1
|
Cem Kusdemir B, Kozgus Guldu O, Yurt Kilcar A, Ilker Medine E. Preparation and in vitro investigation of prostate-specific membrane antigen targeted Lycopene loaded niosomes on prostate cancer cells. Int J Pharm 2023; 640:123013. [PMID: 37149111 DOI: 10.1016/j.ijpharm.2023.123013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
In this study, it's aimed to develop prostate-specific membrane antigen (PSMA) targeted niosomes with a multifunctional theranostic approach. With this aim, PSMA-targeted niosomes were synthesized by a thin-film hydration method followed by bath sonication. Drug-loaded niosomes (Lyc-ICG-Nio) were coated with DSPE-PEG-COOH (Lyc-ICG-Nio-PEG) and subsequently anti-PSMA antibody conjugated to niosomes (Lyc-ICG-Nio-PSMA) with amide bond formation. Dynamic light scattering (DLS) analysis showed that the hydrodynamic diameter of Lyc-ICG-Nio-PSMA was approximately 285 nm and it was found with transmission electron microscopy (TEM) that the niosome formulation was spherical. Encapsulation efficiency was 45% and %65 upon dual encapsulation of ICG and lycopene. The results of fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated that PEG coating and antibody coupling were successfully done. In vitro studies showed that cell viability decreased when lycopene was entrapped into niosomes applied while the total apoptotic cell population rose slightly. When Lyc-ICG-Nio-PSMA was applied to cells, decreased cell viability and enhanced apoptotic effect were seen compared to those for Lyc-ICG-Nio. In conclusion, it was demonstrated that targeted niosomes displayed improved cellular association and decreased cell viability on PSMA+ cells.
Collapse
Affiliation(s)
- Bekir Cem Kusdemir
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova-Izmir, 35100 Turkey
| | - Ozge Kozgus Guldu
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey.
| | - Ayfer Yurt Kilcar
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey.
| | - Emin Ilker Medine
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova-Izmir, 35100 Turkey; Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Bornova-Izmir, 35100 Turkey
| |
Collapse
|
2
|
Targeted delivery of nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
3
|
Proshkina G, Deyev S, Ryabova A, Tavanti F, Menziani MC, Cohen R, Katrivas L, Kotlyar A. DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34645-34651. [PMID: 31448887 DOI: 10.1021/acsami.9b10441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have demonstrated that designed ankyrin repeat protein (DARPin) _9-29, which specifically targets human epidermal growth factor receptor 2 (HER2), binds tightly to gold mini nanorods (GNRs). Molecular dynamic simulations showed that a single layer of DARPin_9-29 molecules is formed on the surface of the nanorod and that conjugation with the nanorod does not involve the protein's domain responsible for specific binding to HER2. The nanorod-DARPin (DARPin-GNR) conjugate is specifically bound (in nanomolar concentrations) to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2. Illumination by near-infrared light (850 nm) led to almost complete eradication of the conjugate-treated SK-BR-3 cells; the viability of epithelial human breast cancer cells expressing normal amounts of the receptor was much less affected by the illumination. The results reported here pave the way toward application of DARPin-GNR conjugates in phototherapy of cancer.
Collapse
Affiliation(s)
- Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St , Moscow 119991 , Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Roy Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| |
Collapse
|
4
|
Avvakumova S, Pandolfi L, Soprano E, Moretto L, Bellini M, Galbiati E, Rizzuto MA, Colombo M, Allevi R, Corsi F, Sánchez Iglesias A, Prosperi D. Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. NANOSCALE ADVANCES 2019; 1:3626-3638. [PMID: 36133537 PMCID: PMC9419579 DOI: 10.1039/c9na00241c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 06/01/2023]
Abstract
The efficient targeting of cancer cells depends on the success of obtaining the active targeting of overexpressed receptors. A very accurate design of nanoconjugates should be done via the selection of the conjugation strategy to achieve effective targeted nanoconjugates. Here, we present a detailed study of cetuximab-conjugated nonspherical gold nanocages for the active targeting of triple-negative breast cancer cells, including MDA-MB-231 and MDA-MB-468. A few different general strategies were selected for monoclonal antibody conjugation to the nanoparticle surface. By varying the bioconjugation conditions, including antibody orientation or the presence of a polymeric spacer or recombinant protein biolinker, we demonstrate the importance of a rational design of nanoconjugates. A quantitative study of gold content via ICP-AES allowed us to compare the effectiveness of cellular uptake as a function of the conjugation strategy and confirmed the active nature of nanoparticle internalization in cancer cells via epidermal growth factor receptor recognition, corroborating the importance of the rational design of nanomaterials for nanomedicine.
