1
|
Gencheva TM, Valkov BV, Kandilarova SS, Maes MHJ, Stoyanov DS. Diagnostic value of structural, functional and effective connectivity in bipolar disorder. Acta Psychiatr Scand 2025; 151:192-209. [PMID: 39137928 PMCID: PMC11787925 DOI: 10.1111/acps.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The aim of this systematic review is to assess the functional magnetic resonance imaging (fMRI) studies of bipolar disorder (BD) patients that characterize differences in terms of structural, functional, and effective connectivity between the patients with BD, patients with other psychiatric disorders and healthy controls as possible biomarkers for diagnosing the disorder using neuroimaging. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), guidelines a systematic search for recent (since 2015) original studies on connectivity in bipolar disorder was conducted in PUBMED and SCOPUS. RESULTS A total of 60 studies were included in this systematic review: 20 of the structural connectivity, 33 of the functional connectivity, and only 7 of the studies focused on effective connectivity complied with the inclusion and exclusion criteria. DISCUSSION Despite the great heterogeneity in the findings, there are several trends that emerge. In structural connectivity studies, the main abnormalities in bipolar disorder patients were in the frontal gyrus, anterior, as well as posterior cingulate cortex and differences in emotion and reward-related networks. Cerebellum (vermis) to cerebrum functional connectivity was found to be the most common finding in BD. Moreover, prefrontal cortex and amygdala connectivity as part of the rich-club hubs were often reported to be disrupted. The most common findings based on effective connectivity were alterations in salience network, default mode network and executive control network. Although more studies with larger sample sizes are needed to ascertain altered brain connectivity as diagnostic biomarker, there is a perspective that the method could be used as a single marker of diagnosis in the future, and the process of adoption could be accelerated by using approaches such as semiunsupervised machine learning.
Collapse
Affiliation(s)
| | | | - Sevdalina S. Kandilarova
- Department of Psychiatry and Medical Psychology, and Research InstituteMedical University of PlovdivPlovdivBulgaria
- Research and Innovation Program for the Development of MU – PLOVDIV – (SRIPD‐MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union – NextGenerationEUPlovdivBulgaria
| | - Michael H. J. Maes
- Department of Psychiatry and Medical Psychology, and Research InstituteMedical University of PlovdivPlovdivBulgaria
- Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Research and Innovation Program for the Development of MU – PLOVDIV – (SRIPD‐MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union – NextGenerationEUPlovdivBulgaria
| | - Drozdstoy S. Stoyanov
- Department of Psychiatry and Medical Psychology, and Research InstituteMedical University of PlovdivPlovdivBulgaria
- Research and Innovation Program for the Development of MU – PLOVDIV – (SRIPD‐MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union – NextGenerationEUPlovdivBulgaria
| |
Collapse
|
2
|
Bai Z, Li P, Gao X, Zu G, Jiang A, Wu K, Mechawar N, Turecki G, Lehnert K, Snell RG, Zhou J, Hu J, Yan B, Chen L, Li W, Chen Y, Liu S, Zhu Y, You L. Exploring PDE5A upregulation in bipolar disorder: insights from single-nucleus RNA sequencing of human basal ganglia. Transl Psychiatry 2024; 14:494. [PMID: 39695100 DOI: 10.1038/s41398-024-03202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Basal ganglia is proposed to mediate symptoms underlying bipolar disorder (BD). To understand the cell type-specific gene expression and network changes of BD basal ganglia, we performed single-nucleus RNA sequencing of 30,752 nuclei from caudate, putamen, globus pallidus, and substantia nigra of control human postmortem brain and 24,672 nuclei from BD brain. Differential expression analysis revealed major difference lying in caudate, with BD medium spiny neurons (MSNs) expressing significantly higher PDE5A, a cGMP-specific phosphodiesterase. Gene co-expression analysis (WGCNA) showed a strong correlation of caudate MSNs and gene module green, with a PDE5A-containing hub gene network. Gene regulatory network analysis (SCENIC) indicated key regulons among different cell types and basal ganglia regions, with downstream targets of key transcriptional factors showing overlapping genes such as PDEs. Upregulation of PDE5A was further validated in 7 pairs of control and BD caudate sections. Overexpression of PDE5A in primary cultured lateral ganglion eminence-derived striatal neurons led to decreased dendrite complexity, increased apoptosis, and enhanced neuronal excitability and membrane resistance. This effect could be rescued by PDE5 specific inhibitor, tadalafil. Overexpression of PDE5A in mouse striatum by stereotaxic injection caused a decreased cGMP level, an increased gene expression profile of neuroinflammation, and BD-like behaviors. Collectively, our findings provided cell type-specific gene expression profile, and indicated a causative role of PDE5A upregulation in BD basal ganglia. This study provides a single-nucleus transcriptomic profile of human control and bipolar disorder (BD) basal ganglia. Differential expression, gene co-expression, and gene regulatory network analyses collectively indicated upregulation of PDE5A in BD caudate medium spiny neurons (MSNs), which was further validated in another cohort of BD brains. The causative role of PDE5A upregulation in BD etiology is supported by the effects of PDE5A overexpression in cultured mouse MSNs in vitro and in adult mouse striatum in vivo. The former led to reduced dendrite complexity, increased apoptosis, and neuronal hyper-excitability, which could be rescued by PDE5 specific inhibitor tadalafil. The latter caused lower cGMP levels, upregulated genes associated with neuroinflammation, and BD-like behaviors.
Collapse
Affiliation(s)
- Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Gao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Andrew Jiang
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Keting Wu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Jin Zhou
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jia Hu
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Bingbing Yan
- Neo-Biotechnology Limited Company, Shanghai, China
| | - Liang Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wensheng Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - You Chen
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Xiao M, Xue J, Jin E. SPOCK: Master regulator of malignant tumors (Review). Mol Med Rep 2024; 30:231. [PMID: 39392048 PMCID: PMC11487499 DOI: 10.3892/mmr.2024.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
SPARC/osteonectin, CWCV and Kazal‑like domain proteoglycan (SPOCK) is a family of highly conserved multidomain proteins. In total, three such family members, SPOCK1, SPOCK2 and SPOCK3, constitute the majority of extracellular matrix glycoproteins. The SPOCK gene family has been demonstrated to serve key roles in tumor regulation by affecting MMPs, which accelerates the progression of cancer epithelial‑mesenchymal transition. In addition, they can regulate the cell cycle via overexpression, inhibit tumor cell proliferation by inactivating PI3K/AKT signaling and have been associated with numerous microRNAs that influence the expression of downstream genes. Therefore, the SPOCK gene family are potential cancer‑regulating genes. The present review summarizes the molecular structure, tissue distribution and biological function of the SPOCK family of proteins, in addition to its association with cancer. Furthermore, the present review documents the progress made in investigations into the role of SPOCK, whilst also discussing prospects for the future of SPOCK‑targeted therapy, to provide novel ideas for clinical application and treatment.
