1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Kshirsagar S, Reddy AP, Reddy PH. Beneficial effects of mitophagy enhancers on amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer's disease. Mitochondrion 2025; 83:102038. [PMID: 40157622 DOI: 10.1016/j.mito.2025.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
The purpose of our study is to investigate the beneficial effects of mitophagy enhancers against mutant amyloid precursor protein (APP) and amyloid beta (Aβ) induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD). Research spanning over two decades highlights the critical role of mitochondrial dysfunction and synaptic damage in the pathogenesis of both early-onset and late-onset AD. Emerging evidence suggests impaired clearance of damaged mitochondria is an early pathological event in AD, positioning mitophagy enhancers as potential therapeutic candidates. This study determined the optimal doses of four mitophagy enhancers-Urolithin A (UA), actinonin, tomatidine, and nicotinamide riboside (NR)-using immortalized mouse hippocampal (HT22) neurons. HT22 cells were transfected with mutant APP (mAPP) cDNA and treated with the enhancers. The effects were assessed by evaluating mRNA and protein expression levels of genes involved in mitochondrial dynamics, biogenesis, mitophagy, and synaptic function, alongside cell survival and mitochondrial respiration. Mitochondrial morphology was also examined in treated and untreated mAPP-HT22 cells. Results showed that mAPP-HT22 cells exhibited increased mitochondrial fission, reduced fusion, downregulated synaptic and mitophagy-related genes, diminished cell survival, impaired mitochondrial respiration, and excessively fragmented, shortened mitochondria. Treatment with mitophagy enhancers reversed these deficits, restoring mitochondrial and synaptic health. Enhanced cell survival, upregulation of mitochondrial fusion, synaptic, and mitophagy genes, improved mitochondrial structure, and reduced fragmentation were observed. Notably, UA demonstrated the most robust mitigating effects. These findings underscore the therapeutic potential of mitophagy enhancers, particularly UA, as promising candidates to treat mitochondrial and synaptic dysfunctions in AD.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Arubala P Reddy
- Department of Nutrition, Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2025; 62:6785-6810. [PMID: 39254911 PMCID: PMC12078384 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
7
|
Takhor NH, Phan CW. The role of Ergothioneine in cognition and age-related neurodegenerative disease: a systematic review. Inflammopharmacology 2025:10.1007/s10787-025-01746-6. [PMID: 40249478 DOI: 10.1007/s10787-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Ergothioneine (ET) is an under recognised diet-derived compound which has the potential to be a "longevity vitamin". It was found to be beneficial for cognitive function and age-related neurodegenerative disorder (ARND). Thus, this study was conducted to synthesise the existing evidence of ET's effects on cognition and ARND, emphasizing its potential as a micronutrient for healthy aging. This study also highlights the future prospects of the research regarding ET's effects on cognition and ARND that are suggested in existing literature. Three databases (Pubmed, Scopus, and Web of Science) were used to search for the studies that meet the inclusion and exclusion criteria. A total of 19 studies were included after screening in this review. The risk of bias of each study was assessed using the Office of Health Assessment and Translation (OHAT) risk of bias rating tool. All studies' characteristics and main findings were tabulated according to their type of study. Mechanisms of ET in improving cognitive function and preventing ARND were found to be through its antioxidative, anti-inflammatory and antisenescence properties. Its role in neurotransmission and neuroprotection also contributed to improving cognition and preventing ARND. In conclusion, ET is a potential compound to be explored as its role in cognition and ARND have been discovered through several studies.
