecher
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA;
- The Center for Health Information and Research, Arizona State University, Phoenix, Arizona, USA
| | - Sara Cloonan
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Marisa Elena Domino
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA;
- The Center for Health Information and Research, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
15
|
Saha R, Van Helden D, Hopper MS, Low WC, Netoff TI, Osborn J, Wang JP. Impact of anesthesia on micromagnetic stimulation ( μMS) of the vagus nerve. Biomed Phys Eng Express 2024; 10:035028. [PMID: 38565093 DOI: 10.1088/2057-1976/ad3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve's complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(μMS) is showing incredible promise. This neuromodulation technique uses microcoils(μcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday's law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidalμcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) followingμMS of the vagus. Theμcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000μsec) at a frequency of 20 Hz. Under the influence of isoflurane,μMS of the left vagus at 1000μsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast,μMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagalμMS suggesting the drop in MAP associated with vagusμMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed uponμMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy ofμMS on the vagal nerve. Absence of HR modulation uponμMS could offer alternative treatment options using VNS with fewer heart-related side-effects.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Dusty Van Helden
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew S Hopper
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - John Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
16
|
Johnson KA, Okun MS, Scangos KW, Mayberg HS, de Hemptinne C. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry 2024; 29:1075-1087. [PMID: 38287101 PMCID: PMC11348289 DOI: 10.1038/s41380-023-02394-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Huang Y, Liu J, Lv C, Sun C, Meng M, Lowe S, Yu Y. Integrative effects of transcutaneous auricular vagus nerve stimulation on esophageal motility and pharyngeal symptoms via vagal mechanisms in patients with laryngopharyngeal reflux disease. Front Neurosci 2024; 18:1287809. [PMID: 38516311 PMCID: PMC10954818 DOI: 10.3389/fnins.2024.1287809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND AND AIM Laryngopharyngeal reflux disease (LPRD) is primarily characterized by discomfort in the pharynx and has limited treatment options. This research aimed to assess the efficacy of transcutaneous auricular vagus nerve stimulation (tVNS) in patients with LPRD and delve into the potential underlying mechanisms. METHODS A total of 44 participants, diagnosed with LPRD were divided into two groups randomly. Twice-daily stimulation was delivered for 2 weeks for patients in experimental group, with stimulation ranging from 1.0 mA to 1.5 mA (n = 22), while the control group underwent sham tVNS (n = 22) with the same stimulation parameters and different anatomical location. The severity of symptoms and levels of anxiety and depression were monitored using questionnaires. High-resolution esophageal manometry data were collected, and the patients' autonomic function was assessed through heart rate variability analysis. RESULTS There was a positive correlation between reflux symptom index (RSI) scores and low frequency/high frequency (LF/HF) ratio (r = 0.619; p < 0.001), Hamilton anxiety scale (HAMA) scores (r = 0.623; p < 0.001), and Hamilton depression scale (HAMD) scores (r = 0.593; p < 0.001). Compared to the pre-tVNS phase, RSI (p < 0.001), HAMA (p < 0.001), and HAMD (p < 0.001) scores were significantly reduced after 2 weeks of treatment. Additionally, the resting pressure of the upper esophageal sphincter (UESP; p < 0.05) and lower esophageal sphincter (LESP; p < 0.05) showed significant enhancement. Notably, tVNS led to an increase in root mean square of successive differences (RMSSD; p < 0.05) and high frequency (HF; p < 0.05) within heart rate variability compared to the pre-treatment baseline. Compared to the control group, RSI (p < 0.001), HAMA (p < 0.001), and HAMD (p < 0.001) scores in tVNS group were significantly lower at the end of treatment. Similarly, the resting pressure of UESP (p < 0.05) and LESP (p < 0.05) in tVNS group were significantly higher than that of control group. Notably, RMSSD (p < 0.05) and HF (p < 0.05) in tVNS group were significantly higher than that of control group. CONCLUSION This study demonstrated that tVNS as a therapeutic approach is effective in alleviating LPRD symptoms. Furthermore, it suggests that improvements in esophageal motility could be associated with vagus nerve-dependent mechanisms.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing, Anhui, China
| | - Jie Liu
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Chaolan Lv
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Muzi Meng
- Bronxcare Health System, New York, NY, United States
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States
| | - Yue Yu
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
18
|
Jung B, Yang C, Lee SH. Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:13-22. [PMID: 38247408 PMCID: PMC10811398 DOI: 10.9758/cpn.23.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 01/23/2024]
Abstract
Vagus nerve stimulation (VNS) has been approved as an adjunctive treatment for epilepsy and depression. As the progress of VNS treatment for these neuropsychiatric disorders continues, its applications have expanded to a wide range of conditions, including inflammatory diseases to cognitive dysfunctions. The branches of the vagal nerves directly or indirectly innervate the anatomical structures implicated in these neuropsychiatric conditions, which has led to promising results regarding the effectiveness of VNS. Previous studies investigating the effectiveness of VNS have mostly utilized invasive forms of stimulation. However, current preclinical and clinical research indicates that non-invasive forms of VNS, such as transcutaneous vagus nerve stimulation, hold the promise for treating various neuropsychiatric conditions. This review aims to delve into relevant clinical studies of VNS in various illness states, different methods of VNS, and the potential mechanisms underlying the therapeutic effects in these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
19
|
Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, Berk M. Major depressive disorder. Nat Rev Dis Primers 2023; 9:44. [PMID: 37620370 DOI: 10.1038/s41572-023-00454-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Major depressive disorder (MDD) is characterized by persistent depressed mood, loss of interest or pleasure in previously enjoyable activities, recurrent thoughts of death, and physical and cognitive symptoms. People with MDD can have reduced quality of life owing to the disorder itself as well as related medical comorbidities, social factors, and impaired functional outcomes. MDD is a complex disorder that cannot be fully explained by any one single established biological or environmental pathway. Instead, MDD seems to be caused by a combination of genetic, environmental, psychological and biological factors. Treatment for MDD commonly involves pharmacological therapy with antidepressant medications, psychotherapy or a combination of both. In people with severe and/or treatment-resistant MDD, other biological therapies, such as electroconvulsive therapy, may also be offered.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia.
