1
|
Zhao Y, Gao X, Luan K, Qiao Z, Wei N, Zhang Y. Visualizing Kv7 channels in living cells using a novel fluorescent probe. Bioorg Chem 2025; 162:108574. [PMID: 40383017 DOI: 10.1016/j.bioorg.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Kv7 (KCNQ) channels are widely expressed on the membrane of excitable cells in central nervous system and play dominant roles in controlling membrane excitability. Abnormal of their surface abundance and activity can cause central nervous system disorders such as epilepsy and painful schizophrenia. Thus, it is important to find a simple and effective molecular tool for detecting the expression of Kv7 channels and further studying their roles in physiology. Fluorescent probe is an effective method for visualizing protein analysis in biological systems with high sensitivity and spatiotemporal resolution. To further understand the roles of Kv7 channels in physiological and pathological processes, we designed fluorescent probes for imaging Kv7 channels (FPKv-1 and FPKv-2) based on the fluorescent emission mechanism of intramolecular rotation restriction using fluorophore quinoline malononitrile as report group. This mechanism was identified by the measurement of absorption and fluorescence spectra in the different solutions. Electrophysiology and confocal imaging showed that FPKv-1 had a higher affinity and selectivity to Kv7 channels over other ion channels such as TRPA1, TRPV1 and TRPV3. We also identified FPKv-1 as a molecular imaging tool can be applied in high-throughput screening of Kv7 agonists.
Collapse
Affiliation(s)
- Yifan Zhao
- Departments of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Xinru Gao
- Departments of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Kun Luan
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Zhen Qiao
- Departments of Qingdao Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Ningning Wei
- Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China.
| | - Yanru Zhang
- Departments of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
2
|
Singh S, Shevtsova NA, Yao L, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. J Physiol 2025. [PMID: 40349326 DOI: 10.1113/jp287752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Locomotor behaviours are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity and biomechanics. The basic rhythmic activity in the central nervous system underlying locomotion is considered to be generated via a complex interplay between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. Our goal was to determine the postnatal developmental expression of voltage-sensitive conductances, in addition to respective ion channels, in Shox2 INs. We show that subsets of Shox2 INs display persistent inward currents, M-type potassium currents, slow afterhyperpolarization and T-type calcium currents, which are enhanced with age. By contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behaviour becomes weight-bearing. Computational modelling was used to simulate and reproduce electrophysiological experiments for representative Shox2 INs to make predictions regarding the interactions between experimentally recorded conductances and persistent inward currents, and bursting behaviour. Our results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature locomotor behaviour. KEY POINTS: The intrinsic and voltage-sensitive properties of locomotor-related neurons contribute to shaping and maintaining activity. Shox2 interneurons (INs), similar to many other components of locomotor circuitry, are well-characterized in the neonatal mouse. Electrophysiological recordings reveal that subsets of Shox2 INs express 'rhythmogenic properties', including persistent inward currents, M-type potassium currents and slow afterhyperpolarization, as well as corresponding ion channels/RNA. Hierarchical clustering demonstrates that developmental changes seen are related to the emergence of electrophysiological cell types, largely defined by strong rhythmogenic current expression. Our data suggest that Shox2 INs gain electrophysiological diversity with age, and that Shox2 INs from adult mice may employ enhanced voltage-sensitive conductances during rhythmic locomotor activity.
Collapse
Affiliation(s)
- Shayna Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Natalia A Shevtsova
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Lihua Yao
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ilya A Rybak
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kimberly J Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Simonson BT, Jiang Z, Ryan JF, Jegla T. Ctenophores and parahoxozoans independently evolved functionally diverse voltage-gated K+ channels. J Gen Physiol 2025; 157:e202413740. [PMID: 40100064 PMCID: PMC11917167 DOI: 10.1085/jgp.202413740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The ctenophore species Mnemiopsis leidyi is known to have a large set of voltage-gated K+ channels, but little is known about the functional diversity of these channels or their evolutionary history in other ctenophore species. Here, we searched the genomes of two additional ctenophore species, Beroe ovata and Hormiphora californensis, for voltage-gated K+ channels and functionally expressed a subset of M. leidyi channels. We found that the last common ancestor of these three disparate ctenophore lineages probably had at least 33 voltage-gated K+ channels. Two of these genes belong to the EAG family, and the remaining 31 belong to the Shaker family and form a single clade within the animal/choanoflagellate Shaker phylogeny. We additionally found evidence for 10 of these Shaker channels in a transcriptome of the early branching ctenophore lineage Euplokamis dunlapae, suggesting that the diversification of these channels was already underway early in ctenophore evolution. We functionally expressed 16 Mnemiopsis Shakers and found that they encode a diverse array of voltage-gated K+ conductances with functional orthologs for many classic Shaker family subtypes found in cnidarians and bilaterians. Analysis of Mnemiopsis transcriptome data show these 16 Shaker channels are expressed in a wide variety of cell types, including neurons, muscle, comb cells, and colloblasts. Ctenophores therefore appear to have independently evolved much of the voltage-gated K+ channel diversity that is shared between cnidarians and bilaterians.
Collapse
Affiliation(s)
- Benjamin T. Simonson
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Zhaoyang Jiang
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Joseph F. Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Timothy Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| |
Collapse
|
4
|
Gaspar IL, Terrone G, Carleo G, Carotenuto L, Miceli F, De Vita G, Taglialatela M. Potassium current inactivation as a novel pathomechanism for KCNQ2 developmental and epileptic encephalopathy. Epilepsia 2025. [PMID: 40292751 DOI: 10.1111/epi.18427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.
Collapse
Affiliation(s)
- Ingride Luzio Gaspar
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Gaetano Terrone
- Section of Child Neuropsychiatry, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giusy Carleo
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Lidia Carotenuto
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Gabriella De Vita
- Section of Medical Genetics, Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Yang Z, Zheng Y, Ma D, Wang L, Zhang J, Song T, Wang Y, Zhang Y, Nan F, Su N, Gao Z, Guo J. Phosphatidylinositol 4,5-bisphosphate activation mechanism of human KCNQ5. Proc Natl Acad Sci U S A 2025; 122:e2416738122. [PMID: 40172963 PMCID: PMC12002238 DOI: 10.1073/pnas.2416738122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
The human voltage-gated potassium channels KCNQ2, KCNQ3, and KCNQ5 can form homo- and heterotetrameric channels that are responsible for generating the neuronal M current and maintaining the membrane potential stable. Activation of KCNQ channels requires both the depolarization of membrane potential and phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we report cryoelectron microscopy structures of the human KCNQ5-calmodulin (CaM) complex in the apo, PIP2-bound, and both PIP2- and the activator HN37-bound states in either a closed or an open conformation. In the closed conformation, a PIP2 molecule binds in the middle of the groove between two adjacent voltage-sensing domains (VSDs), whereas in the open conformation, one additional PIP2 binds to the interface of VSD and the pore domain, accompanying structural rearrangement of the cytosolic domain of KCNQ and CaM. The structures, along with electrophysiology analyses, reveal the two different binding modes of PIP2 and elucidate the PIP2 activation mechanism of KCNQ5.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Long Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jiatong Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Nannan Su
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang322000, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong528437, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang311121, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang310058, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
6
|
Shi H, Li Q, Hu F, Liu Y, Wang K. A novel role of the antidepressant paroxetine in inhibiting neuronal Kv7/M channels to enhance neuronal excitability. Transl Psychiatry 2025; 15:116. [PMID: 40175331 PMCID: PMC11965407 DOI: 10.1038/s41398-025-03291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 04/04/2025] Open
Abstract
The voltage-gated Kv7/KCNQ/M potassium channels exert inhibitory control over neuronal membrane excitability. The reduction of Kv7 channel function can improve neuronal excitability that defines the fundamental mechanism of learning and memory. This suggests that pharmacological inhibition of Kv7 channels may present a therapeutic strategy for cognitive improvement. Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the treatment of various types of depression with reported improvements in memory and attention. However, the exact mechanism underlying cognitive improvement by paroxetine remains poorly understood. In this study, we demonstrate that paroxetine inhibits whole-cell Kv7.2/Kv7.3 channel currents in a concentration-dependent manner with an IC50 of 3.6 ± 0.2 μΜ. In single-channel recording assay, paroxetine significantly reduces the open probability of Kv7.2/Kv7.3 channels. Moreover, paroxetine exhibits an inhibition of the native M-current and an increase in the firing of action potentials in hippocampal neurons. Taken together, our findings unveil a novel role of the antidepressant paroxetine in inhibiting M-current, providing insights into its pharmacological effects on cognition enhancement.
