1
|
Rijstenberg LL, Harikumar H, Verhoef EI, van den Bosch TPP, Choiniere R, van Royen ME, van Leenders GJLH. Identification of intraductal-to-invasive spatial transitions in prostate cancer: proposal for a new unifying model on intraductal carcinogenesis. Histopathology 2025; 86:1091-1100. [PMID: 39888049 PMCID: PMC12045775 DOI: 10.1111/his.15414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025]
Abstract
AIMS Intraductal carcinoma (IDC) is an independent pathological parameter for adverse prostate cancer (PCa) outcome. Although most IDC are believed to originate from retrograde spread of established PCa, rare IDC cases may represent precursor lesions. The actual transition areas between intraductal and invasive cancer, however, have not yet been identified. Our objective was to identify intraductal-invasive PCa transitions using 2- and 3-dimensional microscopy. METHODS AND RESULTS Seventy-five samples from 46 radical prostatectomies with PCa were immunohistochemically stained for basal cell keratins. In 35 samples, atypical glands that were indistinguishable from invasive adenocarcinoma (IAC) had focal 34BE12-positive basal cells. These IAC-like glands were present adjacent to IDC and prostatic intra-epithelial neoplasia (PIN) in 21 of 45 (46.7%) and 16 of 58 (27.6%) cases, respectively. Whole-mount confocal imaging of immunofluorescent Ker5/18 double-stained and cleared 1-mm-thick intact tissues revealed spatial continuity between IDC, IAC-like glands and IAC with a gradual loss of basal cells. In 24 of 35 (68.6%) samples more than one IAC-like focus (median 3.0) was present. CONCLUSIONS We identified areas of spatial transition between PIN, IDC and IAC, characterised by remnant basal cells in IAC-like glands. Based on the coexistence of IDC and PIN, the gradual loss of basal cells in IAC-like glands and IAC-like glands' multifocality, we propose a novel hypothesis on intraductal carcinogenesis, which we term 'repetitive invasion, precursor progression' (RIPP).
Collapse
Affiliation(s)
- Lucia L Rijstenberg
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Hridya Harikumar
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Roselyne Choiniere
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer InstituteUniversity Medical CentreRotterdamThe Netherlands
| |
Collapse
|
2
|
Bhattarai R, McKenney JK, Alaghehbandan R, Liu X, Cox RM, Myles JL, Przybycin CG, Williamson SR, Weight CJ, Schwen Z, Nguyen JK. Atypical Intraductal Proliferation in Prostate Needle Core Biopsy: Validation as a Marker of Unsampled Adverse Pathology in a Clinicopathologic Series of 142 New Patients. Am J Surg Pathol 2025; 49:515-522. [PMID: 39995242 DOI: 10.1097/pas.0000000000002376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Atypical intraductal proliferation (AIP) of the prostate is characterized by morphologic features exceeding that of high-grade prostatic intraepithelial neoplasia but not meeting strict diagnostic criteria for intraductal carcinoma. We examined the clinical significance of AIP in biopsy specimens. Patients with AIP diagnosed on biopsy were identified from surgical pathology archives. Initial biopsies, any repeat biopsies, and any radical prostatectomy (RP) slides were rereviewed. We also identified a control group of 50 consecutive patients with available prostate biopsies showing invasive prostatic adenocarcinoma but no AIP and having paired RP for comparison. Medical records were searched for nonsurgical treatment and clinical outcome status. Patients with initial biopsies showing invasive adenocarcinoma with either grade group (GG) ≥3 and/or unfavorable histology (as recently defined) were excluded from both the study and control groups. Correlation with subsequent adverse pathology at rebiopsy or RP, as defined by separate criteria: unfavorable histology, large cribriform/intraductal carcinoma, GG ≥3, pN1, and/or pM1, was assessed for both groups. Phosphate and tensin (PTEN) homolog and ETS-related gene (ERG) immunohistochemistry were performed on biopsies with available paired RP, using standard protocols. One hundred forty-two patients with AIP met inclusion criteria. At initial biopsy, 16 patients (11.3%) had AIP without concomitant invasive carcinoma, whereas 126 (88.7%) also had invasive adenocarcinoma. Of the 126 invasive tumors with AIP meeting study criteria, 19 (15.1%) were GG 1 and 107 (84.9%) GG 2. One hundred thirty-nine of 142 patients with AIP (97.9%) had available clinical follow-up (mean: 36.9 mo). Fifty-two (36.3%) patients with AIP underwent RP, 36 (25.4%) had brachytherapy, 28 (19.7%) had radiotherapy, 17 (12%) remained on active surveillance, 2 (1.4%) had cryoablation, 2 (1.4%) received androgen deprivation therapy, and 1 (0.7%) had high-intensity focused ultrasound. Forty-seven of 52 patients undergoing prostatectomy (90.3%) had glass slides available for review: 30 (63.8%) were GG2, 13 (27.7%) GG3, 1 (2.1%) GG4, and 3 (6.4%) GG5. Seventeen (36.2%) patients were staged as pT2, 25 (53.2%) pT3a, and 5 (10.6%) pT3b. Forty-two of 47 (89.4%) patients had associated unfavorable histology on prostatectomy, including 41 (87.2%) with large cribriform/intraductal carcinoma, 17 (36.2%) GG≥3, and 5 (10.6%) with metastatic disease. In the 36 AIP lesions examined for PTEN and ERG immunoreactivity, 14 (38.9%) had concomitant PTEN loss and ERG over-expression, 6 (16.7%) showed PTEN loss only, and 6 (16.7%) had ERG overexpression only. AIP morphology was more predictive of risk for unfavorable histology at RP than PTEN/ERG immunophenotype. Seventeen patients not undergoing RP had rebiopsy, of which 5 (29.4%) had at least one adverse feature identified on repeat biopsy. Nineteen of 50 patients (38%) in the non-AIP control group had adverse pathology at RP (by any definition), compared with 89.4% in the AIP study group ( P < 0.0001). In conclusion, AIP in prostate needle core biopsy is strongly associated with unsampled adverse pathology, defined by unfavorable histology and other traditional definitions of aggressive disease. For optimal patient risk stratification and active surveillance management, AIP should gain better recognition as a standard reporting element given its association with an increased likelihood of unsampled high-risk disease.
Collapse
Affiliation(s)
- Roshan Bhattarai
- Department of Pathology and Laboratory Medicine Diagnostics Institute
| | - Jesse K McKenney
- Department of Pathology and Laboratory Medicine Diagnostics Institute
- Department of Urology
| | - Reza Alaghehbandan
- Department of Pathology and Laboratory Medicine Diagnostics Institute
- Department of Urology
| | - Xuefeng Liu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Roni M Cox
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jonathan L Myles
- Department of Pathology and Laboratory Medicine Diagnostics Institute
| | | | - Sean R Williamson
- Department of Pathology and Laboratory Medicine Diagnostics Institute
- Department of Urology
| | | | | | - Jane K Nguyen
- Department of Pathology and Laboratory Medicine Diagnostics Institute
- Department of Urology
| |
Collapse
|
3
|
Ding CKC, Greenland NY, Sirohi D, Lotan TL. Molecular Landscape of Aggressive Histologic Subtypes of Localized Prostate Cancer. Surg Pathol Clin 2025; 18:1-12. [PMID: 39890297 DOI: 10.1016/j.path.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite incredible progress in describing the molecular underpinnings of prostate cancer over the last decades, pathologic examination remains indispensable for predicting aggressive behavior in the localized setting. Beyond pathologic grade, specific histologic findings have emerged as critical prognostic or predictive indicators. Here, the authors review molecular correlates of aggressive histologic subtypes of prostate cancer in the localized setting, demonstrating that many of the signature molecular alterations found in metastatic disease-such as tumor suppressor gene loss and DNA repair defects-are enriched in primary disease with adverse histologic features, presaging aggressive behavior, and presenting opportunities for earlier germline screening or targeted therapies.