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Toshi A Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| |
Collapse
|
20
|
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics (Basel) 2023; 12:1347. [PMID: 37760644 PMCID: PMC10525519 DOI: 10.3390/antibiotics12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.
Collapse
Affiliation(s)
- Nicholas Biniaz-Harris
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
| | - Mara Kuvaldina
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
21
|
Hiendlmeier L, Zurita F, Vogel J, Del Duca F, Al Boustani G, Peng H, Kopic I, Nikić M, F Teshima T, Wolfrum B. 4D-Printed Soft and Stretchable Self-Folding Cuff Electrodes for Small-Nerve Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210206. [PMID: 36594106 DOI: 10.1002/adma.202210206] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self-folding electrodes will pave the way for bringing PNI to a broader clinical application.
Collapse
Affiliation(s)
- Lukas Hiendlmeier
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Francisco Zurita
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Jonas Vogel
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Fulvia Del Duca
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - George Al Boustani
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Hu Peng
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Inola Kopic
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Marta Nikić
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Tetsuhiko F Teshima
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| |
Collapse
|
22
|
Transcutaneous Electrical Cranial-Auricular Acupoint Stimulation Modulating the Brain Functional Connectivity of Mild-to-Moderate Major Depressive Disorder: An fMRI Study Based on Independent Component Analysis. Brain Sci 2023; 13:brainsci13020274. [PMID: 36831816 PMCID: PMC9953795 DOI: 10.3390/brainsci13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evidence has shown the roles of taVNS and TECS in improving depression but few studies have explored their synergistic effects on MDD. Therefore, the treatment responsivity and neurological effects of TECAS were investigated and compared to escitalopram, a commonly used medication for depression. Fifty patients with mild-to-moderate MDD (29 in the TECAS group and 21 in another) and 49 demographically matched healthy controls were recruited. After an eight-week treatment, the outcomes of TECAS and escitalopram were evaluated by the effective rate and reduction rate based on the Montgomery-Asberg Depression Rating Scale, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale. Altered brain networks were analyzed between pre- and post-treatment using independent component analysis. There was no significant difference in clinical scales between TECAS and escitalopram but these were significantly decreased after each treatment. Both treatments modulated connectivity of the default mode network (DMN), dorsal attention network (DAN), right frontoparietal network (RFPN), and primary visual network (PVN), and the decreased PVN-RFPN connectivity might be the common brain mechanism. However, there was increased DMN-RFPN and DMN-DAN connectivity after TECAS, while it decreased in escitalopram. In conclusion, TECAS could relieve symptoms of depression similarly to escitalopram but induces different changes in brain networks.
Collapse
|
23
|
Zhou Q, Zheng Z, Wang X, Li W, Wang L, Yin C, Zhang Q, Wang Q. taVNS Alleviates Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Via Activating Basal Forebrain Cholinergic Neurons. Neurochem Res 2023; 48:1848-1863. [PMID: 36729311 DOI: 10.1007/s11064-023-03871-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of central nervous system after anesthesia or surgery. Sevoflurane, an inhalation anesthetic, may inhibit cholinergic pathway that induce neuronal death and neuroinflammation, ultimately leading to POCD. Transauricular vagus nerve stimulation (taVNS) has neuroprotective effects in POCD rats, but the mechanisms related to cholinergic system have not been revealed. Sprague-Dawley rats were anesthetized with sevoflurane to construct the POCD model. The immunotoxin 192-IgG-saporin (192-sap) selectively lesioned cholinergic neurons in the basal forebrain, which is the major source of cholinergic projections to hippocampus. After lesion, rats received 5 days of taVNS treatment (30 min per day) starting 24 h before anesthesia. Open field test and Morris water maze were used to test the cognitive function. In this study, rats exposed to sevoflurane exhibited cognitive impairment that was attenuated by taVNS. In addition, taVNS treatment activated cholinergic system in the basal forebrain and hippocampus, and downregulated the expression of apoptosis- and necroptosis-related proteins, such as cleaved Caspase-3 and p-MLKL, in the hippocampus. Meanwhile, the activation of Iba1+ microglial by sevoflurane was reduced by taVNS. 192-sap blocked the cholinergic system activation in the basal forebrain and hippocampus and inhibited taVNS-mediated neuroprotection and anti-inflammation effects in the hippocampus. Generally, our study indicated that taVNS might alleviate sevoflurane-induced hippocampal neuronal apoptosis, necroptosis and microglial activation though activating cholinergic system in the basal forebrain.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zilei Zheng
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Zhangjiakou Second Hospital, Zhangjiakou, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Luqi Wang
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
24
|
Guo M, Xie P, Liu S, Luan G, Li T. Epilepsy and Autism Spectrum Disorder (ASD): The Underlying Mechanisms and Therapy Targets Related to Adenosine. Curr Neuropharmacol 2023; 21:54-66. [PMID: 35794774 PMCID: PMC10193761 DOI: 10.2174/1570159x20666220706100136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy and autism spectrum disorder (ASD) are highly mutually comorbid, suggesting potential overlaps in genetic etiology, pathophysiology, and neurodevelopmental abnormalities. Adenosine, an endogenous anticonvulsant and neuroprotective neuromodulator of the brain, has been proved to affect the process of epilepsy and ASD. On the one hand, adenosine plays a crucial role in preventing the progression and development of epilepsy through adenosine receptordependent and -independent ways. On the other hand, adenosine signaling can not only regulate core symptoms but also improve comorbid disorders in ASD. Given the important role of adenosine in epilepsy and ASD, therapeutic strategies related to adenosine, including the ketogenic diet, neuromodulation therapy, and adenosine augmentation therapy, have been suggested for the arrangement of epilepsy and ASD. There are several proposals in this review. Firstly, it is necessary to further discuss the relationship between both diseases based on the comorbid symptoms and mechanisms of epilepsy and ASD. Secondly, it is important to explore the role of adenosine involved in epilepsy and ASD. Lastly, potential therapeutic value and clinical approaches of adenosine-related therapies in treating epilepsy and ASD need to be emphasized.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pandeng Xie