Collapse
Affiliation(s)
- Huan Shi
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Raveh A, Pen Y, Silberman A, Peretz A, Attali B, Maile L, Davidson S, Brown AD, Kennedy JD, Belinson H. Dual Kv7.2/3-TRPV1 modulators inhibit nociceptor hyperexcitability and alleviate pain without target-related side effects. Pain 2025; 166:793-811. [PMID: 39324934 DOI: 10.1097/j.pain.0000000000003390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Persistent or chronic pain is the primary reason people seek medical care, yet current therapies are either limited in efficacy or cause intolerable side effects. Diverse mechanisms contribute to the basic phenomena of nociceptor hyperexcitability that initiates and maintains pain. Two prominent players in the modulation of nociceptor hyperexcitability are the transient receptor potential vanilloid type 1 (TRPV1) ligand-gated ion channel and the voltage-gated potassium channel, Kv7.2/3, that reciprocally regulate neuronal excitability. Across many drug development programs targeting either TRPV1 or Kv7.2/3, significant evidence has been accumulated to support these as highly relevant targets; however, side effects that are poorly separated from efficacy have limited the successful clinical translation of numerous Kv7.2/3 and TRPV1 drug development programs. We report here the pharmacological profile of 3 structurally related small molecule analogues that demonstrate a novel mechanism of action (MOA) of dual modulation of Kv7.2/3 and TRPV1. Specifically, these compounds simultaneously activate Kv7.2/3 and enable unexpected specific and potent inhibition of TRPV1. This in vitro potency translated to significant analgesia in vivo in several animal models of acute and chronic pain. Importantly, this specific MOA is not associated with any previously described Kv7.2/3 or TRPV1 class-specific side effects. We suggest that the therapeutic potential of this MOA is derived from the selective and specific targeting of a subpopulation of nociceptors found in rodents and humans. This efficacy and safety profile supports the advancement of dual TRPV1-Kv7.2/3 modulating compounds into preclinical and clinical development for the treatment of chronic pain.
Collapse
Affiliation(s)
- Adi Raveh
- Bsense Bio Therapeutics Ltd., Ness Ziona, Israel
| | - Yefim Pen
- Bsense Bio Therapeutics Ltd., Ness Ziona, Israel
| | | | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Laura Maile
- Department of Anesthesiology and Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Steve Davidson
- Department of Anesthesiology and Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alan D Brown
- AD Brown Medchem Consulting Ltd., Deal, Kent, UK
| | | | | |
Collapse
|
8
|
Wu X, Gong J, Qiu L, Yang G, Yuan H, Shen X, Shen Y, Tian F, Gao Z. Electrophysiological Abnormalities and Pharmacological Corrections of Pathogenic Missense Variants in KCNQ3. Neurosci Bull 2025:10.1007/s12264-025-01378-4. [PMID: 40095209 DOI: 10.1007/s12264-025-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
The KCNQ potassium channels play a crucial role in modulating neural excitability, and their dysfunction is closely associated with epileptic disorders. While variants in KCNQ2 have been extensively studied, KCNQ3-related disorders have rarely been reported. With advances in next-generation sequencing technologies, an increasing number of cases of KCNQ3-related disorders have been identified. However, the correlation between genotype and phenotype remains poorly understood. In this study, we established a variant library consisting of 24 missense mutations in KCNQ3 and introduced these mutations into three different template types: KCNQ3, KCNQ3-A315T (Q3*), and KCNQ3-KCNQ2 tandem (Q3-Q2). We then analyzed the effects of these mutations on the KCNQ3 channel function using patch-clamp recording. The most informative parameter across all three backgrounds was the current density of the mutant channels. The current density patterns in the Q3* and Q3-Q2 backgrounds were similar, with most mutations resulting in an almost complete loss of function (LOF), they were concentrated in the pore-forming domain of KCNQ3. In contrast, mutations in the voltage-sensing domain or C-terminus did not show significant differences from the wild-type channel. Interestingly, these LOF mutations were typically associated with self-limited familial neonatal epilepsy, while neurodevelopmental disorders (NDD) were more closely associated with mutations that did not significantly differ from the wild-type. V1/2, another important parameter of the electrophysiological properties, could not be accurately determined in the majority of KCNQ3 mutations due to its nearly complete LOF in the Q3* and Q3-Q2 backgrounds. Intriguingly, the V1/2 of functional mutations were primarily leftward shifted, indicating a gain-of-function (GOF) effect, which was typically associated with NDD. In addition to previously reported mutations, we identified G553R as a novel GOF mutation. In the co-transfection background, parameters such as V1/2 could be determined, but the dysfunctional effects of these mutations were mitigated by the co-expression of wild-type KCNQ3 and KCNQ2 subunits, resulting in no significant differences between most mutations and the wild-type channel. Furthermore, we applied KCNQ modulators to reverse the electrophysiological abnormalities caused by KCNQ3 variants. The LOF mutations were reversed by the application of Pynegabine (HN37), a KCNQ opener, while the GOF mutation responded well to Amitriptyline (AMI), a KCNQ inhibitor. These findings provide essential insights into the pathogenic mechanisms underlying KCNQ3-related disorders and may inform clinical decision-making.
Collapse
Affiliation(s)
- Xiaorong Wu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jili Gong
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Li Qiu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Guimei Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Yuan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yanwen Shen
- Translational Research Center for the Nervous System, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Faculty of Pediatrics, Chinese PLA General Hospital, Graduate School of the PLA General Hospital, Beijing, 100853, China.