Collapse
Affiliation(s)
- Mingyuan Xiao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Jiancheng Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Clinical Research Center for Otolaryngology Diseases, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Enli Jin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| |
Collapse
|
4
|
Shao YX, Wang LL, Zhou HY, Yi ZH, Liu S, Yan C. Dampened motivation in schizophrenia: evidence from a novel effort-based decision-making task in social scenarios. Eur Arch Psychiatry Clin Neurosci 2024; 274:1447-1459. [PMID: 38413455 DOI: 10.1007/s00406-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2024] [Indexed: 02/29/2024]
Abstract
Apathy represents a significant manifestation of negative symptoms within individuals diagnosed with schizophrenia (SCZ) and exerts a profound impact on their social relationships. However, the specific implications of this motivational deficit in social scenarios have yet to be fully elucidated. The present study aimed to examine effort-based decision-making in social scenarios and its relation to apathy symptoms in SCZ patients. We initially recruited a group of 50 healthy participants (16 males) to assess the validity of the paradigm. Subsequently, we recruited 45 individuals diagnosed with SCZ (24 males) and 49 demographically-matched healthy controls (HC, 25 males) for the main study. The Mock Job Interview Task was developed to measure effort-based decision-making in social scenarios. The proportion of hard-task choice and a range of subjective ratings were obtained to examine potential between-group differences. SCZ patients were less likely than HC to choose the hard task with strict interviewers, and this group difference was significant when the hard-task reward value was medium and high. More severe apathy symptoms were significantly correlated with an overall reduced likelihood of making a hard-task choice. When dividing the jobs into two categories based on the levels of social engagement needed, SCZ patients were less willing to expend effort to pursue a potential offer for jobs requiring higher social engagement. Our findings indicated impaired effort-based decision-making in SCZ can be generalized from the monetary/nonsocial to a more ecologically social dimension. Our findings affirm the critical role of aberrant effort allocation on negative symptoms, and may facilitate the development of targeted clinical interventions.
Collapse
Affiliation(s)
- Yu-Xin Shao
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Leshan Hi-Tech Zone Jiaxiang Foreign Languages School, Sichuan, China
| | - Ling-Ling Wang
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Liu
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Room 413, Building Junxiu, 3663 North Zhongshan Road, Shanghai, 200062, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
5
|
Yang J, Guo H, Cai A, Zheng J, Liu J, Xiao Y, Ren S, Sun D, Duan J, Zhao T, Tang J, Zhang X, Zhu R, Wang J, Wang F. Aberrant Hippocampal Development in Early-onset Mental Disorders and Promising Interventions: Evidence from a Translational Study. Neurosci Bull 2024; 40:683-694. [PMID: 38141109 PMCID: PMC11178726 DOI: 10.1007/s12264-023-01162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 12/24/2023] Open
Abstract
Early-onset mental disorders are associated with disrupted neurodevelopmental processes during adolescence. The methylazoxymethanol acetate (MAM) animal model, in which disruption in neurodevelopmental processes is induced, mimics the abnormal neurodevelopment associated with early-onset mental disorders from an etiological perspective. We conducted longitudinal structural magnetic resonance imaging (MRI) scans during childhood, adolescence, and adulthood in MAM rats to identify specific brain regions and critical windows for intervention. Then, the effect of repetitive transcranial magnetic stimulation (rTMS) intervention on the target brain region during the critical window was investigated. In addition, the efficacy of this intervention paradigm was tested in a group of adolescent patients with early-onset mental disorders (diagnosed with major depressive disorder or bipolar disorder) to evaluate its clinical translational potential. The results demonstrated that, compared to the control group, the MAM rats exhibited significantly lower striatal volume from childhood to adulthood (all P <0.001). In contrast, the volume of the hippocampus did not show significant differences during childhood (P >0.05) but was significantly lower than the control group from adolescence to adulthood (both P <0.001). Subsequently, rTMS was applied to the occipital cortex, which is anatomically connected to the hippocampus, in the MAM models during adolescence. The MAM-rTMS group showed a significant increase in hippocampal volume compared to the MAM-sham group (P <0.01), while the volume of the striatum remained unchanged (P >0.05). In the clinical trial, adolescents with early-onset mental disorders showed a significant increase in hippocampal volume after rTMS treatment compared to baseline (P <0.01), and these volumetric changes were associated with improvement in depressive symptoms (r = - 0.524, P = 0.018). These findings highlight the potential of targeting aberrant hippocampal development during adolescence as a viable intervention for early-onset mental disorders with neurodevelopmental etiology as well as the promise of rTMS as a therapeutic approach for mitigating aberrant neurodevelopmental processes and alleviating clinical symptoms.
