1
|
Xu S, Zhang Y, Li J, Zhang X, Wang W. External stimuli-responsive drug delivery to the posterior segment of the eye. Drug Deliv 2025; 32:2476140. [PMID: 40126105 PMCID: PMC11934192 DOI: 10.1080/10717544.2025.2476140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Posterior segment eye diseases represent the leading causes of vision impairment and blindness globally. Current therapies still have notable drawbacks, including the need for frequent invasive injections and the associated risks of severe ocular complications. Recently, the utility of external stimuli, such as light, ultrasound, magnetic field, and electric field, has been noted as a promising strategy to enhance drug delivery to the posterior segment of the eye. In this review, we briefly summarize the main physiological barriers against ocular drug delivery, focusing primarily on the recent advancements that utilize external stimuli to improve treatment outcomes for posterior segment eye diseases. The advantages of these external stimuli-responsive drug delivery strategies are discussed, with illustrative examples highlighting improved tissue penetration, enhanced control over drug release, and targeted drug delivery to ocular lesions through minimally invasive routes. Finally, we discuss the challenges and future perspectives in the translational research of external stimuli-responsive drug delivery platforms, aiming to bridge existing gaps toward clinical use.
Collapse
Affiliation(s)
- Shuting Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Xinyu Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Chen S, Cong L, Zhu X, Qi B, Zhou Q, Shi W, Zhang BN. Optimizing intracameral injection for targeted gene therapy and glaucoma model development. Exp Eye Res 2025; 256:110408. [PMID: 40311778 DOI: 10.1016/j.exer.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Intracameral injection is a widely used surgical technique in animal research, serving various purposes such as injecting microbeads to establish a glaucoma model, delivering adeno-associated virus (AAV) to transduce the trabecular meshwork or corneal endothelium, and administering drugs into the anterior chamber. However, performing intracameral injections in mice is particularly challenging due to the small size of the eye and the shallow anterior chamber. To prevent leakage of injected substances, traditional methods often involve the co-injection of sterile air or viscous agents. However, these approaches have significant drawbacks, including the need for repeated injections and the risk of repeated corneal injuries. To address these limitations, we developed a simplified intracameral injection technique for mice that minimizes tissue damage. In this method, the needle first enters the posterior chamber before passing through the pupil into the anterior chamber. To validate the efficacy and safety of this technique, we used it to deliver AAV into the anterior chamber for corneal endothelial cell transduction and to inject magnetic microbeads for establishing a glaucoma model. Our results demonstrate that this novel method is effective, reproducible, and associated with fewer complications.
Collapse
Affiliation(s)
- Shijiu Chen
- Qingdao University, Qingdao, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Lin Cong
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Xinlei Zhu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Zhang Y, Liu X, Hou Y, Li C, Wang Q, Peng X, Jiang N, Zhao G, Lin J. Platelet membrane-camouflaged PLGA loaded natamycin improve the prognosis of fungal keratitis. BIOMATERIALS ADVANCES 2025; 172:214239. [PMID: 39999534 DOI: 10.1016/j.bioadv.2025.214239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Fungal keratitis (FK) is a severe infectious corneal disease and a common cause of blindness. At present, natamycin (NATA) is the most commonly prescribed drug for fungal keratitis. However, these disadvantages, including poor water solubility, poor stability, and significant corneal irritation, limit its effect in clinical application. In this study, we innovatively prepare platelet membranes (PLTm) which are a unique population of cellular fragments that adhere to a variety of pathogens camouflaged with fabulous biocompatibility poly (lactic-co-glycolic acid) (PLGA) loaded NATA. PLTm can help NATA adhere to the fungal surface, increase the ocular surface retention, and achieve a double sustained-release effect, significantly increasing the antifungal effect of NATA. And platelet membrane-camouflaged PLGA loaded NATA (PLTm@PLGA-NATA) has better antifungal ability. Compared with pure NATA, PLTm@PLGA-NATA significantly improved the therapeutic effect on FK in vivo experiments. Moreover, in vitro, platelet membrane-camouflaged PLGA (PLTm@PLGA) can exert anti-inflammatory effects by reducing inflammatory cytokines caused by fungal stimulation. Therefore, this study provides a therapeutic strategy with a novel antifungal drug delivery system (DDS). Platelet membrane biomimetic nanoparticles play a promising role in treating FK.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Hou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in nanomedicine for retinal drug delivery: overcoming barriers and enhancing therapeutic outcomes. J Drug Target 2025; 33:587-611. [PMID: 39694681 DOI: 10.1080/1061186x.2024.2443144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Nanomedicine offers a promising avenue for improving retinal drug delivery, effectively addressing challenges associated with ocular diseases like age-related macular degeneration and diabetic retinopathy. Nanoparticles, with their submicron size and customisable surface properties, enable enhanced permeability and retention within retinal tissues, supporting sustained drug release and minimising systemic side effects. Nanostructured scaffolds further provide a supportive environment for retinal cell growth and tissue regeneration, crucial for treating degenerative conditions. Additionally, advanced nanodevices facilitate real-time monitoring and controlled drug release, marking significant progress in retinal therapy. This study reviews recent advancements in nanomedicine for retinal drug delivery, critically analysing design innovations, therapeutic benefits, and limitations of these systems. By advancing nanotechnology integration in ocular therapies, this field holds strong potential for overcoming current barriers, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Shreyashree Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Sangita Ranee Gouda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Exploring the potential of antifungal-loaded proniosomes to consolidate corneal permeation in fungal keratitis: A comprehensive investigation from laboratory characterization to microbiological evaluation. Int J Pharm X 2025; 9:100322. [PMID: 40094144 PMCID: PMC11909449 DOI: 10.1016/j.ijpx.2025.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
This work aimed to prepare Terconazole loaded proniosomes (TCZ-PNS) utilizing modified coacervation technique for the management of fungal keratitis. Terconazole (TCZ) is a potent antifungal with poor aqueous solubility posing intricacies in its incorporation in ocular formulations. A 23 factorial design was adopted to probe independent formulation variables including A: Lecithin: cholesterol ratio, B: Surfactant: cholesterol ratio and C: Span® 80 contribution (% of total SAA). The formulae, generated by the design, were prepared and scrutinized regarding entrapment efficiency (%EE), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). Numerical desirability algorithms selected an optimum TCZ-PNS which boasted plausible %EE (89.51 % ± 0.94 %), nanoscale vesicles consistent with TEM measurements (247.9 ± 0.42 nm), a sufficiently high ZP (-43.42 ± 0.85 mV), and an in-vitro biphasic release profile that remained stable even after Gamma irradiation and short-term storage. The transcorneal ex-vivo permeation of TCZ-PNS was higher than that of TCZ suspension (≈ 2-fold). The formulation was further evaluated for pH, corneal hydration threshold, and histopathological safety, confirming its suitability for ocular application. Confocal laser microscopy revealed substantial corneal uptake (approximately twice as deep as of TCZ suspension). Additionally, microbiological assessments of the optimal TCZ-PNS compared to TCZ suspension demonstrated an inhibition zone nearly 50 % larger, a significantly lower MIC and MFC (64-fold reduction), and enhanced biofilm inhibition activity across most tested concentrations. These findings suggest that TCZ-PNS could be a propitious treatment choice to deeply deliver antifungal therapy for the eradication of deeply rooted and inaccessible fungal keratitis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Gautam N, Sharma P, Yadav N, Rajeswari J, Kesavan K. Tear-Driven Phase Transition Microemulsion for Ocular Delivery of Dexamethasone in the Effective Treatment of Uveitis. Curr Eye Res 2025; 50:631-640. [PMID: 40025691 DOI: 10.1080/02713683.2025.2469243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE The goal of this study was to develop dexamethasone-loaded tear-driven phase transition microemulsions (PTMEs) to effectively treat uveitis. METHODS PTMEs were prepared using the oil titration method. Physicochemical parameters, in vitro release, and ocular irritation studies were performed. The in vivo study, total cell count, and total protein content were estimated on the rabbit eye model. RESULTS The study revealed that developed PTMEs had nanoglobule sizes, acceptable physicochemical properties, and prolonged drug release. Ex-vivo and in-vivo studies concluded that higher permeability and improved anti-inflammatory properties were observed for PTMEs compared to marketed formulation. CONCLUSION The prepared PTMEs showed a sustained release pattern and enhanced therapeutic effectiveness, making them a promising alternative to conventional eye drops for treating uveitis.
