1
|
Evangelista D, Nelson E, Skyner R, Tehan B, Bernetti M, Roberti M, Bolognesi ML, Bottegoni G. Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals. J Chem Inf Model 2025; 65:3248-3261. [PMID: 40178174 PMCID: PMC12004513 DOI: 10.1021/acs.jcim.4c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.
Collapse
Affiliation(s)
- Dominga Evangelista
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Elliot Nelson
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Rachael Skyner
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Ben Tehan
- OMass
Therapeutics, Building 4000, Chancellor Court, John Smith Dr, Oxford Business Park,
ARC, Oxford OX4 2GX, United Kingdom
| | - Mattia Bernetti
- Department
of Biomolecular Sciences, University of
Urbino, Urbino 60129, Italy
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum—University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Giovanni Bottegoni
- Department
of Biomolecular Sciences, University of
Urbino, Urbino 60129, Italy
- Department
of Pharmacy, University of Birmingham, Edgbaston B15 2TT, Birmingham, United
Kingdom
| |
Collapse
|
2
|
Giunchi V, Fusaroli M, Linder E, Villén J, Raschi E, Lunghi C, Wettermark B, Poluzzi E, Nekoro M. Environmental sustainability-an essential component of rational use of medicines. INTERNATIONAL JOURNAL OF PHARMACY PRACTICE 2025; 33:102-112. [PMID: 39740044 DOI: 10.1093/ijpp/riae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
Human-use medicines are introduced into surface water throughout their entire life cycle, from manufacturing and consumption to improper disposal, resulting in negative effects on aquatic flora and fauna. Sustainability approaches have addressed this issue, proposing frameworks like the One Health approach. A revised definition of the rational use of medicines has also been proposed, taking into account their environmental sustainability. Building on this updated definition, this paper presents a decision-making flowchart to integrate the assessment of the impact of human medicines on surface water, outlining existing actions and proposing new ones. These actions are categorized into those with primary clinical benefits and those focused solely on environmental concerns. They include both upstream and downstream measures, such as implementing regulations similar to those in the EU and the USA, educating future healthcare practitioners, promoting green pharmacy innovations, and establishing proper disposal practices.
Collapse
Affiliation(s)
- Valentina Giunchi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, via Irnerio 48, 40126 Bologna (BO), Italy
| | - Michele Fusaroli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, via Irnerio 48, 40126 Bologna (BO), Italy
| | - Elkanah Linder
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 752 37 Uppsala, Sweden
| | - Johanna Villén
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 752 37 Uppsala, Sweden
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, via Irnerio 48, 40126 Bologna (BO), Italy
| | - Carlotta Lunghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, via Irnerio 48, 40126 Bologna (BO), Italy
| | - Björn Wettermark
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 752 37 Uppsala, Sweden
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, via Irnerio 48, 40126 Bologna (BO), Italy
| | - Marmar Nekoro
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
3
|
Niemi L, Arakawa N, Glendell M, Gagkas Z, Gibb S, Anderson C, Pfleger S. Co-developing frameworks towards environmentally directed pharmaceutical prescribing in Scotland - A mixed methods study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176929. [PMID: 39461523 DOI: 10.1016/j.scitotenv.2024.176929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
The presence of human pharmaceuticals in the aquatic environment is recognised internationally as an important public health and environmental issue. In Scotland, healthcare sustainability targets call for improvements to medicine prescribing and use to reduce healthcare's impact on the environment. This proof-of-concept study aimed to develop a framework on the environmental impact of pharmaceuticals to use as a knowledge support tool for healthcare professionals, focussing on pharmaceutical pollution. Nominal Group Technique was applied to achieve consensus on pharmaceuticals and modelling factors for the framework, working with a panel of cross-sector stakeholders. Bayesian Belief Network modelling was applied to predict the environmental impact (calculated from hazard and exposure factors) of selected pharmaceuticals, with Scotland-wide mapping for visualisation in freshwater catchments. The model calculated the pollution risk score of the individual pharmaceuticals, using the ratio of prescribed mass vs. mass that would not exceed the predicted no-effect concentration in the freshwater environment. The pharmaceuticals exhibited different risk patterns, and spatial variation of risk was evident (generally related to population density), with the most catchments predicted to exceed the pollution risk score for clarithromycin (probability >80 % in 35 of 40 modelled catchments). Simulated risk scores were compared against observed risk calculated as the ratio of measured environmental concentrations from national regulatory and research monitoring and predicted no-effect concentrations. The model generally overpredicted risk, likely due to missing factors (e.g. solid-phase sorption, temporal variation), low spatial resolution, and low temporal resolution of the monitoring data. This work demonstrates a novel, trans-disciplinary approach to develop tools aiding collation and integration of environmental information into healthcare decision-making, through application of public health, environmental science, and health services research methods. Future work will refine the framework with additional clinical and environmental factors to improve model performance, and develop electronic interfaces to communicate environmental information to healthcare professionals.
