1
|
Zhang W, Zhai X, Zhang C, Cheng S, Zhang C, Bai J, Deng X, Ji J, Li T, Wang Y, Tong HHY, Li J, Li K. Regional brain structural network topology mediates the associations between white matter damage and disease severity in first-episode, Treatment-naïve pubertal children with major depressive disorder. Psychiatry Res Neuroimaging 2024; 344:111862. [PMID: 39153232 DOI: 10.1016/j.pscychresns.2024.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Puberty is a vulnerable period for the onset of major depressive disorder (MDD) due to considerable neurodevelopmental changes. Prior diffusion tensor imaging (DTI) studies in depressed youth have had heterogeneous participants, making assessment of early pathology challenging due to illness chronicity and medication confounds. This study leveraged whole-brain DTI and graph theory approaches to probe white matter (WM) abnormalities and disturbances in structural network topology related to first-episode, treatment-naïve pediatric MDD. Participants included 36 first-episode, unmedicated adolescents with MDD (mean age 15.8 years) and 29 age- and sex-matched healthy controls (mean age 15.2 years). Compared to controls, the MDD group showed reduced fractional anisotropy in the internal and external capsules, unveiling novel regions of WM disruption in early-onset depression. The right thalamus and superior temporal gyrus were identified as network hubs where betweenness centrality changes mediated links between WM anomalies and depression severity. A diagnostic model incorporating demographics, DTI, and network metrics achieved an AUROC of 0.88 and a F1 score of 0.80 using a neural network algorithm. By examining first-episode, treatment-naïve patients, this work identified novel WM abnormalities and a potential causal pathway linking WM damage to symptom severity via regional structural network alterations in brain hubs.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaobing Zhai
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| | - Chan Zhang
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Song Cheng
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Chaoqing Zhang
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jinji Bai
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xuan Deng
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junjun Ji
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| | - Ting Li
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yu Wang
- Department of Psychiatry, Changzhi Mental Health Center, Changzhi, Shanxi, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| | - Junfeng Li
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China; Changzhi Key Lab of Functional Imaging for Brain Diseases, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China.
| |
Collapse
|
2
|
Roelofs EF, Bas-Hoogendam JM, Winkler AM, van der Wee NJ, Vermeiren RRM. Longitudinal development of resting-state functional connectivity in adolescents with and without internalizing disorders. NEUROSCIENCE APPLIED 2024; 3:104090. [PMID: 39634556 PMCID: PMC11615185 DOI: 10.1016/j.nsa.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Longitudinal studies using resting-state functional magnetic resonance imaging (rs-fMRI) focused on adolescent internalizing psychopathology are scarce and have mostly investigated standardized treatment effects on functional connectivity (FC) of the full amygdala. The role of amygdala subregions and large resting-state networks had yet to be elucidated, and treatment is in practice often personalized. Here, longitudinal FC development of amygdala subregions and whole-brain networks are investigated in a clinically representative sample. Treatment-naïve adolescents with clinical depression and comorbid anxiety who started care-as-usual (n = 23; INT) and healthy controls (n = 24; HC) participated in rs-fMRI scans and questionnaires at baseline (before treatment) and after three months. Changes between and within groups over time in FC of the laterobasal amygdala (LBA), centromedial amygdala (CMA) and whole-brain networks derived from independent component analysis (ICA) were investigated. Groups differed significantly in FC development of the right LBA to the postcentral gyrus and the left LBA to the frontal pole. Within INT, FC to the frontal pole and postcentral gyrus changed over time while changes in FC of the right LBA were also linked to symptom change. No significant interactions were observed when considering FC from CMA bilateral seeds or within ICA-derived networks. Results in this cohort suggest divergent longitudinal development of FC from bilateral LBA subregions in adolescents with internalizing disorders compared to healthy peers, possibly reflecting nonspecific treatment effects. Moreover, associations were found with symptom change. These results highlight the importance of differentiation of amygdala subregions in neuroimaging research in adolescents.