Collapse
Affiliation(s)
- Chien-Kuang C Ding
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Nancy Y Greenland
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Deepika Sirohi
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wei X, Zhao J, Nie L, Shi Y, Zhao F, Shen Y, Chen J, Sun G, Zhang X, Liang J, Hu X, Shen P, Chen N, Zeng H, Liu Z. Assessing the predictive value of intraductal carcinoma of the prostate (IDC-P) in determining abiraterone efficacy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. Prostate 2025; 85:130-139. [PMID: 39465570 DOI: 10.1002/pros.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study explored the value of intraductal carcinoma of the prostate (IDC-P) in predicting the efficacy of abiraterone treatment in metastatic hormone-sensitive prostate cancer (mHSPC) patients. METHODS A retrospective study of 925 patients who underwent prostate biopsies to detect IDC-P was conducted, with participants divided into two cohorts. The first cohort of 165 mHSPC patients receiving abiraterone treatment was analyzed to compare therapeutic effectiveness between IDC-P positive and negative cases. Utilizing propensity score matching (PSM) to reduce bias, outcomes such as PSA response, progression-free survival (PSA-PFS), radiographic progression-free survival (rPFS), and overall survival were assessed. Additionally, the second cohort of 760 mHSPC patients compared the efficacy of abiraterone with conventional hormone therapy, focusing on differences between IDC-P positive and negative individuals. RESULTS After PSM, our first cohort included 108 patients with similar baseline characteristics. Among them, 50% (54/108) were diagnosed with IDC-P, with 22.2% (12/54) having IDC-P pattern 1 and 77.8% (42/54) with IDC-P pattern 2. While no notable difference was seen in PSA responses between IDC-P positive and negative patients, IDC-P presence linked to worse clinical outcomes (PSA-PFS: 18.6 months vs. not reached [NR], p = 0.009; rPFS: 23.6 months vs. NR, p = 0.020). Further analysis showed comparable outcomes for IDC-P pattern 1 but significantly worse prognosis for IDC-P pattern 2 (PSA-PFS: 18.6 months vs. NR, p = 0.002; rPFS: 22.4 months vs. NR, p = 0.010). Subgroup analysis revealed IDC-P pattern 2 consistently predicted poorer outcomes across patient subgroups. Remarkably, both IDC-P positive and negative patients gained more from androgen deprivation therapy with abiraterone than conventional treatment, with IDC-P negative patients showing a more significant survival advantage, supported by better hazard ratios (0.47 and 0.66). CONCLUSION This study found that IDC-P, especially pattern 2, predicts poor prognosis in mHSPC patients on abiraterone therapy. Also, abiraterone's advantage over hormone therapy is reduced in cases with IDC-P compared to those without.
Collapse
Affiliation(s)
- Xinyuan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
6
|
Martini C, Logan JM, Sorvina A, Prabhakaran S, Ung BSY, Johnson IRD, Hickey SM, Brooks RD, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Distinct patterns of biomarker expression for atypical intraductal proliferations in prostate cancer. Virchows Arch 2024; 485:723-728. [PMID: 37704825 PMCID: PMC11522086 DOI: 10.1007/s00428-023-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
High-grade prostatic intraepithelial neoplasia (HGPIN) is a well-characterised precursor lesion in prostate cancer. The term atypical intraductal proliferations (AIP) describes lesions with features that are far too atypical to be considered HGPIN, yet insufficient to be diagnosed as intraductal carcinoma of the prostate (IDCP). Here, a panel of biomarkers was assessed to provide insights into the biological relationship between IDCP, HGPIN, and AIP and their relevance to current clinicopathological recommendations. Tissue samples from 86 patients with prostate cancer were assessed by routine haematoxylin and eosin staining and immunohistochemistry (IHC) with a biomarker panel (Appl1/Sortilin/Syndecan-1) and a PIN4 cocktail (34βE12+P63/P504S). Appl1 strongly labelled atypical secretory cells, effectively visualising intraductal lesions. Sortilin labelling was moderate-to-strong in > 70% of cases, while Syndecan-1 was moderate-to-strong in micropapillary HGPIN/AIP lesions (83% cases) versus flat/tufting HGPIN (≤ 20% cases). Distinct biomarker labelling patterns for atypical intraductal lesions of the prostate were observed, including early atypical changes (flat/tufting HGPIN) and more advanced atypical changes (micropapillary HGPIN/AIP). Furthermore, the biomarker panel may be used as a tool to overcome the diagnostic uncertainty surrounding AIP by supporting a definitive diagnosis of IDCP for such lesions displaying the same biomarker pattern as cribriform IDCP.
Collapse
Affiliation(s)
- Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Benjamin S Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute for Medical Research, Wellington, New Zealand
| | | | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Bogaard M, Strømme JM, Kidd SG, Johannessen B, Bakken AC, Lothe RA, Axcrona K, Skotheim RI, Axcrona U. GRIN3A: A biomarker associated with a cribriform pattern and poor prognosis in prostate cancer. Neoplasia 2024; 55:101023. [PMID: 38944914 PMCID: PMC11267071 DOI: 10.1016/j.neo.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer with a cribriform pattern, including invasive cribriform carcinoma (ICC) and/or intraductal carcinoma (IDC) is associated with a poor prognosis, and the underlying mechanisms are unclear. Therefore, we aimed to identify biomarkers for this feature. Using a radical prostatectomy cohort, we performed within-patient differential expression analyses with RNA sequencing data to compare samples with a cribriform pattern to those with non-cribriform Gleason pattern 4 (NcGP4; n=13). ACSM1, GRIN3A, PCDHB2, and REG4 were identified as differentially expressed, and validation was performed using real-time reverse transcription polymerase chain reaction (n=99; 321 RNA samples) and RNA in situ hybridization on tissue microarrays (n=479; 2047 tissue cores). GRIN3A was significantly higher expressed in cribriform pattern vs. NcGP4, when assessed within the same patient (n=27; p=0.005) and between different patients (n=83; p=0.001). Tissue cores with IDC more often expressed GRIN3A compared to ICC, NcGP4, and benign tissue (52 % vs. ≤ 32 %). When IDC and NcGP4 was compared within the same patient (173 pairs of tissue cores; 54 patients), 38 (22 %) of the tissue microarray core pairs had GRIN3A expression in only IDC, 33 (19 %) had expression in both IDC and NcGP4, 14 (8 %) in only NcGP4 and 88 (51 %) were negative in both entities (p=0.001). GRIN3A was as well associated with biochemical recurrence (log-rank, p=0.002). In conclusion, ectopic GRIN3A expression is an RNA-based biomarker for the presence of cribriform prostate cancer, particularly for IDC.
Collapse
Affiliation(s)
- Mari Bogaard
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonas M Strømme
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Susanne G Kidd
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Anne C Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
8
|
Greenland NY, Cooperberg MR, Carroll PR, Cowan JE, Simko JP, Stohr BA, Chan E. Morphologic patterns observed in prostate biopsy cases with discrepant grade group and molecular risk classification. Prostate 2024; 84:1076-1085. [PMID: 38734990 DOI: 10.1002/pros.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Molecular-based risk classifier tests are increasingly being utilized by urologists and radiation oncologists to guide clinical decision making. The Decipher prostate biopsy test is a 22-gene RNA biomarker assay designed to predict likelihood of high-grade disease at radical prostatectomy and risk of metastasis and mortality. The test provides a risk category of low, intermediate, or high. We investigated histologic features of biopsies in which the Grade Group (GG) and Decipher risk category (molecular risk) were discrepant. METHODS Our institutional urologic outcomes database was searched for men who underwent prostate biopsies with subsequent Decipher testing from 2016 to 2020. We defined discrepant GG and molecular risk as either GG1-2 with high Decipher risk category or GG ≥ 3 with low Decipher risk category. The biopsy slide on which Decipher testing was performed was re-reviewed for GG and various histologic features, including % Gleason pattern 4, types of Gleason pattern 4 and 5, other "high risk" features (e.g., complex papillary, ductal carcinoma, intraductal carcinoma [IDC]), and other unusual and often "difficult to grade" patterns (e.g., atrophic carcinoma, mucin rupture, pseudohyperplastic carcinoma, collagenous fibroplasia, foamy gland carcinoma, carcinoma with basal cell marker expression, carcinoma with prominent vacuoles, and stromal reaction). Follow-up data was also obtained from the electronic medical record. RESULTS Of 178 men who underwent prostate biopsies and had Decipher testing performed, 41 (23%) had discrepant GG and molecular risk. Slides were available for review for 33/41 (80%). Of these 33 patients, 23 (70%) had GG1-2 (GG1 n = 5, GG2 n = 18) with high Decipher risk, and 10 (30%) had GG ≥ 3 with low Decipher risk. Of the 5 GG1 cases, one case was considered GG2 on re-review; no other high risk features were identified but each case showed at least one of the following "difficult to grade" patterns: 3 atrophic carcinoma, 1 collagenous fibroplasia, 1 carcinoma with mucin rupture, and 1 carcinoma with basal cell marker expression. Of the 18 GG2 high Decipher risk cases, 2 showed GG3 on re-review, 5 showed large cribriform and/or other high risk features, and 10 showed a "difficult to grade" pattern. Of the 10 GG ≥ 3 low Decipher risk cases, 5 had known high risk features including 2 with large cribriform, 1 with IDC, and 1 with Gleason pattern 5. CONCLUSIONS In GG1-2 high Decipher risk cases, difficult to grade patterns were frequently seen in the absence of other known high risk morphologic features; whether these constitute true high risk cases requires further study. In the GG ≥ 3 low Decipher risk cases, aggressive histologic patterns such as large cribriform and IDC were observed in half (50%) of cases; therefore, the molecular classifier may not capture all high risk histologic patterns.