Collapse
Affiliation(s)
- Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Sihua Ren
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110002, China
| | - Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Jia Duan
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jingwei Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430064, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Reas ET, Triebswetter C, Banks SJ, McEvoy LK. Effects of APOE2 and APOE4 on brain microstructure in older adults: modification by age, sex, and cognitive status. Alzheimers Res Ther 2024; 16:7. [PMID: 38212861 PMCID: PMC10782616 DOI: 10.1186/s13195-023-01380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), whereas APOE2 confers protection. However, effects of APOE on neurodegeneration in cognitively intact individuals, and how these associations evolve with cognitive decline, are unclear. Furthermore, few studies have evaluated whether effects of APOE on neurodegenerative changes are modified by other AD key risk factors including age and sex. METHODS Participants included older adults (57% women; 77 ± 7 years) from the Rancho Bernardo Study of Health Aging and the University of California San Diego Alzheimer's Disease Research Center, including 192 cognitively normal (CN) individuals and 33 with mild cognitive impairment. Participants underwent diffusion MRI, and multicompartment restriction spectrum imaging (RSI) metrics were computed in white matter, gray matter, and subcortical regions of interest. Participants were classified as APOE4 carriers, APOE2 carriers, and APOE3 homozygotes. Analysis of covariance among CN (adjusting for age, sex, and scanner) assessed differences in brain microstructure by APOE, as well as interactions between APOE and sex. Analyses across all participants examined interactions between APOE4 and cognitive status. Linear regressions assessed APOE by age interactions. RESULTS Among CN, APOE4 carriers showed lower entorhinal cortex neurite density than non-carriers, whereas APOE2 carriers showed lower cingulum neurite density than non-carriers. Differences in entorhinal microstructure by APOE4 and in entorhinal and cingulum microstructure by APOE2 were present for women only. Age correlated with lower entorhinal restricted isotropic diffusion among APOE4 non-carriers, whereas age correlated with lower putamen restricted isotropic diffusion among APOE4 carriers. Differences in microstructure between cognitively normal and impaired participants were stronger for APOE4-carriers in medial temporal regions, thalamus, and global gray matter, but stronger for non-carriers in caudate. CONCLUSIONS The entorhinal cortex may be an early target of neurodegenerative changes associated with APOE4 in presymptomatic individuals, whereas APOE2 may support beneficial white matter and entorhinal microstructure, with potential sex differences that warrant further investigation. APOE modifies microstructural patterns associated with aging and cognitive impairment, which may advance the development of biomarkers to distinguish microstructural changes characteristic of normal brain aging, APOE-dependent pathways, and non-AD etiologies.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA.
| | - Curtis Triebswetter
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Linda K McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| |
Collapse
|
7
|
Howell AM, Anticevic A. Functional Connectivity Biomarkers in Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:237-283. [PMID: 39562448 DOI: 10.1007/978-3-031-69491-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Schizophrenia is a debilitating neuropsychiatric disorder that affects approximately 1% of the population and poses a major public health problem. Despite over 100 years of study, the treatment for schizophrenia remains limited, partially due to the lack of knowledge about the neural mechanisms of the illness and how they relate to symptoms. The US Food and Drug Administration (FDA) and the National Institute of Health (NIH) have provided seven biomarker categories that indicate causes, risks, and treatment responses. However, no FDA-approved biomarkers exist for psychiatric conditions, including schizophrenia, highlighting the need for biomarker development. Over three decades, magnetic resonance imaging (MRI)-based studies have identified patterns of abnormal brain function in schizophrenia. By using functional connectivity (FC) data, which gauges how brain regions interact over time, these studies have differentiated patient subgroups, predicted responses to antipsychotic medication, and correlated neural changes with symptoms. This suggests FC metrics could serve as promising biomarkers. Here, we present a selective review of studies leveraging MRI-derived FC to study neural alterations in schizophrenia, discuss how they align with FDA-NIH biomarkers, and outline the challenges and goals for developing FC biomarkers in schizophrenia.
Collapse
Affiliation(s)
| | - Alan Anticevic
- Yale University, School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Dickie EW, Shahab S, Hawco C, Miranda D, Herman G, Argyelan M, Ji JL, Jeyachandra J, Anticevic A, Malhotra AK, Voineskos AN. Robust hierarchically organized whole-brain patterns of dysconnectivity in schizophrenia spectrum disorders observed after personalized intrinsic network topography. Hum Brain Mapp 2023; 44:5153-5166. [PMID: 37605827 PMCID: PMC10502662 DOI: 10.1002/hbm.26453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.
Collapse
Affiliation(s)
- Erin W. Dickie
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| | - Saba Shahab
- Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Colin Hawco
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| | - Dayton Miranda
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Gabrielle Herman
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Miklos Argyelan
- Psychiatry Research, The Zucker Hillside HospitalGlen CoveNew YorkUSA
- Institute of Behavioral Science, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Jie Lisa Ji
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jerrold Jeyachandra
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Anil K. Malhotra
- Psychiatry Research, The Zucker Hillside HospitalGlen CoveNew YorkUSA
- Institute of Behavioral Science, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Aristotle N. Voineskos
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
9
|
Connectivity alterations of mesostriatal pathways in first episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:15. [PMID: 36918579 PMCID: PMC10014938 DOI: 10.1038/s41537-023-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND AND HYPOTHESIS Pathogenic understanding of the psychotic disorders converges on regulation of dopaminergic signaling in mesostriatocortical pathways. Functional connectivity of the mesostriatal pathways may inform us of the neuronal networks involved. STUDY DESIGN This longitudinal study of first episode psychosis (FEP) (49 patients, 43 controls) employed seed-based functional connectivity analyses of fMRI data collected during a naturalistic movie stimulus. STUDY RESULTS We identified hypoconnectivity of the dorsal striatum with the midbrain, associated with antipsychotic medication dose in FEP, in comparison with the healthy control group. The midbrain regions that showed hypoconnectivity with the dorsal striatum also showed hypoconnectivity with cerebellar regions suggested to be involved in regulation of the mesostriatocortical dopaminergic pathways. None of the baseline hypoconnectivity detected was seen at follow-up. CONCLUSIONS These findings extend earlier resting state findings on mesostriatal connectivity in psychotic disorders and highlight the potential for cerebellar regulation of the mesostriatocortical pathways as a target of treatment trials.
Collapse
|
10
|
Chen J, Fu Z, Bustillo JR, Perrone-Bizzozero NI, Lin D, Canive J, Pearlson GD, Stephen JM, Mayer AR, Potkin SG, van Erp TGM, Kochunov P, Elliot Hong L, Adhikari BM, Andreassen OA, Agartz I, Westlye LT, Sui J, Du Y, Macciardi F, Hanlon FM, Jung RE, Turner JA, Liu J, Calhoun VD. Genome-Transcriptome-Functional Connectivity-Cognition Link Differentiates Schizophrenia From Bipolar Disorder. Schizophr Bull 2022; 48:1306-1317. [PMID: 35988022 PMCID: PMC9673262 DOI: 10.1093/schbul/sbac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors, yet patients display differential levels of cognitive impairment. We hypothesized a genome-transcriptome-functional connectivity (frontoparietal)-cognition pathway linked to SZ-versus-BD differences, and conducted a multiscale study to delineate this pathway. STUDY DESIGNS Large genome-wide studies provided single nucleotide polymorphisms (SNPs) conferring more risk for SZ than BD, and we identified their regulated genes, namely SZ-biased SNPs and genes. We then (a) computed the polygenic risk score for SZ (PRSSZ) of SZ-biased SNPs and examined its associations with imaging-based frontoparietal functional connectivity (FC) and cognitive performances; (b) examined the spatial correlation between ex vivo postmortem expressions of SZ-biased genes and in vivo, SZ-related FC disruptions across frontoparietal regions; (c) investigated SZ-versus-BD differences in frontoparietal FC; and (d) assessed the associations of frontoparietal FC with cognitive performances. STUDY RESULTS PRSSZ of SZ-biased SNPs was significantly associated with frontoparietal FC and working memory test scores. SZ-biased genes' expressions significantly correlated with SZ-versus-BD differences in FC across frontoparietal regions. SZ patients showed more reductions in frontoparietal FC than BD patients compared to controls. Frontoparietal FC was significantly associated with test scores of multiple cognitive domains including working memory, and with the composite scores of all cognitive domains. CONCLUSIONS Collectively, these multiscale findings support the hypothesis that SZ-biased genetic risk, through transcriptome regulation, is linked to frontoparietal dysconnectivity, which in turn contributes to differential cognitive deficits in SZ-versus BD, suggesting that potential biomarkers for more precise patient stratification and treatment.