Collapse
Affiliation(s)
- S Avvakumova
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Pandolfi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Fondazione Policlinico San Matteo Pavia Italy
| | - E Soprano
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Moretto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Bellini
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - E Galbiati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M A Rizzuto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - R Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| | - A Sánchez Iglesias
- Bionanoplasmonics Laboratory, CICbiomaGUNE Paseo de Miramón 182 20014 Donostia-San Sebastián Spain
| | - D Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| |
Collapse
|
5
|
Lin YL, Tsai NM, Chen CH, Liu YK, Lee CJ, Chan YL, Wang YS, Chang YC, Lin CH, Huang TH, Wang CC, Chi KH, Liao KW. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. J Nanobiotechnology 2019; 17:25. [PMID: 30728015 PMCID: PMC6364477 DOI: 10.1186/s12951-019-0457-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background A cationic liposome-PEG-PEI complex (LPPC) was employed as a carrier for achieving targeted delivery of drug to human epidermal growth factor receptor-2 (HER2/neu)-expressing breast cancer cells. LPPC can be easily loaded with an anti-tumor drug and non-covalently associated with an anti-tumor antibody such as Herceptin that is clinically used to rapidly form immunoparticles within 1 h. Results Drug-loaded LPPC have an average size about 250 nm and a zeta potential of about 40 mV. Herceptin was complexed onto surface of the LPPC to form the drug/LPPC/Herceptin complexes. The size of curcumin/LPPC/Herceptin complexes were 280 nm and the zeta potentials were about 23 mV. Targeting ability of this delivery system was demonstrated through specific binding on surface of cells and IVIS images in vivo, which showed specific binding in HER2-positive SKBR3 cells as compared to HER2-negative Hs578T cells. Only the drug/LPPC/Herceptin complexes displayed dramatically increased the cytotoxic activity in cancer cells. Both in vitro and in vivo results indicated that Herceptin adsorbed on LPPC directed the immunocomplex towards HER2/neu-positive cells but not HER2/neu-negative cells. The complexes with either component (curcumin or doxorubicin) used in the LPPC-delivery system provided a better therapeutic efficacy compared to the drug treatment alone and other treatment groups, including clinical dosages of Herceptin and LipoDox, in a xenografted model. Conclusions LPPC displays important clinical implications by easily introducing a specific targeting characteristic to drugs utilized for breast cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12951-019-0457-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Nu-Man Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Pathology and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| | - Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 30068, Taiwan, ROC
| | - Yen-Ku Liu
- Department of Biological Science and Technology, National Chiao Tung University, No.75 Po-Ai Street, Hsinchu, 30068, Taiwan, ROC
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi College of Technology, Hualien, 97005, Taiwan, ROC
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei, 11114, Taiwan, ROC
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin-Kong Wu Ho-Su Memorial Hospital, No.95, Wenchang Rd., Shilin Dist., Taipei City, 11101, Taiwan, ROC
| | - Yuan-Ching Chang
- Department of Surgery, Mackay Memorial Hospital, Taipei, 10491, Taiwan, ROC
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10491, Taiwan, ROC
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan, ROC.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, ROC.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, 11219, Taiwan, ROC
| | - Chao Ching Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan, ROC
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin-Kong Wu Ho-Su Memorial Hospital, No.95, Wenchang Rd., Shilin Dist., Taipei City, 11101, Taiwan, ROC.