Collapse
Affiliation(s)
- Nancy Y Greenland
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
| | - Matthew R Cooperberg
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Peter R Carroll
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Janet E Cowan
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Jeffry P Simko
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
| | - Bradley A Stohr
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
| | - Emily Chan
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
10
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Li J, Wilkerson ML, Deng FM, Liu H. The Application and Pitfalls of Immunohistochemical Markers in Challenging Diagnosis of Genitourinary Pathology. Arch Pathol Lab Med 2024; 148:13-32. [PMID: 37074862 DOI: 10.5858/arpa.2022-0493-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT.— The morphologic features of different entities in genitourinary pathology overlap, presenting a diagnostic challenge, especially when diagnostic materials are limited. Immunohistochemical markers are valuable when morphologic features alone are insufficient for definitive diagnosis. The World Health Organization classification of urinary and male genital tumors has been updated for 2022. An updated review of immunohistochemical markers for newly classified genitourinary neoplasms and their differential diagnosis is needed. OBJECTIVE.— To review immunohistochemical markers used in the diagnosis of genitourinary lesions in the kidney, bladder, prostate, and testis. We particularly emphasized difficult differential diagnosis and pitfalls in immunohistochemistry application and interpretation. New markers and new entities in the 2022 World Health Organization classifications of genitourinary tumors are reviewed. Recommended staining panels for commonly encountered difficult differential diagnoses and potential pitfalls are discussed. DATA SOURCES.— Review of current literature and our own experience. CONCLUSIONS.— Immunohistochemistry is a valuable tool in the diagnosis of problematic lesions of the genitourinary tract. However, the immunostains must be carefully interpreted in the context of morphologic findings with a thorough knowledge of pitfalls and limitations.
Collapse
Affiliation(s)
- Jianhong Li
- From the Department of Pathology, Geisinger Medical Center, Danville, Pennsylvania (Li, Wilkerson, Liu)
| | - Myra L Wilkerson
- From the Department of Pathology, Geisinger Medical Center, Danville, Pennsylvania (Li, Wilkerson, Liu)
| | - Fang-Ming Deng
- the Department of Pathology, New York University Grossman School of Medicine, New York City (Deng)
| | - Haiyan Liu
- From the Department of Pathology, Geisinger Medical Center, Danville, Pennsylvania (Li, Wilkerson, Liu)
| |
Collapse
|
13
|
Bernhardt M, Kristiansen G. Molecular Alterations in Intraductal Carcinoma of the Prostate. Cancers (Basel) 2023; 15:5512. [PMID: 38067216 PMCID: PMC10705183 DOI: 10.3390/cancers15235512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2025] Open
Abstract
Intraductal carcinoma of the prostate is most commonly associated with high-grade invasive prostate cancer. However, isolated IDC-P without adjacent cancer or high-grade cancer is also well known. Common genetic alterations present in IDC-P with adjacent high-grade prostate cancer are those described in high-grade tumors, such as PTEN loss (69-84%). In addition, the rate of LOH involving TP53 and RB1 is significantly higher. IDC-P is common in the TCGA molecular subset of SPOP mutant cancers, and the presence of SPOP mutations are more likely in IDC-P bearing tumors. IDC-P without adjacent high-grade cancers are by far less common. They are less likely to have PTEN loss (47%) and rarely harbor an ERG fusion (7%). Molecular alterations that may predispose a person to the development of IDC-P include the loss of BRCA2 and PTEN as well as mutations in SPOP. However, the causative nature of these genetic alterations is yet to be validated.
Collapse
Affiliation(s)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| |
Collapse
|
14
|
Ito T, Takahara T, Taniguchi N, Yamamoto Y, Satou A, Ohashi A, Takahashi E, Sassa N, Tsuzuki T. PTEN loss in intraductal carcinoma of the prostate has low incidence in Japanese patients. Pathol Int 2023; 73:542-548. [PMID: 37608749 DOI: 10.1111/pin.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Clinical and genomic features of prostate cancer (PCa) vary considerably between Asian and Western populations. PTEN loss is the most frequent abnormality in intraductal carcinoma of the prostate (IDC-P) in Western populations. However, its prevalence and significance in Asian populations have not yet been well studied. In the present study, we evaluated PTEN expression in IDC-P in a Japanese population and its association with ERG expression. This study included 45 and 59 patients with PCa with and without IDC-P, respectively, who underwent radical prostatectomy. PTEN loss was observed in 10 patients with PCa with IDC-P (22%) and nine patients with PCa without IDC-P (17%). ERG expression was relatively frequent in patients with PCa with PTEN loss, although a significant difference was not observed. The co-occurrence of PTEN loss and ERG expression was observed in four patients with PCa with IDC-P and one without IDC-P. PTEN loss and ERG expression did not affect progression-free survival, regardless of the presence of IDC-P. The frequency of PTEN loss in IDC-P is lower in Asian patients than in Western patients. Our results indicate that mechanisms underlying IDC-P in Asian populations are different from those of Western populations.
Collapse
Affiliation(s)
- Takanori Ito
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Natsuki Taniguchi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuki Yamamoto
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
15
|
Erak E, Oliveira LD, Mendes AA, Dairo O, Ertunc O, Kulac I, Baena-Del Valle JA, Jones T, Hicks JL, Glavaris S, Guner G, Vidal ID, Markowski M, de la Calle C, Trock BJ, Meena A, Joshi U, Kondragunta C, Bonthu S, Singhal N, De Marzo AM, Lotan TL. Predicting Prostate Cancer Molecular Subtype With Deep Learning on Histopathologic Images. Mod Pathol 2023; 36:100247. [PMID: 37307876 PMCID: PMC11225718 DOI: 10.1016/j.modpat.2023.100247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Microscopic examination of prostate cancer has failed to reveal a reproducible association between molecular and morphologic features. However, deep-learning algorithms trained on hematoxylin and eosin (H&E)-stained whole slide images (WSI) may outperform the human eye and help to screen for clinically-relevant genomic alterations. We created deep-learning algorithms to identify prostate tumors with underlying ETS-related gene (ERG) fusions or PTEN deletions using the following 4 stages: (1) automated tumor identification, (2) feature representation learning, (3) classification, and (4) explainability map generation. A novel transformer-based hierarchical architecture was trained on a single representative WSI of the dominant tumor nodule from a radical prostatectomy (RP) cohort with known ERG/PTEN status (n = 224 and n = 205, respectively). Two distinct vision transformer-based networks were used for feature extraction, and a distinct transformer-based model was used for classification. The ERG algorithm performance was validated across 3 RP cohorts, including 64 WSI from the pretraining cohort (AUC, 0.91) and 248 and 375 WSI from 2 independent RP cohorts (AUC, 0.86 and 0.89, respectively). In addition, we tested the ERG algorithm performance in 2 needle biopsy cohorts comprised of 179 and 148 WSI (AUC, 0.78 and 0.80, respectively). Focusing on cases with homogeneous (clonal) PTEN status, PTEN algorithm performance was assessed using 50 WSI reserved from the pretraining cohort (AUC, 0.81), 201 and 337 WSI from 2 independent RP cohorts (AUC, 0.72 and 0.80, respectively), and 151 WSI from a needle biopsy cohort (AUC, 0.75). For explainability, the PTEN algorithm was also applied to 19 WSI with heterogeneous (subclonal) PTEN loss, where the percentage tumor area with predicted PTEN loss correlated with that based on immunohistochemistry (r = 0.58, P = .0097). These deep-learning algorithms to predict ERG/PTEN status prove that H&E images can be used to screen for underlying genomic alterations in prostate cancer.