Collapse
Affiliation(s)
- Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Juan R Bustillo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Dongdong Lin
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Jose Canive
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
- Department of Psychiatry and Neuroscience, Yale University, New Haven, CT, USA
| | | | | | - Steven G Potkin
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, Clinical Translational Neuroscience Laboratory, School of Medicine, University of California, Irvine, CA, USA
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Bhim M Adhikari
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | | | - Rex E Jung
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jessica A Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Nelson EA, Kraguljac NV, Maximo JO, Armstrong W, Lahti AC. Dorsal striatial hypoconnectivity predicts antipsychotic medication treatment response in first-episode psychosis and unmedicated patients with schizophrenia. Brain Behav 2022; 12:e2625. [PMID: 36237115 PMCID: PMC9660417 DOI: 10.1002/brb3.2625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The dorsal striatum, comprised of the caudate and putamen, is implicated in the pathophysiology of psychosis spectrum disorders. Given the high concentration of dopamine receptors in the striatum, striatal dopamine imbalance is a likely cause in cortico-striatal dysconnectivity. There is great interest in understanding the relationship between striatal abnormalities in psychosis and antipsychotic treatment response, but few studies have considered differential involvement of the caudate and putamen. This study's goals were twofold. First, identify patterns of dorsal striatal dysconnectivity for the caudate and putamen separately in patients with a psychosis spectrum disorder; second, determine if these dysconnectivity patterns were predictive of treatment response. METHODS Using resting state functional connectivity, we evaluated dorsal striatal connectivity using separate bilateral caudate and putamen seed regions in two cohorts of subjects: a cohort of 71 medication-naïve first episode psychosis patients and a cohort of 42 unmedicated patients with schizophrenia (along with matched controls). Patient and control connectivity maps were contrasted for each cohort. After receiving 6 weeks of risperidone treatment, patients' clinical response was calculated. We used regression analyses to determine the relationship between baseline dysconnectivity and treatment response. RESULTS This dysconnectivity was also predictive of treatment response in both cohorts. DISCUSSION These findings suggest that the caudate may be more of a driving factor than the putamen in early cortico-striatal dysconnectivity.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
13
|
Du X, Wei X, Ding H, Yu Y, Xie Y, Ji Y, Zhang Y, Chai C, Liang M, Li J, Zhuo C, Yu C, Qin W. Unraveling schizophrenia replicable functional connectivity disruption patterns across sites. Hum Brain Mapp 2022; 44:156-169. [PMID: 36222054 PMCID: PMC9783440 DOI: 10.1002/hbm.26108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Functional connectivity (FC) disruption is a remarkable characteristic of schizophrenia. However, heterogeneous patterns reported across sites severely hindered its clinical generalization. Based on qualified nodal-based FC of 340 schizophrenia patients (SZ) and 348 normal controls (NC) acquired from seven different scanners, this study compared four commonly used site-effect correction methods in removing the site-related heterogeneities, and then tried to cluster the abnormal FCs into several replicable and independent disrupted subnets across sites, related them to clinical symptoms, and evaluated their potentials in schizophrenia classification. Among the four site-related heterogeneity correction methods, ComBat harmonization (F1 score: 0.806 ± 0.145) achieved the overall best balance between sensitivity and false discovery rate in unraveling the aberrant FCs of schizophrenia in the local and public data sets. Hierarchical clustering analysis identified three replicable FC disruption subnets across the local and public data sets: hypo-connectivity within sensory areas (Net1), hypo-connectivity within thalamus, striatum, and ventral attention network (Net2), and hyper-connectivity between thalamus and sensory processing system (Net3). Notably, the derived composite FC within Net1 was negatively correlated with hostility and disorientation in the public validation set (p < .05). Finally, the three subnet-specific composite FCs (Best area under the receiver operating characteristic curve [AUC] = 0.728) can robustly and meaningfully discriminate the SZ from NC with comparable performance with the full identified FCs features (best AUC = 0.765) in the out-of-sample public data set (Z = -1.583, p = .114). In conclusion, ComBat harmonization was most robust in detecting aberrant connectivity for schizophrenia. Besides, the three subnet-specific composite FC measures might be replicable neuroimaging markers for schizophrenia.
Collapse
Affiliation(s)
- Xiaotong Du
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xiaotong Wei
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hao Ding
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yingying Xie
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yi Ji
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yu Zhang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chao Chai
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Jie Li
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chuanjun Zhuo
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Wen Qin
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
14
|
Bergé D, Lesh TA, Smucny J, Carter CS. Improvement in prefrontal thalamic connectivity during the early course of the illness in recent-onset psychosis: a 12-month longitudinal follow-up resting-state fMRI study. Psychol Med 2022; 52:2713-2721. [PMID: 33323140 PMCID: PMC9307321 DOI: 10.1017/s0033291720004808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous research in resting-state functional magnetic resonance imaging (rs-fMRI) has shown a mixed pattern of disrupted thalamocortical connectivity in psychosis. The clinical meaning of these findings and their stability over time remains unclear. We aimed to study thalamocortical connectivity longitudinally over a 1-year period in participants with recent-onset psychosis. METHODS To this purpose, 129 individuals with recent-onset psychosis and 87 controls were clinically evaluated and scanned using rs-fMRI. Among them, 43 patients and 40 controls were re-scanned and re-evaluated 12 months later. Functional connectivity between the thalamus and the rest of the brain was calculated using a seed to voxel approach, and then compared between groups and correlated with clinical features cross-sectionally and longitudinally. RESULTS At baseline, participants with recent-onset psychosis showed increased connectivity (compared to controls) between the thalamus and somatosensory and temporal regions (k = 653, T = 5.712), as well as decreased connectivity between the thalamus and left cerebellum and right prefrontal cortex (PFC; k = 201, T = -4.700). Longitudinal analyses revealed increased connectivity over time in recent-onset psychosis (relative to controls) in the right middle frontal gyrus. CONCLUSIONS Our results support the concept of abnormal thalamic connectivity as a core feature in psychosis. In agreement with a non-degenerative model of illness in which functional changes occur early in development and do not deteriorate over time, no evidence of progressive deterioration of connectivity during early psychosis was observed. Indeed, regionally increased connectivity between thalamus and PFC was observed.