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhaobing Gao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
9
|
Hinojo-Perez A, Eldstrom J, Dou Y, Marinho-Alcara A, Edmond MA, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Fedida D, Barro-Soria R. The conductance of KCNQ2 and its pathogenic variants is determined by individual subunit gating. SCIENCE ADVANCES 2025; 11:eadr7012. [PMID: 40043113 PMCID: PMC11881901 DOI: 10.1126/sciadv.adr7012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
KCNQ2 channel subunits form part of the M-current and underlie one of the major potassium currents throughout the human nervous system, regulating resting membrane potentials, shaping action potentials, and impeding repetitive neuronal firing. However, how individual subunits within tetramers control channel functionality remains unresolved. Here, we investigate (i) whether opening of KCNQ2 channels requires a concerted step or can result from independent subunit activation and (ii) how individual subunits regulate gate opening and conductance. The E140R mutation in the S2 segment prevents activated voltage sensor conformations, but concatemeric constructs containing up to three E140R subunits retain KCNQ2-like currents. The underlying single-channel currents show subconductance levels resulting from limitations in inner gate dimensions, determined by the number of activated subunits and their spatial arrangement. Channel opening is allosteric and requires activation of only a single subunit, which can accentuate the influence of clinically relevant heterozygous mutations at threshold voltages.
Collapse
Affiliation(s)
- Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Allan Marinho-Alcara
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michaela A. Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alicia de la Cruz
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marta E. Perez Rodriguez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Perucca E, Taglialatela M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025; 39:263-288. [PMID: 39853501 PMCID: PMC11850491 DOI: 10.1007/s40263-024-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.3 channels, play a critical role in modulating susceptibility to seizures, and mutations in genes that encode these channels cause heterogeneous epilepsy phenotypes. On the basis of this evidence, activation of Kv7.2 and Kv.7.3 channels has long been considered an attractive target in the search for novel antiseizure medications. Ezogabine (retigabine), the first Kv7.2/3 activator introduced in 2011 for the treatment of focal seizures, was withdrawn from the market in 2017 due to declining use after discovery of its association with pigmentation changes in the retina, skin, and mucosae. A novel formulation of ezogabine for pediatric use (XEN496) has been recently investigated in children with KCNQ2-related developmental and epileptic encephalopathy, but the trial was terminated prematurely for reasons unrelated to safety. Among novel Kv7.2/3 openers in clinical development, azetukalner has shown dose-dependent efficacy against drug-resistant focal seizures with a good tolerability profile and no evidence of pigmentation-related adverse effects in early clinical studies, and it is now under investigation in phase III trials for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder. Another Kv7.2/3 activator, BHV-7000, has completed phase I studies in healthy subjects, with excellent tolerability at plasma drug concentrations that exceed the median effective concentrations in a preclinical model of anticonvulsant activity, but no efficacy data in patients with epilepsy are available to date. Among other Kv7.2/3 activators in clinical development as potential antiseizure medications, pynegabine and CB-003 have completed phase I safety and pharmacokinetic studies, but results have not been yet reported. Overall, interest in targeting Kv7 channels for the treatment of epilepsy and for other indications remains strong. Future breakthroughs in this area could come from exploitation of mechanistic differences in the action of Kv7 activators, and from the development of molecules that combine Kv7 activation with other mechanisms of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Center, The University of Melbourne, 245 Burgundy St., Heidelberg, VIC, 3084, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
11
|
Wang X, Zhang Y, Liu H, Wang J, Zhang B, He T, Zhang H, Xiong Z, Liu X, Li J, Zhao W, Liu X, Zhang W, Yang L, Li Q, Zhang H, Qi J, Jia Q. A Novel Compound QO-83 Alleviates Acute and Chronic Epileptic Seizures in Rodents by Modulating K V7 Channel Activity. CNS Neurosci Ther 2025; 31:e70334. [PMID: 40125810 PMCID: PMC11931445 DOI: 10.1111/cns.70334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
AIMS KV7 channels are promising targets for antiepileptic therapy. However, the classic KV7 channel opener retigabine has been withdrawn due to severe adverse reactions. We developed a novel KV7 channel opener, QO-83, with good chemical stability and blood-brain barrier penetration, and sought to evaluate its KV7-opening activity, antiepileptic effects, and mechanisms of action. METHODS We used patch-clamp electrophysiology, electroencephalogram recordings, dynamic simulations, and various epilepsy models to investigate the mechanisms and antiepileptic activity of QO-83. RESULTS Compound QO-83 exhibits greater potency at KV7.2/7.3 channels compared to KV7.4 or KV7.5 channels. It shows superior efficacy for KV7.2 with voltage-dependent opening than retigabine, with W236 identified as the key binding site for the KV7.2 channel. QO-83 significantly inhibited epileptiform discharge and influenced hippocampal sEPSC and sIPSC amplitudes. QO-83 has a more effective dose of 1 mg/kg in acute and chronic epilepsy models smaller than that of retigabine (10 mg/kg). The higher potency of QO-83 may be attributed to its greater stability at the KV7.2 binding pocket compared to retigabine. CONCLUSION QO-83, as a newly developed Kv7.2 opener, has the advantages of stable properties, strong affinity, and high activity compared with retigabine, and is expected to become a new antiepileptic drug.
Collapse
Affiliation(s)
- Xiangyu Wang
- Hebei Medical University, Postdoctoral Mobile Station of Basic MedicalHebei Medical UniversityShijiazhuangChina
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Yang Zhang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Hui Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangChina
| | - Jiahao Wang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Boxuan Zhang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Tenghui He
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Huiran Zhang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Zhumei Xiong
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xingang Liu
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Jincan Li
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Weidong Zhao
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xiao Liu
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Wei Zhang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Le Yang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Qian Li
- Department of PharmacyShijiazhuang Fifth HospitalShijiazhuangChina
| | - Hailin Zhang
- Hebei Medical University, Postdoctoral Mobile Station of Basic MedicalHebei Medical UniversityShijiazhuangChina
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of Neural and Vascular BiologyMinistry of Education, Hebei Medical UniversityShijiazhuangChina
- Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric DiseasesHebei Medical UniversityShijiazhuangChina
| | - Jinlong Qi
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyHebei Medical UniversityShijiazhuangChina
| | - Qingzhong Jia
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyHebei Medical UniversityShijiazhuangChina
- National Key Laboratory of New Pharmaceutical Preparations and ExcipientsHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
12
|
Li J, Yang Z, Zhang S, Ye Y, He J, Zhang Y, Han H, Kong W, Liu J, Min Y, Shen J, Mei L, Chen Z, Hou P, Guo J, Zhang Q, Yang H. Small molecule inhibits KCNQ channels with a non-blocking mechanism. Nat Chem Biol 2025:10.1038/s41589-024-01834-8. [PMID: 39814994 DOI: 10.1038/s41589-024-01834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel. Ebio3 also showed efficacy in inhibiting currents of KCNQ2 pathogenic gain-of-function mutations, presenting an avenue for VGIC-targeted therapies. Overall, these findings contribute to the understanding of KCNQ2 inhibition and provide insights into developing selective, non-blocking VGIC inhibitors.