Collapse
Affiliation(s)
- Eric Erak
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | - Adrianna A Mendes
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | - Onur Ertunc
- Department of Pathology, Suleyman Demirel University, Turkey
| | | | | | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine
| | | | | | | | - Mark Markowski
- Department of Oncology, Johns Hopkins University School of Medicine
| | | | - Bruce J Trock
- Department of Urology, Johns Hopkins University School of Medicine
| | | | | | | | | | | | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine; Department of Oncology, Johns Hopkins University School of Medicine; Department of Urology, Johns Hopkins University School of Medicine
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine; Department of Oncology, Johns Hopkins University School of Medicine; Department of Urology, Johns Hopkins University School of Medicine.
| |
Collapse
|
16
|
Sorvina A, Martini C, Prabhakaran S, Logan JM, S-Y Ung B, Moore C, Johnson IRD, Lazniewska J, Tewari P, Malone V, Brooks RD, Hickey SM, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Appl1, Sortilin and Syndecan-1 immunohistochemistry on intraductal carcinoma of the prostate provides evidence of retrograde spread. Pathology 2023; 55:792-799. [PMID: 37422404 DOI: 10.1016/j.pathol.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 07/10/2023]
Abstract
The presence of intraductal carcinoma of the prostate (IDCP) correlates with late-stage disease and poor outcomes for patients with prostatic adenocarcinoma, but the accurate and reliable staging of disease severity remains challenging. Immunohistochemistry (IHC) has been utilised to overcome problems in assessing IDCP morphology, but the current markers have only demonstrated limited utility in characterising the complex biology of this lesion. In a retrospective study of a cohort of patients who had been diagnosed with IDCP, we utilised IHC on radical prostatectomy sections with a biomarker panel of Appl1, Sortilin and Syndecan-1, to interpret different architectural patterns and to explore the theory that IDCP occurs from retrograde spread of high-grade invasive prostatic adenocarcinoma. Cribriform IDCP displayed strong Appl1, Sortilin and Syndecan-1 labelling patterns, while solid IDCP architecture had high intensity Appl1 and Syndecan-1 labelling, but minimal Sortilin labelling. Notably, the expression pattern of the biomarker panel in regions of IDCP was similar to that of adjacent invasive prostatic adenocarcinoma, and also comparable to prostate cancer showing perineural and vascular invasion. The Appl1, Sortilin, and Syndecan-1 biomarker panel in IDCP provides evidence for the model of retrograde spread of invasive prostatic carcinoma into ducts/acini, and supports the inclusion of IDCP into the five-tier Gleason grading system.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia; Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Benjamin S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Victoria Malone
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Hemamali Samaratunga
- Aquesta Uropathology, Brisbane, Qld, Australia; University of Queensland, Brisbane, Qld, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
17
|
SARSIK KUMBARACI B, KANAT E, AYKUTLU U, KIZILAY F, ŞEN S. Prostatın benign, prekürsör ve malign epitelyal proliferasyonlarında ERG ile PTEN ekspresyonlarının araştırılması ve bulguların klinikopatolojik korelasyonu. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1209075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Amaç: Prostat kanseri farklı klinik gidişata ve geniş bir tedavi yelpazesine sahip, klinik ve moleküler olarak oldukça heterojen bir kanser türüdür. Özellikle “prostatik intraepitelyal neoplazi” (PİN), “atipik intraduktal proliferasyon” (AİP) ve “intraduktal karsinom” (İDK) benzer morfolojik özelliklere sahip olması açısından ayırıcı tanı zorluğu yaratan tanılar olup, hasta tedavi ve takibi de farklı olan antitelerdir. Çalışmamızda bu lezyonlarda ERG ve PTEN ekspresyon düzeylerini belirlemeyi ve bu biyobelirteçlerin prognostik ve diagnostik değerini araştırmayı amaçladık. Gereç ve Yöntem: EÜTF Tıbbi Patoloji Anabilim Dalında 2011-2012 yılında radikal prostatektomi veya iğne biyopsi materyallerinde “Adenokarsinom” tanısı almış 87 olgu çalışmaya alındı. Histopatolojik olarak AİP, İDK ve PİN içeren alanlar belirlendi. immunohistokimyasal olarak bu alanlarda ERG ve PTEN ekspresyonları değerlendirildi.Bulgular: Olguların 6’sında İDK, 29’unda AİP ve 52’sinde PİN belirlendi. İDK AİP, DG 3 ve üstünde olan tümörlerde daha fazla görüldü. İDK ve AİP in eşlik ettiği prostat karsinomlarının sağ kalım süresi daha kısaydı (p=0.043). İDK ve AİP içeren tümörlerde ERG ve PTEN durumu invaziv komponentle uyum içindeydi. Ayrıca tüm İDK alanlarında ERG pozitifti. PTEN ile heterojen boyanma görülmüş olup, PTEN’in invaziv karsinom ve İDK alanlarında negatifliği daha fazlaydı (p=0,63). ERG pozitifliği ve PTEN negatifliği istatistiksel olarak anlamlı olmamakla birlikte AİP tanısını desteklediği dikkati çekti.Sonuç: Özellikle ayırıcı tanı sorunu yaratan intraduktal lezyonlarda ERG pozitifliği ve PTEN negatifliği klinik öneme sahip prostat karsinomuna eşlik edebileceği için özellikle biyopsilerde gözardı edilmemeli ve hasta tedavi ile takibi buna göre yapılmalıdır.
Collapse
Affiliation(s)
- Banu SARSIK KUMBARACI
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| | - Emre KANAT
- UŞAK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, ACİL TIP ANABİLİM DALI
| | - Umut AYKUTLU
- Acıbadem Sağlık Grubu, Altunizade Hastanesi, Patoloji Laboratuvarı
| | - Fuat KIZILAY
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, ÜROLOJİ ANABİLİM DALI
| | - Sait ŞEN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| |
Collapse
|
18
|
Abstract
"Cribriform lesions of the prostate represent an important and often diagnostically challenging spectrum of prostate pathology. These lesions range from normal anatomical variation, benign proliferative lesions, premalignant, suspicious to frankly malignant and biologically aggressive entities. The concept of cribriform prostate adenocarcinoma (CrP4) and intraductal carcinoma of the prostate (IDC-P), in particular, has evolved significantly in recent years with a growing body of evidence suggesting that the presence of these morphologies is important for clinical decision-making in prostate cancer management. Therefore, accurate recognition and reporting of CrP4 and IDC-P architecture are especially important. This review discusses a contemporary diagnostic approach to cribriform lesions of the prostate with a focus on their key morphologic features, differential diagnosis, underlying molecular alterations, clinical significance, and reporting recommendations."
Collapse
Affiliation(s)
- Qi Cai
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rajal B Shah
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Moch H. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82:469-482. [PMID: 35965208 DOI: 10.1016/j.eururo.2022.07.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The 2022 World Health Organization (WHO) classification of the urinary and male genital tumors was recently published by the International Agency for Research on Cancer. This fifth edition of the WHO "Blue Book" offers a comprehensive update on the terminology, epidemiology, pathogenesis, histopathology, diagnostic molecular pathology, and prognostic and predictive progress in genitourinary tumors. In this review, the editors of the fifth series volume on urologic and male genital neoplasms present a summary of the salient changes introduced to the classification of tumors of the prostate and the urinary tract.
Collapse
Affiliation(s)
- George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital St Leonards, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), Bern Center for Precision Medicine (BCPM), University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, AichiMedicalUniversity Hospital, Nagakut, Japan
| | - Samra Turajlic
- The Francis Crick Institute and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Destouni M, Lazaris AC, Tzelepi V. Cribriform Patterned Lesions in the Prostate Gland with Emphasis on Differential Diagnosis and Clinical Significance. Cancers (Basel) 2022; 14:cancers14133041. [PMID: 35804812 PMCID: PMC9264941 DOI: 10.3390/cancers14133041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A cribriform structure is defined as a continuous proliferation of cells with intermingled lumina. Various entities may have a cribriform morphology within the prostate gland, ranging from normal, to benign, to borderline and even to malignant lesions. This review summarizes the morphologic features of entities that have a cribriform morphology within the prostate gland, with an emphasis on their differential diagnosis, molecular profile and clinical significance. The basic aim is to assist the pathologist with challenging and controversial cases and inform the clinician on the clinical implications of cribriform morphology. Abstract Cribriform glandular formations are characterized by a continuous proliferation of cells with intermingled lumina and can constitute a major or minor part of physiologic (normal central zone glands), benign (clear cell cribriform hyperplasia and basal cell hyperplasia), premalignant (high-grade prostatic intraepithelial neoplasia), borderline (atypical intraductal cribriform proliferation) or clearly malignant (intraductal, acinar, ductal and basal cell carcinoma) lesions. Each displays a different clinical course and variability in clinical management and prognosis. The aim of this review is to summarize the current knowledge regarding the morphological features, differential diagnosis, molecular profile and clinical significance of the cribriform-patterned entities of the prostate gland. Areas of controversy regarding their management, i.e., the grading of Intaductal Carcinoma, will also be discussed. Understanding the distinct nature of each cribriform lesion leads to the correct diagnosis and ensures accuracy in clinical decision-making, prognosis prediction and personalized risk stratification of patients.