| | - Kuang-Wen Liao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 30068, Taiwan, ROC. .,Department of Biological Science and Technology, National Chiao Tung University, No.75 Po-Ai Street, Hsinchu, 30068, Taiwan, ROC. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC. .,Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, 30068, Taiwan, ROC.
| |
Collapse
|
6
|
Colombo M, Rizzuto MA, Pacini C, Pandolfi L, Bonizzi A, Truffi M, Monieri M, Catrambone F, Giustra M, Garbujo S, Fiandra L, Corsi F, Prosperi D, Mazzucchelli S. Half-Chain Cetuximab Nanoconjugates Allow Multitarget Therapy of Triple Negative Breast Cancer. Bioconjug Chem 2018; 29:3817-3832. [PMID: 30350574 DOI: 10.1021/acs.bioconjchem.8b00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. The conjugation of mAbs to nanoparticles has been broadly exploited to improve the targeting efficiency of drug nanocarriers taking advantage of high binding efficacy and target selectivity of antibodies for specific cell receptors. However, the therapeutic implications of nanoconjugation have been poorly considered. In this study, half-chain fragments of the anti-EGFR mAb cetuximab were conjugated to colloidal nanoparticles originating stable nanoconjugates that were investigated as surrogates of therapeutic mAbs in triple negative breast cancer (TNBC). Three TNBC cell lines were selected according to EGFR expression, which regulates activation of MAPK/ERK and PI3K/Akt pathways, and to distinctive molecular profiling including KRAS, PTEN, and BRCA1 mutations normally associated with diverse sensitivity to treatment with cetuximab. The molecular mechanisms of action of nanoconjugated half-chain mAb, including cell targeting, interference with downstream signaling pathways, proliferation, cell cycle, and apoptosis, along with triggering of ADCC response, were investigated in detail in sensitive and resistant TNBC cells. We found that half-chain mAb nanoconjugation was able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested a role of BRCA1 mutation in TNBC resistance to cetuximab alone, whereas its effect could be circumvented using half-chain cetuximab nanoconjugates, suggesting that nanoconjugation not only improved the antibody activity but also exerted different mechanisms of action. Our results provide robust evidence of the potential of half-chain antibody nanoconjugates in the treatment of TNBC, which could offer a new paradigm for therapeutic antibody administration, potentially allowing improved curative efficiency and reduced minimal effective dosages in both sensitive and resistant tumors.
Collapse
Affiliation(s)
- Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Maria Antonietta Rizzuto
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Chiara Pacini
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Laura Pandolfi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Arianna Bonizzi
- Nanomedicine Laboratory , ICS Maugeri S.p.A. SB , via S. Maugeri 10 , 27100 Pavia , Italy
| | - Marta Truffi
- Department of Biomedical and Clinical Sciences "L. Sacco" , University of Milano , via G. B. Grassi 74 , 20157 Milano , Italy
| | - Matteo Monieri
- Department of Biomedical and Clinical Sciences "L. Sacco" , University of Milano , via G. B. Grassi 74 , 20157 Milano , Italy
| | - Francesco Catrambone
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy.,Department of Biomedical and Clinical Sciences "L. Sacco" , University of Milano , via G. B. Grassi 74 , 20157 Milano , Italy
| | - Marco Giustra
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Stefania Garbujo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Luisa Fiandra
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco" , University of Milano , via G. B. Grassi 74 , 20157 Milano , Italy.,Nanomedicine Laboratory , ICS Maugeri S.p.A. SB , via S. Maugeri 10 , 27100 Pavia , Italy.,Surgery Department, Breast Unit , ICS Maugeri S.p.A. SB , via S. Maugeri 10 , 27100 Pavia , Italy
| | - Davide Prosperi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy.,Nanomedicine Laboratory , ICS Maugeri S.p.A. SB , via S. Maugeri 10 , 27100 Pavia , Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco" , University of Milano , via G. B. Grassi 74 , 20157 Milano , Italy
| |
Collapse
|
7
|
Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces 2018; 174:42-55. [PMID: 30428431 DOI: 10.1016/j.colsurfb.2018.10.051] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Recently, magnetic fluid hyperthermia using biocompatible magnetic nanoparticles as heat mediators for cancer therapy has been extensively investigated due to its high efficiency and limited side effects. However, the development of more efficient heat nanomediators that exhibit very high specific absorption rate (SAR) value is essential for clinical application to overcome the several restrictions previously encountered due to the large quantity of nanomaterial required for effective treatment. In this review, we focus on the current progress in the development of magnetic nanoparticles based hyperthermia therapy as well as combined therapy harnessing hyperthermia with heat-mediated drug delivery for cancer treatment. We also address the fundamental principles of magnetic hyperthermia, basics of magnetism including the effect of several parameters on heating capacity, synthetic methods and nanoparticle surface chemistry needed to design and develop an ideal magnetic nanoparticle heat mediator suitable for clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy.