Collapse
Affiliation(s)
- Nivedita Gautam
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
- Department of Pharmaceutics, J. K. College of Pharmacy, Bilaspur, Chhattisgarh, India
| | - Priya Sharma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Neelima Yadav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Jothimani Rajeswari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Karthikeyan Kesavan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
7
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Terconazole loaded edge-activated hybrid elastosome for revamped corneal permeation in ocular mycosis: In-vitro characterization, statistical optimization, microbiological assessment, and in-vivo evaluation. Int J Pharm X 2025; 9:100333. [PMID: 40292341 PMCID: PMC12023791 DOI: 10.1016/j.ijpx.2025.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Herein, we investigated the preparation and characterization of Terconazole loaded edge-activated hybrid elastosome (TCN-EHE) adopting thin film hydration technique for the treatment of ocular mycosis. Terconazole (TCN) is a broad spectrum antimycotic agent suffering from sparse aqueous solubility impeding its use in ophthalmic preparations. The scrutinized formulation variables namely X1: Surfactant: Edge activator ratio (SAA: EA), X2: Pluronic® L121 contribution (% of total SAA) and X3: EA concentration (%w/v) were optimized adopting D-optimal design. Ten runs were prepared and characterized regarding their entrapment efficiency, particle size, polydispersity index and zeta potential. An optimized formula was generated, with high desirability, exhibited satisfactory entrapment efficiency, nanoscaled particle size aligning with TEM, plausible zeta potential and bi-phasic release pattern which were not altered after short-term storage. The optimized TCN-EHE displayed 1.94-fold enhanced ex-vivo corneal permeation flux. Safety was ratified through measured corneal hydration level, pH and histopathological evaluation. In-vivo corneal uptake visualized by confocal laser microscopy demonstrated 2.7-fold deeper penetration. Moreover, Superior antifungal activity has been demonstrated displaying 37 % bigger zone of inhibition, 8-fold lower minimum inhibitory and minimum fungal concentration alongside significantly higher biofilm inhibition activity at all tested concentrations for the optimized TCN-EHE compared to TCN suspension. Conclusively, we could prospect that TCN-EHE might be a revamped therapeutic alternative for the delivery of poorly soluble antimycotic agents for the combat of ocular mycosis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M. Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
So YH, Mishra D, Gite S, Sonawane R, Waite D, Shaikh R, Vora LK, Thakur RRS. Emerging trends in long-acting sustained drug delivery for glaucoma management. Drug Deliv Transl Res 2025; 15:1907-1934. [PMID: 39786666 PMCID: PMC12037438 DOI: 10.1007/s13346-024-01779-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress. Topical formulations are often used in glaucoma treatment, whereas surgical measures are used in acute glaucoma cases. For most patients, long-term glaucoma treatments are given. Poor patient compliance and low bioavailability are often associated with topical therapy, which suggests that sustained-release, long-acting drug delivery systems could be beneficial in managing glaucoma. This review summarizes the eye's physiology, the pathogenesis of glaucoma, current treatments, including both pharmacological and nonpharmacological interventions, and recent advances in long-acting drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yin Ho So
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sandip Gite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahul Sonawane
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - David Waite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahamatullah Shaikh
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
9
|
Desiato A, Iyire A, Bhogal-Bhamra G, Naroo SA, Gil-Cazorla R. Development and evaluation of ocular antibiotic-loaded soluble film inserts. Cont Lens Anterior Eye 2025; 48:102352. [PMID: 39674697 DOI: 10.1016/j.clae.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Antibiotic eyedrops typically require frequent instillation due to the eye's defensive mechanisms limiting drugs from reaching target sites. This may risk patient non-adherence and treatment inefficacy. The aim of this study was to develop a biocompatible and fully soluble ocular film insert to enhance the delivery of levofloxacin, as well as the handling procedure for its administration; based on the anatomical dimensions and physiological conditions of the human eye. Inserts were prepared by solvent casting method, using HPMC, sodium alginate, gelatin, PEG 400, and levofloxacin solution, and characterised for various physicochemical properties (e.g., uniformity of weight and thickness, loss on dryness, swelling index, water uptake and surface pH). Mechanical properties were assessed and compared against a commercially available buccal film formulation. Uniformity of content and release profile of inserts were assessed by means of a validated analytical method. Antibacterial effectiveness was studied by adapted disc diffusion method on Staphylococcus aureus and Pseudomonas aeruginosa. The formulation including HPMC E15 (1250 mg), low viscosity sodium alginate (750 mg), type A gelatin (250 mg) and PEG 400 (2.5 mL) and 0.1% levofloxacin solution, resulted in high quality inserts, exhibiting uniformity of mass, thickness, and levofloxacin content, that comply with Pharmacopeial standards. Inserts were able to withstand unilinear and repeated mechanical stresses, suggesting suitability for manipulation linked to eye administration. The fully soluble levofloxacin-loaded inserts exhibited good physicochemical and mechanical characteristics, indicating good compatibility with ocular environment and administration procedure. Consistent levofloxacin content and biphasic release pattern showed immediate and sustained antimicrobial efficacy, consistently above the minimum inhibitory concentrations for the model species tested. This work also presents an experimental framework that can be adapted for designing and testing ocular drug delivery systems accounting for anatomical and physiological characteristics of the eye.
Collapse
Affiliation(s)
- Alfredo Desiato
- Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Affiong Iyire
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Gurpreet Bhogal-Bhamra
- Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Shehzad A Naroo
- Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Raquel Gil-Cazorla
- Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
10
|
Bhujbal S, Rupenthal ID, Agarwal P. Evaluation of ocular tolerability and bioavailability of tonabersat transfersomes ex vivo. Drug Deliv Transl Res 2025:10.1007/s13346-025-01872-2. [PMID: 40358832 DOI: 10.1007/s13346-025-01872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
While transfersomes (TFS) have extensively been investigated as carriers for topical drug delivery to the skin, their application in ocular drug delivery remains largely unexplored. This study aimed to evaluate the tolerability, contact angle, and ocular penetration of tonabersat-loaded TFS using ex vivo models, with a focus on comparing drug distribution in different ocular tissues. A solution of tonabersat in medium chain triglycerides (MCT) was used as the control. Conjunctival tolerability was evaluated using the Hen's Egg Test on Chorioallantoic Membrane (HET-CAM), while the Bovine Corneal Opacity and Permeability (BCOP) assay was used to establish corneal tolerability. Drop contact angle on freshly excised bovine corneas was measured using a goniometer. Drug penetration into the cornea, conjunctiva, eyelid and sclera-choroid was evaluated using an ex vivo porcine whole eye model under simulated tear flow, 0.25, 0.5, 1, and 2 h after eyedrop application. Both the TFS and MCT formulations exhibited good conjunctival and corneal tolerability with the TFS contact angle on the corneal surface being lower than that of MCT. Significantly greater drug concentrations were achieved in all ocular tissues with the TFS eyedrop, with the Cmax from TFS being at least 16-fold higher than that achieved with the MCT solution in the conjunctiva, eyelid and sclera-choroid, with the difference being greatest in the latter. Meanwhile, the corneal Cmax was 6-fold greater with TFS. Interestingly, despite simulated tear flow, the Tmax was observed at a later timepoint with TFS in all ocular tissues. Overall, this study demonstrates that TFS are well tolerated on the ocular surface and have the potential for sustained and targeted drug delivery to ocular tissues. Thus, they present a promising alternative for safe and effective ocular drug delivery.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, The University of Auckland, Auckland, 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, The University of Auckland, Auckland, 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, The University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
11
|
Bhujbal S, Rupenthal ID, Patravale VB, Agarwal P. Transfersomes: a next-generation drug delivery system for topical ocular drug delivery. Expert Opin Drug Deliv 2025:1-22. [PMID: 40274417 DOI: 10.1080/17425247.2025.2497829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION The eye is a complex organ with several anatomical and physiological barriers that make ocular drug delivery an ongoing challenge. Transfersomes (TFS) are deformable vesicles that have been extensively applied to enhance transdermal drug delivery. However, their application in ocular drug delivery remains largely unexplored. AREAS COVERED This review highlights the challenges typically associated with ocular drug delivery and emphasizes the inherent properties of TFS that enable them to overcome these challenges. The influence of excipients and critical process parameters on TFS characteristics have been discussed in detail with an emphasis on the fabrication and characterization techniques typically employed for TFS development and optimization. Furthermore, recent studies evaluating the application of TFS in ocular drug delivery have been discussed in depth. EXPERT OPINION The unique stress-responsive and deformable nature of TFS makes them promising carriers for ocular drug delivery. However, further research in this direction is needed to understand their penetration mechanism and elucidate their potential for sustained and targeted drug delivery to ocular tissues. Moreover, further research is needed to optimize the stability and scalability of TFS to encourage their translation to the market.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, Rahman S, Islam MA, Siddique MAT, Bokshi B, Rahman MM, Acharzo AK. Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. DISCOVER NANO 2025; 20:75. [PMID: 40317427 PMCID: PMC12049359 DOI: 10.1186/s11671-025-04234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/07/2025] [Indexed: 05/07/2025]
Abstract
Ocular drug delivery is a significant challenge due to the intricate anatomy of the eye and the various physiological barriers. Conventional therapeutic approaches, while effective to some extent, often fall short in effectively targeting ocular diseases, resulting in suboptimal therapeutic outcomes due to factors such as poor ocular bioavailability, frequent dosing requirements, systemic side effects, and limited penetration through ocular barriers. This review elucidates the eye's intricate anatomy and physiology, prevalent ocular diseases, traditional therapeutic modalities, and the inherent pharmacokinetic and pharmacodynamic limitations associated with these modalities. Subsequently, it delves into nanotechnology-based solutions, presenting breakthroughs in nanoformulations such as nanocrystals, liposomes, dendrimers, and nanoemulsions that have demonstrated enhanced drug stability, controlled release, and deeper ocular penetration. Additionally, it explores a range of nanosized carriers, including nano-structured lipid carriers, hydrogels, nanogels, nanoenzymes, microparticles, conjugates, exosomes, nanosuspensions, viral vectors, and polymeric nanoparticles, and their applications. Unique insights include emerging innovations such as nanowafers and transcorneal iontophoresis, which indicate paradigm shifts in non-invasive ocular drug delivery. Furthermore, it sheds light on the advantages and limitations of these nanotechnology-based platforms in addressing the challenges of ocular drug delivery. Though nano-based drug delivery systems are drawing increasing attention due to their potential to enhance bioavailability and therapeutic efficacy, the review ends up emphasizing the imperative need for further research to drive innovation and improve patient outcomes in ophthalmology.