Collapse
Affiliation(s)
- Daniel Bergé
- Neuroimaging Group, Neuroscience Department, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- CIBERSAM, Madrid, Spain
| | - Tyler A. Lesh
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| | - Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| |
Collapse
|
15
|
Schiwy LC, Forlim CG, Fischer DJ, Kühn S, Becker M, Gallinat J. Aberrant functional connectivity within the salience network is related to cognitive deficits and disorganization in psychosis. Schizophr Res 2022; 246:103-111. [PMID: 35753120 DOI: 10.1016/j.schres.2022.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/10/2022] [Accepted: 06/11/2022] [Indexed: 01/09/2023]
Abstract
In schizophrenia and schizoaffective disorder cognitive deficits are a reliable characteristic predicting a poor functional outcome. It has been theorized that both the default mode network (DMN) and the salience network (SN) play a crucial role in cognitive processes and aberrant functional connectivity within these networks in psychotic patients has been reported. The goal of this study was to reveal potential links between aberrant functional connectivity within these networks and impaired cognitive performance in psychosis. We chose two approaches for cognitive assessment, first the MATRICS Consensus Cognitive Battery (MCCB) combined into a global score and second the disorganization factor derived from a five-factor model of the Positive and Negative Syndrome Scale (PANSS) known to be relevant for cognitive performance. DMN and SN were identified using independent component analysis on resting-state functional magnetic resonance imaging data. We found significantly decreased connectivity within the right supplementary motor area (SMA) and bilateral putamen in patients with psychosis (n = 70; 27F/43M) compared to healthy controls (n = 72; 28F/44M). Within patients, linear regression analysis revealed that aberrant SMA connectivity was associated with impaired global cognition, while dysfunctional bilateral putamen connectivity predicted disorganization. There were no significant changes in connectivity within the DMN. Results support the hypothesis that SN dysfunctional connectivity is important in the pathobiology of cognitive deficits in psychosis. For the first time we were able to show the involvement of dysfunctional SMA connectivity in this context. We interpret the decreased SN connectivity as evidence of reduced functionality in recruiting brain areas necessary for cognitive processing.
Collapse
Affiliation(s)
- Lennart Christopher Schiwy
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany.
| | - Caroline Garcia Forlim
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Djo Juliette Fischer
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Simone Kühn
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany; Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany
| | - Maxi Becker
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Jürgen Gallinat
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Qiu X, Zhang R, Wen L, Jiang F, Mao H, Yan W, Xie S, Pan X. Alterations in Spontaneous Brain Activity in Drug-Naïve First-Episode Schizophrenia: An Anatomical/Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2022; 19:606-613. [PMID: 36059049 PMCID: PMC9441467 DOI: 10.30773/pi.2022.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The etiology of schizophrenia is unknown and is associated with abnormal spontaneous brain activity. There are no consistent results regarding the change in spontaneous brain activity of people with schizophrenia. In this study, we determined the specific changes in the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity (ReHo) in patients with drug-naïve first-episode schizophrenia (Dn-FES). METHODS A comprehensive search of databases such as PubMed, Web of Science, and Embase was conducted to find articles on resting-state functional magnetic resonance imaging using ALFF/fALFF and ReHo in schizophrenia patients compared to healthy controls (HCs) and then, anatomical/activation likelihood estimation was performed. RESULTS Eighteen eligible studies were included in this meta-analysis. Compared to the spontaneous brain activity of HCs, we found changes in spontaneous brain activity in Dn-FES based on these two methods, mainly including the frontal lobe, putamen, lateral globus pallidus, insula, cerebellum, and posterior cingulate cortex. CONCLUSION We found that widespread abnormalities of spontaneous brain activity occur in the early stages of the onset of schizophrenia and may provide a reference for the early intervention of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wen
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Fuli Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Mao
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Pan
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| |
Collapse
|
17
|
Wall MB, Freeman TP, Hindocha C, Demetriou L, Ertl N, Freeman AM, Jones AP, Lawn W, Pope R, Mokrysz C, Solomons D, Statton B, Walker HR, Yamamori Y, Yang Z, Yim JL, Nutt DJ, Howes OD, Curran HV, Bloomfield MA. Individual and combined effects of cannabidiol and Δ 9-tetrahydrocannabinol on striato-cortical connectivity in the human brain. J Psychopharmacol 2022; 36:732-744. [PMID: 35596578 PMCID: PMC9150138 DOI: 10.1177/02698811221092506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are the two major constituents of cannabis with contrasting mechanisms of action. THC is the major psychoactive, addiction-promoting, and psychotomimetic compound, while CBD may have opposite effects. The brain effects of these drugs alone and in combination are poorly understood. In particular, the striatum is implicated in the pathophysiology of several psychiatric disorders, but it is unclear how THC and CBD influence striato-cortical connectivity. AIMS To examine effects of THC, CBD, and THC + CBD on functional connectivity of striatal sub-divisions (associative, limbic and sensorimotor). METHOD Resting-state functional Magnetic Resonance Imaging (fMRI) was used across two within-subjects, placebo-controlled, double-blind studies, with a unified analysis approach. RESULTS Study 1 (N = 17; inhaled cannabis containing 8 mg THC, 8 mg THC + 10 mg CBD or placebo) showed strong disruptive effects of both THC and THC + CBD on connectivity in the associative and sensorimotor networks, but a specific effect of THC in the limbic striatum network which was not present in the THC + CBD condition. In Study 2 (N = 23, oral 600 mg CBD, placebo), CBD increased connectivity in the associative network, but produced only relatively minor disruptions in the limbic and sensorimotor networks. OUTCOMES THC strongly disrupts striato-cortical networks, but this effect is mitigated by co-administration of CBD in the limbic striatum network. Oral CBD administered has a more complex effect profile of relative increases and decreases in connectivity. The insula emerges as a key region affected by cannabinoid-induced changes in functional connectivity, with potential implications for understanding cannabis-related disorders, and the development of cannabinoid therapeutics.