Collapse
Affiliation(s)
- Maria Destouni
- Department of Cytopathology, Hippokrateion General Hospital of Athens, 11527 Athens, Greece;
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
21
|
Macrini S, Francesconi S, Caprera C, Lancia D, Corsi M, Gunnellini M, Rocchi A, Pireddu A, Marziani F, Mosillo C, Calandrella ML, Caserta C, Giannarelli D, Guida A, Ascani S, Bracarda S. Looking for a Simplified Diagnostic Model to Identify Potentially Lethal Cases of Prostate Cancer at Initial Diagnosis: An ImGO Pilot Study. Cancers (Basel) 2022; 14:1542. [PMID: 35326693 PMCID: PMC8946832 DOI: 10.3390/cancers14061542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
The recurrent genetic anomalies used to classify prostate cancer (PC) into distinct molecular subtypes have limited relevance for clinical practice. In consideration of WHO 2016 histological classification, which includes the introduction of Gleason Score 4 for patients with cribriform component and the definition of intraductal carcinoma as a new entity, a retrospective pilot study was conducted to investigate, by histological review, if there were any variations of Gleason Score and the incidence of intraductal carcinoma and cribriform pattern, intended as "phenotypic" markers of potentially lethal PC, among metastatic castration-sensitive PC (mCSPC) and metastatic castration-resistant PC (mCRPC) samples. Potentially predictive factors were also assessed. Among 125 cases, a variation in the Gleason Score was reported in 26% of cases. A cribriform (36%) or intraductal (2%) pattern was reported in a higher percentage. Of them, a primary Gleason pattern 4 was reported in 80% of cases. All patients with intraductal carcinoma present a BRCA2 mutation, also found in 80% of cases with a cribriform pattern. This pilot study documented some hypothesis-generating data, as the evaluation of de novo mCSPC and mCRPC as phenotypic/biologic model to be translated in clinical practice. A cribriform pattern/intraductal carcinoma might be a marker of potentially lethal PC. The high incidence of TP53 and BRCA2 mutations in de novo mCSPC may also have a therapeutic implication.
Collapse
Affiliation(s)
- Serena Macrini
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| | - Simona Francesconi
- Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, 06129 Terni, Italy; (S.F.); (C.C.); (D.L.); (M.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, 06129 Terni, Italy; (S.F.); (C.C.); (D.L.); (M.C.); (S.A.)
| | - Daniela Lancia
- Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, 06129 Terni, Italy; (S.F.); (C.C.); (D.L.); (M.C.); (S.A.)
| | - Matteo Corsi
- Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, 06129 Terni, Italy; (S.F.); (C.C.); (D.L.); (M.C.); (S.A.)
| | - Marco Gunnellini
- Medical Oncology Unit, Department of Oncology, Gubbio-Gualdo Tadino Hospital, 06024 Branca, Italy;
| | - Andrea Rocchi
- Medical Oncology Unit, Department of Medicine, San Giovanni Battista Hospital, 06034 Foligno, Italy;
| | - Anjuta Pireddu
- Division of Pathology, Città di Castello Hospital, 06012 Città di Castello, Italy;
| | - Fiovo Marziani
- Pathology Unit, Department of Clinical Pathology, San Giovanni Battista Hospital, 06034 Foligno, Italy;
| | - Claudia Mosillo
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| | - Maria Letizia Calandrella
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| | - Claudia Caserta
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| | - Diana Giannarelli
- Biostatistical Unit, Regina Elena National Cancer Institute, IRCCS, 00168 Rome, Italy;
| | - Annalisa Guida
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, 06129 Terni, Italy; (S.F.); (C.C.); (D.L.); (M.C.); (S.A.)
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, 05100 Terni, Italy; (S.M.); (C.M.); (M.L.C.); (C.C.); (A.G.)
| |
Collapse
|
22
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
23
|
Samaratunga H, Delahunt B, Yaxley JW, Johannsen S, Egevad L. Intraductal Carcinoma of the Prostate: Extreme Nuclear Size Is Not a Diagnostic Parameter. Am J Surg Pathol 2021; 45:1527-1533. [PMID: 34265803 DOI: 10.1097/pas.0000000000001776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-grade prostatic adenocarcinoma involving duct/acinar structures is labeled intraductal carcinoma of the prostate (IDCP). As numerous studies have shown that IDCP is associated with high stage disease with a significant negative impact on cancer-specific survival, accurate diagnosis is crucial to ensure appropriate patient management. The definition of IDCP recommended by 2016 World Health Organization (WHO) classification suggests that cases of IDCP with micropapillary or loose cribriform architecture without comedonecrosis should have cells with ≥6× nuclear enlargement. It is unclear how this size criterion was derived and which of the parameters of nuclear size (nuclear diameter, nuclear surface area, or nuclear perimeter) it relates to. To evaluate the extent of nuclear enlargement in IDCP, we performed morphometric analyses relating to each of these parameters in 100 radical prostatectomy specimens. One hundred nuclei from foci of IDCP and 50 nuclei from foci of normal luminal epithelium were examined for each patient. Diagnosis of IDCP was based on cells with definite features of carcinoma present within duct/acinar structures. Comparing the means of each of the parameters between IDCP cells and benign luminal cells, there was a statistically significant enlargement in nuclear perimeter (P<0.0005), nuclear area (P<0.0005), and nuclear diameter (P<0.0005); however, the difference in mean nuclear size was limited to factors of 1.3×, 1.6×, and 1.3×, respectively. Three patients each had rare large nuclei (largest perimeter 45, 45, and 44 μm; maximum nuclear area 135, 136, and 136 μm2; and the largest diameter 18 µm in each). For these rare cells, the nuclear size difference, when compared with benign nuclei was; nuclear perimeter 2.0×, 2.1×, and 2.1×; nuclear area 3.6×, 3.8×, and 3.8×; and nuclear maximum diameter 3.0×, 2.5×, and 2.5×. The definition of nuclear enlargement of ≥6× was not reached in any of our cases, all of which clearly showed features of duct invasive carcinoma. In these cases, reliance on nuclear size criteria would have resulted in underdiagnosis of IDCP. This is of concern as failure to recognize IDCP, particularly in needle biopsies, could lead to delays in the timely treatment of aggressive high-grade prostate cancer, resulting in cancer progression and suboptimal patient oncological outcomes.
Collapse
Affiliation(s)
- Hemamali Samaratunga
- Aquesta Uropathology
- Department of Pathology, University of Queensland School of Medicine
| | - Brett Delahunt
- Aquesta Uropathology
- Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - John W Yaxley
- Department of Pathology, University of Queensland School of Medicine
- Wesley Hospital, Brisbane, QLD, Australia
| | | | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Lawrence MG, Porter LH, Clouston D, Murphy DG, Frydenberg M, Taylor RA, Risbridger GP. Knowing what's growing: Why ductal and intraductal prostate cancer matter. Sci Transl Med 2021; 12:12/533/eaaz0152. [PMID: 32132214 DOI: 10.1126/scitranslmed.aaz0152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a common malignancy, but only some tumors are lethal. Accurately identifying these tumors will improve clinical practice and instruct research. Aggressive cancers often have distinctive pathologies, including intraductal carcinoma of the prostate (IDC-P) and ductal adenocarcinoma. Here, we review the importance of these pathologies because they are often overlooked, especially in genomics and preclinical testing. Pathology, genomics, and patient-derived models show that IDC-P and ductal adenocarcinoma accompany multiple markers of poor prognosis. Consequently, "knowing what is growing" will help translate preclinical research to pinpoint and treat high-risk prostate cancer in the clinic.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia.,Epworth HealthCare, Melbourne, VIC 3000, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Australian Urology Associates, Melbourne, VIC 3000, Australia.,Department of Urology, Cabrini Health, Malvern, VIC 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Epstein JI, Amin MB, Fine SW, Algaba F, Aron M, Baydar DE, Beltran AL, Brimo F, Cheville JC, Colecchia M, Comperat E, da Cunha IW, Delprado W, DeMarzo AM, Giannico GA, Gordetsky JB, Guo CC, Hansel DE, Hirsch MS, Huang J, Humphrey PA, Jimenez RE, Khani F, Kong Q, Kryvenko ON, Kunju LP, Lal P, Latour M, Lotan T, Maclean F, Magi-Galluzzi C, Mehra R, Menon S, Miyamoto H, Montironi R, Netto GJ, Nguyen JK, Osunkoya AO, Parwani A, Robinson BD, Rubin MA, Shah RB, So JS, Takahashi H, Tavora F, Tretiakova MS, True L, Wobker SE, Yang XJ, Zhou M, Zynger DL, Trpkov K. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med 2021; 145:461-493. [PMID: 32589068 DOI: 10.5858/arpa.2020-0015-ra] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.— To update grading recommendations. DATA SOURCES.— Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.— Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.