Collapse
Affiliation(s)
- Rahul Dev Bairagi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Raiyan Rahman Reon
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mahbub Hasan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Sumit Sarker
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, 140001, India
| | - Dipa Debnath
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Md Tawhidur Rahman
- Department of Pharmacy, Northern University of Bangladesh, Dhaka, 1230, Bangladesh
| | - Sinthia Rahman
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212, Bangladesh
| | - Md Abu Talha Siddique
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Bishwajit Bokshi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mustafizur Rahman
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | |
Collapse
|
13
|
Long J, Wu X, Hu P, Cui N, Xu L, Ye Y, Chen H, Peng Q, Lu X, Long D. A Novel Approach for Suprachoroidal Space Injection: An Experimental Evaluation. Curr Eye Res 2025; 50:536-543. [PMID: 40066666 DOI: 10.1080/02713683.2025.2469829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE This study aims to describe an innovative suprachoroidal space injection technique using a combination of 30 G and 22 G needles attached to a 1 ml injector. The efficacy and applicability of this technique in suprachoroidal injections are evaluated. METHODS In this study, we conducted both in vitro and in vivo injection experiments using isolated porcine eyes and live SD rats, respectively. The injector needle was inserted into the sclera with the bevelled tip facing the sclera and parallel to the corneal limbus, and the methylene blue solution was injected into the suprachoroidal space. The accuracy of the injection was confirmed by OCT imaging and frozen section microscopy, demonstrating that the dye was successfully delivered to the suprachoroidal space. RESULTS The suprachoroidal injector successfully injected the solution into the suprachoroidal space of isolated porcine eyes and live rats without entering the vitreous cavity. CONCLUSION The 22 G needle demonstrated sufficient rigidity and stability to ensure proper scleral compression, supporting the consistency of the injection depth. The 30 G needle exhibited exceptional sharpness and precision, allowing for more accurate control of the drug dosage. The appropriate force applied to the sclera facilitated the precise depth of injection. The angle of the needle, parallel to the corneal limbus, helped avoid penetration into the vitreous or subretinal space, reducing the risk of complications. This device offers new tools and methods for ophthalmic research and clinical practice, with significant clinical application prospects.
Collapse
Affiliation(s)
- Jinyi Long
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Wu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Hu
- Department of Ophthalmology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Ning Cui
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Ye
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Xinmin Lu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Long
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
15
|
Jansook P, Sigurdsson HH, Loftsson T. A look to the future: cyclodextrins and cyclodextrin-based drug delivery to the retina. Expert Opin Drug Deliv 2025; 22:693-710. [PMID: 40105773 DOI: 10.1080/17425247.2025.2482049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Retinal diseases are a leading cause of vision loss, affecting millions of people worldwide. Current treatment options are based on invasive methods such as intravitreal injections. Therefore, there is a need for alternative therapeutic strategies that are both effective and more patient-friendly. AREAS COVERED Topical drug delivery has gained attention as a preferred noninvasive approach, although it is hindered by several ocular barriers. Cyclodextrin (CD)-based nanoparticles have emerged as a promising strategy to overcome these limitations by enhancing drug permeability in the posterior segment of the eye. This review discusses the potential of CDs as enabling pharmaceutical excipients, their role in improving ocular drug bioavailability, and provides examples of CD-based eye drop formulations currently under development or undergoing clinical trials. Also, the role of CDs as active pharmaceutical agents in ophthalmology is discussed. EXPERT OPINION CD-based nanoparticle eye drops present a promising solution and have shown clinical success. CDs are approved pharmaceutical excipients for eye drop formulations and can act as active pharmaceutical ingredients for the treatment of inherent retinal diseases. Future innovations in hybrid CD-based delivery systems and integration of novel therapeutic compounds could provide more efficient and targeted treatment options for retinal diseases.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Cyclodextrin Application and Nanotechnology-Based Delivery Systems Research Unit, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Hákon H Sigurdsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
16
|
Basu B, Mallick S, Dhauria S, Nagime PV, Singh S. Native/modified dextran-based nanogel in delivering drug and management of ocular complications: a review. Z NATURFORSCH C 2025:znc-2025-0014. [PMID: 40294585 DOI: 10.1515/znc-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Ocular nanogels have emerged as a promising therapeutic approach, and nanotechnology has speed up the growth of the pharmaceutical and medical technology sectors. The physiological and anatomical barriers of the eye limit the use of traditional ocular preparations, which leads to low drug bioavailability and a brief retention period. This presents a serious problem for patients, doctors, and chemists. Nevertheless, nanogels can encapsulate medications within three-dimensional crosslinked polymeric networks and provide controlled and prolonged drug delivery by using particular structural layouts and unique preparation techniques, improving therapeutic efficacy and patient compliance. Dextran and its variants, a naturally occurring polysaccharide, have drawn a lot of interest in developing delivery systems for use in pharmaceutical and medical applications. Many dextran-based delivery systems with customized geometries and features have been fabricated recently, such as hydrogels, nanogels, magnetic nanoparticles, nanoemulsions, self-assembled micelles and nanoparticles, and microparticles. The review presents advancement and therapeutic potential of dextran-based nanogels for the treatment of various eye conditions, such as cataract, conjunctivitis, glaucoma, dry eye syndrome, age-related macular degeneration, and corneal ulcers. Moreover, the process for development and assessing these nanomedicines, emphasizing their safety and effectiveness as established by preclinical, toxicological, clinical assessments, and patent updates, has been elaborated.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Suraj Mallick
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Suman Dhauria
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Pooja V Nagime
- Centre of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sudarshan Singh
- Office of Research Administrations, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
18
|
Awde Alfonso HG, Tártara LI, Paredes AJ, Palma SD, Formica ML. Enhanced in vivo performance of topical ocular acetazolamide nanocrystals: A novel approach for glaucoma treatment. Int J Pharm 2025; 674:125440. [PMID: 40089041 DOI: 10.1016/j.ijpharm.2025.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
High intraocular pressure (IOP) is the main risk factor for glaucoma progression. Acetazolamide (AZM) presents a potent IOP-lowering effect but is only administered orally due to its low aqueous solubility and ocular permeability. This study aimed to develop AZM nanocrystals (AZM-NC) as an alternative for its topical ocular delivery. AZM-NC were obtained by wet bead milling technique followed by spray-drying, and a mixture design study was conducted to evaluate the optimal drug-to-stabilizer ratio regarding colloidal properties and stability. AZM-NC exhibited an average particle size of 299.7 ± 8.8 nm, a polydispersity index of 0.13 ± 0.01, and a zeta potential of -29.0 ± 0.9 mV, which remained mostly unchanged for at least 60 days when the dried powder was stored at room temperature. Fourier-transformed spectroscopy and powder X-ray diffraction analyses revealed no chemical or crystallinity changes in AZM-NC compared with AZM, respectively. Additionally, AZM-NC demonstrated increased drug saturation concentration, globular shapes, and higher adhesive properties than normal-sized AZM powder. Topical ocular administration of AZM-NC in albino male rabbits showed no clinical signs of ocular damage. Further, in vivo studies revealed a significant IOP reduction of up to 32 % of the basal IOP (-4.8 ± 1.2 mmHg, p < 0.05) in normotensive rabbit eyes (n = 7), after 4 h of AZM-NC suspension topical application, compared to groups treated with AZM suspension, normal saline solution and, AZOPT® (-1.8 ± 1.4 mmHg). Thus, AZM-NC could present a promising approach for developing an eye drop formulation for the localized management of glaucoma.