Collapse
Affiliation(s)
- Nurfarah Hazwani Takhor
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Neuroscience Research Group (NeuRG), Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Fišar Z, Hroudová J. Functional Analysis of Direct In Vitro Effect of Phosphorylated Tau on Mitochondrial Respiration and Hydrogen Peroxide Production. Biomolecules 2025; 15:495. [PMID: 40305222 PMCID: PMC12025104 DOI: 10.3390/biom15040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer's disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic;
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic;
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| |
Collapse
|
9
|
Mu J, Zhang Z, Jiang C, Geng H, Duan J. Role of Tau Protein Hyperphosphorylation in Diabetic Retinal Neurodegeneration. J Ophthalmol 2025; 2025:3278794. [PMID: 40109357 PMCID: PMC11922625 DOI: 10.1155/joph/3278794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 12/25/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Diabetic retinal neurodegeneration (DRN) is an early manifestation of diabetic retinopathy (DR) characterized by neurodegeneration that precedes microvascular abnormalities in the retina. DRN is characterized by apoptosis of retinal ganglion cells (involves alterations in retinal ganglion cells [RGCs], photoreceptors, amacrine cells and bipolar cells and so on), reactive gliosis, and reduced retinal neuronal function. Tau, a microtubule-associated protein, is a key mediator of neurotoxicity in neurodegenerative diseases, with functions in phosphorylation-dependent microtubule assembly and stabilization, axonal transport, and neurite outgrowth. The hyperphosphorylated tau (p-tau) loses its ability to bind to microtubules and aggregates to form paired helical filaments (PHFs), which further form neurofibrillary tangles (NFTs), leading to abnormal cell scaffolding and cell death. Studies have shown that p-tau can cause degeneration of RGCs in DR, making tau pathology a new pathophysiological model for DR. Here, we review the mechanisms by which p-tau contribute to DRN, including insulin resistance or lack of insulin, mitochondrial damage such as mitophagy impairment, mitochondrial axonal transport defects, mitochondrial bioenergetics dysfunction, and impaired mitochondrial dynamics, Abeta toxicity, and inflammation. Therefore, this article proposes that tau protein hyperphosphorylation plays a crucial role in the pathogenesis of DRN and may serve as a novel therapeutic target for combating DRN.
Collapse
Affiliation(s)
- Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Zengrui Zhang
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Chao Jiang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Haoming Geng
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167617. [PMID: 39647244 DOI: 10.1016/j.bbadis.2024.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) poses a considerable worldwide health obstacle, marked by gradual cognitive deterioration and neuronal loss. While the molecular mechanisms underlying AD pathology have been elucidated to some extent, therapeutic options remain limited. Mitochondrial dysfunction has become recognized as a significant factor in the development of AD, with oxidative stress and disrupted energy metabolism being critical elements. This review explores the mechanistic aspects of small molecule targeting of mitochondria as a potential therapeutic approach for AD. The review explores the role of mitochondrial dysfunction in AD, including its involvement in the accumulation of β-amyloid plaques and neurofibrillary tangles, synaptic dysfunction, and neuronal death. Furthermore, the effects of oxidative stress on mitochondrial function were investigated, including the resulting damage to mitochondrial components. Mitochondrial-targeted therapies have attracted attention for their potential to restore mitochondrial function and reduce AD pathology. The review outlines the latest preclinical and clinical evidence supporting the effectiveness of small molecules in targeting mitochondrial dysfunction in AD. Additionally, it discusses the molecular pathways involved in mitochondrial dysfunction and examines how small molecules can intervene to address these abnormalities. By providing a comprehensive overview of the latest research in this field, this review aims to shed light on the therapeutic potential of small molecule targeting of mitochondria in AD and stimulate further research in this promising area of drug development.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
11
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
12
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Yang HM. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 2025; 14:276. [PMID: 39996748 PMCID: PMC11853439 DOI: 10.3390/cells14040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience-through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
Collapse
Affiliation(s)
- Han-Mo Yang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
14
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Manna PR, Yang S, Manna C, Waters H, Islam MA, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2025; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
16
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Liu J, Zhang Y, Zhang M, Wang Q, Pang Y, Xie J. 6‴-Feruloylspinosin alleviates Aβ-induced toxicity by modulating relevant neurotransmitter and the AMPK/mTOR signaling pathway. Free Radic Biol Med 2025; 227:434-445. [PMID: 39653128 DOI: 10.1016/j.freeradbiomed.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with a serious impact on patients' quality of life. However, single-targeted therapies are not currently effective, and there is a need to find pluripotent drugs with multiple properties. This study aimed to characterize the metabolism of neurotransmitters using a targeted metabolomics approach and to identify the major metabolic pathways mainly affected by 6‴-feruloylspinosin (6-FS). The mechanism of action of 6-FS in the treatment of AD was elucidated based on experimental validation. The metabolomics analysis revealed changes in 13 metabolic profiles by the LC-MS/MS, with significant changes in five amino acid-related neurotransmitters identified primarily. Based on the correlations, we found an effect of mTOR inhibition on the above neurotransmitter metabolism. Furthermore, pretreatment with 6-FS activated the AMPK/mTOR signaling pathway, promoting cellular autophagy, regulating oxidative stress homeostasis and inhibiting mitochondrial dysfunction. In short, these comprehensive analysis methods help clarify the preventive mechanism of 6-FS and potential targets in AD and provide the necessary support for developing natural products to prevent AD.