Collapse
Affiliation(s)
- Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yangliang Ye
- Suzhou Institute of Materia Medica, Suzhou, China
| | - Jiangnan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huayun Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wan Kong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiangru Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Min
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianghe Mei
- Suzhou Institute of Materia Medica, Suzhou, China
| | - Zongsheng Chen
- Department of Neurology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Osbourne A, Melliza A, Dudley SK, da Silva GSF, Zoccal DB, Revill AL. Cholinergic modulation of upper airway control: maturational changes and mechanisms at cellular and synaptic levels. J Neurophysiol 2025; 133:46-59. [PMID: 39607299 DOI: 10.1152/jn.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep. Here, we discuss respiratory modulation by acetylcholine acting on its metabotropic muscarinic receptors, focusing on the regulation of upper airway muscle activity during sleep and wakefulness and its changing effects with postnatal maturation. We focus on experimental data examining muscarinic receptor distribution patterns, the ion channels they modulate, and how these distribution patterns change with postnatal maturation. We also consider experimental data highlighting cholinergic cellular and synaptic effects on hypoglossal motoneurons and pre-Bötzinger complex neurons and how they might explain changes in the effects of cholinergic modulation with development. Overall, this discussion is critical to comprehending the postnatal maturation in the cholinergic modulation of the respiratory control system leading to opposing effects of muscarinic receptors on upper airway muscle activity in neonate (excitatory) and adult (inhibitory) preparations. The changes in cholinergic pathways associated with dysfunctional upper airway patency control are also discussed in the context of pathologies such as sleep-disordered breathing.
Collapse
Affiliation(s)
- Alexis Osbourne
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Aleanna Melliza
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Sydney K Dudley
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Science Federal, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ann L Revill
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| |
Collapse
|
14
|
Kawai T, Mizutani N, Okamura Y. Voltage- and Ca 2+-inducible PLC activity for analyzing PI(4,5)P 2 sensitivity of ion channels in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184396. [PMID: 39481747 DOI: 10.1016/j.bbamem.2024.184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a key membrane lipid regulating various ion channel activities. Currently, several molecular tools are used to modulate PIP2 levels, each of which has distinct advantages and drawbacks. In this study, we proposed a novel methodology using heterologous Xenopus oocytes to precisely manipulate PIP2 levels using phospholipase C (PLC)-ζ, which hydrolyzes PIP2. Xenopus oocytes injected with PLCζ exhibited notable hyperpolarization-induced Ca2+ influx driven by the increased driving force of Ca2+. High Ca2+ sensitivity of PLCζ facilitated hyperpolarization-induced PLC activity in Xenopus oocytes that was voltage- and Ca2+-dependent. This study demonstrated the regulatory capacity of PLCζ in modulating PIP2-sensitive ion channels, such as the KCNQ2/3 and GIRK channels, in a voltage- and Ca2+-dependent manner. Moreover, activation pathway of PLCζ only requires a two-electrode voltage clamp setup, making it a convenient molecular tool to manipulate PIP2 levels in combination with a voltage-sensing phosphatase (VSP). PLCζ has distinct characteristics and advantages compared to VSP: (1) Hyperpolarization, but not depolarization, reduced the PIP2 levels, (2) PIP2 levels were decreased without any increase in phosphatidylinositol 4-monophosphate (PIP) levels, and (3) PIP2 levels were reduced by Ca2+ administration. Therefore, PLCζ effectively supports understanding how PIP2 regulates ion channels, alongside VSP. Overall, this study highlights the unique characteristics of PLCζ and its distinct advantages in analyzing ion channel regulation by PIP2 and the PLC pathway in Xenopus oocytes.
Collapse
Affiliation(s)
| | - Natsuki Mizutani
- Graduate School of Medicine, Osaka University, Japan; Institute for Protein Research, Osaka University, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Osaka University, Japan; Graduate School of Frontier Biosciences, Osaka University, Japan
| |
Collapse
|
15
|
de La Cruz L, Bui D, Moreno CM, Vivas O. Sympathetic motor neuron dysfunction is a missing link in age-associated sympathetic overactivity. eLife 2024; 12:RP91663. [PMID: 39625473 PMCID: PMC11614386 DOI: 10.7554/elife.91663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.
Collapse
Affiliation(s)
- Lizbeth de La Cruz
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Derek Bui
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
16
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. eLife 2024; 13:RP94342. [PMID: 39625061 PMCID: PMC11614384 DOI: 10.7554/elife.94342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
- Hannah R Martin
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| |
Collapse
|
17
|
Weston MC. KCN Channels "Cue" Up GABA Release from Astrocytes. Epilepsy Curr 2024; 24:429-430. [PMID: 39540125 PMCID: PMC11556643 DOI: 10.1177/15357597241280504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Glial KCNQ K+ Channels Control Neuronal Output by Regulating GABA Release From Glia in C. elegans Graziano B, Wang L, White OR, Kaplan DH, Fernandez-Abascal J, Bianchi L. Neuron . 2024;112(11):1832–1847.e7. doi: 10.1016/j.neuron.2024.02.013. Epub 2024 Mar 8. PMID: 38460523; PMCID: PMC11156561. KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder. KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans ) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Collapse
Affiliation(s)
- Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech, Center for Neurobiology Research, School of Neuroscience, Virginia Tech
| |
Collapse
|
18
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Schwarz JR, Freitag S, Pechmann Y, Hermans-Borgmeyer I, Wagner W, Hornig S, Kneussel M. Purkinje cell hyperexcitability and depressive-like behavior in mice lacking erg3 (ether-à-go-go-related gene) K + channel subunits. SCIENCE ADVANCES 2024; 10:eadn6836. [PMID: 39365861 PMCID: PMC11451553 DOI: 10.1126/sciadv.adn6836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Potassium channels stabilize the resting potential and neuronal excitability. Among them, erg (ether-à-go-go-related gene) K+ channels represent a subfamily of voltage-gated channels, consisting of erg1, erg2, and erg3 subunits; however, their subunit-specific neuronal functions in vivo are barely understood. To find erg3- and erg1-mediated functions, we generated global Kcnh7 (erg3) and conditional Kcnh2 (erg1) knockout mice. We found that erg3 channels stabilize the resting potential and dampen spontaneous activity in cerebellar Purkinje cells (PCs) and hippocampal CA1 neurons, whereas erg1 channels have suprathreshold functions. Lack of erg3 subunits induced hyperexcitability with increased action potential firing in PCs, but not in CA1 neurons. Notably, erg3 depletion caused depressive-like behavior with reduced locomotor activity, strongly decreased digging behavior, and shorter latencies to fall off a rotating wheel, while learning and memory remained unchanged. Our data show that erg K+ channels containing erg3 subunits mediate a neuronal subthreshold K+ current that plays important roles in the regulation of locomotor behavior in vivo.