Collapse
Affiliation(s)
- Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa, 1085, Córdoba 5000, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
19
|
CHAN MH, TSENG CL, HUANG WH, LIN CT. Assessment of gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid coating for treating dry eye associated keratopathy in rats. J Vet Med Sci 2025; 87:364-376. [PMID: 39924182 PMCID: PMC11964865 DOI: 10.1292/jvms.24-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Keratoconjunctivitis sicca (KCS) is a common ocular disease in dogs characterized by inflammation of the cornea and conjunctiva. This study investigates the effectiveness of gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid coating (GEH NPs) and various artificial tears in treating KCS led keratopathy in a rat model. Eighteen female Sprague-Dawley rats, aged 6 to 8 weeks were randomly assigned to 6 groups of 3. All rats except the Sham group underwent unilateral exorbital and infraorbital lacrimal gland excisions to induce KCS. The treatment groups included a KCS group without treatment, a GEH group treated with GEH NPs, and 3 groups receiving different artificial tears. Clinical examinations, including slit-lamp biomicroscopy, optical coherence tomography (OCT), and ocular surface analyser-VET (OSA-VET) were conducted preoperatively at 1 and 2 weeks postoperatively. For treating KCS associated keratopathy, the GEH NPs showed superior outcomes and consistently ranked among the strongest treatment options in most aspects evaluated, including reduced corneal irregularity, improved tear film stability, and lower fluorescein scores, indicating better corneal integrity. Additionally, the GEH group displayed the least inflammatory cell infiltration and maintained a healthier epithelial structure, further underscoring its protective effects. GEH was administered twice daily while other treatment groups were administrated 3 times daily, highlighting its efficacy even with a lower dosing frequency. The artificial tears demonstrated variable benefits on KCS led keratopathy across different evaluations. GEH NPs exhibited excellent protective effects and therapeutic potential on dry eye associated keratopathy based on this study.
Collapse
Affiliation(s)
- Man-Ha CHAN
- Institute of Veterinary Clinical Sciences, School of
Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University
Veterinary Hospital, Taipei, Taiwan
| | - Ching-Li TSENG
- Graduate Institute of Biomedical Materials and Tissue
Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei,
Taiwan
| | - Wei-Hsiang HUANG
- Graduate Institute of Molecular and Comparative
Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei,
Taiwan
| | - Chung-Tien LIN
- Institute of Veterinary Clinical Sciences, School of
Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University
Veterinary Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Velasco S, Gallego I, Olivares-González L, Puras G, Castro MC, Salom D, Pedraz JL, Rodrigo R. Noninvasive ocular delivery of adalimumab-loaded nanostructured lipid carriers for targeted retinitis pigmentosa therapy. Biomed Pharmacother 2025; 185:117962. [PMID: 40073744 DOI: 10.1016/j.biopha.2025.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Retinitis pigmentosa is a genetically heterogeneous retinal degeneration process. There is hardly any treatment available. It is associated with extensive chronic inflammation and the release of proinflammatory cytokines such as TNFα. The blockade of TNFα through systemic or intraocular routes slows retinal degeneration. They are invasive routes with possible side effects. Herein, we propose a noninvasive approach to address the inflammatory component of retinitis pigmentosa. This approach is based on the development of eye drops of nanostructured lipid carriers (NLCs) loaded with the monoclonal antibody against TNFα, adalimumab (ADA). We physicochemically characterized NLC-ADA. We evaluated retinal and corneal toxicity; corneal permeation; diffusion to the retina; and effects on retinal dysfunction, degeneration and inflammation. These results prove that NLC-ADA eye drops exhibit excellent corneal permeation, no toxicity and high retinal distribution in mice. These compounds improve retinal function, reduce retinal degeneration and ameliorate the inflammatory process. In particular, NLC-ADA eye drops reduce M1 microglial activation, macrophage infiltration and the levels of some components of the NLRP3 inflammasome in rd10 mice, a model of retinitis pigmentosa. This strategy offers a noninvasive route that circumvents the bloodretinal barrier in a safe and efficient manner. Hence, this approach could offer a promising therapeutic option for treating retinitis pigmentosa regardless of genetic defects. This approach could be useful for other inflammation-related retinal diseases.
Collapse
Affiliation(s)
- Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Ma Carmen Castro
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - David Salom
- Service of Ophthalmology, Manises Hospital, Generalitat Valenciana, 50, Manises, Valencia 46940, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| |
Collapse
|
21
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
22
|
Raîche-Marcoux G, Méthot S, Tchatchouang A, Bettoli C, Maranda C, Loiseau A, Proulx S, Rochette PJ, Genin E, Boisselier É. Localization of fluorescent gold nanoparticles throughout the eye after topical administration. Front Med (Lausanne) 2025; 12:1557611. [PMID: 40177275 PMCID: PMC11961937 DOI: 10.3389/fmed.2025.1557611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The human eye is a highly intricate sensory organ. When a condition requiring treatment occurs, eyedrops, which represent 90% of all ophthalmic treatments, are most frequently used. However, eyedrops are associated with low bioavailability, with less than 0.02% of therapeutic molecules reaching the anterior chamber. Thus, new delivery systems are required to ensure sufficient drug concentration over time at the target site. Gold nanoparticles are a promising avenue for drug delivery; however, they can be difficult to track in biological systems. Fluorescent gold nanoparticles, which have the same ultrastability and biocompatibility as their nonfluorescent counterpart, could act as an effective imaging tool to study their localization throughout the eye after administration. Thus, this study (1) synthesized and characterized fluorescent gold nanoparticles, (2) validated similar properties between nonfluorescent and fluorescent gold nanoparticles, and (3) determined their localization in the eye after topical application on ex vivo rabbit eyes. The fluorescent gold nanoparticles were synthesized, characterized, and identified in the cornea, iris, lens, and posterior segment of rabbit eyeballs, demonstrating tremendous potential for future drug delivery research.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sébastien Méthot
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ange Tchatchouang
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Camille Bettoli
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Cloé Maranda
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexis Loiseau
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Proulx
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Patrick J. Rochette
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Emilie Genin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Élodie Boisselier
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
23
|
Baghban R, Bamdad S, Attar A, Mortazavi M. Implications of nanotechnology for the treatment of Dry Eye Disease: Recent advances. Int J Pharm 2025; 672:125355. [PMID: 39954973 DOI: 10.1016/j.ijpharm.2025.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Managing Dry Eye Disease (DED), a prevalent condition affecting the ocular surface, remains challenging despite advancements in diagnostics and therapies. Current treatments primarily involve lubricating eye drops and anti-inflammatory medications, which often require prolonged use and generally provide only symptomatic relief. The current study focuses on improving DED treatments through nano-drug delivery technologies and advanced formulations. These systems aim to address the limitations of conventional therapies by providing extended, targeted, and sustained drug release. The development of innovative nanomaterials offers improved precision, control, and customization for DED management. By enabling controlled and sustained drug release, these nano-drug delivery systems could offer longer-lasting relief, addressing the chronic nature of DED more effectively than current symptomatic therapies. Future research should focus on integrating multiple therapeutic agents within these systems to simultaneously target inflammation and tear film instability. This review examines the potential of nano-based materials for DED treatment, with a particular emphasis on lipid-based, polymer-based and polysaccharide-based systems.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Bamdad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
24
|
Luhar M, Viradiya R, Panjabi S, Patel G. Nanotechnology in Ocular Drug Delivery: The Potential of Polymeric Micelles as a Drug Delivery Vehicle. J Ocul Pharmacol Ther 2025; 41:54-64. [PMID: 39263975 DOI: 10.1089/jop.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Conventional ocular drug delivery systems face challenges like rapid clearance, high dosages, low compliance, and poor bioavailability. A novel solution utilizes mucoadhesive polymers for controlled release, enhancing drug effectiveness while reducing dosages and frequency. Polymeric micelles, nanosized colloidal DDS, are set to modify drug delivery for challenging drugs mainly belonging to Biopharmaceutical Classification System class II (low solubility and high permeability), class III (high solubility and low permeability), and class IV (low solubility and low permeability). Micelles solubilize poorly soluble drugs, shielding them from degradation and macrophage uptake and extending drug action. Their small size enables them to breach ocular barriers, elevating therapeutic impact and bioavailability. This review explores polymeric micelles' potential in ocular drug delivery, covering their introduction, formulation, preparation, characterization, applications, recent progress, and challenges through critical analysis of all possible research communications so far. The review also scrutinizes the transition from lab to clinical use. Polymeric micelles revolutionize ocular drug delivery by surmounting limitations through enhanced solubilization, protection, and sustained release. This comprehensive review highlights their potential to improve ocular drug delivery practices.