Collapse
Affiliation(s)
- Lydia Niemi
- Environmental Research Institute, University of the Highlands and Islands, UK.
| | | | | | | | - Stuart Gibb
- Environmental Research Institute, University of the Highlands and Islands, UK
| | | | | |
Collapse
|
4
|
Makumbi JP, Leareng SK, Pierneef RE, Makhalanyane TP. Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. MICROBIAL ECOLOGY 2024; 87:150. [PMID: 39611949 PMCID: PMC11607014 DOI: 10.1007/s00248-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.
Collapse
Affiliation(s)
- John P Makumbi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Samuel K Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Rian E Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
Pastor-López EJ, Escolà M, Kisielius V, Arias CA, Carvalho PN, Gorito AM, Ramos S, Freitas V, Guimarães L, Almeida CMR, Müller JA, Küster E, Kilian RM, Diawara A, Ba S, Matamoros V. Potential of nature-based solutions to reduce antibiotics, antimicrobial resistance, and pathogens in aquatic ecosystems. a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174273. [PMID: 38925380 DOI: 10.1016/j.scitotenv.2024.174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems. It also evaluates the use of diagnostic indicators to predict NBS effectiveness in removing specific pollutants such as ABs and AMR. The review concludes that NBS are feasible for addressing the new challenges stemming from human activities such as the presence of ABs, AMR and pathogens, contributing to a better understanding of NBS, highlighting success stories, addressing knowledge gaps, and providing recommendations for future research and implementation.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Ana M Gorito
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Sandra Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vânia Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Leipzig, Germany
| | - R M Kilian
- Kilian Water Ltd., Torupvej 4, 8654 Bryrup, Denmark
| | - Abdoulaye Diawara
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Sidy Ba
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
6
|
Zhao J, Gao J, Ma S, Chen X, Wang J. Predicting the potential risks posed by antidepressants as emerging contaminants in fish based on network pharmacological analysis. Toxicol In Vitro 2024; 99:105872. [PMID: 38851602 DOI: 10.1016/j.tiv.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
This study conducted a network pharmacology-based analysis to simultaneously discern a broad spectrum of potential environmental risks and health effects of antidepressants, a common class of pharmaceutical emerging contaminants (PECs) possessing a complex pharmacological profile, and in silico predict the adverse phenotypes potentially occurring in fish associated with exposure to antidepressants and their mixtures under realistic exposure scenarios. Results showed that 24 of the included 39 antidepressants had been detected worldwide in water environment across 50 countries. Using the environmentally realistic exposure scenario for China as an example, the predicted blood concentrations of antidepressant residues that were generated based on the Fish Plasma Model ranged from 37.89 (Alprazolam) to 16,772.05 (Sertraline) ng/L in exposed fish. Hazard-based bioactivity network without regard to concentration data was composed of 148 potential targets and 701 antidepressant-target interactions. After filtering each antidepressant-target interaction node using the predicted drug concentrations in the blood of fish under realistic exposure scenarios in China, an environmental risk-based network was refined and showed that 11 targets, including muscarinic acetylcholine receptor M1, alpha-2B adrenergic receptor, serotonin 2 A receptor, etc. might be modulated by antidepressants at concentrations equal to or below the environmental exposure levels and their mixtures in fish. Environmentally relevant concentrations of antidepressants in water samples from China might perturb the behavior, stress response, phototaxis, and development in exposed fish.
Collapse
Affiliation(s)
- Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sijia Ma
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xintong Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Ilbeigi K, Barata C, Barbosa J, Bertram MG, Caljon G, Costi MP, Kroll A, Margiotta-Casaluci L, Thoré ES, Bundschuh M. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infect Dis 2024; 10:1026-1033. [PMID: 38533709 PMCID: PMC11019539 DOI: 10.1021/acsinfecdis.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlos Barata
- Institute
of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - João Barbosa
- Blue
Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School of
Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Alexandra Kroll
- Swiss
Centre for Applied Ecotoxicology, CH-8600 Dübendorf, Switzerland
| | - Luigi Margiotta-Casaluci
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, WC2R 2LS London, United Kingdom
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- TRANSfarm - Science, Engineering,
& Technology Group, KU
Leuven, 3360 Lovenjoel, Belgium
| | - Mirco Bundschuh
- iES
Landau, Institute for Environmental Sciences,
RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
8
|
Mostafa A, Shaaban H, Alqarni A, Al-Ansari R, Alrashidi A, Al-Sultan F, Alsulaiman M, Alsaif F, Aga O. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Domingo-Echaburu S, Dávalos LM, Orive G, Lertxundi U. Drug pollution & Sustainable Development Goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149412. [PMID: 34391154 DOI: 10.1016/j.scitotenv.2021.149412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The United Nations set "The 2030 Agenda for Sustainable Development," which includes the Sustainable Development Goals (SDGs), a collection of 17 global goals designed to be a "blueprint to achieve a better and more sustainable future for all". Although only mentioned in one of the seventeen goals (goal 3), we argue that drugs in general, and growing drug pollution in particular, affects the SDGs in deeper, not readily apparent ways. So far, the emerging problem of drug pollution has not been sufficiently addressed. Here, we outline and discuss how drug pollution can affect SDGs and even threaten their achievement.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - L M Dávalos