Collapse
Affiliation(s)
- Jinrui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Mei Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Qing Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yuxin Pang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
18
|
Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y, Feng J, Xia Y, Tan R, Cui F, Yuan J. Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies. Biomedicines 2025; 13:327. [PMID: 40002740 PMCID: PMC11852430 DOI: 10.3390/biomedicines13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative disease (ND) refers to the progressive loss and morphological abnormalities of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Examples of neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Recent studies have shown that mitochondria play a broad role in cell signaling, immune response, and metabolic regulation. For example, mitochondrial dysfunction is closely associated with the onset and progression of a variety of diseases, including ND, cardiovascular diseases, diabetes, and cancer. The dysfunction of energy metabolism, imbalance of mitochondrial dynamics, or abnormal mitophagy can lead to the imbalance of mitochondrial homeostasis, which can induce pathological reactions such as oxidative stress, apoptosis, and inflammation, damage the nervous system, and participate in the occurrence and development of degenerative nervous system diseases such as AD, PD, and ALS. In this paper, the latest research progress of this subject is detailed. The mechanisms of oxidative stress, mitochondrial homeostasis, and mitophagy-mediated ND are reviewed from the perspectives of β-amyloid (Aβ) accumulation, dopamine neuron damage, and superoxide dismutase 1 (SOD1) mutation. Based on the mechanism research, new ideas and methods for the treatment and prevention of ND are proposed.
Collapse
Affiliation(s)
- Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| | - Haocheng Jia
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Xiaoqing Hou
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Ziming Zhu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yuguang Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yingying Feng
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Jingwen Feng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China;
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China;
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou 221004, China;
| | - Fen Cui
- Educational Institute of Behavioral Medicine, Jining Medical University, Jining 272067, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| |
Collapse
|
19
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
20
|
Pedrera L, Prieto Clemente L, Dahlhaus A, Lotfipour Nasudivar S, Tishina S, Olmo González D, Stroh J, Yapici FI, Singh RP, Grotehans N, Langer T, García-Sáez AJ, von Karstedt S. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Cell Death Dis 2025; 16:40. [PMID: 39863602 PMCID: PMC11762985 DOI: 10.1038/s41419-024-07312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed. Yet, how this is regulated and whether it is involved in ferroptotic cell death has remained unexplored. Here, we provide evidence that Drp1 is activated upon experimental induction of ferroptosis and promotes cell death execution and mitochondrial fragmentation. Using time-lapse microscopy, we found that ferroptosis induced mitochondrial fragmentation and loss of mitochondrial membrane potential, but not mitochondrial outer membrane permeabilization. Importantly, Drp1 accelerated ferroptotic cell death kinetics. Notably, this function was mediated by the regulation of mitochondrial dynamics, as overexpression of Mitofusin 2 phenocopied the effect of Drp1 deficiency in delaying ferroptosis cell death kinetics. Mechanistically, we found that Drp1 is phosphorylated and activated after induction of ferroptosis and that it translocates to mitochondria. Further activation at mitochondria through the phosphatase PGAM5 promoted ferroptotic cell death. Remarkably, Drp1 depletion delayed mitochondrial and plasma membrane lipid peroxidation. These data provide evidence for a functional role of Drp1 activation and mitochondrial fragmentation in the acceleration of ferroptotic cell death, with important implications for targeting mitochondrial dynamics in diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lohans Pedrera
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Laura Prieto Clemente
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alina Dahlhaus
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara Lotfipour Nasudivar
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Sofya Tishina
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Olmo González
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- University of Barcelona, Barcelona, Spain
| | - Jenny Stroh
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fatma Isil Yapici
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Randhwaj Pratap Singh
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Nils Grotehans
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| | - Silvia von Karstedt
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Trajano LADSN, Siqueira PB, Rodrigues MMDS, Pires BRB, da Fonseca ADS, Mencalha AL. Does photobiomodulation alter mitochondrial dynamics? Photochem Photobiol 2025; 101:21-37. [PMID: 38774941 DOI: 10.1111/php.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, Panda SK, Kerry RG, Duttaroy AK, Jena AB. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm Sin B 2025; 15:15-34. [PMID: 40041912 PMCID: PMC11873663 DOI: 10.1016/j.apsb.2024.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 05/17/2025] Open