Collapse
Affiliation(s)
- Jonathan I Epstein
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada.,Urology (Epstein), David Geffen School of Medicine at UCLA, Los Angeles, California (Huang).,and Oncology (Epstein), The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis (Amin)
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Fine)
| | - Ferran Algaba
- Department of Pathology, Fundacio Puigvert, Barcelona, Spain (Algaba)
| | - Manju Aron
- Department of Pathology, University of Southern California, Los Angeles (Aron)
| | - Dilek E Baydar
- Department of Pathology, Faculty of Medicine, Koç University, İstanbul, Turkey (Baydar)
| | - Antonio Lopez Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal (Beltran)
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, Quebec, Canada (Brimo)
| | - John C Cheville
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (Colecchia)
| | - Eva Comperat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris, France (Comperat)
| | | | | | - Angelo M DeMarzo
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Donna E Hansel
- Department of Pathology, Oregon Health and Science University, Portland (Hansel)
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Hirsch)
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California (Huang)
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut (Humphrey)
| | - Rafael E Jimenez
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China (Kong).,Kong is currently located at Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (Kryvenko)
| | - L Priya Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Priti Lal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Lal)
| | - Mathieu Latour
- Department of Pathology, CHUM, Université de Montréal, Montréal, Quebec, Canada (Latour)
| | - Tamara Lotan
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Fiona Maclean
- Douglass Hanly Moir Pathology, Faculty of Medicine and Health Sciences Macquarie University, North Ryde, Australia (Maclean)
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Santosh Menon
- Department of Surgical Pathology, Tata Memorial Hospital, Parel, Mumbai, India (Menon)
| | - Hiroshi Miyamoto
- Departments of Pathology and Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York (Miyamoto)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy (Montironi)
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Nguyen)
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Osunkoya)
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland (Rubin)
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Shah)
| | - Jeffrey S So
- Institute of Pathology, St Luke's Medical Center, Quezon City and Global City, Philippines (So)
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan (Takahashi)
| | - Fabio Tavora
- Argos Laboratory, Federal University of Ceara, Fortaleza, Brazil (Tavora)
| | - Maria S Tretiakova
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Lawrence True
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Sara E Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill (Wobker)
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts (Zhou)
| | - Debra L Zynger
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Kiril Trpkov
- and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Trpkov)
| |
Collapse
|
26
|
Lozano R, Salles DC, Sandhu S, Aragón IM, Thorne H, López-Campos F, Rubio-Briones J, Gutierrez-Pecharroman AM, Maldonado L, di Domenico T, Sanz A, Prieto JD, García I, Pacheco MI, Garcés T, Llacer C, Romero-Laorden N, Zambrana F, López-Casas PP, Lorente D, Mateo J, Pritchard CC, Antonarakis ES, Olmos D, Lotan TL, Castro E. Association between BRCA2 alterations and intraductal and cribriform histologies in prostate cancer. Eur J Cancer 2021; 147:74-83. [PMID: 33626496 DOI: 10.1016/j.ejca.2021.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intraductal (IDC) and cribriform (CRIB) histologies in prostate cancer have been associated with germline BRCA2 (gBRCA2) mutations in small retrospective series, leading to the recommendation of genetic testing for patients with IDC in the primary tumour. PATIENTS AND METHODS To examine the association of gBRCA2 mutations and other tumour molecular features with IDC and/or cribriform (CRIB) histologies, we conducted a case-control study in which primary prostate tumours from 58 gBRCA2 carriers were matched (1:2) by Gleason Grade Group and specimen type to 116 non-carriers. Presence/absence of IDC and CRIB morphologies was established by two expert uropathologists blinded to gBRCA2 status. Fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS) were used to detect BRCA2 alterations, PTEN deletions and TMPRSS2-ERG fusions. Chi-squared tests were used to compare the frequency of IDC and CRIB in gBRCA2 carriers and controls and to assess associations with other variables. Logistic regression models were constructed to identify independent factors associated with both histology patterns. RESULTS No significant differences between gBRCA2 carriers and non-carriers were observed in the prevalence of IDC (36% gBRCA2 versus 50% non-carriers, p = 0.085) or CRIB (53% gBRCA2 versus 43% non-carriers p = 0.197) patterns. However, IDC histology was independently associated with bi-allelic BRCA2 alterations (OR 4.3, 95%CI 1.1-16.2) and PTEN homozygous loss (OR 5.2, 95%CI 2.1-13.1). CRIB morphology was also independently associated with bi-allelic BRCA2 alterations (OR 5.6, 95%CI 1.7-19.3). CONCLUSIONS While we found no association between gBRCA2 mutations and IDC or CRIB histologies, bi-allelic BRCA2 loss in primary prostate tumours was significantly associated with both variant morphologies, independently of other clinical-pathologic factors.
Collapse
Affiliation(s)
- Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shahneen Sandhu
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Isabel M Aragón
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain
| | - Heather Thorne
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Fernando López-Campos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Rubio-Briones
- Urology Department, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Ana M Gutierrez-Pecharroman
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Department of Pathology, Hospital de Getafe, Getafe, Spain
| | - Laneisha Maldonado
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tomas di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Alejandro Sanz
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Juan D Prieto
- Department of Pathology, Hospital Universitarios Virgen de la Victoria Málaga, Spain
| | - Isabel García
- Department of Pathology, Hospital Universitarios Virgen de la Victoria Málaga, Spain
| | - María I Pacheco
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Teresa Garcés
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain
| | - Casilda Llacer
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain; Medical Oncology, UGCI, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, Málaga, Spain
| | | | | | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - David Lorente
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Medical Oncology, Hospital Provincial de Castellón, Castellón de la Plana, Spain
| | - Joaquin Mateo
- Prostate Cancer Traslational Research Unit, Vall'Hebron Institute of Oncology, Spain
| | | | - Emmanuel S Antonarakis
- Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Elena Castro
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, Spain; Medical Oncology, UGCI, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, Málaga, Spain.
| |
Collapse
|
27
|
Zong Y, Montironi R, Massari F, Jiang Z, Lopez-Beltran A, Wheeler TM, Scarpelli M, Santoni M, Cimadamore A, Cheng L. Intraductal Carcinoma of the Prostate: Pathogenesis and Molecular Perspectives. Eur Urol Focus 2020; 7:955-963. [PMID: 33132109 DOI: 10.1016/j.euf.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022]
Abstract
Intraductal carcinoma of the prostate (IDC-P), a clinicopathological entity characterized by malignant prostatic epithelial cells growing within ducts and/or acini, has a distinct architectural pattern, cytological features, and biological behavior. Whereas most IDC-P tumors could be derived from adjacent high-grade invasive cancer via retrograde spreading of cancer cells along benign ducts and acini, a small subset of IDC-P may arise from the transformation and intraductal proliferation of precancerous cells induced by various oncogenic events. These isolated IDC-P tumors possess a distinct mutational profile and may function as a carcinoma in situ lesion with de novo intraductal outgrowth of malignant cells. Further molecular characterization of these two types of IDC-P and better understanding of the mechanisms underlying IDC-P formation and progression could be translated into valuable biomarkers for differential diagnosis and actionable targets for therapeutic interventions. PATIENT SUMMARY: Intraductal carcinoma of the prostate is an aggressive type of prostate cancer associated with high risk for local recurrence and distant metastasis. In this review, we discussed pathogenesis, biomarkers, differential diagnoses, and therapeutic strategies for this tumor.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Thomas M Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Lenz J, Michal M, Michal M, Hes O, Konečná P, Lenz D. First Molecular Genetic Characterization of Skene's Gland Adenocarcinoma. Int J Surg Pathol 2020; 29:447-453. [PMID: 32795117 DOI: 10.1177/1066896920947808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary urethral adenocarcinomas are very rare neoplasms accounting for <10% of all urethral carcinomas. Site of their origin is unclear, but they seem to arise from Skene's paraurethral glands, which is the female homologue of the male prostate. The aim of this article is to report the first case of Skene's gland adenocarcinoma in which a molecular genetic profiling was performed. The patient was a 73-year-old woman with a polypoid lesion sized 3 × 2 cm located at the interface between the bladder neck and the proximal urethra. Transurethral resection was performed and small tissue fragments with positive margins were obtained. Histology revealed an epithelial neoplasm consisting of cribriform structures located in the subepithelial connective tissue of the bladder wall and proximal urethra. The lesion showed positive immunohistochemical staining with prostate specific antigen, prostatic acid phosphatase, NKX3.1, and alpha-methylacyl-CoA racemase. Using the Illumina TruSight Tumor 170 next-generation sequencing assay, a mutation and loss of heterozygosity of the phosphatase and tensin homologue (PTEN) gene was detected. No fusion in any of the examined genes was found using this assay as well as FusionPlex Solid Tumor Kit and FusionPlex Sarcoma kit assays from ArcherDX. Given the rarity of Skene's gland adenocarcinoma, it is uncertain whether the same grading and prognostic criteria that are currently used for prostatic cancer apply here as well. It is also unclear what treatment strategy should be applied, but according to the available literature, it seems that local excision or wide surgical resection could represent sufficient therapeutic modalities.