Collapse
Affiliation(s)
- Jürgen R. Schwarz
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sandra Freitag
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yvonne Pechmann
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Core Facility Transgenic Animals, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Wolfgang Wagner
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sönke Hornig
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
20
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
21
|
Wang H, Qiao Z, Luan K, Xiang W, Chang X, Zhang Y, Wei N, Wang K. Identification of a new retigabine derivative with improved photostability for selective activation of neuronal Kv7 channels and antiseizure activity. Epilepsia 2024; 65:2923-2934. [PMID: 39140981 DOI: 10.1111/epi.18092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Pharmacological activation of neuronal Kv7 channels by the antiepileptic drug retigabine (RTG; ezogabine) has been proven effective in treating partial epilepsy. However, RTG was withdrawn from the market due to the toxicity caused by its phenazinium dimer metabolites, leading to peripheral skin discoloration and retinal abnormalities. To address the undesirable metabolic properties of RTG and prevent the formation of phenazinium dimers, we made chemical modifications to RTG, resulting in a new RTG derivative, 1025c, N,N'-{4-[(4-fluorobenzyl) (prop-2-yn-1-yl)amino]-1,2-phenylene}bis(3,3-dimethylbutanamide). METHODS Whole-cell recordings were used to evaluate Kv7 channel openers. Site-directed mutagenesis and molecular docking were adopted to investigate the molecular mechanism underlying 1025c and Kv7.2 interactions. Mouse seizure models of maximal electroshock (MES), subcutaneous pentylenetetrazol (scPTZ), and PTZ-induced kindling were utilized to test compound antiepileptic activity. RESULTS The novel compound 1025c selectively activates whole-cell Kv7.2/7.3 currents in a concentration-dependent manner, with half-maximal effective concentration of .91 ± .17 μmol·L-1. The 1025c compound also causes a leftward shift in Kv7.2/7.3 current activation toward a more hyperpolarized membrane potential, with a shift of the half voltage of maximal activation (ΔV1/2) of -18.6 ± 3.0 mV. Intraperitoneal administration of 1025c demonstrates dose-dependent antiseizure activities in assays of MES, scPTZ, and PTZ-induced kindling models. Moreover, through site-directed mutagenesis combined with molecular docking, a key residue Trp236 has been identified as critical for 1025c-mediated activation of Kv7.2 channels. Photostability experiments further reveal that 1025c is more photostable than RTG and is unable to dimerize. SIGNIFICANCE Our findings demonstrate that 1025c exhibits potent and selective activation of neuronal Kv7 channels without being metabolized to phenazinium dimers, suggesting its developmental potential as an antiseizure agent for therapy.
Collapse
Affiliation(s)
- Hongbin Wang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Zhen Qiao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kun Luan
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Wei Xiang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiuying Chang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yanru Zhang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drug Discovery, Qingdao University Medical College, Qingdao, China
| | - Ningning Wei
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drug Discovery, Qingdao University Medical College, Qingdao, China
| | - KeWei Wang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drug Discovery, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
22
|
Singh S, Yao L, Shevtsova NA, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.612677. [PMID: 39386611 PMCID: PMC11463365 DOI: 10.1101/2024.09.26.612677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Locomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry, and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. We focused on the properties of putatively rhythmogenic ionic currents and the expression of corresponding ion channels across postnatal time points in mice. We show that subsets of Shox2 INs display voltage-sensitive conductances, in addition to respective ion channels, which may contribute to or shape rhythmic bursting. Persistent inward currents, M-type potassium currents, slow afterhyperpolarization, and T-type calcium currents are enhanced with age. In contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behavior is weight-bearing. These results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature, weight-bearing locomotor behavior.
Collapse
|
23
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
24
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Zhang ZX, Tian Y, Li S, Jing HB, Cai J, Li M, Xing GG. Involvement of HDAC2-mediated kcnq2/kcnq3 genes transcription repression activated by EREG/EGFR-ERK-Runx1 signaling in bone cancer pain. Cell Commun Signal 2024; 22:416. [PMID: 39192337 PMCID: PMC11350972 DOI: 10.1186/s12964-024-01797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China.
| |
Collapse
|
26
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.563853. [PMID: 38045305 PMCID: PMC10690164 DOI: 10.1101/2023.11.21.563853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (KCNA10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (KCNQ) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology
| | | |
Collapse
|
27
|
Oyama M, Watanabe S, Iwai T, Tanabe M. Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn. Neuropharmacology 2024; 254:109994. [PMID: 38750803 DOI: 10.1016/j.neuropharm.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
28
|
Nissenkorn A, Bar L, Ben-Bassat A, Rothstein L, Abdelrahim H, Sokol R, Gabis LV, Attali B. Donepezil as a new therapeutic potential in KCNQ2- and KCNQ3-related autism. Front Cell Neurosci 2024; 18:1380442. [PMID: 39175503 PMCID: PMC11338814 DOI: 10.3389/fncel.2024.1380442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The KCNQ2/KCNQ3 genes encode the voltage-gated K channel underlying the neuronal M-current, regulating neuronal excitability. Loss-of-function (LoF) variants cause neonatal epilepsy, treatable with the M-current-opener retigabine, which is no longer marketed due to side effects. Gain-of-function (GoF) variants cause developmental encephalopathy and autism that could be amenable to M-current, but such therapies are not clinically available. In this translational project, we investigated whether donepezil, a cholinergic drug used in Alzheimer's, suppresses M currents in vitro and improves cognitive symptoms in patients with GoF variants. Methods (1) The effect of 1 μM donepezil on the amplitude of the M-current was measured in excitatory and inhibitory neurons of mouse primary cultured hippocampal cells. M-current was measured using the standard deactivation protocol (holding at 0 mV and deactivation at -60 mV) in the voltage-clamp configuration of the whole-cell patch clamp technique. The impact of donepezil was also examined on the spontaneous firing activity of hippocampal neurons in the current-clamp configuration. (2) Four children with autism, aged 2.5-8 years, with the following GoF variants were enrolled: KCNQ2 (p. Arg144Gln) and KCNQ 3 (p.Arg227Gln, p.Arg230Cys). Patients were treated off-label with donepezil 2.5-5 mg/d for 12 months and assessed with: clinical Global Impression of Change (CGI-c), Childhood Autism Rating Scale 2 (CARS-2), Adaptive Behavior Assessment System-II (ABAS-II), and Child Development Inventory (CDI). Results (1) Application of donepezil for at least 6 min produced a significant inhibition of the M-current with an IC50 of 0.4 μM. At 1 μM, donepezil reduced by 67% the M-current density of excitatory neurons (2.4 ± 0.46 vs. 0.89 ± 0.15 pA/pF, p < 0.05*). In inhibitory neurons, application of 1 μM donepezil produced a lesser inhibition of 59% of the M-current density (1.39 ± 0.43 vs. 0.57 ± 0.21, p > 0.05). Donepezil (1 μM) potently increased by 2.6-fold the spontaneous firing frequency, which was prevented by the muscarinic receptor antagonist atropine (10 μM). (2) The CARS-2 decreased by 3.8 ± 4.9 points (p > 0.05), but in two patients with KCNQ3 variants, the improvement was over the 4.5 clinically relevant threshold. The global clinical change was also clinically significant in these patients (CGI-c = 1). The CDI increased by 65% (p < 0.05*), while the ABAS-II remained unchanged. Discussion Donepezil should be repurposed as a novel alternative treatment for GoF variants in KCNQ2/KCNQ3 encephalopathy.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Lior Bar
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ben-Bassat
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lynn Rothstein
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Hoda Abdelrahim
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Riki Sokol
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Lidia V. Gabis
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Bernard Attali
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Luque MA, Morcuende S, Torres B, Herrero L. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. J Physiol 2024; 602:3769-3791. [PMID: 38976504 DOI: 10.1113/jp285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 μM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 μM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 μM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 μM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 μM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Collapse
Affiliation(s)
- M Angeles Luque
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Morcuende
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Blas Torres
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Luis Herrero
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
30
|
Goniotaki D, Tamagnini F, Biasetti L, Rumpf S, Troakes C, Pollack SJ, Ukwesa S, Sun H, Kraev I, Serpell LC, Noble W, Staras K, Hanger DP. Tau-mediated synaptic dysfunction is coupled with HCN channelopathy. Alzheimers Dement 2024; 20:5629-5646. [PMID: 38994745 PMCID: PMC11350046 DOI: 10.1002/alz.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.