Abstract
Neuroprotection is a proactive approach to safeguarding the nervous system, including the brain, spinal cord, and peripheral nerves, by preventing or limiting damage to nerve cells and other components. It primarily defends the central nervous system against injury from acute and progressive neurodegenerative disorders. Oxidative stress, an imbalance between the body's natural defense mechanisms and the generation of reactive oxygen species, is crucial in developing neurological disorders. Due to its high metabolic rate and oxygen consumption, the brain is particularly vulnerable to oxidative stress. Excessive ROS damages the essential biomolecules, leading to cellular malfunction and neurodegeneration. Several neurological disorders, including Alzheimer's, Parkinson's, Amyotrophic lateral sclerosis, multiple sclerosis, and ischemic stroke, are associated with oxidative stress. Understanding the impact of oxidative stress in these conditions is crucial for developing new treatment methods. Researchers are exploring using antioxidants and other molecules to mitigate oxidative stress, aiming to prevent or slow down the progression of brain diseases. By understanding the intricate interplay between oxidative stress and neurological disorders, scientists hope to pave the way for innovative therapeutic and preventive approaches, ultimately improving individuals' living standards.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Sandeep Kumar Swain
- ICMR-National Institute of Pathology, Sadarjang Hospital Campus, New Delhi 110029, Delhi, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Prabhat Kumar Nayak
- Bioanalytical Sciences, Research and Development, Enzene Biosciences Limited, Pune 410501, Maharashtra, India
| | - Vishakha Raina
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Sandeep Kumar Panda
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune 411007, India
| |
Collapse
|
23
|
Yuan Y, Zhao G, Zhao Y. Dysregulation of energy metabolism in Alzheimer's disease. J Neurol 2024; 272:2. [PMID: 39621206 PMCID: PMC11611936 DOI: 10.1007/s00415-024-12800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its etiology and associated mechanisms are still unclear, which largely hinders the development of AD treatment strategies. Many studies have shown that dysregulation of energy metabolism in the brain of AD is closely related to disease development. Dysregulation of brain energy metabolism in AD brain is associated with reduced glucose uptake and utilization, altered insulin signaling pathways, and mitochondrial dysfunction. In this study, we summarized the relevant pathways and mechanisms regarding the dysregulation of energy metabolism in AD. In addition, we highlight the possible role of mitochondrial dysfunction as a central role in the AD process. A deeper understanding of the relationship between energy metabolism dysregulation and AD may provide new insights for understanding learning memory impairment in AD patients and in improving AD prevention and treatment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Gang Zhao
- China Resources Pharmaceutical Commercial Group, Beijing, China
| | - Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
24
|
Xiyang Y, Gao J, Ding M, Ren X, Appleby BS, Leverenz JB, Miyagi M, Pillai JA, Perry G, Wang X. Exacerbated mitochondrial dynamic abnormalities without evident tau pathology in rapidly progressive Alzheimer's disease. J Alzheimers Dis 2024; 102:1074-1083. [PMID: 39584307 DOI: 10.1177/13872877241295403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Rapidly progressive Alzheimer's disease (rpAD) is a clinical subtype distinguished by its rapid cognitive decline and shorter disease duration. rpAD, like typical AD (tAD), is characterized by underlying neuropathology of amyloid plaques and neurofibrillary tangles. There is early evidence that the composition of amyloid plaques could vary between the rpAD and tAD. Differences in tau pathology between rpAD and tAD are also of interest. Additionally, mitochondrial dysfunction is a key early-stage change in tAD but has not yet been evaluated in rpAD. OBJECTIVE To deepen our understanding of the underlying pathophysiological processes specific to rpAD, we explore potential changes in tau pathology and mitochondrial dysfunction in rpAD compared to tAD. METHODS We performed immunohistochemical and immunoblot analyses of tau, phosphorylated tau, and key regulators of mitochondrial dynamics and bioenergetics in postmortem human temporal cortex tissues obtained from patients diagnosed with tAD or rpAD, and tissues from age-matched normal subjects. RESULTS tAD was characterized by significant tau phosphorylation at the PHF1 epitope. Unexpectedly, rpAD showed milder PHF1 tau phosphorylation, similar to that of age-matched controls. Despite these differences in tau pathology, both tAD and rpAD exhibited a significant decrease in the key regulators of mitochondrial dynamics and bioenergetics compared to controls. However, the decline in mitochondrial dynamics regulators was more pronounced in rpAD. CONCLUSIONS These findings suggest divergent pathological processes between tAD and rpAD, specifically in terms of tau pathology and mitochondrial dynamic abnormalities, which underscore the necessity for different approaches to understand and potentially treat various AD subtypes.