Collapse
Affiliation(s)
- Jiří Lenz
- Department of Pathology, 48246Znojmo Hospital, Czech Republic.,48384Cytohisto s.r.o., Breclav, Czech Republic.,Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Michal Michal
- Department of Pathology, 60569Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptical Laboratory Ltd., Pilsen, Czech Republic
| | - Michael Michal
- Department of Pathology, 60569Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptical Laboratory Ltd., Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondřej Hes
- Department of Pathology, 60569Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptical Laboratory Ltd., Pilsen, Czech Republic
| | - Petra Konečná
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - David Lenz
- 48384Cytohisto s.r.o., Breclav, Czech Republic
| |
Collapse
|
29
|
Grosset AA, Dallaire F, Nguyen T, Birlea M, Wong J, Daoust F, Roy N, Kougioumoutzakis A, Azzi F, Aubertin K, Kadoury S, Latour M, Albadine R, Prendeville S, Boutros P, Fraser M, Bristow RG, van der Kwast T, Orain M, Brisson H, Benzerdjeb N, Hovington H, Bergeron A, Fradet Y, Têtu B, Saad F, Leblond F, Trudel D. Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case-control study with multicohort validation. PLoS Med 2020; 17:e1003281. [PMID: 32797086 PMCID: PMC7428053 DOI: 10.1371/journal.pmed.1003281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l'Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec-Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%-69%), and pT3a (22%-49%) was more frequent than pT3b (9%-12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS In this study, we developed classification models for the analysis of RμS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P.
Collapse
Affiliation(s)
- Andrée-Anne Grosset
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Frédérick Dallaire
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Tien Nguyen
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Mirela Birlea
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Jahg Wong
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - François Daoust
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Noémi Roy
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - André Kougioumoutzakis
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Feryel Azzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Kelly Aubertin
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Samuel Kadoury
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Roula Albadine
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Susan Prendeville
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Paul Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Urology, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael Fraser
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rob G. Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Michèle Orain
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Hervé Brisson
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Nazim Benzerdjeb
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Hélène Hovington
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Alain Bergeron
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Université Laval, Quebec City, Quebec, Canada
| | - Yves Fradet
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Université Laval, Quebec City, Quebec, Canada
| | - Bernard Têtu
- Oncology Division, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Quebec City, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec City, Quebec, Canada
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Frédéric Leblond
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Grypari IM, Logotheti S, Lazaris AC, Kallidonis P, Fokaefs E, Melachrinou M, Zolota V, Tzelepi V. Isolated Intraductal Carcinoma of the Prostate in Prostatectomy Specimens: Report of 2 Cases and Review of the Literature. Int J Surg Pathol 2020; 28:918-924. [PMID: 32456482 DOI: 10.1177/1066896920920357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intraductal carcinoma of the prostate (IDCp) is a distinct neoplastic entity, and although recognized for some time, it was included for the first time in the histologic classification of prostate cancer in the 2016 publication of World Health Organization. IDCp represents an intraductal or intra-acinar proliferation of malignant cells, with preservation of the basal cell layer. Even though IDCp is usually accompanied by a high-grade invasive component, low-grade invasive carcinoma can rarely be seen adjacent to the lesion. Even rarer is the incidence of isolated IDCp in needle biopsies, while a few such cases have been reported in prostatectomy specimens. We report 2 cases with isolated IDCp without any invasive component. A review of the literature is performed including the diagnostic challenges of IDCp and its morphologic mimics, immunohistochemical markers, molecular aspects, and prognostic implications. Even though it is not yet clear whether IDCp represents an intraductal spread of invasive cancer or a precursor of invasive carcinoma, the existence of isolated IDCp reinforces the idea that, at least in some of the cases, IDCp is a precancerous lesion. Further molecular studies need to be performed in order to clarify its pathogenesis.
Collapse
|
31
|
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a diagnostic entity characterized by architecturally or cytologically malignant-appearing prostatic glandular epithelium confined to prostatic ducts. Despite its apparent in situ nature, this lesion is associated with aggressive prostatic adenocarcinoma and is a predictor for poor prognosis when identified on biopsy or radical prostatectomy. This review discusses diagnosis, clinical features, histogenesis, and management of IDC-P, as well as current research and controversies surrounding this entity.
Collapse
|
32
|
Xiao GQ, Golestani R, Pham H, Sherrod AE. Stratification of Atypical Intraepithelial Prostatic Lesions Based on Basal Cell and Architectural Patterns. Am J Clin Pathol 2020; 153:407-416. [PMID: 31781737 DOI: 10.1093/ajcp/aqz183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES High-grade prostatic intraepithelial neoplasia (HPIN) and atypical cribriform lesion of the prostate are considered the precursors or associators of invasive prostate cancer (iPCa). Given loss of basal cells being the hallmark of iPCa, we hypothesized that a subset of these atypical intraepithelial lesions (AILs) with sparse basal cells can be classified as prostatic intraepithelial carcinoma (PIC) with frequent iPCa association and that different morphologic patterns of PIC are associated with specific Gleason (G) patterns and scores for iPCa. METHODS We stratified 153 foci of AILs from 110 patients based on the integrity of the basal cell layer and architectural patterns and their association with iPCa. RESULTS We demonstrated that AILs could be stratified into usual HPIN (intact basal cell layer and simple patterns) with low-risk of iPCa association and PIC (sparse basal cell layer) with high risk of iPCa association. Furthermore, PIC could be divided into low-grade (simple patterns and associated with G3 and G3/4 iPCa) and high-grade PIC (complex patterns and associated with G4 and G3/4/5 iPCa). CONCLUSIONS Such stratification is of great clinical significance and instrumental to clinical patient management. It not only increases the predictability of AILs for iPCa but also accommodates a clinical scenario for lesions with features of intraductal carcinoma when iPCa is not found, particularly in biopsies.
Collapse
Affiliation(s)
- Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Reza Golestani
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Huy Pham
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles
| | - Andy E Sherrod
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
33
|
Kato M, Hirakawa A, Kobayashi Y, Yamamoto A, Ishida R, Kamihira O, Sano T, Majima T, Ishida S, Funahashi Y, Sassa N, Fujita T, Matsukawa Y, Hattori R, Gotoh M, Tsuzuki T. Response of intraductal carcinoma of the prostate to androgen deprivation therapy predicts prostate cancer prognosis in radical prostatectomy patients. Prostate 2020; 80:284-290. [PMID: 31860754 DOI: 10.1002/pros.23942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intraductal carcinoma of the prostate (IDC-P) has a poor prognosis and is thought to be completely resistant to current therapies, including androgen deprivation therapy (ADT). However, to date, there are no data showing direct evidence of such resistance. METHODS We retrospectively evaluated 145 patients with high-risk prostate cancer who underwent radical prostatectomy (RP) with neoadjuvant ADT between 1991 and 2005. All patient data were collected from slides prepared from needle biopsy (NB) samples of prostate tissue and RP specimens. Data were analyzed in terms of serum level of prostate specific antigen (PSA), Gleason score of NB samples, clinical T stage, the positive cancer core rate, maximum cancer extension rate, presence of Gleason pattern 5, and presence of IDC-P in both NB samples and RP specimens. RESULTS The median initial PSA was 33.2 ng/mL (range, 2.4-296 ng/mL), and the median follow-up period was 109 months (range, 11-257 months). The preoperative median ADT period was 4 months (range, 1-20 months). IDC-P was present in 53 patients (37%) in NB samples and 65 (45%) in RP. The patients were divided into three groups based on the presence or absence of IDC-P in NB/RP samples (IDC-P-negative at biopsy: 92 cases, IDC-P-positive at biopsy with IDC-P disappearance: 15 cases, and IDC-P-positive at biopsy with IDC-P persistence: 38 cases). Overall, 28% of IDC-P-positive cases in NB samples showed the disappearance of IDC-P at RP. IDC-P persistence cases showed the poorest prognosis, while IDC-P disappearance cases had a similar prognosis to that of IDC-P-negative at biopsy cases in terms of disease-free survival, cancer-specific survival, and overall survival (P = .0018, P = .0087, and P = .0034, respectively). CONCLUSIONS Some cases with IDC-P responded to ADT and demonstrated favorable clinical outcomes similar to those of cases without IDC-P. These findings indicate that cases with IDC-P are heterogeneous.