Collapse
Affiliation(s)
- Eline F. Roelofs
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Janna Marie Bas-Hoogendam
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Anderson M. Winkler
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Nic J.A. van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Robert R.J. M. Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
3
|
Shu YP, Zhang Q, Hou YZ, Liang S, Zheng ZL, Li JL, Wu G. Multimodal abnormalities of brain structures in adolescents and young adults with major depressive disorder: An activation likelihood estimation meta-analysis. World J Psychiatry 2024; 14:1106-1117. [PMID: 39050198 PMCID: PMC11262923 DOI: 10.5498/wjp.v14.i7.1106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) in adolescents and young adults contributes significantly to global morbidity, with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies. Activation likelihood estimation (ALE) offers a method to synthesize these diverse findings and identify consistent brain anomalies. AIM To identify consistent brain structural changes in adolescents and young adults with MDD using ALE meta-analysis. METHODS We performed a comprehensive literature search in PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure databases for neuroimaging studies on MDD among adolescents and young adults published up to November 19, 2023. Two independent researchers performed the study selection, quality assessment, and data extraction. The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients, which was supplemented by sensitivity analyses. RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging (DTI) studies and eight voxel-based morphometry (VBM) studies, and involving 451 MDD patients and 465 healthy controls (HCs) for DTI and 664 MDD patients and 946 HCs for VBM, were included. DTI-based ALE demonstrated significant reductions in fractional anisotropy (FA) values in the right caudate head, right insula, and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs, with no regions exhibiting increased FA values. VBM-based ALE did not demonstrate significant alterations in gray matter volume. Sensitivity analyses highlighted consistent findings in the right caudate head (11 of 14 analyses), right insula (10 of 14 analyses), and right lentiform nucleus putamen (11 of 14 analyses). CONCLUSION Structural alterations in the right caudate head, right insula, and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature, offering insights for targeted therapies.
Collapse
Affiliation(s)
- Yan-Ping Shu
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Qin Zhang
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550000, Guizhou Province, China
| | - Yong-Zhe Hou
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Shuang Liang
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Zu-Li Zheng
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Jia-Lin Li
- Medical Humanities College, Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Gang Wu
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
4
|
Zanao TA, Luethi MS, Goerigk S, Suen P, Diaz AP, Soares JC, Brunoni AR. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1421-1431. [PMID: 36336757 DOI: 10.1007/s00406-022-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as treatment for depression, but its effects are heterogeneous. We investigated, in a subsample of the clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECTTDCS), whether white matter areas associated with depression disorder were associated with tDCS response. Baseline diffusion tensor imaging data were analyzed from 49 patients (34 females, mean age 41.9) randomized to escitalopram 20 mg/day, tDCS (2 mA, 30 min, 22 sessions), or placebo. Antidepressant outcomes were assessed by Hamilton Depression Rating Scale-17 (HDRS) after 10-week treatment. We used whole-brain tractography for extracting white matter measures for anterior corpus callosum, and bilaterally for cingulum bundle, striato-frontal, inferior occipito-frontal fasciculus and uncinate. For the rostral body, tDCS group showed higher MD associated with antidepressant effects (estimate = -5.13 ± 1.64, p = 0.002), and tDCS significantly differed from the placebo and the escitalopram group. The left striato-frontal tract showed higher FA associated with antidepressant effects (estimate = -2.14 ± 0.72, p = 0.003), and tDCS differed only from the placebo group. For the right uncinate, the tDCS group lower AD values were associated with higher HDRS decrease (estimate = -1.45 ± 0.67, p = 0.031). Abnormalities in white matter MDD-related areas are associated with tDCS antidepressant effects. Suggested better white matter microstructure of the left prefrontal cortex was associated with tDCS antidepressant effects. Future studies should investigate whether these findings are driven by electric field diffusion and density in these areas.
Collapse
Affiliation(s)
- Tamires A Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Matthias S Luethi
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Stephan Goerigk
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Laboratory of Neurosciences LIM-27), São Paulo, Brazil
- Department of Psychological Methodology and Assessment, LMU Munich, Munich, Germany
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre P Diaz
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Jair C Soares
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Hospital Universitário, Departamento de Clínica Médica, Faculdade de Medicina da USP, São Paulo, Brazil.
| |
Collapse
|
5
|
Guldner S, Sarvasmaa AS, Lemaître H, Massicotte J, Vulser H, Miranda R, Bezivin-Frère P, Filippi I, Penttilä J, Banaschewski T, Barker GJ, Bokde AL, Bromberg U, Büchel C, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Nees F, Papadopoulos-Orfanos D, Smolka MN, Schumann G, Artiges E, Martinot MLP, Martinot JL. Longitudinal associations between adolescent catch-up sleep, white-matter maturation and internalizing problems. Dev Cogn Neurosci 2023; 59:101193. [PMID: 36610292 PMCID: PMC9841167 DOI: 10.1016/j.dcn.2022.101193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Sleep is an important contributor for neural maturation and emotion regulation during adolescence, with long-term effects on a range of white matter tracts implicated in affective processing in at-risk populations. We investigated the effects of adolescent sleep patterns on longitudinal changes in white matter development and whether this is related to the emergence of emotional (internalizing) problems. Sleep patterns and internalizing problems were assessed using self-report questionnaires in adolescents recruited in the general population followed up from age 14-19 years (N = 111 White matter structure was measured using diffusion tensor imaging (DTI) and estimated using fractional anisotropy (FA). We found that longitudinal increases in time in bed (TIB) on weekends and increases in TIB-variability between weekdays to weekend, were associated with an increase in FA in various interhemispheric and cortico-striatal tracts. Extracted FA values from left superior longitudinal fasciculus mediated the relationship between increases in TIB on weekends and a decrease in internalizing problems. These results imply that while insufficient sleep might have potentially harmful effects on long-term white matter development and internalizing problems, longer sleep duration on weekends (catch-up sleep) might be a natural counteractive and protective strategy.