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro London, London, UK.,Clinical Psychopharmacology Unit, University College London, London, UK.,Faculty of Medicine, Imperial College London, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, London, UK.,Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Chandni Hindocha
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Lysia Demetriou
- Invicro London, London, UK.,Faculty of Medicine, Imperial College London, London, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Natalie Ertl
- Invicro London, London, UK.,Faculty of Medicine, Imperial College London, London, UK
| | - Abigail M Freeman
- Clinical Psychopharmacology Unit, University College London, London, UK
| | | | - Will Lawn
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Rebecca Pope
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, London, UK
| | | | - Ben Statton
- MRC London Institute of Medical Sciences, London, UK
| | - Hannah R Walker
- Division of Psychiatry, University College London, London, UK
| | - Yumeya Yamamori
- Division of Psychiatry, University College London, London, UK
| | - Zixu Yang
- Faculty of Medicine, Imperial College London, London, UK
| | - Jocelyn Ll Yim
- Division of Psychiatry, University College London, London, UK
| | - David J Nutt
- Faculty of Medicine, Imperial College London, London, UK
| | - Oliver D Howes
- MRC London Institute of Medical Sciences, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London, UK
| | | |
Collapse
|
18
|
Léger M, Wolff V, Kabuth B, Albuisson E, Ligier F. The mood disorder spectrum vs. schizophrenia decision tree: EDIPHAS research into the childhood and adolescence of 205 patients. BMC Psychiatry 2022; 22:194. [PMID: 35300648 PMCID: PMC8932125 DOI: 10.1186/s12888-022-03835-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The early detection of patients at risk of developing schizophrenia and bipolar disorder, and more broadly mood spectrum disorder, is a public health concern. The phenotypical overlap between the prodromes in these disorders calls for a simultaneous investigation into both illness trajectories. METHOD This is an epidemiological, retrospective, multicentre, descriptive study conducted in the Grand-Est region of France in order to describe and compare early symptoms in 205 patients: 123 of which were diagnosed with schizophrenia and 82 with bipolar disorder or mood spectrum disorder. Data corresponding to the pre-morbid and prodromal phases, including a timeline of their onset, were studied in child and adolescent psychiatric records via a data grid based on the literature review conducted from birth to 17 years of age. RESULTS Two distinct trajectories were highlighted. Patients with schizophrenia tended to present more difficulties at each developmental stage, with the emergence of negative and positive behavioural symptoms during adolescence. Patients with mood spectrum disorder, however, were more likely to exhibit anxiety and then mood-related symptoms. Overall, our results corroborate current literature findings and are consistent with the neurodevelopmental process. We succeeded in extracting a decision tree with good predictability based on variables relating to one diagnosis: 77.6% of patients received a well-indexed diagnosis. An atypical profile was observed in future mood spectrum disorder patients as some exhibited numerous positive symptoms alongside more conventional mood-related symptoms. CONCLUSION The combination of all these data could help promote the early identification of high-risk patients thereby facilitating early prevention and appropriate intervention in order to improve outcomes.
Collapse
Affiliation(s)
- Mathilde Léger
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France
| | - Vanessa Wolff
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France
| | - Bernard Kabuth
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France ,grid.29172.3f0000 0001 2194 6418EA 4432, PRISME, Université de Lorraine [Lorraine University], Laxou, France
| | - Eliane Albuisson
- grid.410527.50000 0004 1765 1301DRCI UMDS, Centre Hospitalier Universitaire de Nancy, Nancy University Hospital, Laxou, France
| | - Fabienne Ligier
- Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520, Laxou, France. .,EA 4360 APEMAC, Université de Lorraine, Laxou, France.
| |
Collapse
|
19
|
Huang J, Ke P, Chen X, Li S, Zhou J, Xiong D, Huang Y, Li H, Ning Y, Duan X, Li X, Zhang W, Wu F, Wu K. Multimodal Magnetic Resonance Imaging Reveals Aberrant Brain Age Trajectory During Youth in Schizophrenia Patients. Front Aging Neurosci 2022; 14:823502. [PMID: 35309897 PMCID: PMC8929292 DOI: 10.3389/fnagi.2022.823502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Accelerated brain aging had been widely reported in patients with schizophrenia (SZ). However, brain aging trajectories in SZ patients have not been well-documented using three-modal magnetic resonance imaging (MRI) data. In this study, 138 schizophrenia patients and 205 normal controls aged 20–60 were included and multimodal MRI data were acquired for each individual, including structural MRI, resting state-functional MRI and diffusion tensor imaging. The brain age of each participant was estimated by features extracted from multimodal MRI data using linear multiple regression. The correlation between the brain age gap and chronological age in SZ patients was best fitted by a positive quadratic curve with a peak chronological age of 47.33 years. We used the peak to divide the subjects into a youth group and a middle age group. In the normal controls, brain age matched chronological age well for both the youth and middle age groups, but this was not the case for schizophrenia patients. More importantly, schizophrenia patients exhibited increased brain age in the youth group but not in the middle age group. In this study, we aimed to investigate brain aging trajectories in SZ patients using multimodal MRI data and revealed an aberrant brain age trajectory in young schizophrenia patients, providing new insights into the pathophysiological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoyi Chen
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Shijia Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuanyuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xujun Duan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Wensheng Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- *Correspondence: Fengchun Wu,
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Kai Wu,
| |
Collapse
|
20
|
Kljakic O, Janíčková H, Skirzewski M, Reichelt A, Memar S, El Mestikawy S, Li Y, Saksida LM, Bussey TJ, Prado VF, Prado MAM. Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB J 2022; 36:e22135. [PMID: 35032355 PMCID: PMC9303754 DOI: 10.1096/fj.202101425r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward‐based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co‐transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue‐based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward‐evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors.