| |
Collapse
|
8
|
Colzani B, Pandolfi L, Hoti A, Iovene PA, Natalello A, Avvakumova S, Colombo M, Prosperi D. Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. Int J Nanomedicine 2018; 13:957-973. [PMID: 29491709 PMCID: PMC5817418 DOI: 10.2147/ijn.s152742] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background We report the development of an efficient antibody delivery system for the incorporation of trastuzumab (TZ) into poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs). The aim of the work was to overcome the current limitations in the clinical use of therapeutic antibodies, including immunogenicity, poor pharmacokinetics, low tumor penetration and safety issues. Materials and methods Trastuzumab-loaded PLGA NPs (PLGA-TZ) were synthesized according to a double emulsion method. The same protocol was used to produce control batches of nonspecific IgG-loaded NPs and empty PLGA NPs. After release of TZ from PLGA NPs, the effects on the main biological activities of the antibody were evaluated on SKBR3 (human epidermal growth factor receptor 2 [HER2]-positive breast cancer cell line), including specific binding to HER2, phosphorylation of HER2 (Y1248), degradation of HER2 protein and antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. In addition, an MTT assay was performed for treating SKBR3 cells with PLGA NPs loaded with TZ and doxorubicin to evaluate the cytotoxic activity of the combined treatment. Results and discussion TZ was gradually released in a prolonged way over 30 days. The physical characterization performed with circular dichroism, Fourier transform infrared and fluorescence spectroscopy of TZ after release demonstrated that no structural alterations occurred compared to the native antibody. In vitro experiments using SKBR3 cells showed that TZ released from PLGA NPs maintained the same biological activity of native TZ. PLGA NPs allowed a good co-encapsulation efficiency of TZ and doxorubicin resulting in improved therapy. Conclusion With the TZ case study, we demonstrate that the distinctive features of therapeutic monoclonal antibodies, including molecular targeting efficiency, capability to inhibit or properly affect the regulatory signaling pathways of cancer cells and stimulation of the ADCC, are fully preserved after loading into and release from PLGA NPs. In addition, PLGA NPs are shown to allow for the simultaneous incorporation of TZ and conventional chemotherapeutics, resulting in a potent antitumor nanodrug well suited for in situ combination and neoadjuvant therapy.