Collapse
Affiliation(s)
- Yanbin Xiyang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ju Gao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Mao Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Xiaojia Ren
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brian S Appleby
- Departments of Neurology, Pathology, and Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James B Leverenz
- Cleveland Clinic Neurological Institute, Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jagan A Pillai
- Cleveland Clinic Neurological Institute, Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Gao QC, Liu GL, Wang Q, Zhang SX, Ji ZL, Wang ZJ, Wu MN, Yu Q, He PF. A promising drug repurposing approach for Alzheimer's treatment: Givinostat improves cognitive behavior and pathological features in APP/PS1 mice. Redox Biol 2024; 78:103420. [PMID: 39577323 PMCID: PMC11621940 DOI: 10.1016/j.redox.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by memory loss, speech and motor defects, personality changes, and psychological disorders. The exact cause of AD remains unclear. Current treatments focus on maintaining neurotransmitter levels or targeting β-amyloid (Aβ) protein, but these only alleviate symptoms and do not reverse the disease. Developing new drugs is time-consuming, costly, and has a high failure rate. Utilizing multi-omics for drug repositioning has emerged as a new strategy. Based on transcriptomic perturbation data of over 40,000 drugs in human cells from the LINCS-L1000 database, our study employed the Jaccard index and hypergeometric distribution test for reverse transcriptional feature matching analysis, identifying Givinostat as a potential treatment for AD. Our research found that Givinostat improved cognitive behavior and brain pathology in models and enhanced hippocampal synaptic plasticity. Transcriptome sequencing revealed increased expression of mitochondrial respiratory chain complex proteins in the brains of APP/PS1 mice after Givinostat treatment. Functionally, Givinostat restored mitochondrial membrane potential, reduced reactive oxygen species, and increased ATP content in Aβ-induced HT22 cells. Additionally, it improved mitochondrial morphology and quantity in the hippocampus of APP/PS1 mice and enhanced brain glucose metabolic activity. These effects are linked to Givinostat promoting mitochondrial biogenesis and improving mitochondrial function. In summary, Givinostat offers a promising new strategy for AD treatment by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Ge-Liang Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Zhi-Lin Ji
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhao-Jun Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Mei-Na Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Qi Yu
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
26
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
27
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
28
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
29
|
Islam MA, Kshirsagar S, Reddy AP, Sehar U, Reddy PH. Use and Reuse of Animal Behavioral, Molecular, and Biochemical Data in Alzheimer's Disease Research: Focus on 3Rs and Saving People's Tax Dollars. J Alzheimers Dis Rep 2024; 8:1171-1184. [PMID: 39247873 PMCID: PMC11380314 DOI: 10.3233/adr-240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Several decades of research on cell and animal models contributed tremendously to understanding human diseases. Particularly, research on rodents and non-human primates revealed that animal research is a major and important component in biomedical research in learning complex pathophysiological processes. Further, animal research helped us to understand human diseases, such as Alzheimer's disease. In addition, animal research has also helped us to test hundreds of drugs and develop treatments for human use. Researchers can gain a better understanding of key biological and physiological processes in humans by comparing them to laboratory animals. Based on their relevance and resemblance to people, or even usual living conditions, scientists rationalize the use of particular animal models in their studies. It is suggested that in the National Institutes of Health and other agencies-funded research, animal models should be carefully selected to study the biology and pathophysiology of human health and diseases such as Alzheimer's disease and other dementias. However, it is critical to use a minimum number of animals for human research. Further, it is also noted that the use and reuse of behavioral, molecular, and biochemical data from wild-type (WT) control mice with mutant lines of disease models, as long as the genetic background is the same in both WT and disease mice. On the other hand, anonymous readers have challenged the use and reuse of WT mice data for comparison. In the current article, we discuss the minimum utility of animals, covering the 3Rs, Replacement, Reduction, and Refinement, and also discuss the use and reuse of behavioral, molecular, and biochemical data.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Department of Nutritional Sciences, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
30
|