Collapse
Affiliation(s)
- Despoina Goniotaki
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Francesco Tamagnini
- Department of PharmacySchool of ChemistryFood and PharmacyUniversity of ReadingReadingUK
| | - Luca Biasetti
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Svenja‐Lotta Rumpf
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Claire Troakes
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Saskia J. Pollack
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Shalom Ukwesa
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Haoyue Sun
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Igor Kraev
- Electron Microscopy SuiteSTEM FacultyThe Open UniversityMilton KeynesUK
| | - Louise C. Serpell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Wendy Noble
- Department of Clinical and Biomedical SciencesUniversity of ExeterExeterUK
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Diane P. Hanger
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| |
Collapse
|
31
|
Lee CK, Nguyen HS, Kang SJ, Jeong SW. Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats. Biomedicines 2024; 12:1722. [PMID: 39200187 PMCID: PMC11351538 DOI: 10.3390/biomedicines12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.
Collapse
Affiliation(s)
| | | | | | - Seong-Woo Jeong
- Laboratory of Molecular Neurophysiology, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (C.-K.L.); (H.S.N.); (S.J.K.)
| |
Collapse
|
32
|
Chuinsiri N, Siraboriphantakul N, Kendall L, Yarova P, Nile CJ, Song B, Obara I, Durham J, Telezhkin V. Calcium-sensing receptor regulates Kv7 channels via G i/o protein signalling and modulates excitability of human induced pluripotent stem cell-derived nociceptive-like neurons. Br J Pharmacol 2024; 181:2676-2696. [PMID: 38627101 DOI: 10.1111/bph.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Oral Health Center, Suranaree University of TechnologyHospital, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Luke Kendall
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Polina Yarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Ilona Obara
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
33
|
Urena ES, Diezel CC, Serna M, Hala'ufia G, Majuta L, Barber KR, Vanderah TW, Riegel AC. K v7 channel opener retigabine reduces self-administration of cocaine but not sucrose in rats. Addict Biol 2024; 29:e13428. [PMID: 39087789 PMCID: PMC11292668 DOI: 10.1111/adb.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.
Collapse
Affiliation(s)
- Esteban S. Urena
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Cody C. Diezel
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Mauricio Serna
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Grace Hala'ufia
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Lisa Majuta
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Kara R. Barber
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Todd W. Vanderah
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Neuroscience Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Comprehensive Pain and Addiction‐Center (CPA‐C)University of Arizona Health SciencesTucsonArizonaUSA
- The Center of Excellence in Addiction Studies (CEAS)University of ArizonaTucsonArizonaUSA
| | - Arthur C. Riegel
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Neuroscience Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Comprehensive Pain and Addiction‐Center (CPA‐C)University of Arizona Health SciencesTucsonArizonaUSA
- The Center of Excellence in Addiction Studies (CEAS)University of ArizonaTucsonArizonaUSA
- Department of Neuroscience, College of ScienceUniversity of ArizonaTucsonArizonaUSA
- James C. Wyant College of Optical SciencesUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
34
|
Renigunta V, Xhaferri N, Shaikh IG, Schlegel J, Bisen R, Sanvido I, Kalpachidou T, Kummer K, Oliver D, Leitner MG, Lindner M. A versatile functional interaction between electrically silent K V subunits and K V7 potassium channels. Cell Mol Life Sci 2024; 81:301. [PMID: 39003683 PMCID: PMC11335225 DOI: 10.1007/s00018-024-05312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.
Collapse
Affiliation(s)
- Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Nermina Xhaferri
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Imran Gousebasha Shaikh
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Jonathan Schlegel
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Rajeshwari Bisen
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ilaria Sanvido
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Michael G Leitner
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Lindner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany.
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Ophthalmology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
35
|
Stagno C, Mancuso F, Ciaglia T, Ostacolo C, Piperno A, Iraci N, Micale N. In Silico Methods for the Discovery of Kv7.2/7.3 Channels Modulators: A Comprehensive Review. Molecules 2024; 29:3234. [PMID: 38999185 PMCID: PMC11243076 DOI: 10.3390/molecules29133234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.
Collapse
Affiliation(s)
- Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
36
|
Chen J, Sanguinetti MC. A new twist to increase ion flow. Nat Chem Biol 2024; 20:801-802. [PMID: 38267668 DOI: 10.1038/s41589-023-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Jun Chen
- Department of Biochemical Cellular Pharmacology, Genentech, South San Francisco, CA, USA.
| | | |
Collapse
|
37
|
Zhang S, Ma D, Wang K, Li Y, Yang Z, Li X, Li J, He J, Mei L, Ye Y, Chen Z, Shen J, Hou P, Guo J, Zhang Q, Yang H. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat Chem Biol 2024; 20:847-856. [PMID: 38167918 DOI: 10.1038/s41589-023-01515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Collapse
Affiliation(s)
- Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenni Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Li
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiangnan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Yangliang Ye
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Zongsheng Chen
- Department of Neurology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Panpan Hou
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
38
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
39
|
Kiper AK, Wegner S, Kadala A, Rinné S, Schütte S, Winter Z, Bertoune MAR, Touska F, Matschke V, Wrobel E, Streit AK, Lang F, Schmidt C, Schulze-Bahr E, Schäfer MKH, Voelkl J, Seebohm G, Zimmermann K, Decher N. KCNQ1 is an essential mediator of the sex-dependent perception of moderate cold temperatures. Proc Natl Acad Sci U S A 2024; 121:e2322475121. [PMID: 38857404 PMCID: PMC11194602 DOI: 10.1073/pnas.2322475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.