Collapse
Affiliation(s)
- Barbara Colzani
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Laura Pandolfi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Ada Hoti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | | | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Svetlana Avvakumova
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy.,Nanomedicine Laboratory, ICS Maugeri S. p. A. SB, Pavia, Italy
| |
Collapse
|
9
|
Deyev SM, Lebedenko EN. Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Mol Biol 2017. [DOI: 10.1134/s002689331706005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, Avishai G, Kotlyar A. Synthesis, Characterization, and Selective Delivery of DARPin-Gold Nanoparticle Conjugates to Cancer Cells. Bioconjug Chem 2017; 28:2569-2574. [PMID: 28806065 DOI: 10.1021/acs.bioconjchem.7b00410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that the designed ankyrin repeat protein (DARPin)_9-29, which specifically targets human epidermal growth factor receptor 2 (HER 2), binds tightly to gold nanoparticles (GNPs). Binding of the protein strongly increases the colloidal stability of the particles. The results of experimental analysis and molecular dynamics simulations show that approximately 35 DARPin_9-29 molecules are bound to the surface of a 5 nm GNP and that the binding does not involve the receptor-binding domain of the protein. The confocal fluorescent microscopy studies show that the DARPin-coated GNP conjugate specifically interacts with the surface of human cancer cells overexpressing epidermal growth factor receptor 2 (HER2) and enters the cells by endocytosis. The high stability under physiological conditions and high affinity to the receptors overexpressed by cancer cells make conjugates of plasmonic gold nanostructures with DARPin molecules promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia.,National Research Tomsk Polytechnic University , 30 av. Lenina, Tomsk, 634050 Russia
| | - Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences , 38 Vavilova St, Moscow 119991, Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Gavriel Avishai
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Barick KC, Sharma A, Shetake NG, Ningthoujam RS, Vatsa RK, Babu PD, Pandey BN, Hassan PA. Covalent bridging of surface functionalized Fe3O4 and YPO4:Eu nanostructures for simultaneous imaging and therapy. Dalton Trans 2016. [PMID: 26215789 DOI: 10.1039/c5dt01522g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic luminescent hybrid nanostructures (MLHN) have received a great deal of attention due to their potential biomedical applications such as thermal therapy, magnetic resonance imaging, drug delivery and intracellular imaging. We report the development of bifunctional Fe3O4 decorated YPO4:Eu hybrid nanostructures by covalent bridging of carboxyl PEGylated Fe3O4 and amine functionalized YPO4:Eu particles. The surface functionalization of individual nanoparticulates as well as their successful conjugation was evident from Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta-potential and transmission electron microscopy (TEM) studies. X-ray diffraction (XRD) analysis reveals the formation of highly crystalline hybrid nanostructures. TEM micrographs clearly show the binding/anchoring of 10 nm Fe3O4 nanoparticles onto the surface of 100-150 nm rice grain shaped YPO4:Eu nanostructures. These MLHN show good colloidal stability, magnetic field responsivity and self-heating capacity under an external AC magnetic field. The induction heating studies confirmed localized heating of MLHN under an AC magnetic field with a high specific absorption rate. Photoluminescence spectroscopy and fluorescence microscopy results show optical imaging capability of MLHN. Furthermore, successful internalization of these MLHN in the cells and their cellular imaging ability are confirmed from confocal microscopy imaging. Specifically, the hybrid nanostructure provides an excellent platform to integrate luminescent and magnetic materials into one single entity that can be used as a potential tool for hyperthermia treatment of cancer and cellular imaging.
Collapse
Affiliation(s)
- K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim HI, Hwang D, Jeon SJ, Lee S, Park JH, Yim D, Yang JK, Kang H, Choo J, Lee YS, Chung J, Kim JH. Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells. NANOSCALE 2015; 7:6363-6373. [PMID: 25785370 DOI: 10.1039/c4nr07305c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.