Yu L, Wang H, Yao Q, Li K, Qu L, Tang B, Zeng W, Qiao G, Tang Y, Hu G, Hu G, Wong VKW, Wang Q, Qin D, Wu J, Zhou X, Sun X, Law BYK, Wu A. Thonningianin A from Penthorum chinense Pursh as a targeted inhibitor of Alzheimer's disease-related β-amyloid and Tau proteins. Phytother Res 2024; 38:4815-4831. [PMID: 39225174 DOI: 10.1002/ptr.8060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathogenesis mechanisms. Among these, β-amyloid plaques and hyperphosphorylated Tau protein tangles have been identified as significant contributors to neuronal damage. This study investigates thonningianin A (TA) from Penthorum chinense Pursh (PCP) as a potential inhibitor targeting these pivotal proteins in AD progression. The inhibitory potential of PCP and TA on Aβ fibrillization was initially investigated. Subsequently, ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and biolayer interferometry were employed to determine TA's affinity for both Aβ and Tau. The inhibitory effects of TA on the levels and cytotoxicity of AD-related proteins were then assessed. In 3xTg-AD mice, the therapeutic potential of TA was evaluated. Additionally, the molecular interactions between TA and either Aβ or Tau were explored using molecular docking. We found that PCP-total ethanol extract and TA significantly inhibited Aβ fibrillization. Additionally, TA demonstrated strong affinity to Aβ and Tau, reduced levels of amyloid precursor protein and Tau, and alleviated mitochondrial distress in PC-12 cells. In 3xTg-AD mice, TA improved cognition, reduced Aβ and Tau pathology, and strengthened neurons. Moreover, molecular analyses revealed efficient binding of TA to Aβ and Tau. In conclusion, TA, derived from PCP, shows significant neuroprotection against AD proteins, highlighting its potential as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Huimiao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Keru Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Liqun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Bin Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Gan Qiao
- Nucleic Acid Medicine of Luzhou Key Laboratory, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qiong Wang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Luo X, Xie X, Zhang L, Shi Y, Fu B, Yuan L, Zhang Y, Jiang Y, Ke W, Yang B. Uncovering the mechanisms of host mitochondrial cardiolipin release in syphilis: Insights from human microvascular endothelial cells. Int J Med Microbiol 2024; 316:151627. [PMID: 38908301 DOI: 10.1016/j.ijmm.2024.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Fu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
32
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
33
|
Choi EH, Kim MH, Park SJ. Targeting Mitochondrial Dysfunction and Reactive Oxygen Species for Neurodegenerative Disease Treatment. Int J Mol Sci 2024; 25:7952. [PMID: 39063194 PMCID: PMC11277296 DOI: 10.3390/ijms25147952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.
Collapse
Affiliation(s)
| | | | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea; (E.-H.C.); (M.-H.K.)
| |
Collapse
|
34
|
Ye J, Wan H, Chen S, Liu GP. Targeting tau in Alzheimer's disease: from mechanisms to clinical therapy. Neural Regen Res 2024; 19:1489-1498. [PMID: 38051891 PMCID: PMC10883484 DOI: 10.4103/1673-5374.385847] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-β plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-β-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-β in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jinwang Ye
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Huali Wan
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sihua Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Gong-Ping Liu
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
35
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
36
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
37
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
38
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
39
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
40
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
41
|
Kahl M, Xu Z, Arumugam S, Edens BM, Fischietti M, Zhu AC, Platanias LC, He C, Zhuang X, Ma YC. m6A RNA methylation regulates mitochondrial function. Hum Mol Genet 2024; 33:969-980. [PMID: 38483349 PMCID: PMC11102592 DOI: 10.1093/hmg/ddae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Indexed: 05/20/2024] Open
Abstract
RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Michael Kahl
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Saravanan Arumugam
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Brittany M Edens
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
| | - Allen C Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 924 East 57th Street, Chicago, IL 60612, United States
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, United States
| | - Xiaoxi Zhuang
- Department of Neurobiology, and Committee on Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, United States
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, United States
| |
Collapse
|
42
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
43
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
44
|