Collapse
Affiliation(s)
- Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Sven Wegner
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Aklesso Kadala
- Department of Anesthesiology, University of Erlangen-Nürnberg, 91054Erlangen, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Zoltán Winter
- Department of Anesthesiology, University of Erlangen-Nürnberg, 91054Erlangen, Germany
| | - Mirjam A. R. Bertoune
- Institute for Anatomy and Cell Biology, Department of Medicinal Cellbiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Filip Touska
- Department of Anesthesiology, University of Erlangen-Nürnberg, 91054Erlangen, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801Bochum, Germany
| | - Eva Wrobel
- Faculty of Chemistry and Biochemistry, Department of Receptor Biochemistry, Ruhr-University Bochum, 44780Bochum, Germany
| | - Anne-Kathrin Streit
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Florian Lang
- Institute for Physiology I, Department of Physiology I, Eberhard Karls University Tübingen, 72074Tübingen, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, 69120Heidelberg, Germany
| | - Eric Schulze-Bahr
- Department for Genetics of Heart Diseases (IfG), University Hospital Münster, 48149Münster, Germany
| | - Martin K.-H. Schäfer
- Institute for Anatomy and Cell Biology, Department of Medicinal Cellbiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Department of Physiology, Johannes Kepler University Linz, 4040Linz, Austria
| | - Guiscard Seebohm
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801Bochum, Germany
- Department for Genetics of Heart Diseases (IfG), University Hospital Münster, 48149Münster, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, University of Erlangen-Nürnberg, 91054Erlangen, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Department of Vegetative Physiology and Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032Marburg, Germany
| |
Collapse
|
40
|
Pastor J, Attali B. Opposite effects of acute and chronic IGF1 on rat dorsal root ganglion neuron excitability. Front Cell Neurosci 2024; 18:1391858. [PMID: 38919332 PMCID: PMC11196413 DOI: 10.3389/fncel.2024.1391858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a polypeptide hormone with a ubiquitous distribution in numerous tissues and with various functions in both neuronal and non-neuronal cells. IGF-1 provides trophic support for many neurons of both the central and peripheral nervous systems. In the central nervous system (CNS), IGF-1R signaling regulates brain development, increases neuronal firing and modulates synaptic transmission. IGF-1 and IGF-IR are not only expressed in CNS neurons but also in sensory dorsal root ganglion (DRG) nociceptive neurons that convey pain signals. DRG nociceptive neurons express a variety of receptors and ion channels that are essential players of neuronal excitability, notably the ligand-gated cation channel TRPV1 and the voltage-gated M-type K+ channel, which, respectively, triggers and dampens sensory neuron excitability. Although many lines of evidence suggest that IGF-IR signaling contributes to pain sensitivity, its possible modulation of TRPV1 and M-type K+ channel remains largely unexplored. In this study, we examined the impact of IGF-1R signaling on DRG neuron excitability and its modulation of TRPV1 and M-type K+ channel activities in cultured rat DRG neurons. Acute application of IGF-1 to DRG neurons triggered hyper-excitability by inducing spontaneous firing or by increasing the frequency of spikes evoked by depolarizing current injection. These effects were prevented by the IGF-1R antagonist NVP-AEW541 and by the PI3Kinase blocker wortmannin. Surprisingly, acute exposure to IGF-1 profoundly inhibited both the TRPV1 current and the spike burst evoked by capsaicin. The Src kinase inhibitor PP2 potently depressed the capsaicin-evoked spike burst but did not alter the IGF-1 inhibition of the hyperexcitability triggered by capsaicin. Chronic IGF-1 treatment (24 h) reduced the spike firing evoked by depolarizing current injection and upregulated the M-current density. In contrast, chronic IGF-1 markedly increased the spike burst evoked by capsaicin. In all, our data suggest that IGF-1 exerts complex effects on DRG neuron excitability as revealed by its dual and opposite actions upon acute and chronic exposures.
Collapse
Affiliation(s)
| | - Bernard Attali
- Department of Physiology and Pharmacology, Faculty of Medicine and Health Sciences and Sagol School of Neurosciences-Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Graziano B, Wang L, White OR, Kaplan DH, Fernandez-Abascal J, Bianchi L. Glial KCNQ K + channels control neuronal output by regulating GABA release from glia in C. elegans. Neuron 2024; 112:1832-1847.e7. [PMID: 38460523 PMCID: PMC11156561 DOI: 10.1016/j.neuron.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Collapse
Affiliation(s)
- Bianca Graziano
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Olivia R White
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daryn H Kaplan
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Zhan D, Zhang J, Su S, Ren X, Zhao S, Zang W, Cao J. TET1 Participates in Complete Freund's Adjuvant-induced Trigeminal Inflammatory Pain by Regulating Kv7.2 in a Mouse Model. Neurosci Bull 2024; 40:707-718. [PMID: 37973721 PMCID: PMC11178721 DOI: 10.1007/s12264-023-01139-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 11/19/2023] Open
Abstract
Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.
Collapse
Affiliation(s)
- Dengcheng Zhan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
43
|
Tian G, Bartas K, Hui M, Chen L, Vasquez JJ, Azouz G, Derdeyn P, Manville RW, Ho EL, Fang AS, Li Y, Tyler I, Setola V, Aoto J, Abbott GW, Beier KT. Molecular and circuit determinants in the globus pallidus mediating control of cocaine-induced behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596557. [PMID: 38853899 PMCID: PMC11160764 DOI: 10.1101/2024.05.29.596557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe PV ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown. Here we show that GPe PV cells control cocaine reward and sensitization by inhibiting GABAergic neurons in the substantia nigra pars reticulata (SNr GABA ), and ultimately, selectively modulating the activity of ventral tegmental area dopamine (VTA DA ) cells projecting to the lateral shell of the nucleus accumbens (NAcLat). A major input to GPe PV cells is the indirect pathway of the dorsomedial striatum (DMS D 2 ), which receives DAergic innervation from collaterals of VTA DA →NAcLat cells, making this a closed-loop circuit. Cocaine likely facilitates reward and sensitization not directly through actions in the GPe, but rather in the upstream DMS, where the cocaine-induced elevation of DA triggers a depression in DMS D 2 cell activity. This cocaine-induced elevation in DA levels can be blocked by inhibition of GPe PV cells, closing the loop. Interestingly, the level of GPe PV cell activity prior to cocaine administration is correlated with the extent of reward and sensitization that animals experience in response to future administration of cocaine, indicating that GPe PV cell activity is a key predictor of future behavioral responses to cocaine. Single nucleus RNA-sequencing of GPe cells indicated that genes encoding voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability are downregulated in GPe PV cells following a single cocaine exposure, contributing to the elevation in GPe PV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPe PV cell excitability and also impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its potential as a therapeutic to counteract psychostimulant use disorder. Our findings illuminate the molecular and circuit mechanisms by which the GPe orchestrates brain-wide changes in response to cocaine that are required for reward, sensitization, and self-administration behaviors.
Collapse
|
44
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
45
|
Kandel MB, Zhuang GZ, Goins WF, Marzulli M, Zhang M, Glorioso JC, Kang Y, Levitt AE, Kwok WM, Levitt RC, Sarantopoulos KD. rdHSV-CA8 non-opioid analgesic gene therapy decreases somatosensory neuronal excitability by activating Kv7 voltage-gated potassium channels. Front Mol Neurosci 2024; 17:1398839. [PMID: 38783904 PMCID: PMC11112096 DOI: 10.3389/fnmol.2024.1398839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic pain is common and inadequately treated, making the development of safe and effective analgesics a high priority. Our previous data indicate that carbonic anhydrase-8 (CA8) expression in dorsal root ganglia (DRG) mediates analgesia via inhibition of neuronal ER inositol trisphosphate receptor-1 (ITPR1) via subsequent decrease in ER calcium release and reduction of cytoplasmic free calcium, essential to the regulation of neuronal excitability. This study tested the hypothesis that novel JDNI8 replication-defective herpes simplex-1 viral vectors (rdHSV) carrying a CA8 transgene (vHCA8) reduce primary afferent neuronal excitability. Whole-cell current clamp recordings in small DRG neurons showed that vHCA8 transduction caused prolongation of their afterhyperpolarization (AHP), an essential regulator of neuronal excitability. This AHP prolongation was completely reversed by the specific Kv7 channel inhibitor XE-991. Voltage clamp recordings indicate an effect via Kv7 channels in vHCA8-infected small DRG neurons. These data demonstrate for the first time that vHCA8 produces Kv7 channel activation, which decreases neuronal excitability in nociceptors. This suppression of excitability may translate in vivo as non-opioid dependent behavioral- or clinical analgesia, if proven behaviorally and clinically.