Collapse
Affiliation(s)
- Mehul Luhar
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| | - Ravi Viradiya
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Sanjay Panjabi
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
25
|
Wong K, Wong M, Liu J. Nanozymes for Treating Ocular Diseases. Adv Healthc Mater 2025; 14:e2401309. [PMID: 38738646 PMCID: PMC11937874 DOI: 10.1002/adhm.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Nanozymes, characterized by their nanoscale size and enzyme-like catalytic activities, exhibit diverse therapeutic potentials, including anti-oxidative, anti-inflammatory, anti-microbial, and anti-angiogenic effects. These properties make them highly valuable in nanomedicine, particularly ocular therapy, bypassing the need for systemic delivery. Nanozymes show significant promise in tackling multi-factored ocular diseases, particularly those influenced by oxidation and inflammation, like dry eye disease, and age-related macular degeneration. Their small size, coupled with their ease of modification and integration into soft materials, facilitates the effective penetration of ocular barriers, thereby enabling targeted or prolonged therapy within the eye. This review is dedicated to exploring ocular diseases that are intricately linked to oxidation and inflammation, shedding light on the role of nanozymes in managing these conditions. Additionally, recent studies elucidating advanced applications of nanozymes in ocular therapeutics, along with their integration with soft materials for disease management, are discussed. Finally, this review outlines directions for future investigations aimed at bridging the gap between nanozyme research and clinical applications.
Collapse
Affiliation(s)
- Ka‐Ying Wong
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterlooONN2L 3G1Canada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
| | - Man‐Sau Wong
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterlooONN2L 3G1Canada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
| |
Collapse
|
26
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
27
|
Ansari M, Kulkarni YA, Singh K. Ocular polymeric nanomicelles for the posterior eye segment in the management of retinoblastoma: formulation, optimization, in vitro and ex vivo evaluations. Pharm Dev Technol 2025; 30:246-258. [PMID: 39985152 DOI: 10.1080/10837450.2025.2469321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The existing study focuses on the development, optimization, and evaluation of sorafenib-loaded polymeric nanomicelles for posterior segment delivery in treating retinoblastoma. The formulation involved adjusting various process and product parameters to create effective drug-loaded polymeric nanomicelles. The particle size, PDI, and zeta potential of optimized formulation were found to be 65.52 ± 1.18 nm, 0.14 ± 0.01, and -3.26 ± 0.66 mV, respectively. The entrapment efficiency and drug release were estimated to be 98.84% ± 0.001 and 99.99% in 6 h, respectively. Additionally, the optimized formulation demonstrated acceptable outcomes for solid-state analysis, osmolality, pH, residual solvent, and morphological properties. After 8 h, the ex vivo transcleral permeation and scleral deposition were 629.05 ± 124.11 ng/cm2 and 4.10 ± 0.54 µg, respectively. Y-79 (human retinoblastoma) cell line study using standard drug, test drug, and optimized formulation revealed anticancer potential at all time points (6, 12, 18, and 24 h) with comparable IC50 values. Furthermore, the optimized formulation exhibited no toxicity on the ARPE-19 (human retinal pigmented epithelium) cell line over 24 h. The optimized formulation was non-irritating to the eye (HET-CAM) and remained stable for 6 months. Thus, drug delivery to the posterior eye segment for the treatment of retinoblastoma appears to be possible with the help of established technology.
Collapse
Affiliation(s)
- Mudassir Ansari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India
| |
Collapse
|
28
|
Seliniotaki AK, Tziola T, Lithoxopoulou M, Tzamalis A, Ziakas N, Mataftsi A. Optimizing instilled drug delivery: a scoping review of microdrops in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06773-1. [PMID: 40011238 DOI: 10.1007/s00417-025-06773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
Eyedrop instillation constitutes the most commonly used ocular drug delivery method that serves for both diagnostic and therapeutic purposes. Ocular disposition and bioavailability of instilled drugs depend on the anatomy and physiology of the ocular surface as well as the physicochemical properties of the active agent. Intraocular bioavailability is positively associated with the amount of drug available onto the ocular surface and the precorneal residence time. Concerns are raised regarding systemic absorption of the instilled drugs intraocularly, percutaneously, via the conjunctiva, through the nasolacrimal system, or through the nasal, oral, and gastrointestinal mucosa. Special considerations exist regarding the anatomical features and the limited pharmacokinetic data on the pediatric population that complicate further the efficacy and systemic toxicity of the instilled medications. Both preclinical and clinical studies propose the reduction of the instilled drop volume, in the form of microdrops, as a means to enhance intraocular bioavailability of topically applied drugs, while minimizing patient discomfort and systemic adverse events. We summarize existing data on the clinical application of microdrops in a wide age range, from preterm infants to elderly adults. Studies regarding microdrops of mydriatics and ocular hypotensives show promising results in optimizing the provided everyday care.
Collapse
Affiliation(s)
- Aikaterini K Seliniotaki
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, N.Efkarpia, Thessaloniki, 56429, Greece.
| | - Tatiana Tziola
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, N.Efkarpia, Thessaloniki, 56429, Greece
| | - Maria Lithoxopoulou
- 2nd Department of Neonatology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Argyrios Tzamalis
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, N.Efkarpia, Thessaloniki, 56429, Greece
| | - Nikolaos Ziakas
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, N.Efkarpia, Thessaloniki, 56429, Greece
| | - Asimina Mataftsi
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, N.Efkarpia, Thessaloniki, 56429, Greece.
| |
Collapse
|
29
|
Pham DT, Chomchalao P, Bunneramit K, Kladcharoen P, Khotcharrat R, Tiyaboonchai W. Development of sustained-release extemporaneous moxifloxacin loaded commercial soft hydrogel contact lenses. Heliyon 2025; 11:e42436. [PMID: 39991249 PMCID: PMC11847108 DOI: 10.1016/j.heliyon.2025.e42436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Eye infections such as Acanthamoeba keratitis and bacterial keratitis are serious diseases that could lead to severe, sight-threatening complications. Although moxifloxacin eye drops (0.5 % w/v) is accepted for clinical treatments of these infections, the frequent administration is challenging to achieve the adequate dose due to the limitations of low ocular bioavailability and short retention time. To circumvent these issues, this study developed the extemporaneous moxifloxacin loaded commercial soft hydrogel contact lenses with sustained-release property. The simple soaking method was employed on five common available contact lenses of Acuvue, Biomedics, Maxim, Soflens, and Biotrue, which were immersed in the standard moxifloxacin eye drops solutions. Amongst them, three contact lenses (Acuvue, Biomedics, and Maxim) showed high drug loading of ∼2 mg and adequate controllable drug release for 24 h with Maxim possessing the highest release rate, and maintained the effective drug therapeutic level for at least 12 h. Kinetically, both the moxifloxacin loading and releasing processes followed the Higuchi model, with the diffusion mechanism governing the drug behaviors. Isothermally, the moxifloxacin molecules were adsorbed onto the contact lenses surfaces via physical adsorptions by weak interactions of van der Waals forces, ionic bonding, and hydrophobic interactions. Furthermore, both the eye drops brands (Moximac and Zomoxin), the loading pH (6.7 and 6.0), and the loading time (24 h and 2 h) had no significant effects on the loading and release of moxifloxacin, indicating the system versatility. Conclusively, the extemporaneous moxifloxacin loaded contact lenses, with a duration of action of at least 12 h, could be further explored to become a potential treatment for eye infections.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Viet Nam
| | - Pratthana Chomchalao
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kunasin Bunneramit
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | | | | | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
30
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
31
|
Liao J, Zhao L, Chen H, Zhao C, Chen S, Guo X, Wang F, Liu X, Zhang X. A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops. Mol Pharm 2025; 22:708-720. [PMID: 39807649 DOI: 10.1021/acs.molpharmaceut.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases. RP7 is an NRP-1 targeting peptide that blocks vascular endothelial growth factor receptor-2 (VEGFR-2) signaling and inhibits angiogenesis, while Tat facilitates the delivery of various cargoes across biological barriers, such as the blood-retina barrier. By combining these attributes, Tat-C-RP7 is anticipated to traverse ocular barriers via ocular topical administration and exert its antiangiogenic effects in the ocular posterior segment. Experimental results demonstrated that Tat-C-RP7 significantly inhibited the proliferation and migration of rat retinal microvascular endothelial cells and effectively reduced tubule formation in vitro. Its antiangiogenic activity was confirmed in zebrafish. The outstanding penetrative capabilities of FITC-labeled Tat-C-RP7 have been validated through cell uptake assays, in vitro cell barrier models, ex-vivo ocular tissues, and in vivo studies. Besides, the half-life of Tat-C-RP7 was longer than that of RP7. In an oxygen-induced retinopathy model, Tat-C-RP7 was shown to reduce the area of angiogenesis following ocular administration. Additionally, it produced no irritating effects on the eyes of rabbits. Overall, Tat-C-RP7 demonstrates excellent ocular penetrability and antiangiogenic effects and represents a promising therapeutic option for treating retinal neovascularization diseases.