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Siqi Liu
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
25
|
Wei T, Ge X, Lu L, Li J, Xu P, Wu Q. Efficacy and safety of vagus nerve stimulation on upper extremity motor function in patients with stroke: A meta-analysis of randomized controlled trials. NeuroRehabilitation 2023; 53:253-267. [PMID: 37694313 DOI: 10.3233/nre-230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND In 2021, the U.S. Food and Drug Administration (FDA) approved paired vagus nerve stimulation (VNS) for patients with moderate-to-severe upper extremity motor impairments following chronic ischemic stroke. OBJECTIVE Previous meta-analyses have shown that VNS may impact stroke rehabilitation, but each has some limitations. METHODS PubMed, Ovid, Cochrane Library, ScienceDirect, Web of Science and WHO ICTRP databases were searched until July 14, 2022 for randomized controlled trials (RCTs). We defined primary outcomes as Fugl-Meyer Assessment for Upper Extremity (FMA-UE) and Wolf Motor Function Test (WMFT). Subgroup analyses included types of VNS, time since onset and long-term effects. Secondary outcomes included adverse events of VNS. RESULTS Eight RCTs involving 266 patients were analyzed, of which five used direct VNS and three transcutaneous auricular VNS. The results revealed that VNS enhanced upper extremity function via FMA-UE (SMD = 0.73; 95% CI: 0.48 to 0.99; P < 0.00001) and WMFT (SMD = 0.82; 95% CI:0.52 to 1.13; P < 0.00001) in comparison to the control group, but showed no significant change on long-term effects of FMA-UE (SMD = 0.69; 95% CI: - 0.06 to 1.44; P = 0.07). There was no difference in adverse events between the VNS and control groups (RR = 1.16; 95% CI: 0.46 to 2.92; P = 0.74). CONCLUSION For stroke victims with upper limb disabilities, VNS paired with rehabilitation was significantly safe and effective. More high-quality multicentric RCTs are needed to validate this conclusion.
Collapse
Affiliation(s)
- Tianqi Wei
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xiangyang Ge
- Department of Rehabilitation Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Jiangsu, China
| | - Lingfeng Lu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, China
| | - Jing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
26
|
Frank D, Gruenbaum BF, Zlotnik A, Semyonov M, Frenkel A, Boyko M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int J Mol Sci 2022; 23:ijms232315114. [PMID: 36499434 PMCID: PMC9738261 DOI: 10.3390/ijms232315114] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Post-stroke depression (PSD) is a biopsychosocial disorder that affects individuals who have suffered a stroke at any point. PSD has a 20 to 60 percent reported prevalence among stroke survivors. Its effects are usually adverse, can lead to disability, and may increase mortality if not managed or treated early. PSD is linked to several other medical conditions, including anxiety, hyper-locomotor activity, and poor functional recovery. Despite significant awareness of its adverse impacts, understanding the pathogenesis of PSD has proved challenging. The exact pathophysiology of PSD is unknown, yet its complexity has been definitively shown, involving mechanisms such as dysfunction of monoamine, the glutamatergic systems, the gut-brain axis, and neuroinflammation. The current effectiveness of PSD treatment is about 30-40 percent of all cases. In this review, we examined different pathophysiological mechanisms and current pharmacological and non-pharmacological approaches for the treatment of PSD.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence: or
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Michael Semyonov
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
28
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
29
|
Upadhye AR, Kolluru C, Druschel L, Al Lababidi L, Ahmad SS, Menendez DM, Buyukcelik ON, Settell ML, Blanz SL, Jenkins MW, Wilson DL, Zhang J, Tatsuoka C, Grill WM, Pelot NA, Ludwig KA, Gustafson KJ, Shoffstall AJ. Fascicles split or merge every ∼560 microns within the human cervical vagus nerve. J Neural Eng 2022; 19:054001. [PMID: 36174538 PMCID: PMC10353574 DOI: 10.1088/1741-2552/ac9643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.
Collapse
Affiliation(s)
- Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Luna Al Lababidi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sami S Ahmad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Ozge N Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Stephan L Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
30
|
Flores AD, Yu WS, Fung ML, Lim LW. Neuromodulation and hippocampal neurogenesis in depression: A scoping review. Brain Res Bull 2022; 188:92-107. [PMID: 35853529 DOI: 10.1016/j.brainresbull.2022.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The 'neurogenesis hypothesis of depression' emphasizes the importance of upregulated hippocampal neurogenesis for the efficacy of antidepressant treatment. Neuromodulation is a promising therapeutic method that stimulates neural circuitries to treat neuropsychiatric illnesses. We conducted a scoping review on the neurogenic and antidepressant outcomes of neuromodulation in animal models of depression. PubMed, Web of Science, and PsycInfo were comprehensively searched for full-text English articles from inception to October 5, 2021. Data screening and extraction were conducted independently by two researchers. Seventeen eligible studies were included in this review. The majority of studies used non-invasive neuromodulation (n = 14) and assessed neurogenesis using neural proliferation (n = 16) and differentiation markers (n = 9). Limited reports (n = 2) used neurogenic inhibitors to evaluate the role of neurogenesis on the depressive-like behavioral outcomes. Overall, neuromodulation substantially effectuated both hippocampal cell proliferation and antidepressant-like behavior in animal models of depression, with some providing evidence for enhanced neuronal differentiation and maturation. The proposed neurogenic-related mechanisms mediating the neuromodulation efficacies included neurotrophic processes, anti-apoptotic pathways, and normalization of HPA axis functions. Further research is warranted to explore the role of neuromodulation-induced neurogenic effects on treatment efficacies and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Angelo D Flores