Collapse
Affiliation(s)
- Stella Guldner
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna S Sarvasmaa
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; National Institute for Health and Welfare, Department of Public Health Solutions, Mental Health Unit, Helsinki, Finland; Finnish Student Health Service, Helsinki, Finland
| | - Hervé Lemaître
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Jessica Massicotte
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Hélène Vulser
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Ruben Miranda
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Pauline Bezivin-Frère
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Irina Filippi
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Jani Penttilä
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; Department of Social and Health Care, Psychosocial Services Adolescent Outpatient Clinic, Lahti, Finland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Arun Lw Bokde
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Uli Bromberg
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia J Conrod
- Department of Psychiatry, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Saclay, France
| | - Jürgen Gallinat
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy; Hamburg, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University Shanghai; and Dept. of Psychiatry and Neuroscience, Charité University Medicine, Berlin, Germany
| | - Eric Artiges
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; EPS Barthelemy Durand, Etampes, France
| | - Marie-Laure Paillère Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France; AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean-Luc Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France.
| |
Collapse
|
6
|
Barch DM, Hua X, Kandala S, Harms MP, Sanders A, Brady R, Tillman R, Luby JL. White matter alterations associated with lifetime and current depression in adolescents: Evidence for cingulum disruptions. Depress Anxiety 2022; 39:881-890. [PMID: 36321433 PMCID: PMC10848013 DOI: 10.1002/da.23294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Compared to research on adults with depression, relatively little work has examined white matter microstructure differences in depression arising earlier in life. Here we tested hypotheses about disruptions to white matter structure in adolescents with current and past depression, with an a priori focus on the cingulum bundles, uncinate fasciculi, corpus collosum, and superior longitudinal fasciculus. METHODS One hundred thirty-one children from the Preschool Depression Study were assessed using a Human Connectome Project style diffusion imaging sequence which was processed with HCP pipelines and TRACULA to generate estimates of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). RESULTS We found that reduced FA, reduced AD, and increased RD in the dorsal cingulum bundle were associated with a lifetime diagnosis of major depression and greater cumulative and current depression severity. Reduced FA, reduced AD, and increased RD in the ventral cingulum were associated with greater cumulative depression severity. CONCLUSION These findings support the emergence of white matter differences detected in adolescence associated with earlier life and concurrent depression. They also highlight the importance of connections of the cingulate to other brain regions in association with depression, potentially relevant to understanding emotion dysregulation and functional connectivity differences in depression.
Collapse
Affiliation(s)
- Deanna M. Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiao Hua
- Department of Psychological & Brain Sciences, Imaging Sciences Program, Washington University in St. Louis, Missouri, St. Louis, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael P. Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ashley Sanders
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca Brady
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joan L. Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Cerebral Venous-Associated Brain Damage May Lead to Anxiety and Depression. J Clin Med 2022; 11:jcm11236927. [PMID: 36498502 PMCID: PMC9738348 DOI: 10.3390/jcm11236927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background and purpose: Anxiety and depression are common in patients with Cerebral venous outflow disturbance (CVOD). Here, we aimed to explore possible mechanisms underlying this phenomenon. Methods: We enrolled patients diagnosed with imaging-confirmed CVOD, including internal jugular venous stenosis (IJVS) and cerebral venous sinus stenosis (CVSS) between 2017 and 2020. All of them had MRI/PWI scans. The Hamilton Anxiety Scale (HAMA) and 24-item Hamilton Depression Scale (HAMD) were used to evaluate the degree of anxiety and depression at the baseline and three months post-stenting. In addition, the relationships between the HAMA and HAMD scores, white matter lesions, and cerebral perfusion were analyzed using multiple logistic regressions. Results: A total of 61 CVOD patients (mean age 47.95 ± 15.26 years, 59.0% females) were enrolled in this study. Over 70% of them reported symptoms of anxiety and/or depression. Severe CVOD-related anxiety correlated with older age (p = 0.046) and comorbid hyperlipidemia (p = 0.005). Additionally, head noise, sleep disturbances, and white matter lesions (WMLs) were common risk factors for anxiety and depression (p < 0.05). WMLs were considered an independent risk factor for anxiety based on multiple regression analysis (p = 0.029). Self-contrast displayed that CVOD-related anxiety (p = 0.027) and depression (p = 0.017) scores could be corrected by stenting, as the hypoperfusion scores in the limbic lobes of patients with anxiety and depression were significantly higher than those in patients without. Conclusions: CVOD-induced hypoperfusion-mediated changes in the white matter microstructure may represent an underlying mechanism of anxiety and depression in patients with chronic CVOD.
Collapse
|