Collapse
Affiliation(s)
- Ornela Kljakic
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Helena Janíčková
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Miguel Skirzewski
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Amy Reichelt
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sara Memar
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.,INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Lisa M Saksida
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Okanda Nyatega C, Qiang L, Jajere Adamu M, Bello Kawuwa H. Altered striatal functional connectivity and structural dysconnectivity in individuals with bipolar disorder: A resting state magnetic resonance imaging study. Front Psychiatry 2022; 13:1054380. [PMID: 36440395 PMCID: PMC9682136 DOI: 10.3389/fpsyt.2022.1054380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a mood swing illness characterized by episodes ranging from depressive lows to manic highs. Although the specific origin of BD is unknown, genetics, environment, and changes in brain structure and chemistry may all have a role. Through magnetic resonance imaging (MRI) evaluations, this study looked into functional abnormalities involving the striatum between BD group and healthy controls (HC), compared the whole-brain gray matter (GM) morphological patterns between the groups and see whether functional connectivity has its underlying structural basis. MATERIALS AND METHODS We applied sliding windows to functional magnetic resonance imaging (fMRI) data from 49 BD patients and 44 HCs to generate temporal correlations maps to determine strength and variability of the striatum-to-whole-brain-network functional connectivity (FC) in each window whilst also employing voxel-based morphometry (VBM) to high-resolution structural MRI data to uncover structural differences between the groups. RESULTS Our analyses revealed increased striatal connectivity in three consecutive windows 69, 70, and 71 (180, 182, and 184 s) in individuals with BD (p < 0.05; Bonferroni corrected) in fMRI images. Moreover, the VBM findings of structural images showed gray matter (GM) deficits in the left precentral gyrus and middle frontal gyrus of the BD patients (p = 0.001, uncorrected) when compared to HCs. Variability of striatal connectivity did not reveal significant differences between the groups. CONCLUSION These findings revealed that BD was associated with a weakening of the precentral gyrus and middle frontal gyrus, also implying that bipolar illness may be linked to striatal functional brain alterations.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
22
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
23
|
Grimm O, van Rooij D, Tshagharyan A, Yildiz D, Leonards J, Elgohary A, Buitelaar J, Reif A. Effects of comorbid disorders on reward processing and connectivity in adults with ADHD. Transl Psychiatry 2021; 11:636. [PMID: 34911950 PMCID: PMC8674233 DOI: 10.1038/s41398-021-01758-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
ADHD is a neurodevelopmental disorder with a long trajectory into adulthood where it is often comorbid with depression, substance use disorder (SUD) or obesity. Previous studies described a dysregulated dopaminergic system, reflected by abnormal reward processing, both in ADHD as well as in depression, SUD or obesity. No study so far however tested systematically whether pathologies in the brain's reward system explain the frequent comorbidity in adult ADHD. To test this, we acquired MRI scans from 137 participants probing the reward system by a monetary incentive delay task (MIDT) as well as assessing resting-state connectivity with ventral striatum as a seed mask. No differences were found between comorbid disorders, but a significant linear effect pointed toward less left intrastriatal connectivity in patients depending on the number of comorbidities. This points towards a neurobiologically impaired reward- and decision-making ability in patients with more comorbid disorders. This suggests that less intrastriatal connectivity parallels disorder severity but not disorder specificity, while MIDT abnormalities seem mainly to be driven by ADHD.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, Nijmegen, Netherlands
| | - Asya Tshagharyan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Dilek Yildiz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jan Leonards
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ahmed Elgohary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, Nijmegen, Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
24
|
Gaebel W, Stricker J, Kerst A. Changes from ICD-10 to ICD-11 and future directions in psychiatric classification
. DIALOGUES IN CLINICAL NEUROSCIENCE 2021; 22:7-15. [PMID: 32699501 PMCID: PMC7365296 DOI: 10.31887/dcns.2020.22.1/wgaebel] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article provides a brief overview of the changes from ICD-10
to ICD-11 regarding the classification of mental, behavioral, or
neurodevelopmental disorders. These changes include a new chapter structure, new
diagnostic categories, changes in diagnostic criteria, and steps towards dimensionality.
Additionally, we review evaluative field studies of ICD-11, which
provide preliminary evidence for higher reliability and clinical utility of
ICD-11 compared with ICD-10. Despite the extensive
revision process, changes from ICD-10 to ICD-11 were
relatively modest in that both systems are categorical, classifying mental phenomena
based on self-reported or clinically observable symptoms. Other recent approaches to
psychiatric nosology and classification (eg, neurobiology-based or hierarchical) are
discussed. To meet the needs of different user groups, we propose expanding the stepwise
approach to diagnosis introduced for some diagnostic categories in
ICD-11, which includes categorical and dimensional
elements.
Collapse
Affiliation(s)
- Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Klinikum Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; WHO Collaborating Centre for Quality Assurance and Empowerment in Mental Health, Düsseldorf, Germany
| | - Johannes Stricker
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Klinikum Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; WHO Collaborating Centre for Quality Assurance and Empowerment in Mental Health, Düsseldorf, Germany
| | - Ariane Kerst
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Klinikum Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; WHO Collaborating Centre for Quality Assurance and Empowerment in Mental Health, Düsseldorf, Germany
| |
Collapse
|
25
|
Umeoka EHL, van Leeuwen JMC, Vinkers CH, Joëls M. The Role of Stress in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:21-39. [PMID: 32748285 DOI: 10.1007/7854_2020_151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress is a major risk factor for bipolar disorder. Even though we do not completely understand how stress increases the risk for the onset and poorer course of bipolar disorder, knowledge of stress physiology is rapidly evolving. Following stress, stress hormones - including (nor)adrenaline and corticosteroid - reach the brain and change neuronal function in a time-, region-, and receptor-dependent manner. Stress has direct consequences for a range of cognitive functions which are time-dependent. Directly after stress, emotional processing is increased at the cost of higher brain functions. In the aftermath of stress, the reverse is seen, i.e., increased executive function and contextualization of information. In bipolar disorder, basal corticosteroid levels (under non-stressed conditions) are generally found to be increased with blunted responses in response to experimental stress. Moreover, patients who have bipolar disorder generally show impaired brain function, including reward processing. There is some evidence for a causal role of (dysfunction of) the stress system in the etiology of bipolar disorder and their effects on brain system functionality. However, longitudinal studies investigating the functionality of the stress systems in conjunction with detailed information on the development and course of bipolar disorder are vital to understand in detail how stress increases the risk for bipolar disorder.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Faculty of Medicine, University Center Unicerrado, Goiatuba, GO, Brazil.