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
31
|
Botzanowski B, Donahue MJ, Ejneby MS, Gallina AL, Ngom I, Missey F, Acerbo E, Byun D, Carron R, Cassarà AM, Neufeld E, Jirsa V, Olofsson PS, Głowacki ED, Williamson A. Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields. Adv Healthc Mater 2022; 11:e2200075. [PMID: 35751364 PMCID: PMC11468927 DOI: 10.1002/adhm.202200075] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/13/2022] [Indexed: 01/27/2023]
Abstract
Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Collapse
Affiliation(s)
- Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Mary J. Donahue
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Malin Silverå Ejneby
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Alessandro L. Gallina
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| | - Ibrahima Ngom
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Florian Missey
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Donghak Byun
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Romain Carron
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Antonino M. Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Peder S. Olofsson
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
- EMUNE ABNanna Svartz väg 6ASolna171 65Sweden
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices LabCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| |
Collapse
|
32
|
Effect of transcutaneous auricular vagus nerve stimulation on delayed neurocognitive recovery in elderly patients. Aging Clin Exp Res 2022; 34:2421-2429. [PMID: 35809206 DOI: 10.1007/s40520-022-02177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether transauricular vagus nerve stimulation (taVNS) could decrease the incidence of delayed neurocognitive recovery (dNCR) in elderly adults after total joint arthroplasty (TJA). METHODS A prospective, randomized, double-blind, sham-controlled trial was designed. In total, 124 elderly patients undergoing TJA were enrolled and randomly assigned to taVNS group (n = 62), who received taVNS at 1 h before anesthetic induction until the end of surgery, or sham stimulation (SS) group (n = 62), who received SS in the same manner. Neuropsychological batteries were performed before and at 1 week after surgery to assess the incidence of dNCR. Blood samples were collected before surgery and at 1 day after surgery to detect the activity of cholinesterase (AChE and BChE), as well as the levels of inflammatory factors (TNF-α, IL-1β, IL-6, and HMGB1) and brain damage factor S100β. RESULTS Of 124 patients, 119 completed 1 week neuropsychological tests. The incidence of dNCR was significantly decreased in taVNS group [10% (6/60)] compared with the SS group [27.1% (16/59)] (P < 0.05). Patients who received taVNS had lower blood levels of AChE, BChE, IL-6, HMGB1, and S100β after surgery (P < 0.05), as compared with those in the SS group. There was no difference in TNF-α between the two groups. CONCLUSION The taVNS can decrease the incidence of dNCR after TJA in elderly patients, which may be related to the inhibition of inflammatory cytokine production and the reduction of cholinesterase activity.
Collapse
|
33
|
Yang S, Qin Z, Yang X, Chan MY, Zhang S, Rong P, Hou X, Jin G, Xu F, Liu Y, Zhang ZJ. Transcutaneous Electrical Cranial-Auricular Acupoint Stimulation vs. Escitalopram for Patients With Mild-to-Moderate Depression (TECAS): Study Design for a Randomized Controlled, Non-inferiority Trial. Front Psychiatry 2022; 13:829932. [PMID: 35619617 PMCID: PMC9127209 DOI: 10.3389/fpsyt.2022.829932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies in animals and humans indicated that transcutaneous vagus nerve stimulation (tVNS) and transcutaneous electrical acupoint stimulation (TEAS) on trigeminal nerve-innervated forehead acupoints can relief the symptoms of depression. However, due to the limited investigations on these two interventions, more research are needed to confirm their efficacy in depression. To improve the efficacy of the single treatment, we combined two treatments and created a novel non-invasive stimulation, transcutaneous electrical cranial-auricular acupoint stimulation (TECAS). To assess the efficacy and safety of TECAS, we compare it with a selective serotonin reuptake inhibitor (SSRI), escitalopram, for the treatment of depression. Methods/Design This is a multi-center, non-inferiority, randomized controlled trial that will involve 470 patients with mild to moderate depression. Patients will be randomly assigned to either the TECAS group or the escitalopram group in a 1:1 ratio. The TEAS group will receive two sessions of treatments per day for 8 consecutive weeks, and the escitalopram group will receive 8 weeks of oral escitalopram tablets prescribed by clinical psychiatrists as appropriate for their condition. The primary outcome is the clinical response as determined by Montgomery-Åsberg Depression Rating Scale (MADRS) scores at week 8, with -10% as the non-inferior margin. The secondary outcomes include the response rate determined by 17-item Hamilton Depression Rating Scale (HAMD-17), remission rate, changes from baseline in the scores on the MADRS, the HAMD-17, the Hamilton Anxiety Rating Scale (HAMA), the Pittsburgh Sleep Quality Index (PSQI), and the Short Form 36 Health Survey (SF-36). Discussion This will be the first randomized controlled trial to compare the efficacy of TECAS with escitalopram for depression. If effective, this novel intervention could have significant clinical and research implications for patients with depression. Clinical Trial Registration [ClinicalTrials.gov], identifier [NCT03909217].