Collapse
Affiliation(s)
- Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
- Institute of Chinese Medical Sciences, University of Macau, Xurishengyin Road, Taipa, Macau 999074, China
| | - Hongyuan Chen
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, 1263 Shunhua Road, Jinan 250098, China
- Department of General Surgery, Shandong Provincial Hospital Affiliated Shandong First Medical University, 324 Jing Wu Road, Jinan 250021, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Shang Chen
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University, 5 Yanerdao Road, Qingdao 266000, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| |
Collapse
|
32
|
Biswal S, Parmanik A, Das D, Sahoo RN, Nayak AK. Gellan gum-based in-situ gel formulations for ocular drug delivery: A practical approach. Int J Biol Macromol 2025; 290:138979. [PMID: 39708866 DOI: 10.1016/j.ijbiomac.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ophthalmic disorders significantly impact global health, affecting millions worldwide. Conventional treatments often face challenges related to poor bioavailability and short residence times on the ocular surface. In recent years, in-situ gels prepared using different natural gums including gellan gum has been investigated as a viable means of improving ocular medication delivery. Gellan gum undergoes ionotropic-gelation in the presence of multivalent cations, making it suitable for ocular formulations. The synthesis and purification of gellan gum involve microbial fermentation processes. Incorporating gellan gum into ophthalmic formulations offers several advantages, including prolonged residence time, enhanced drug retention, and improved bioavailability. Characterisation techniques such as gelling capacity determination, FTIR spectroscopy, TEM, viscosity and rheological studies and ex-vivo or in-vitro release studies are crucial for assessing the structural and functional properties of gellan gum-based in-situ gels. Numerous investigations have exhibited gellan gum's potential in different drug loaded in-situ gels for ophthalmic uses, resulting in extended drug residency on the ocular surface and enhanced therapeutic effects. The current review presents a comprehensive discussion on preparation, characterisation, recent applications and future prospects of gellan gum-based in-situ gels for ocular drug delivery. In addition, it covers molecular structure, synthesis and characterisation of gellan gum.
Collapse
Affiliation(s)
- Snehanjana Biswal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Ankita Parmanik
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Debajyoti Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| |
Collapse
|
33
|
Formica ML, Pernochi Scerbo JM, Awde Alfonso HG, Palmieri PT, Ribotta J, Palma SD. Nanotechnological approaches to improve corticosteroids ocular therapy. Methods 2025; 234:152-177. [PMID: 39675541 DOI: 10.1016/j.ymeth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance. Designing novel drug delivery systems based on nanotechnological tools is a useful approach to overcome disadvantages associated with the ocular delivery of corticosteroids. Nanoparticle-based drug delivery systems represent an alternative to the current dosage forms for the ocular administration of corticosteroids, since due to their particle size and the properties of their materials, they can increase their solubility, improve ocular permeability, control their release and increase bioavailability after their ocular administration. In this way, lipid and polymer-based nanoparticles have been the main strategies developed, giving rise to novel patent applications to protect these innovative drug delivery systems as a product, its preparation or administration method. Additionally, it should be noted that at least 10 clinical trials are being carried out to evaluate the ocular application of different pharmaceutical formulations based on corticosteroid-loaded nanoparticles. Through a comprehensive and extensive analysis, this review highlights the impact of nanotechnology applications in ocular inflammation therapy with corticosteroids.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Juan Matías Pernochi Scerbo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pablo Tomás Palmieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Julieta Ribotta
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
34
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
35
|
Pellegrini GABP, Bordon AF, Allemann N. Intravitreal dexamethasone implant (Ozurdex®) findings over time: ultrasound and ultra-widefield fundus photography. Int J Retina Vitreous 2025; 11:7. [PMID: 39833969 PMCID: PMC11748537 DOI: 10.1186/s40942-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Ozurdex® (Allergan®, AbbVie Company, North Chicago, Illinois, EUA), is composed of 0.7 mg of dexamethasone, fused in a solid biodegradable PLGA polymer, whose degradation occurs naturally in the vitreous cavity, usually in six months after its application. METHODS In this study, we included patients aged ≥ 18 years with one or two eyes who had an indication for Ozurdex® implants. Eyes submitted to Ozurdex® application were evaluated in the first hour after the injection via transpalpebral contact B-scan ocular ultrasonography (Aviso® or Compact Touch®, Quantel®) and non-mydriatic ultra-widefield fundus photography (California®, Optos®) performed sequentially. The exams were executed using similar parameters and techniques, by the same ophthalmologist, after every 45 days, until the end of 180 days. The programed visits were the initial (tagged D0) and sequential (D45, D90, D135, and D180) visits, with a possible variance of seven days, before or after. The ultrasonographic Ozurdex® findings evaluated were: non-quantitative: structure, height, reflectivity, artifact production, location, and movement; and quantitative: length and thickness. Ultra-widefield fundus photography parameters were: Ozurdex® visualization, location, and structure. RESULTS The B-scan showed the implant initially, at the D0 visit, as a well-delimited and homogeneously highly reflective linear and continuous structure. On D45, Ozurdex® implants presented with low internal reflectivity and irregularity in the limits. On D90, D135, and D180, reductions in the length and thickness progressively lessened, leading to the final appearance of a small highly reflective clust. Over time, all the implants presented reductions in length and thickness. The mean length at D0 was 7.42 ± 0.39 mm and at the final visit (D180) it was 1.50 ± 0.47 mm. The mean thickness at D0 was 0.77 ± 0.13 mm and at the final visit (D180) it was 0.44 ± 0.18 mm. CONCLUSIONS Considering implant dimensions, the change in length over time was more evident than the change in thickness. In all the cases where visualization was possible, positive correlations with B-scan findings were found despite changes in patient position. These alterations evidenced in the Ozurdex® implant over time may be related to the degradation of the glucose polymer structure.
Collapse
Affiliation(s)
- Gabriela Assumpção Brito Pereira Pellegrini
- Department of Retina-Vitreous and Ocular Ultrasound, Sorocaba Eye Hospital, Rua Nabeck Shiroma, 210, Jardim Emilia, Sorocaba, São Paulo/SP, 18031-060, Brazil.
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), Rua Botucatu, 822, Vila Clementino, São Paulo/SP, 04023-062, Brazil.
| | - Arnaldo Furman Bordon
- Department of Retina-Vitreous and Ocular Ultrasound, Sorocaba Eye Hospital, Rua Nabeck Shiroma, 210, Jardim Emilia, Sorocaba, São Paulo/SP, 18031-060, Brazil
| | - Norma Allemann
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), Rua Botucatu, 822, Vila Clementino, São Paulo/SP, 04023-062, Brazil
| |
Collapse
|
36
|
Jony MJ, Joshi A, Dash A, Shukla S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals (Basel) 2025; 18:87. [PMID: 39861150 PMCID: PMC11768406 DOI: 10.3390/ph18010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions. These systems provide advantages over viral vectors, including reduced immunogenicity and enhanced targeting capabilities. This review delves into introduction of common IRDs such as Leber congenital amaurosis, retinitis pigmentosa, Usher syndrome, macular dystrophies, and choroideremia and critically assesses current treatments including neuroprotective agents, cellular therapy, and gene therapy along with their limitations. The focus is on the emerging role of non-viral delivery systems, which promise to address the current limitations of specificity, untoward effects, and immunogenicity in existing gene therapies. Additionally, this review covers recent clinical trial developments in gene therapy for retinal disorders.