Collapse
Affiliation(s)
- Hye-In Kim
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kulhari H, Pooja D, Rompicharla SVK, Sistla R, Adams DJ. Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand. Med Res Rev 2015; 35:849-76. [DOI: 10.1002/med.21345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hitesh Kulhari
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Medicinal Chemistry & Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Health Innovations Research Institute; RMIT University; Melbourne VIC 3083 Australia
| | - Deep Pooja
- Medicinal Chemistry & Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Sri V. K. Rompicharla
- Medicinal Chemistry & Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - David J. Adams
- Health Innovations Research Institute; RMIT University; Melbourne VIC 3083 Australia
| |
Collapse
|
14
|
Valetti S, Mura S, Noiray M, Arpicco S, Dosio F, Vergnaud J, Desmaële D, Stella B, Couvreur P. Peptide Conjugation: Before or After Nanoparticle Formation? Bioconjug Chem 2014; 25:1971-83. [DOI: 10.1021/bc5003423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Valetti
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Simona Mura
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Magali Noiray
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Silvia Arpicco
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Franco Dosio
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Juliette Vergnaud
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Didier Desmaële
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Barbara Stella
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Patrick Couvreur
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| |
Collapse
|
15
|
Sommaruga S, Galbiati E, Peñaranda-Avila J, Brambilla C, Tortora P, Colombo M, Prosperi D. Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnol 2014; 14:82. [PMID: 25193105 PMCID: PMC4177664 DOI: 10.1186/1472-6750-14-82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/13/2014] [Indexed: 12/23/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes. Results CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme. Conclusions The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | | | | |
Collapse
|
16
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
17
|
Mazzucchelli S, Truffi M, Fiandra L, Sorrentino L, Corsi F. Targeted approaches for HER2 breast cancer therapy: News from nanomedicine? World J Pharmacol 2014; 3:72. [DOI: 10.5497/wjp.v3.i4.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
|
18
|
Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol 2013; 32:11-20. [PMID: 24182737 DOI: 10.1016/j.tibtech.2013.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023]
Abstract
Nanomedicine has emerged in the past decade as a promising tool for several therapeutic and diagnostic applications. The development of nanoconjugates containing bioactive ligands specific for targeting cancer cell receptors has become a primary objective of modern nanotechnology. The design of ideal nanoconjugates requires optimization of fundamental parameters including size, shape, ligand shell composition, and reduction in nonspecific protein adsorption. Of great importance is the choice of bioconjugation approach, given that it affects the orientation, accessibility, and bioactivity of the targeting molecule. We provide an overview of recent advances in the immobilization of targeting proteins, focusing on methods to control ligand orientation and density, and highlight criteria for nanoparticle design and development required to achieve enhanced receptor-targeting efficiency.
Collapse
|
19
|
Dong A, Sun Y, Lan S, Wang Q, Cai Q, Qi X, Zhang Y, Gao G, Liu F, Harnoode C. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8125-33. [PMID: 23915243 DOI: 10.1021/am402191j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Novel recyclable bactericidal materials, barbituric acid-based magnetic N-halamine nanoparticles (BAMNH NPs), were fabricated by coating of magnetic silica nanoparticles (MS NPs) with barbituric acid-based N-halamine by the aid of the radical polymerization. The sterilizing effect on the bacterial strain is investigated by incubating Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). The as-prepared BAMNH NPs exhibit higher biocidal activity than the bulk powder barbituric acid-based N-halamine due to the high activated surface area. The structural effect of N-halamine on antimicrobial performance was fully clarified through the comparison between BAMNH NPs and hydantoin-based magnetic N-halamine nanoparticles (HMNH NPs). BAMNH NPs exhibited promising stability toward repeated washing and long-term storage. BAMNH NPs with different chlorine content were comparatively chosen to investigate the influence of chlorine content on the antimicrobial activity. An antibacterial recycle experiment revealed that no significant change occurred in the structure and antibacterial efficiency of BAMNH NPs after five recycle experiments. The combination of barbituric acid-based N-halamine with magnetic component results in an obvious synergistic effect and facilitates the repeated antibacterial applications, providing potential and ideal candidates for sterilization or even for the control of disease.