Zhang Q, Zhang X, Yang B, Li Y, Sun X, Li X, Sui P, Wang Y, Tian S, Wang C. Ligustilide-loaded liposome ameliorates mitochondrial impairments and improves cognitive function via the PKA/AKAP1 signaling pathway in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14460. [PMID: 37718506 PMCID: PMC10916432 DOI: 10.1111/cns.14460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Oxidative stress is an early event in the development of Alzheimer's disease (AD) and maybe a pivotal point of interaction governing AD pathogenesis; oxidative stress contributes to metabolism imbalance, protein misfolding, neuroinflammation and apoptosis. Excess reactive oxygen species (ROS) are a major contributor to oxidative stress. As vital sources of ROS, mitochondria are also the primary targets of ROS attack. Seeking effective avenues to reduce oxidative stress has attracted increasing attention for AD intervention. METHODS We developed liposome-packaged Ligustilide (LIG) and investigated its effects on mitochondrial function and AD-like pathology in the APPswe/PS1dE9 (APP/PS1) mouse model of AD, and analyzed possible mechanisms. RESULTS We observed that LIG-loaded liposome (LIG-LPs) treatment reduced oxidative stress and β-amyloid (Aβ) deposition and mitigated cognitive impairment in APP/PS1 mice. LIG management alleviated the destruction of the inner structure in the hippocampal mitochondria and ameliorated the imbalance between mitochondrial fission and fusion in the APP/PS1 mouse brain. We showed that the decline in cAMP-dependent protein kinase A (PKA) and A-kinase anchor protein 1 for PKA (AKAP1) was associated with oxidative stress and AD-like pathology. We confirmed that LIG-mediated antioxidant properties and neuroprotection were involved in upregulating the PKA/AKAP1 signaling in APPswe cells in vitro. CONCLUSION Liposome packaging for LIG is relatively biosafe and can overcome the instability of LIG. LIG alleviates mitochondrial dysfunctions and cognitive impairment via the PKA/AKAP1 signaling pathway. Our results provide experimental evidence that LIG-LPs may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiangxiang Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Bing Yang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yan Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xue‐Heng Sun
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiang Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ping Sui
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yi‐Bin Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Shu‐Yu Tian
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Chun‐Yan Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
- Translational Medicine Laboratory, Basic College of MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
45
|
Sexton CE, Bitan G, Bowles KR, Brys M, Buée L, Maina MB, Clelland CD, Cohen AD, Crary JF, Dage JL, Diaz K, Frost B, Gan L, Goate AM, Golbe LI, Hansson O, Karch CM, Kolb HC, La Joie R, Lee SE, Matallana D, Miller BL, Onyike CU, Quiroz YT, Rexach JE, Rohrer JD, Rommel A, Sadri‐Vakili G, Schindler SE, Schneider JA, Sperling RA, Teunissen CE, Weninger SC, Worley SL, Zheng H, Carrillo MC. Novel avenues of tau research. Alzheimers Dement 2024; 20:2240-2261. [PMID: 38170841 PMCID: PMC10984447 DOI: 10.1002/alz.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
Collapse
Affiliation(s)
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of MedicineBrain Research InstituteMolecular Biology InstituteUniversity of California Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Kathryn R. Bowles
- UK Dementia Research Institute at the University of EdinburghCentre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Luc Buée
- Univ LilleInsermCHU‐LilleLille Neuroscience and CognitionLabEx DISTALZPlace de VerdunLilleFrance
| | - Mahmoud Bukar Maina
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexFalmerUK
- Biomedical Science Research and Training CentreYobe State UniversityDamaturuNigeria
| | - Claire D. Clelland
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ann D. Cohen
- University of PittsburghSchool of MedicineDepartment of Psychiatry and Alzheimer's disease Research CenterPittsburghPennsylvaniaUSA
| | - John F. Crary
- Departments of PathologyNeuroscience, and Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeffrey L. Dage
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Bess Frost
- Sam & Ann Barshop Institute for Longevity & Aging Studies Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders Department of Cell Systems and Anatomy University of Texas Health San AntonioSan AntonioTexasUSA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research InstituteFeil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Alison M Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lawrence I. Golbe
- CurePSPIncNew YorkNew YorkUSA
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityLundSweden
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Suzee E. Lee
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Diana Matallana
- Aging InstituteNeuroscience ProgramPsychiatry DepartmentSchool of MedicinePontificia Universidad JaverianaBogotáColombia
- Mental Health DepartmentHospital Universitario Fundaciòn Santa FeBogotaColombia
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryJohns Hopkins University School of MedicineBaltimoreBaltimoreMarylandUSA
| | - Yakeel T. Quiroz
- Departments of Psychiatry and NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jessica E. Rexach