Collapse
Affiliation(s)
- Md Jobair Jony
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Ameya Joshi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Alekha Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Surabhi Shukla
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
37
|
Zhu X, Li S, Huang J, Yin C, Li Y, Guo W, Jiang F, Cao F. FRET-based analysis on the fate of liposome and cyclodextrin@liposome nanocomposites from ocular surface to the posterior segment of the eye. J Control Release 2025; 377:794-809. [PMID: 39637988 DOI: 10.1016/j.jconrel.2024.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Investigating the structural integrity of nanocarriers in vivo is vital for exploring the fate of nanocarriers from ocular surface to the posterior segment of the eye. Most of the published studies adopted the structural integrity ratio of nanocarriers to determine the fate of them, which lacked scientific support. In this study, two methods were used to explore the factors which affected the structural integrity of liposomes. A new method with the standard curve of FRET fluorescence intensity and carbocyanine 7 (Cy7) content was drawn for the first time. Secondly, we used the traditional method of drawing the standard curve of FRET fluorescence efficiency and structural integrity ratios. The results showed that liposomes with particle size about 120 nm, positively charged, polyethyleneglycol5000 (PEG5000) and glycine sarcosine (GS) modified had the highest Cy7 content in rabbit tissues. When the dosage of Cy7 was 25 μg, at 60 min, the content of Cy7 in intact liposomes and the structural integrity ratio of liposomes in sclera was 210.5 ± 14.9 ng and 19.8 ± 5.3 %, respectively. Compared with the structural integrity ratio, the Cy7 content in the intact carrier could better estimate the fate of nanocarriers in vivo scientifically. On this basis, the fate of dual-carrier nanocomposites and the inner cyclodextrin complexes in vivo was investigated. The intact cyclodextrin complexes could reach choroid-retina with the protection of outer liposomes. The structural integrity ratios of liposomes were also studied after crossing human conjunctival epithelial cells (HConEpiC) monolayer, but in vitro cellular experiments could not simulate the real situation in vivo. Finally, the tissue distribution of nanocomposites was studied in rabbit eyes. The concentration of dexamethasone (Dex) in choroid-retina was 158 ± 23 ng/g after 3 h, which exhibited better drug delivery ability compared with our previous study. Overall, the present study provides a new scientific method to estimate the structural integrity in vivo, which is beneficial for the rational design of drug delivery systems with more structural integrity in vivo and higher drug delivery efficiency.
Collapse
Affiliation(s)
- Xiaomeng Zhu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China; Jiangsu Jinglixin Pharmaceutical Technology Co. Ltd., 18 Zhilan Rd, Jiangning District, Nanjing 211100, China
| | - Shihang Li
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jiahui Huang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Chengjing Yin
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
38
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
39
|
Shah S, Patel R, Patel G. Nanocomposite Hydrogels: An Optimistic Insight Towards the Treatments of Ocular Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:205-215. [PMID: 37519202 DOI: 10.2174/1872210517666230731102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, etc. Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, etc., have all undergone significant analysis to overcome numerous static and dynamic obstacles. OBJECTIVE Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved via thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release. METHODS Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed. RESULTS The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results. CONCLUSION Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.
Collapse
Affiliation(s)
- Shailvi Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Anand, 388421, India
| | - Riya Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Anand, 388421, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Anand, 388421, India
| |
Collapse
|
40
|
Zhang F, Tan M, Hu ZE, Zhang YT, Qi XW, Che YT, Li J, Zhang S, Li BJ. A hyaluronic acid-modified cyclodextrin self-assembly system for the delivery of β-carotene in the treatment of dry eye disease. Int J Biol Macromol 2025; 287:138428. [PMID: 39647723 DOI: 10.1016/j.ijbiomac.2024.138428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Dry eye disease (DED) is a multifactorial ocular disease, the core mechanism of which is the tear film instability caused by ocular oxidative stress damage and inflammation. Although various pharmaceutical agents are available for DED treatment, their effectiveness is often limited by the eyes' unique biological barriers, and the long-term use of steroid hormones can lead to several adverse effects. This study reported a nano-supramolecular delivery system consisting of a polycyclodextrin (PCD), hyaluronic acid (HA) and the natural compound β-carotene (BC) for the DED treatment. Our findings indicate that the HA/PCD@BC eye drops effectively distribute on the ocular surface, retain BC, and significantly enhance the corneal penetration of BC. The excellent biocompatibility of HA/PCD@BC was demonstrated through viability testing on different cell lines, the Draize eye test, as well as the hematoxylin-eosin staining (H&E) sections of cornea and conjunctiva. Both in vitro oxidative stress assays and in vivo DED model evaluations demonstrated that the HA/PCD@BC delivery system significantly reduced abnormal oxidative stress levels on the ocular surface, inhibited the secretion of inflammatory factors, and increased the secretion of tear film stabilizing mucin. These effects collectively improved pathological changes in eye tissues and minimized damage to the ocular surface. It is of particular importance to note that HA/PCD@BC eye drops showed superior efficacy in comparison to cyclosporine A (CsA), an FDA-approved first-line drug. To sum up, the HA/PCD@BC nanodelivery system provides a natural, safe and effective therapeutic strategy for the treatment of DED and various ocular diseases.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-E Hu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye-Tao Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Wei Qi
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Che
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China.
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Khan MS, Murthy A, Ahmed T. Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies. AAPS PharmSciTech 2024; 26:14. [PMID: 39690355 DOI: 10.1208/s12249-024-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This review paper discusses the key aspects of ocular biopharmaceutics, with emphasis on the crucial role played by ocular compartmental modelling and simulation in deciphering physiological conditions related to various eye diseases. It describes eye's intricate structure and function and the need for precise and targeted drug delivery systems to address prevalent eye conditions. The review categorizes and discusses various formulations employed in ocular drug delivery, delineating their respective advantages and limitations. Additionally, it probes the challenges inherent in diverse routes of drug administration for ocular therapies and provides insights into the complexities of achieving optimal drug concentrations at the target site within the eye. The central theme of this work is the ocular compartmental modelling and simulations. Hence, this works discusses on the nuanced understanding of physiological conditions within the eye, drug distribution, drug release kinetics, and key considerations for ocular compartmental modelling and simulations. By combining information from various sources, this review aims to serve as a comprehensive reference for researchers, clinicians, and pharmaceutical developers. It covers the multifaceted landscape of ocular biopharmaceutics and the transformative impact of modelling and simulation in optimizing ocular drug delivery strategies.
Collapse
Affiliation(s)
- Mohammed Shareef Khan
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India.
| | - Aditya Murthy
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics and Bioanalytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| |
Collapse
|
42
|
Said M, Ali KM, Alfadhel MM, Afzal O, Aldosari BN, Alsunbul M, Bafail R, Zaki RM. Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation. Int J Pharm X 2024; 8:100293. [PMID: 39498272 PMCID: PMC11533070 DOI: 10.1016/j.ijpx.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of -37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
Collapse
Affiliation(s)
- Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| | - Khaled M. Ali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Munerah M. Alfadhel
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinah, Al-munawarah 41477, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
43
|
Shapiro JN, Armenti ST, Levine H, Hood CT, Mian SI. Dexamethasone Intracanalicular Insert versus Standard Topical Steroids for the Prophylaxis of Inflammation after Cataract Surgery. Am J Ophthalmol 2024; 268:174-180. [PMID: 39089352 DOI: 10.1016/j.ajo.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE To compare the efficacy of an intracanalicular dexamethasone intracanalicular insert (DII) to a topical prednisolone acetate 1% taper for preventing breakthrough inflammation (iritis or cystoid macular edema [CME]) during the first postoperative month (POM1) after cataract surgery. DESIGN Retrospective, nonrandomized comparative interventional study. METHODS Patients received either DII or topical prednisolone acetate 1% eyedrops (control) during POM1. Exclusion criteria included history of iritis, glaucoma, intraoperative posterior capsular rupture or vitreous prolapse, immediate postoperative anterior chamber inflammation requiring treatment, or less than 1 month follow-up postoperatively. Outcomes included development of breakthrough inflammation after >3 days postoperatively necessitating additional antiinflammatory drops, CME, and increased intraocular pressure (IOP) at POM1. RESULTS A total of 266 eyes of 174 patients were included in the DII group and 258 eyes of 167 patients in the control group. Demographics, comorbidities, and baseline IOP were comparable between groups. The breakthrough inflammation rate was significantly higher in the DII group compared to control (9.0% vs 3.1%; P < .01); CME rates were similar between groups (4.9% vs 4.3%; P = .75). There were no cases of increased IOP >10 mm Hg at POM1 compared to baseline in either group. CONCLUSIONS After cataract surgery, DII demonstrated a higher rate of breakthrough inflammation than a standard topical steroid regimen with no significant differences in CME rate or IOP increase; however, overall, the rate of postoperative complications was low. DII can be a safe and effective alternative to topical corticosteroid therapy after cataract surgery.