Collapse
Affiliation(s)
- Sichang Yang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zongshi Qin
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinjing Yang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mei Yan Chan
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuiyan Zhang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Guixing Jin
- Department of Mood Disorders, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fengquan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Liu
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, China
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
34
|
Bayasgalan B, Matsuhashi M, Fumuro T, Nakano N, Katagiri M, Shimotake A, Kikuchi T, Iida K, Kunieda T, Kato A, Takahashi R, Ikeda A, Inui K. Neural Sources of Vagus Nerve Stimulation–Induced Slow Cortical Potentials. Neuromodulation 2022; 25:407-413. [DOI: 10.1016/j.neurom.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
|
35
|
Cheng YC, Kuo PH, Su MI, Huang WL. The efficacy of non-invasive, non-convulsive electrical neuromodulation on depression, anxiety and sleep disturbance: a systematic review and meta-analysis. Psychol Med 2022; 52:801-812. [PMID: 35105413 DOI: 10.1017/s0033291721005560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of non-invasive, non-convulsive electrical neuromodulation (NINCEN) on depression, anxiety and sleep disturbance are inconsistent in different studies. Previous meta-analyses on transcranial direct current stimulation (tDCS) and cerebral electrotherapy stimulation (CES) suggested that these methods are effective on depression. However, not all types of NINECN were included; results on anxiety and sleep disturbance were lacking and the influence of different populations and treatment parameters was not completely analyzed. We searched PubMed, Embase, PsycInfo, PsycArticles and CINAHL before March 2021 and included published randomized clinical trials of all types of NINCEN for symptoms of depression, anxiety and sleep in clinical and non-clinical populations. Data were pooled using a random-effects model. The main outcome was change in the severity of depressive symptoms after NINCEN treatment. A total of 58 studies on NINCEN were included in the meta-analysis. Active tDCS showed a significant effect on depressive symptoms (Hedges' g = 0.544), anxiety (Hedges' g = 0.667) and response rate (odds ratio = 1.9594) compared to sham control. CES also had a significant effect on depression (Hedges' g = 0.654) and anxiety (Hedges' g = 0.711). For all types of NINCEN, active stimulation was significantly effective on depression, anxiety, sleep efficiency, sleep latency, total sleep time, etc. Our results showed that tDCS has significant effects on both depression and anxiety and that these effects are robust for different populations and treatment parameters. The rational expectation of the tDCS effect is 'response' rather than 'remission'. CES also is effective for depression and anxiety, especially in patients with disorders of low severity.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-I Su
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
36
|
Kraus C, Quach D, Sholtes DM, Kavakbasi E, De Zwaef R, Dibué M, Zajecka J, Baune BT. Setting Up a Successful Vagus Nerve Stimulation Service for Patients With Difficult-to-Treat Depression. Neuromodulation 2022; 25:316-326. [DOI: 10.1016/j.neurom.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
|
37
|
Austelle CW, O'Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, Short B, Badran BW. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation 2022; 25:309-315. [PMID: 35396067 PMCID: PMC8898319 DOI: 10.1111/ner.13528] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Vagus nerve stimulation (VNS) is reemerging as an exciting form of brain stimulation, due in part to the development of its noninvasive counterpart transcutaneous auricular VNS. As the field grows, it is important to understand where VNS emerged from, including its history and the studies that were conducted over the past four decades. Here, we offer a comprehensive review of the history of VNS in the treatment of major depression. MATERIALS AND METHODS Using PubMed, we reviewed the history of VNS and aggregated the literature into a narrative review of four key VNS epochs: 1) early invention and development of VNS, 2) path to Food and Drug Administration (FDA) approval for depression, 3) refinement of VNS treatment parameters, and 4) neuroimaging of VNS. RESULTS VNS was described in the literature in the early 1900s; however, gained traction in the 1980s as Zabara and colleagues developed an implantable neurocybernetic prosthesis to treat epilepsy. As epilepsy trials proceed in the 1990s, promising mood effects emerged and were studied, ultimately leading to the approval of VNS for depression in 2005. Since then, there have been advances in understanding the mechanism of action. Imaging techniques like functional magnetic resonance imaging and positron emission tomography further aid in understanding direct brain effects of VNS. CONCLUSIONS The mood effects of VNS were discovered from clinical trials investigating the use of VNS for reducing seizures in epileptic patients. Since then, VNS has gone on to be FDA approved for depression. The field of VNS is growing, and as noninvasive VNS quickly advances, it is important to consider a historical perspective to develop future brain stimulation therapies.
Collapse
Affiliation(s)
| | - Georgia H O'Leary
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Sean Thompson
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Elise Gruber
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Alex Kahn
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew J Manett
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Baron Short
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
38
|
Li S, Rong P, Wang Y, Jin G, Hou X, Li S, Xiao X, Zhou W, Wu Y, Liu Y, Zhang Y, Zhao B, Huang Y, Cao J, Chen H, Hodges S, Vangel M, Kong J. Comparative Effectiveness of Transcutaneous Auricular Vagus Nerve Stimulation vs Citalopram for Major Depressive Disorder: A Randomized Trial. Neuromodulation 2022; 25:450-460. [PMID: 35088753 DOI: 10.1016/j.neurom.2021.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is one of the most common mental illnesses. This study aims to investigate the effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) compared with the effectiveness of citalopram, a commonly used antidepressant, in patients with depression. MATERIAL AND METHODS A total of 107 male and female patients with MDD (55 in the taVNS group and 52 in the citalopram group) were enrolled in a prospective 12-week, single-blind, comparative effectiveness trial. Participants were recruited from the outpatient departments of three hospitals in China. Participants were randomly assigned to either taVNS treatment (eight weeks, twice per day, with an additional four-week follow-up) or citalopram treatment (12 weeks, 40 mg/d). The primary outcome was the 17-item Hamilton Depression Rating Scale (HAM-D17) measured every two weeks by trained interviewers blinded to the treatment assignment. The secondary end points included the 14-item Hamilton Anxiety Scale and peripheral blood biochemical indexes. RESULTS The HAM-D17 scores were reduced in both treatment groups; however, there was no significant group-by-time interaction (95% CI: -0.07 to 0.15, p = 0.79). Nevertheless, we found that taVNS produced a significantly higher remission rate at week four and week six than citalopram. Both treatments were associated with significant changes in the peripheral blood levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and noradrenaline, but there was no significant difference between the two groups. CONCLUSION taVNS resulted in symptom improvement similar to that of citalopram; thus, taVNS should be considered as a therapeutic option in the multidisciplinary management of MDD. Nevertheless, owing to the design of this study, it cannot be ruled out that the reduction in depression severity in both treatment groups could be a placebo effect.