| | - Judith M C van Leeuwen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan H Vinkers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marian Joëls
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Yoon S, Kim TD, Kim J, Lyoo IK. Altered functional activity in bipolar disorder: A comprehensive review from a large-scale network perspective. Brain Behav 2021; 11:e01953. [PMID: 33210461 PMCID: PMC7821558 DOI: 10.1002/brb3.1953] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/08/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Growing literature continues to identify brain regions that are functionally altered in bipolar disorder. However, precise functional network correlates of bipolar disorder have yet to be determined due to inconsistent results. The overview of neurological alterations from a large-scale network perspective may provide more comprehensive results and elucidate the neuropathology of bipolar disorder. Here, we critically review recent neuroimaging research on bipolar disorder using a network-based approach. METHODS A systematic search was conducted on studies published from 2009 through 2019 in PubMed and Google Scholar. Articles that utilized functional magnetic resonance imaging technique to examine altered functional activity of major regions belonging to a large-scale brain network in bipolar disorder were selected. RESULTS A total of 49 studies were reviewed. Within-network hypoconnectivity was reported in bipolar disorder at rest among the default mode, salience, and central executive networks. In contrast, when performing a cognitive task, hyperconnectivity among the central executive network was found. Internetwork functional connectivity in the brain of bipolar disorder was greater between the salience and default mode networks, while reduced between the salience and central executive networks at rest, compared to control. CONCLUSION This systematic review suggests disruption in the functional activity of large-scale brain networks at rest as well as during a task stimuli in bipolar disorder. Disrupted intra- and internetwork functional connectivity that are also associated with clinical symptoms suggest altered functional connectivity of and between large-scale networks plays an important role in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
| | - Tammy D. Kim
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
| | - Jungyoon Kim
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
| | - In Kyoon Lyoo
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
- Graduate School of Pharmaceutical SciencesEwha W. UniversitySeoulSouth Korea
- The Brain Institute and Department of PsychiatryUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
27
|
Functional Striatal Abnormalities: A Distinct Brain Signature of Schizophrenia. Neurosci Bull 2020; 37:284-286. [PMID: 33095422 DOI: 10.1007/s12264-020-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
|
28
|
Neuroanatomic and Functional Neuroimaging Findings. Curr Top Behav Neurosci 2020; 48:173-196. [PMID: 33040316 DOI: 10.1007/7854_2020_174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The search for brain morphology findings that could explain behavioral disorders has gone through a long path in the history of psychiatry. With the advance of brain imaging technology, studies have been able to identify brain morphology and neural circuits associated with the pathophysiology of mental illnesses, such as bipolar disorders (BD). Promising results have also shown the potential of neuroimaging findings in the identification of outcome predictors and response to treatment among patients with BD. In this chapter, we present brain imaging structural and functional findings associated with BD, as well as their hypothesized relationship with the pathophysiological aspects of that condition and their potential clinical applications.
Collapse
|
29
|
Conn KA, Burne THJ, Kesby JP. Subcortical Dopamine and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Front Neurosci 2020; 14:542. [PMID: 32655348 PMCID: PMC7325949 DOI: 10.3389/fnins.2020.00542] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is characterized by positive, negative and cognitive symptoms. All current antipsychotic treatments feature dopamine-receptor antagonism that is relatively effective at addressing the psychotic (positive) symptoms of schizophrenia. However, there is no clear evidence that these medications improve the negative or cognitive symptoms, which are the greatest predictors of functional outcomes. One of the most robust pathophysiological observations in patients with schizophrenia is increased subcortical dopamine neurotransmission, primarily in the associative striatum. This brain area has an important role in a range of cognitive processes. Dopamine is also known to play a major part in regulating a number of cognitive functions impaired in schizophrenia but much of this research has been focused on cortical dopamine. Emerging research highlights the strong influence subcortical dopamine has on a range of cognitive domains, including attention, reward learning, goal-directed action and decision-making. Nonetheless, the precise role of the associative striatum in the cognitive impairments observed in schizophrenia remains poorly understood, presenting an opportunity to revisit its contribution to schizophrenia. Without a better understanding of the mechanisms underlying cognitive dysfunction, treatment development remains at a standstill. For this reason, improved preclinical animal models are needed if we are to understand the complex relationship between subcortical dopamine and cognition. A range of new techniques are facillitating the discrete manipulation of dopaminergic neurotransmission and measurements of cognitive performance, which can be investigated using a variety of sensitive translatable tasks. This has the potential to aid the successful incorporation of recent clinical research to address the lack of treatment strategies for cognitive symptoms in schizophrenia. This review will give an overview on the current state of research focused on subcortical dopamine and cognition in the context of schizophrenia research. We also discuss future strategies and approaches aimed at improving the translational outcomes for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
30
|
Long Y, Liu Z, Chan CKY, Wu G, Xue Z, Pan Y, Chen X, Huang X, Li D, Pu W. Altered Temporal Variability of Local and Large-Scale Resting-State Brain Functional Connectivity Patterns in Schizophrenia and Bipolar Disorder. Front Psychiatry 2020; 11:422. [PMID: 32477194 PMCID: PMC7235354 DOI: 10.3389/fpsyt.2020.00422] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia and bipolar disorder share some common clinical features and are both characterized by aberrant resting-state functional connectivity (FC). However, little is known about the common and specific aberrant features of the dynamic FC patterns in these two disorders. In this study, we explored the differences in dynamic FC among schizophrenia patients (n = 66), type I bipolar disorder patients (n = 53), and healthy controls (n = 66), by comparing temporal variabilities of FC patterns involved in specific brain regions and large-scale brain networks. Compared with healthy controls, both patient groups showed significantly increased regional FC variabilities in subcortical areas including the thalamus and basal ganglia, as well as increased inter-network FC variability between the thalamus and sensorimotor areas. Specifically, more widespread changes were found in the schizophrenia group, involving increased FC variabilities in sensorimotor, visual, attention, limbic and subcortical areas at both regional and network levels, as well as decreased regional FC variabilities in the default-mode areas. The observed alterations shared by schizophrenia and bipolar disorder may help to explain their overlapped clinical features; meanwhile, the schizophrenia-specific abnormalities in a wider range may support that schizophrenia is associated with more severe functional brain deficits than bipolar disorder. Together, these findings highlight the potentials of using dynamic FC as an objective biomarker for the monitoring and diagnosis of either schizophrenia or bipolar disorder.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | | | - Guowei Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhimin Xue
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Yunzhi Pan
- Mental Health Institute of Central South University, Changsha, China
| | - Xudong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Xiaojun Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Dan Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weidan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|