- Program in NeurogeneticsDepartment of NeurologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreUniversity College London Institute of Neurology, Queen SquareLondonUK
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey &AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Reisa A. Sperling
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryClinical Chemistry departmentAmsterdam NeuroscienceProgram NeurodegenerationAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
46
|
Leitner D, Pires G, Kavanagh T, Kanshin E, Askenazi M, Ueberheide B, Devinsky O, Wisniewski T, Drummond E. Similar brain proteomic signatures in Alzheimer's disease and epilepsy. Acta Neuropathol 2024; 147:27. [PMID: 38289539 PMCID: PMC10827928 DOI: 10.1007/s00401-024-02683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The prevalence of epilepsy is increased among Alzheimer's Disease (AD) patients and cognitive impairment is common among people with epilepsy. Epilepsy and AD are linked but the shared pathophysiological changes remain poorly defined. We aim to identify protein differences associated with epilepsy and AD using published proteomics datasets. We observed a highly significant overlap in protein differences in epilepsy and AD: 89% (689/777) of proteins altered in the hippocampus of epilepsy patients were significantly altered in advanced AD. Of the proteins altered in both epilepsy and AD, 340 were altered in the same direction, while 216 proteins were altered in the opposite direction. Synapse and mitochondrial proteins were markedly decreased in epilepsy and AD, suggesting common disease mechanisms. In contrast, ribosome proteins were increased in epilepsy but decreased in AD. Notably, many of the proteins altered in epilepsy interact with tau or are regulated by tau expression. This suggests that tau likely mediates common protein changes in epilepsy and AD. Immunohistochemistry for Aβ and multiple phosphorylated tau species (pTau396/404, pTau217, pTau231) showed a trend for increased intraneuronal pTau217 and pTau231 but no phosphorylated tau aggregates or amyloid plaques in epilepsy hippocampal sections. Our results provide insights into common mechanisms in epilepsy and AD and highlights the potential role of tau in mediating common pathological protein changes in epilepsy and AD.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | | | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| | - Eleanor Drummond
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
47
|
Reiss AB, Gulkarov S, Jacob B, Srivastava A, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Mitochondria in Alzheimer's Disease Pathogenesis. Life (Basel) 2024; 14:196. [PMID: 38398707 PMCID: PMC10890468 DOI: 10.3390/life14020196] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-β and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Benna Jacob
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Mark M. Stecker
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA;
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
48
|
Alonso ADC, El Idrissi A, Candia R, Morozova V, Kleiman FE. Tau: More than a microtubule-binding protein in neurons. Cytoskeleton (Hoboken) 2024; 81:71-77. [PMID: 37819542 DOI: 10.1002/cm.21795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Tau protein was discovered as a microtubule-associated protein nearly 50 years ago, and our understanding of tau has revolved around that role. Even with tau's rise to stardom as a central player in neurodegenerative disease, therapeutic efforts have largely been targeted toward cytoskeletal changes. While some studies hinted toward non-cytoskeletal roles for tau, it is only fairly recently that these ideas have begun to receive considerable attention. Many new binding partners for tau have been identified, including DNA, RNA, RNA-binding proteins, some receptors, and other tau molecules. The diversity of tau binding partners coupled with the discovery of tau other than axonal compartments such as nucleus, dendrites, and synapses have led to the proposal of novel functions for tau in roles such as nuclear stability, cell signaling, transcriptional processing, and protein synthesis. Tau self-assembly in particular has made an impact, leading to the hypothesis that a prion-like function of hyperphosphorylated tau is central to tauopathies. With tau emerging as a multifaceted protein that operates in many parts of the cell and with many molecular partners, the field of tau biology is primed for discoveries that can provide new perspectives on both the unique biochemistry of tau and the nature of devastating neurological diseases.
Collapse
Affiliation(s)
- Alejandra Del Carmen Alonso
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Abdeslem El Idrissi
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Robert Candia
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Viktoriya Morozova
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
- Helene Fuld College of Nursing, New York, New York, USA
| | - Frida Esther Kleiman
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
- Chemistry Department, Hunter College, The City University of New York, New York, New York, USA
| |
Collapse
|
49
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
50
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|