Collapse
Affiliation(s)
- Munal B. Kandel
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gerald Z. Zhuang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuan Kang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexandra E. Levitt
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy C. Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
46
|
Delgado-Ramírez M, López-Serrano AL, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Crosstalk between cholesterol and PIP 2 in the regulation of Kv7.2/Kv7.3 channels. Biol Chem 2024; 405:161-165. [PMID: 37552610 DOI: 10.1515/hsz-2023-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The activity of neuronal Kv7.2/Kv7.3 channels is critically dependent on PIP2 and finely modulated by cholesterol. Here, we report the crosstalk between cholesterol and PIP2 in the regulation of Kv7.2/Kv7.3 channels. Our results show that currents passing through Kv7.2/Kv7.3 channels in cholesterol-depleted cells, by acute application of methyl-β-cyclodextrin (MβCD), were less sensitive to PIP2 dephosphorylation strategies than those of control cells, suggesting that cholesterol depletion enhances the Kv7.2/Kv7.3-PIP2 interaction. In contrast, the sensitivity of Kv7.2/Kv7.3 channels to acute membrane cholesterol depletion by MβCD was not altered in mutant channels with different apparent affinities for PIP2.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, México
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, México
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, México
| |
Collapse
|
47
|
Mehrdel B, Villalba-Galea CA. Effect of a sensing charge mutation on the deactivation of KV7.2 channels. J Gen Physiol 2024; 156:e202213284. [PMID: 38236165 PMCID: PMC10796215 DOI: 10.1085/jgp.202213284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Potassium-selective, voltage-gated channels of the KV7 family are critical regulators of electrical excitability in many cell types. Removing the outermost putative sensing charge (R198) of the human KV7.2 shifts its activation voltage dependence toward more negative potentials. This suggests that removing a charge "at the top" of the fourth (S4) segment of the voltage-sensing domain facilitates activation. Here, we hypothesized that restoring that charge would bring back the activation to its normal voltage range. We introduced the mutation R198H in KV7.2 with the idea that titrating the introduced histidine with protons would reinstate the sensing charge. As predicted, the mutant's activation voltage dependence changed as a function of the external pH (pHEXT) while modest changes in the activation voltage dependence were observed with the wild-type (WT) channel. On the other hand, the deactivation kinetics of the R198H mutant was remarkably sensitive to pHEXT changes, readily deactivating at pHEXT 6, while becoming slower to deactivate at pHEXT 8. In contrast, the KV7.2 WT displayed modest changes in the deactivation kinetics as a function of pHEXT. This suggested that the charge of residue 198 was critical for deactivation. However, in a surprising turn, the mutant R198Q-a non-titratable mutation-also displayed a high pHEXT sensitivity activity. We thus concluded that rather than the charge at position 198, the protonation status of the channel's extracellular face modulates the open channel stabilization and that the charge of residue 198 is required for the voltage sensor to effectively deactivate the channel, overcoming the stabilizing effect of high pHEXT.
Collapse
Affiliation(s)
- Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Carlos A. Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
48
|
Zhang YJ, Wang TS, Zhu XM, Yu LF, Zhang LM, Zhou YF, Wang Y, Zhou SZ. Biallelic variants of KCNQ2 in early infantile developmental and epileptic encephalopathy. Seizure 2024; 116:159-161. [PMID: 36934001 DOI: 10.1016/j.seizure.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Yun-Jian Zhang
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Tian-Shuang Wang
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao-Mei Zhu
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Li-Fei Yu
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin-Mei Zhang
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yuan-Feng Zhou
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Shui-Zhen Zhou
- Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Wei Y, Xu X, Guo Q, Zhao S, Qiu Y, Wang D, Yu W, Liu Y, Wang K. A novel dual serotonin transporter and M-channel inhibitor D01 for antidepression and cognitive improvement. Acta Pharm Sin B 2024; 14:1457-1466. [PMID: 38487010 PMCID: PMC10935023 DOI: 10.1016/j.apsb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 03/17/2024] Open
Abstract
Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 μmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.
Collapse
Affiliation(s)
- Yaqin Wei
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiangqing Xu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Qiang Guo
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Song Zhao
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Yinli Qiu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Dongli Wang
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–Hong Kong–Macao Greater Bay Area, Guangzhou 510515, China
| |
Collapse
|
50
|
Zhang Y, Xue Y, Ma Y, Du X, Lu B, Wang Y, Yan Z. Improved classification and pathogenicity assessment by comprehensive functional studies in a large data set of KCNQ2 variants. Life Sci 2024; 339:122378. [PMID: 38142737 DOI: 10.1016/j.lfs.2023.122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
AIMS The paucity of functional annotations on hundreds of KCNQ2 variants impedes the diagnosis and treatment of KCNQ2-related disorders. The aims of this work were to determine the functional properties of 331 clinical KCNQ2 variants, interpreted the pathogenicity of 331 variants using functional data,and explored the association between homomeric channel functions and phenotypes. MAIN METHODS We collected 145 KCNQ2 variants from 232 epilepsy patients and 186 KCNQ2 missense variants from the ClinVar database. Whole-cell patch-clamp recording was used to classify the function of 331 variants. Subsequently, we proposed 24 criteria for the pathogenicity interpretation of KCNQ2 variants and used them to assess pathogenicity of 331 variants. Finally, we analyzed the clinical phenotypes of patients carrying these variants, and explored the correlations between functional mechanisms and phenotypes. KEY FINDINGS In the homozygous state, 287 were classified as loss-of-function and 14 as gain-of-function. In the more clinically relative heterozygous state, 200 variants exhibited functional impairment, 121 of which showed dominant-negative effects on wild-type KCNQ2 subunits. After introducing functional data as strong-level evidence to interpret pathogenicity, over half of variants (169/331) were reclassified and 254 were classified as pathogenic/likely pathogenic. Moreover, dominant-negative effect and haploinsufficiency were identified as primary mechanisms in DEE/ID and SeLNE, respectively. The degree of impairment of channel function correlated with the phenotype severity. SIGNIFICANCE Our study reveals the possible cause of KCNQ2-related disorders at the molecular level, provides compelling evidence for clinical classification of KCNQ2 variants, and expands the knowledge of correlations between functional mechanisms and phenotypes.
Collapse
Affiliation(s)
- Yuwei Zhang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuqing Xue
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Zhiqiang Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|