- Department of Ecology and Evolution, Stony Brook University, 626 Life Sciences Building, Stony Brook, NY 11794, USA; Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
10
|
Crisan-Dabija R, Sandu IG, Popa IV, Scripcariu DV, Covic A, Burlacu A. Halotherapy-An Ancient Natural Ally in the Management of Asthma: A Comprehensive Review. Healthcare (Basel) 2021; 9:1604. [PMID: 34828649 PMCID: PMC8623171 DOI: 10.3390/healthcare9111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
The increasing production of modern medication emerges as a new source of environmental pollution. The scientific community is interested in developing alternative, ecological therapies in asthma. Halotherapy proved its benefits in asthma diagnosis, treatment, and prevention and may represent a reliable therapeutic addition to the allopathic treatment, due to its ecological and environment-friendly nature, in order to prevent or prolong the time to exacerbations in patients with asthma. We aimed to review up-to-date research regarding halotherapy benefits in asthma comprehensively. We searched the electronic databases of PubMed, MEDLINE, EMBASE for studies that evaluated the exposure of asthmatic patients to halotherapy. Eighteen original articles on asthma were included. Five studies in adults and five in children assessed the performance of hypertonic saline bronchial challenges to diagnose asthma or vocal cord dysfunction in asthmatic patients. Three papers evaluated the beneficial effects of halotherapy on mucociliary clearance in asthmatic adults. The therapeutic effect of halotherapy on acute or chronic asthma was appraised in three studies in adults and one in children. The preventive role was documented in one paper reporting the ability of halotherapy to hinder nocturnal asthma exacerbations. All studies seem to sustain the overall positive effects of halotherapy as adjuvant therapy on asthma patients with no reported adverse events. Halotherapy is a crucial natural ally in asthma, but further evidence-based studies on larger populations are needed.
Collapse
Affiliation(s)
- Radu Crisan-Dabija
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.); (A.B.)
- Pulmonology Department, Clinic of Pulmonary Diseases, 700115 Iasi, Romania
| | - Ioan Gabriel Sandu
- Faculty of Material Science and Engineering, Tehnical University of Iasi Gheorghe Asachi, 700050 Iasi, Romania;
| | - Iolanda Valentina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.); (A.B.)
| | - Dragos-Viorel Scripcariu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.); (A.B.)
- 1st Surgical Oncology Unit, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.); (A.B.)
- Nephrology Clinic, Dialysis and Renal Transplant Center, C.I. Parhon’ University Hospital, 700503 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.-D.); (A.C.); (A.B.)
- Department of Interventional Cardiology, Cardiovascular Diseases Institute, 700503 Iasi, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
| |
Collapse
|
11
|
Argaluza J, Domingo-Echaburu S, Orive G, Medrano J, Hernandez R, Lertxundi U. Environmental pollution with psychiatric drugs. World J Psychiatry 2021; 11:791-804. [PMID: 34733642 PMCID: PMC8546762 DOI: 10.5498/wjp.v11.i10.791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Among all contaminants of emerging interest, drugs are the ones that give rise to the greatest concern. Any of the multiple stages of the drug's life cycle (production, consumption and waste management) is a possible entry point to the different environmental matrices. Psychiatric drugs have received special attention because of two reasons. First, their use is increasing. Second, many of them act on phylogenetically highly conserved neuroendocrine systems, so they have the potential to affect many non-target organisms. Currently, wastewater is considered the most important source of drugs to the environment. Furthermore, the currently available wastewater treatment plants are not specifically prepared to remove drugs, so they reach practically all environmental matrices, even tap water. As drugs are designed to produce pharmacological effects at low concentrations, they are capable of producing ecotoxicological effects on microorganisms, flora and fauna, even on human health. It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain. Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties, a large number of stakeholders with different values and interests, and enormous complexity. Possible solutions consist on acting at source, using medicines more rationally, eco-prescribing or prescribing greener drugs, designing pharmaceuticals that are more readily biodegraded, educating both health professionals and citizens, and improving coordination and collaboration between environmental and healthcare sciences. Besides, end of pipe measures like improving or developing new purification systems (biological, physical, chemical, combination) that eliminate these residues efficiently and at a sustainable cost should be a priority. Here, we describe and discuss the main aspects of drug pollution, highlighting the specific issues of psychiatric drugs.
Collapse
Affiliation(s)
- Julene Argaluza
- Department of Epidemiology and Public Health, Bioaraba Health Research Institute, Vitoria-Gasteiz 01002, Spain
| | - Saioa Domingo-Echaburu
- Department of Pharmacy, Alto Deba Integrated Health Care Organization, Arrasate 20500, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
- Singapore Eye Research Institute, Discovery Tower, Singapore 168751, Singapore
| | - Juan Medrano
- Department of Psychiatry, Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Portugalete 48920, Spain
| | - Rafael Hernandez
- Department of Internal Medicine, Araba Mental Health Network, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz 01006, Alava, Spain
| |
Collapse
|