Collapse
Affiliation(s)
- Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Jin
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Hou
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xue Xiao
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Wei Zhou
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Liu
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Helen Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mark Vangel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
39
|
Anderson JR, Schrift M. Medication Management of Neuropsychiatric Symptoms in Neurological Conditions: A Dimensional Transdiagnostic Approach. Semin Neurol 2022; 42:225-236. [PMID: 35139549 DOI: 10.1055/s-0041-1742144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuropsychiatric symptoms are prevalent in neurologic practice, but their complexity makes them challenging to manage. Many cognitive, affective, behavioral, and perceptual symptoms span multiple neurologic diagnoses-and there is prominent variability in neuropsychiatric symptom burden for a given condition. There is also a relative lack of robust controlled clinical trial evidence and expert consensus recommendations for a range of neuropsychiatric symptom presentations. Thus, the categorical approach (e.g., a discrete diagnosis equals a specific set of medication interventions) used in many other medical conditions can sometimes have limited utility in commonly encountered neuropsychiatric clinical scenarios. In this review, we explore medication management for a range of neuropsychiatric symptoms using a dimensional transdiagnostic approach applied to the neurological patient. This approach allows the clinician to think beyond the boundaries of a discrete diagnosis and treat specific symptom domains (e.g., apathy, impulsivity). Pharmacologic considerations, including mechanisms of action and their application to various neurotransmitter systems and brain networks, are discussed, as well as general recommendations to optimize medication adherence and rapport with the patient. The dimensional, transdiagnostic approach to pharmacological management of patients with neurological conditions will help the clinician treat neuropsychiatric symptoms safely, effectively, and confidently.
Collapse
Affiliation(s)
- Jordan R Anderson
- Department of Psychiatry and Neurology, Oregon Health and Science University, Unity Center for Behavioral Health, VA Portland Healthcare System, Portland, Oregon
| | - Michael Schrift
- Department of Psychiatry and Behavioral Sciences, University of Washington, Harborview Medical Center, Seattle, Washington
| |
Collapse
|
40
|
Buoli M, Capuzzi E, Caldiroli A, Ceresa A, Esposito CM, Posio C, Auxilia AM, Capellazzi M, Tagliabue I, Surace T, Legnani F, Cirella L, Di Paolo M, Nosari G, Zanelli Quarantini F, Clerici M, Colmegna F, Dakanalis A. Clinical and Biological Factors Are Associated with Treatment-Resistant Depression. Behav Sci (Basel) 2022; 12:bs12020034. [PMID: 35200285 PMCID: PMC8869369 DOI: 10.3390/bs12020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Treatment-resistant depression (TRD) is a debilitating condition associated with unmet clinical needs. Few studies have explored clinical characteristics and serum biomarkers associated with TRD. Aims: We investigated whether there were differences in clinical and biochemical variables between patients affected by TRD than those without. Methods: We recruited 343 patients (165 males and 178 females) consecutively hospitalized for MDD to the inpatient clinics affiliated to the Fondazione IRCCS Policlinico, Milan, Italy (n = 234), and ASST Monza, Italy (n = 109). Data were obtained through a screening of the clinical charts and blood analyses conducted during the hospitalization. Results: TRD versus non-TRD patients resulted to be older (p = 0.001), to have a longer duration of illness (p < 0.001), to be more currently treated with a psychiatric poly-therapy (p < 0.001), to have currently more severe depressive symptoms as showed by the Hamilton Depression Rating Scale (HAM-D) scores (p = 0.016), to have lower bilirubin plasma levels (p < 0.001). In addition, more lifetime suicide attempts (p = 0.035), more antidepressant treatments before the current episode (p < 0.001), and a lower neutrophil to lymphocyte ratio at borderline statistically significant level (p = 0.060) were all associated with the TRD group. Conclusion: We identified candidate biomarkers associated with TRD such as bilirubin plasma levels and NLR, to be confirmed by further studies. Moreover, TRD seems to be associated with unfavorable clinical factors such as a predisposition to suicidal behaviors. Future research should replicate these results to provide robust data in support of the identification of new targets of treatment and implementation of prevention strategies for TRD.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Enrico Capuzzi
- Psychiatric Department, Azienda Socio-Sanitaria Territoriale Monza, 20900 Monza, Italy; (E.C.); (A.C.); (M.C.); (F.C.)
| | - Alice Caldiroli
- Psychiatric Department, Azienda Socio-Sanitaria Territoriale Monza, 20900 Monza, Italy; (E.C.); (A.C.); (M.C.); (F.C.)
| | - Alessandro Ceresa
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-55035983
| | - Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cristina Posio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
| | - Anna Maria Auxilia
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy; (A.M.A.); (M.C.); (I.T.); (A.D.)
| | - Martina Capellazzi
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy; (A.M.A.); (M.C.); (I.T.); (A.D.)
| | - Ilaria Tagliabue
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy; (A.M.A.); (M.C.); (I.T.); (A.D.)
| | - Teresa Surace
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Psychiatric Department, Azienda Socio-Sanitaria Territoriale Monza, 20900 Monza, Italy; (E.C.); (A.C.); (M.C.); (F.C.)
| | - Francesca Legnani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luisa Cirella
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
| | - Martina Di Paolo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Guido Nosari
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
| | - Francesco Zanelli Quarantini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (C.M.E.); (C.P.); (T.S.); (F.L.); (L.C.); (M.D.P.); (G.N.); (F.Z.Q.)
| | - Massimo Clerici
- Psychiatric Department, Azienda Socio-Sanitaria Territoriale Monza, 20900 Monza, Italy; (E.C.); (A.C.); (M.C.); (F.C.)
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy; (A.M.A.); (M.C.); (I.T.); (A.D.)
| | - Fabrizia Colmegna
- Psychiatric Department, Azienda Socio-Sanitaria Territoriale Monza, 20900 Monza, Italy; (E.C.); (A.C.); (M.C.); (F.C.)
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy; (A.M.A.); (M.C.); (I.T.); (A.D.)
| |
Collapse
|
41
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Havton LA, Biscola NP, Stern E, Mihaylov PV, Kubal CA, Wo JM, Gupta A, Baronowsky E, Ward MP, Jaffey DM, Powley TL. Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers. Sci Rep 2021; 11:23831. [PMID: 34903749 PMCID: PMC8668909 DOI: 10.1038/s41598-021-03248-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.