Collapse
Affiliation(s)
- Jeremy N Shapiro
- Kellogg Eye Center and Department of Ophthalmology and Visual Sciences (J.N.S., H.L., C.T.H., S.I.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen T Armenti
- Scheie Eye Institute and Department of Ophthalmology (S.T.A.), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Levine
- Kellogg Eye Center and Department of Ophthalmology and Visual Sciences (J.N.S., H.L., C.T.H., S.I.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher T Hood
- Kellogg Eye Center and Department of Ophthalmology and Visual Sciences (J.N.S., H.L., C.T.H., S.I.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Shahzad I Mian
- Kellogg Eye Center and Department of Ophthalmology and Visual Sciences (J.N.S., H.L., C.T.H., S.I.M.), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
44
|
Xia Y, Blecher NA, Custer PL, Sieck EG. Optimizing topical drop efficacy with proper eyelid positioning. Am J Ophthalmol Case Rep 2024; 36:102111. [PMID: 39149617 PMCID: PMC11324992 DOI: 10.1016/j.ajoc.2024.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 08/17/2024] Open
Abstract
Purpose To report the observation that the efficacy of topical glaucoma treatment improved after surgical correction of ectropion in a 71-year-old male with a known history of glaucoma. Observations The patient initially presented for tearing and lid malposition and was found to have bilateral elevated intraocular pressures (IOP) in addition to bilateral lower eyelid ectropion. IOP control was initially prioritized over ectropion repair, with IOP remaining elevated despite topical glaucoma treatment and selective laser trabeculoplasty. Sequential unilateral ectropion repair was then carried out, with topical glaucoma treatment resumed after the first repair. It was observed that the IOP improved with topical glaucoma treatment on each side after ectropion repair, despite no changes to medications nor dosing. Conclusions and importance The efficacy of topical glaucoma treatment is dependent on drop availability and absorption. While recent efforts to increase drop efficacy have been focused on engineering formulations that increase retention or corneal penetration, our case highlights that in selected glaucoma patients, correction of lid malposition may serve as an effective way to improve drop efficacy.
Collapse
Affiliation(s)
- Yu Xia
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nathaniel A Blecher
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Philip L Custer
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin G Sieck
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
45
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
46
|
Gohar S, Iqbal Z, Nasir F, Khattak MA, E Maryam G, Pervez S, Alasmari F, Neau SH, Zainab SR, Ali AT, Ur Rahman A. Self-assembled latanoprost loaded soluplus nanomicelles as an ophthalmic drug delivery system for the management of glaucoma. Sci Rep 2024; 14:27051. [PMID: 39511270 DOI: 10.1038/s41598-024-78244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Glaucoma, a leading cause of blindness due to elevated intraocular pressure (IOP), is managed with medications like latanoprost (LAT), a prostaglandin analogue, to enhance aqueous outflow. Despite the challenge posed by eye anatomy and tear dynamics, effective ocular bioavailability via topical administration remains elusive. This study aims to optimize self-assembled nanomicelles incorporating LAT, an anti-glaucoma drug, belonging to BCS Class II (low solubility and high permeability) via a two-level, two-factor full factorial design, the nanomicelles were formulated via direct dissolution method and validated using design of expert. The optimized nanomicelles exhibited a spherical morphology, with a size of 69 nm and encapsulation efficiency of 77.5%, demonstrating a sustained LAT release over 12 h. In normotensive rabbits, the nanomicelles elicited a substantial reduction in intraocular pressure (IOP) by up to 40% for a duration of three days, that was significantly longer than the IOP-lowering efficacy of XALATAN eye drops (24 h). These findings indicated that self-assembled nanomicelles hold promise for enhancing the ocular bioavailability and extending the therapeutic duration of LAT, while providing the physical stability.
Collapse
Affiliation(s)
- Shazma Gohar
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Zafar Iqbal
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan.
| | - Muzna Ali Khattak
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Gul E Maryam
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Steven H Neau
- Philadelphia College of Pharmacy, University of Sciences, Philadelphia, PA, USA
| | - Syeda Rabqa Zainab
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Pakistan
| | - Arbab Tahir Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Altaf Ur Rahman
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| |
Collapse
|
47
|
Jathar J, Mahajan H, Nerkar P. Microneedles: A minimally invasive delivery system for ocular treatment. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:953-965. [PMID: 38821480 DOI: 10.1016/j.pharma.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
This review article delves into the extensive use of microneedles in ocular therapy, emphasizing their efficacy in delivering drug substances to the posterior region of the eye. The conventional methods of drug delivery, while widely employed, are marred by inherent drawbacks such as neovascularization, abrasion, and infiltration. To address these limitations, the review explores various approaches to microneedle fabrication, shedding light on the diverse materials employed in the process. Furthermore, the article meticulously examines the delivered drug substances using distinct microneedle approaches and their applications in ocular therapy. By critically evaluating the drawbacks associated with conventional ophthalmic drug delivery, the review seeks to pave the way for a paradigm shift. It advocates for a novel approach centered around minimally invasive microneedles, presenting them as a promising solution to overcome the limitations of current drug delivery methods. The comprehensive discussion within this article not only offers insights into the fabrication techniques and materials used for microneedles but also provides a nuanced understanding of the applications and advantages associated with this innovative approach. As the exploration of microneedle technology continues to evolve, this review serves as a valuable resource for researchers, clinicians, and pharmaceutical professionals seeking to enhance ocular therapy by embracing the potential of minimally invasive microneedles.
Collapse
Affiliation(s)
- Jayesh Jathar
- R. C. Patel Institute of Pharmaceutical Education and Research, An Autonomous Institute, Shirpur Education Society's, Karwand Naka, Taluka - Shirpur, Dist - Dhule, 425405 Maharashtra (M.H.), India
| | - Hitendra Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research, An Autonomous Institute, Shirpur Education Society's, Karwand Naka, Taluka - Shirpur, Dist - Dhule, 425405 Maharashtra (M.H.), India
| | - Pankaj Nerkar
- R. C. Patel Institute of Pharmaceutical Education and Research, An Autonomous Institute, Shirpur Education Society's, Karwand Naka, Taluka - Shirpur, Dist - Dhule, 425405 Maharashtra (M.H.), India.
| |
Collapse
|
48
|
Long Y, Hu J, Liu Y, Wu D, Zheng Z, Gui S, He N. Development of puerarin-loaded poly(lactic acid) microspheres for sustained ocular delivery: In vitro/vivo evaluation. Eur J Pharm Biopharm 2024; 204:114524. [PMID: 39370056 DOI: 10.1016/j.ejpb.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Diabetic retinopathy, an ocular complication of diabetes, is an important cause of blindness in adults. Puerarin is considered to have promising potential for clinical use in treating diabetic retinopathy. In this study, we designed a novel puerarin-loaded poly(lactic acid) sustained-release microspheres suitable for ocular administration, and we assessed itsin vitro and in vivo properties. The preparation of puerarin-loaded microspheres was optimized by Box-Behnken response surface design. The encapsulation efficiency and drug loading of microspheres were 35.71% and 3.85%, respectively. The microspheres exhibited good dispersion and high safety, making it suitable for ocular drug delivery. In vitro release demonstrated that microspheres had a well-sustained release effectiveness, and its release behavior complied with the zero-order kinetic characteristics. The results of ocular tissue distribution revealed that the CmaxandAUC0-∞ of the microspheres group in the retina and choroid were considerably higher than those of the solution group and the intravenous injection group. This research revealed that intravitreal injection of microspheres can significantly prolong the half-life of puerarin in eye tissues and achieve sustained drug release. Therefore, intravitreal injection of microspheres has positive implications for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jie Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Danqing Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
| |
Collapse
|
49
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
50
|
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in Ocular Therapy: A Review of Emerging Drug Delivery Approaches and Pharmaceutical Technologies. Pharmaceutics 2024; 16:1325. [PMID: 39458654 PMCID: PMC11511072 DOI: 10.3390/pharmaceutics16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Deeksha Jakka
- School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
| | - Michael A. Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Vineet R. Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Quanying Bao
- Synthetic Product Development, Alexion, AstraZeneca Rare Disease, 101 College Street, New Haven, CT 06510, USA
| |
Collapse
|