Collapse
Affiliation(s)
- Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mazzucchelli S, Colombo M, Verderio P, Rozek E, Andreata F, Galbiati E, Tortora P, Corsi F, Prosperi D. Orientation-Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Mazzucchelli S, Colombo M, Verderio P, Rozek E, Andreata F, Galbiati E, Tortora P, Corsi F, Prosperi D. Orientation-controlled conjugation of haloalkane dehalogenase fused homing peptides to multifunctional nanoparticles for the specific recognition of cancer cells. Angew Chem Int Ed Engl 2013; 52:3121-5. [PMID: 23386453 DOI: 10.1002/anie.201209662] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/01/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mazzucchelli S, Sommaruga S, O'Donnell M, Galeffi P, Tortora P, Prosperi D, Colombo M. Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomater Sci 2013; 1:728-735. [DOI: 10.1039/c3bm60068h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
da Paz MC, Santos MDFMA, Santos CMB, da Silva SW, de Souza LB, Lima ECD, Silva RC, Lucci CM, Morais PC, Azevedo RB, Lacava ZGM. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int J Nanomedicine 2012; 7:5271-82. [PMID: 23055733 PMCID: PMC3468277 DOI: 10.2147/ijn.s32139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanosized maghemite particles were synthesized, precoated (with dimercaptosuccinic acid) and surface-functionalized with anticarcinoembryonic antigen (anti-CEA) and successfully used to target cell lines expressing the CEA, characteristic of colorectal cancer (CRC) cells. The as-developed nanosized material device, consisting of surface decorated maghemite nanoparticles suspended as a biocompatible magnetic fluid (MF) sample, labeled MF-anti-CEA, was characterized and tested against two cell lines: a high-CEA expressing cell line (LS174T) and a low-CEA expressing cell line (HCT116). Whereas X-ray diffraction was used to assess the average core size of the as-synthesized maghemite particles (average 8.3 nm in diameter), dynamic light scattering and electrophoretic mobility measurements were used to obtain the average hydrodynamic diameter (550 nm) and the zeta-potential (−38 mV) of the as-prepared and maghemite-based nanosized device, respectively. Additionally, surface-enhanced Raman spectroscopy (SERS) was used to track the surface decoration of the nanosized maghemite particles from the very first precoating up to the attachment of the anti-CEA moiety. The Raman peak at 1655 cm−1, absent in the free anti-CEA spectrum, is the signature of the anti-CEA binding onto the precoated magnetic nanoparticles. Whereas MTT assay was used to confirm the low cell toxicity of the MF-anti-CEA device, ELISA and Prussian blue iron staining tests performed with both cell lines (LS174T and HCT116) confirm that the as-prepared MF-anti- CEA is highly specific for CEA-expressing cells. Finally, transmission electron microscopy analyses show that the association with anti-CEA seems to increase the number of LS174T cells with internalized maghemite nanoparticles, whereas no such increase seems to occur in the HCT116 cell line. In conclusion, the MF-anti-CEA sample is a biocompatible device that can specifically target CEA, suggesting its potential use as a theragnostic tool for CEA-expressing tumors, micrometastasis, and cancer-circulating cells.
Collapse
|
24
|
Colombo M, Mazzucchelli S, Collico V, Avvakumova S, Pandolfi L, Corsi F, Porta F, Prosperi D. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew Chem Int Ed Engl 2012; 51:9272-5. [PMID: 22833476 DOI: 10.1002/anie.201204699] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Protein-Assisted One-Pot Synthesis and Biofunctionalization of Spherical Gold Nanoparticles for Selective Targeting of Cancer Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, Ponraju D, Rayala SK, Venkatraman G. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine 2012; 7:1043-60. [PMID: 22403487 PMCID: PMC3292417 DOI: 10.2147/ijn.s25182] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The focus on nanotechnology in cancer treatment and diagnosis has intensified due to the serious side effects caused by anticancer agents as a result of their cytotoxic actions on normal cells. This nonspecific action of chemotherapy has awakened a need for formulations capable of definitive targeting with enhanced tumor-killing. Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important area of nanomedicine. Currently several nanomaterial-based drug-delivery systems are in vogue and several others are in various stages of development. Tumor-targeted drug-delivery systems are envisioned as magic bullets for cancer therapy and several groups are working globally for development of robust systems.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Department of Human Genetics, Sri Ramachandra University, Porur, India
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P, Galeffi P, Corsi F, Tortora P, Prosperi D. Site-Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strain-Promoted Alkyne-Nitrone Cycloaddition. Angew Chem Int Ed Engl 2011; 51:496-9. [DOI: 10.1002/anie.201106775] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/18/2011] [Indexed: 12/18/2022]
|
28
|
Site-Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strain-Promoted Alkyne-Nitrone Cycloaddition. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106775] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|