Collapse
Affiliation(s)
- Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Stern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Plamen V Mihaylov
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John M Wo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Baronowsky
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew P Ward
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deborah M Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
43
|
Hajak VL, Hajak G, Ziegelmayer C, Grimm S, Trapp W. Risk Assessment of Electroconvulsive Therapy in Clinical Routine: A 3-Year Analysis of Life-Threatening Events in More Than 3,000 Treatment Sessions. Front Psychol 2021; 12:767915. [PMID: 34887815 PMCID: PMC8650631 DOI: 10.3389/fpsyg.2021.767915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research has reported that electroconvulsive therapy (ECT) can be highly effective in approximately 80% of patients suffering from depression. Its clinical use is mainly limited by historical objections and the concern about unwanted adverse effects (AEs), including serious and potentially life-threatening adverse events (pLTAEs), induced either by ECT or by anesthesia. Objective risk estimation is, therefore, a decisive factor in determining an indication for ECT. Methods: This paper presents a retrospective analysis of 3-year safety protocols and patient files of 157 patients who received a total of 3,106 ECT applications in a psychiatric inpatient setting at a psychiatric community hospital. This patient group comprises 5.3% of inpatients admitted with comparable diagnoses. Adverse events were analyzed from standardized safety protocols and patient files with a focus on pLTAEs. Results: Adverse events were reported for 30 (19.1%) of the 157 participants during 39 (6.1%) of 641 hospital stays. Serious pLTAEs occurred during three electroconvulsive stimulations in three patients, who needed action through the administration of medication or mechanical respiration. No patient suffered permanent damage to health, and no patient died. The incidence of these and other AEs was independent of sex, age, and diagnosis of patients, and anesthesia medication. Minor AEs occurred more often with higher stimulus doses and an increasing number of treatments. Conclusion: The low incidence rate of 0.097% of serious pLTAEs that require medical action may allow the conclusion that ECT is a rather safe treatment when performed in a controlled setting. The beneficial risk profile of ECT performed in the standard care of psychiatric hospitals suggests a more generous indication of this treatment method. We recommend that ECT facilities collect individual safety data to allow a reliable judgment of their institutional ECT risk profile.
Collapse
Affiliation(s)
- Vivien L Hajak
- Department of Psychology, Medical School Berlin, Berlin, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany
| | - Göran Hajak
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany
| | - Christoph Ziegelmayer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany
| | - Simone Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany.,Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Wolfgang Trapp
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany.,Department of Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany.,Department of Psychology, University of Applied Sciences, Bamberg, Germany
| |
Collapse
|
44
|
Gouveia FV, Silk E, Davidson B, Pople CB, Abrahao A, Hamilton J, Ibrahim GM, Müller DJ, Giacobbe P, Lipsman N, Hamani C. A systematic review on neuromodulation therapies for reducing body weight in patients with obesity. Obes Rev 2021; 22:e13309. [PMID: 34337843 DOI: 10.1111/obr.13309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of obesity increases yearly along with a rising demand for efficacious, safe, and accessible treatments. Neuromodulation interventions (i.e., deep brain stimulation [DBS], transcranial magnetic stimulation [TMS], transcranial direct current stimulation [tDCS], percutaneous neurostimulation [PENS], vagus nerve stimulation [VNS], and gastric electrical stimulation [GES]) have been proposed as novel therapies. This systematic review sought to examine the safety and efficacy of neuromodulation therapies in reducing body weight in patients with obesity. Using PRISMA guidelines, we performed a systematic review for studies on neuromodulation for the treatment of obesity, resulting in 60 trials included (7 DBS, 5 TMS, 7 tDCS, 17 PENS and VNS, and 24 GES; a total of 3,042 participants). While promising results have been reported in open label studies, double-blinded randomized clinical trials often did not reach their primary endpoints, with no technique inducing a striking reduction in body weight. Bearing in mind the complexity and multifactorial nature of obesity, it is possible that a single treatment may not be enough for patients to lose or maintain the weight lost at long term.
Collapse
Affiliation(s)
| | - Esther Silk
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jill Hamilton
- Division of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Clinical effectiveness of non-TMS neurostimulation in depression: Clinical trials from 2010 to 2020. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110287. [PMID: 33610609 DOI: 10.1016/j.pnpbp.2021.110287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Treatment for major depressive disorder (MDD) have evolved, although there is still a strong unmet need for more effective and tolerable options. The present study summarizes and discusses recent evidence regarding the non-transcranial magnetic stimulation (non-TMS) neurostimulation treatment for MDD. METHODS The authors reviewed non-TMS neurostimulation clinical trials for MDD between 2010 and 2020. Electroconvulsive therapy was not included in this review. A systematic review was performed in MEDLINE database through PubMed, the Cochrane Collaboration's Clinical Trials Register (CENTRAL), PsycINFO and Thomson Reuters's Web of Science. RESULTS Only 20 articles met the inclusion criteria. Randomized controlled trials demonstrated efficacy of transcranial direct current stimulation (tDCS) in five of seven trials. tDCS augmented with sertraline, fluoxetine, citalopram and escitalopram was superior to placebo and to tDCS only. A comparative trial demonstrated that the duration of tDCS sessions can modulate the effectiveness of this treatment. Open trials indicated that deep brain stimulation, epidural cortical stimulation, trigeminal nerve stimulation, magnetic seizure therapy and vagus nerve stimulation may be effective in treatment-resistant depression. CONCLUSION This review confirmed the efficacy of tDCS in MDD. Despite new evidence showing effectiveness for other non-TMS neurostimulation, their effectiveness is still unclear. Non-TMS neurostimulation RCTs with large samples and head-to-head studies comparing non-TMS neurostimulation and gold standard pharmacological treatments are still lacking.
Collapse
|
46
|
Gut Hormones as Potential Therapeutic Targets or Biomarkers of Response in Depression: The Case of Motilin. Life (Basel) 2021; 11:life11090892. [PMID: 34575041 PMCID: PMC8465535 DOI: 10.3390/life11090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Recent research has identified the gut–brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (1) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, based on a literature search of three scientific databases, and (2) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression based on allele frequency data after correction for potential confounders. It was observed that (1) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (2) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required and that these molecular pathways represent potential future mechanisms for antidepressant drug development.
Collapse
|
47
|
Rings T, von Wrede R, Bröhl T, Schach S, Helmstaedter C, Lehnertz K. Impact of Transcutaneous Auricular Vagus Nerve Stimulation on Large-Scale Functional Brain Networks: From Local to Global. Front Physiol 2021; 12:700261. [PMID: 34489724 PMCID: PMC8417898 DOI: 10.3389/fphys.2021.700261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel non-invasive brain stimulation technique considered as a potential supplementary treatment option for a wide range of diseases. Although first promising findings were obtained so far, the exact mode of action of taVNS is not fully understood yet. We recently developed an examination schedule to probe for immediate taVNS-induced modifications of large-scale epileptic brain networks. With this schedule, we observed short-term taVNS to have a topology-modifying, robustness- and stability-enhancing immediate effect on large-scale functional brain networks from subjects with focal epilepsies. We here expand on this study and investigate the impact of short-term taVNS on various local and global characteristics of large-scale evolving functional brain networks from a group of 30 subjects with and without central nervous system diseases. Our findings point to differential, at first glance counterintuitive, taVNS-mediated alterations of local and global topological network characteristics that result in a reconfiguration of networks and a modification of their stability and robustness properties. We propose a model of a stimulation-related stretching and compression of evolving functional brain networks that may help to better understand the mode of action of taVNS.
Collapse
Affiliation(s)
- Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Sophia Schach
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Tumova MA, Muslimova LM, Stanovaya VV, Abdyrakhmanova AK, Ivanov MV. [Contemporary methods of non-drug therapy for depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:91-98. [PMID: 34405663 DOI: 10.17116/jnevro202112105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents information on the most effective current non-drug methods of treatment of depression used in practice. A review of publications in PubMed and PsycINFO and Cochrane Library over the past 10 years was conducted. Non-drug biological therapies demonstrate high efficacy in the reduction of depressive symptoms in patients with recurrent depressive disorder. The use of non-drug therapy does not preclude the continuation of pharmacological therapy. In order to choose an optimal method of treatment, the psychophysical state of a patient, severity of depressive symptoms, response to drug therapy, and possibility of prescribing pharmacological therapy should be taken into account, and the principles of evidence-based medicine should be taken into consideration when making a decision.
Collapse
Affiliation(s)
- M A Tumova
- Bekhterev National Research Medical Centre for Psychiatry and Neurology, St. Petersburg, Russia
| | - L M Muslimova
- Bekhterev National Research Medical Centre for Psychiatry and Neurology, St. Petersburg, Russia
| | - V V Stanovaya
- Bekhterev National Research Medical Centre for Psychiatry and Neurology, St. Petersburg, Russia
| | - A K Abdyrakhmanova
- Bekhterev National Research Medical Centre for Psychiatry and Neurology, St. Petersburg, Russia
| | - M V Ivanov
- Bekhterev National Research Medical Centre for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
49
|
Lintel H, Corpuz T, Paracha SUR, Grossberg GT. Mood Disorders and Anxiety in Parkinson's Disease: Current Concepts. J Geriatr Psychiatry Neurol 2021; 34:280-288. [PMID: 34219518 DOI: 10.1177/08919887211018267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mood disorders and anxiety significantly impact the prognosis and disease course of Parkinson's disease. Non-motor symptoms of Parkinson's disease such as apathy, anhedonia, and fatigue overlap with diagnostic criteria for anxiety and depression, thus making accurate diagnosis of mood disorders in Parkinson's disease patients difficult. Furthermore, treatment options for mood disorders can produce motor complications leading to poor adherence and impaired quality of life in Parkinson's disease patients. This review aims to clarify the current state of diagnostic and treatment options pertaining to anxiety and mood disorders in Parkinson's disease. It explores both the pharmacologic and non-pharmacologic treatment modalities for various mood disorders in comorbid Parkinson's disease with a brief discussion of the future outlook of the field given the current state of the literature.
Collapse
Affiliation(s)
- Hendrik Lintel
- 7547Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Timothy Corpuz
- 7547Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Saif-Ur-Rahman Paracha
- Department of Psychiatry and Behavioral Neuroscience, 7547Saint Louis University School of Medicine, MO, USA
| | - George T Grossberg
- Samuel W. Fordyce Professor and Director of Geriatric Psychiatry, 7547Saint Louis University School of Medicine, MO, USA
| |
Collapse
|
50
|
Szulczewski MT. Transcutaneous Auricular Vagus Nerve Stimulation Combined With Slow Breathing: Speculations on Potential Applications and Technical Considerations. Neuromodulation 2021; 25:380-394. [PMID: 35396070 DOI: 10.1111/ner.13458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively novel noninvasive neurostimulation method that is believed to mimic the effects of invasive cervical VNS. It has recently been suggested that the effectiveness of taVNS can be enhanced by combining it with controlled slow breathing. Slow breathing modulates the activity of the vagus nerve and is used in behavioral medicine to decrease psychophysiological arousal. Based on studies that examine the effects of taVNS and slow breathing separately, this article speculates on some of the conditions in which this combination treatment may prove effective. Furthermore, based on findings from studies on the optimization of taVNS and slow breathing, this article provides guidance on how to combine taVNS with slow breathing. MATERIALS AND METHODS A nonsystematic review. RESULTS Both taVNS and slow breathing are considered promising add-on therapeutic approaches for anxiety and depressive disorders, chronic pain, cardiovascular diseases, and insomnia. Therefore, taVNS combined with slow breathing may produce additive or even synergistic beneficial effects in these conditions. Studies on respiratory-gated taVNS during spontaneous breathing suggest that taVNS should be delivered during expiration. Therefore, this article proposes to use taVNS as a breathing pacer to indicate when and for how long to exhale during slow breathing exercises. CONCLUSIONS Combining taVNS with slow breathing seems to be a promising hybrid neurostimulation and behavioral intervention.
Collapse
|