Collapse
Affiliation(s)
- Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Kobayashi
- Statistical Analysis Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Akiyuki Yamamoto
- Department of Urology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Ryo Ishida
- Department of Urology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Osamu Kamihira
- Department of Urology, Komaki City Hospital, Komaki, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Majima
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhito Funahashi
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoto Sassa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Fujita
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryohei Hattori
- Department of Urology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
34
|
Copeland BT, Du J, Pal SK, Jones JO. Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol 2019; 13:2616-2632. [PMID: 31520575 PMCID: PMC6887583 DOI: 10.1002/1878-0261.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023] Open
Abstract
The androgen receptor (AR) plays key roles in the development of prostate tissue and the development and progression of prostate cancer (PC). AR guides cytodifferentiation and homeostasis in benign luminal epithelial cells; however, in PC, AR instead drives the uncontrolled proliferation of these cells. This ‘AR malignancy shift’ (AMS) is a central event in tumorigenesis. Using a ChIP‐seq approach in primary human tissues, cell lines, and mouse models, we demonstrate that the AMS occurs in every sample analyzed, suggesting that it is necessary for PC development. Using molecular and genetic techniques, we demonstrate that forkhead box (FOX)A1, HOXB13, GATA2, and c‐JUN are involved in the regulation of the AMS. AR‐binding sites (ARBS) are enriched for FOX, HOX, and GATA motifs in PC cells but not for c‐JUN motifs in benign cells. We show that the SPOP mutation commonly found in localized PCs can cause the AMS but is not transformative on its own and must be coupled to another mutation to transform cells. We show that the AMS occurs in mouse models of PC as well and that chronic low T, which is associated with increased PC risk and aggressiveness in humans, also causes the AMS in mice. We have discovered a previously unrecognized, fundamental tenet of PC, one which explains how and why AR signaling is different in cancer and benign cells. Our work has the potential to be used to stratify patients with localized PC for specific treatments. Furthermore, our work suggests that the AMS is a novel target for the treatment and/or prevention of PC.
Collapse
Affiliation(s)
- Ben T Copeland
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| | - Juan Du
- Integrative Genomics Core, City of Hope, Duarte, CA, USA
| | - Sumanta K Pal
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| | - Jeremy O Jones
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| |
Collapse
|
35
|
Cimadamore A, Scarpelli M, Raspollini MR, Doria A, Galosi AB, Massari F, Di Nunno V, Cheng L, Lopez-Beltran A, Montironi R. Prostate cancer pathology: What has changed in the last 5 years. Urologia 2019; 87:3-10. [PMID: 31545701 DOI: 10.1177/0391560319876821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent non-cutaneous malignancy in men in the United States. In the last few years, many recommendations have been made available from the 2014 International Society of Urologic Pathology consensus conference, 2016 World Health Organization blue book and 2018 8th edition of American Joint Committee on Cancer Staging System. Here, we focus on four topics which are considered relevant on the basis of their common appearance in routine practice, clinical importance and 'need to improve communication between pathology reports and clinicians': prostate cancer classification, prostate cancer grading, prostate cancer staging, and current definition of clinically significant prostate cancer. Tissue biomarkers that can predict significant disease and/or upgrading and tissue-based genomics for the purpose of diagnosis and prognosis are mentioned briefly.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Andrea Doria
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Andrea Benedetto Galosi
- Institute of Urology, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Massari
- Division of Oncology, Policlinico Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Vincenzo Di Nunno
- Division of Oncology, Policlinico Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, University of Cordoba, Cordoba, Spain
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
36
|
Shah RB, Shore KT, Yoon J, Mendrinos S, McKenney JK, Tian W. PTEN loss in prostatic adenocarcinoma correlates with specific adverse histologic features (intraductal carcinoma, cribriform Gleason pattern 4 and stromogenic carcinoma). Prostate 2019; 79:1267-1273. [PMID: 31111513 DOI: 10.1002/pros.23831] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The loss of PTEN tumor suppressor gene is one of the most common somatic genetic aberrations in prostate cancer (PCa) and is frequently associated with high-risk disease. Deletion or mutation of at least one PTEN allele has been reported to occur in 20% to 40% of localized PCa and up to 60% of metastases. The goal of this study was to determine if somatic alteration detected by PTEN immunohistochemical loss of expression is associated with specific histologic features. METHODS Two hundred sixty prostate core needle biopsies with PCa were assessed for PTEN loss using an analytically validated immunohistochemical assay. Blinded to PTEN status, each tumor was assessed for the Grade Group (GG) and the presence or absence of nine epithelial features. Presence of stromogenic PCa was also assessed and defined as grade 3 reactive tumor stroma as previously described: the presence of carcinoma associated stromal response with epithelial to stroma ratio of greater than 50% reactive stroma. RESULTS Eight-eight (34%) cases exhibited PTEN loss while 172 (66%) had intact PTEN. PTEN loss was significantly (P < 0.05) associated with increasing GG, poorly formed glands (74% of total cases with loss vs 49% of intact), and three well-validated unfavorable pathological features: intraductal carcinoma of the prostate (IDC-P) (69% of total cases with loss vs 12% of intact), cribriform Gleason pattern 4 (38% of total cases with loss vs 10% of intact) and stromogenic PCa (23% of total cases with loss vs 6% of intact). IDC-P had the highest relative risk (4.993, 95% confidence interval, 3.451-7.223, P < 0.001) for PTEN loss. At least one of these three unfavorable pathological features were present in 67% of PCa exhibiting PTEN loss, while only 11% of PCa exhibited PTEN loss when none of these three unfavorable pathological features were present. CONCLUSIONS PCa with PTEN loss demonstrates a strong correlation with known unfavorable histologic features, particularly IDC-P. This is the first study showing the association of PTEN loss with stromogenic PCa.
Collapse
Affiliation(s)
- Rajal B Shah
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Karen T Shore
- Weiss School of Natural Sciences, Rice University, Houston, Texas
| | - Jiyoon Yoon
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Savvas Mendrinos
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Wei Tian
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| |
Collapse
|
37
|
Kato M, Hirakawa A, Kobayashi Y, Yamamoto A, Ishida R, Sano T, Kimura T, Majima T, Ishida S, Funahashi Y, Sassa N, Fujita T, Matsukawa Y, Yamamoto T, Hattori R, Gotoh M, Tsuzuki T. The influence of the presence of intraductal carcinoma of the prostate on the grade group system's prognostic performance. Prostate 2019; 79:1065-1070. [PMID: 31025722 DOI: 10.1002/pros.23818] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/09/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Although the presence of intraductal carcinoma of the prostate (IDC-P) influences biochemical failure in radical prostatectomy patients, no data are available regarding the impact of its integration into the classification grade group system. Thus, the aim of this study was to enhance the utility of the grade group system by integrating the presence of IDC-P. METHODS This study was a retrospective evaluation of 1019 patients with prostate cancer who underwent radical prostatectomy between 2005 and 2013 without neoadjuvant or adjuvant therapy. The data on age, prostate-specific antigen (PSA) level at diagnosis, pathological T stage (pT), presence of Gleason pattern 5 (GP5), presence of IDC-P, and surgical margin status were analyzed to predict PSA recurrence after prostatectomy. RESULTS The median patient age was 67 (range, 45-80) years and the median initial PSA level was 6.8 (range, 0.4-82) ng/mL. The median follow-up period was 82 (range, 0.7-148) months. IDC-P was detected in 157 patients (15.4%). Among these patients, the increase in the positive rate of IDC-P correlated with tumor upgrading. The grade groups (GGs) were as follows: GG1 without IDC-P, 16.0% (n = 163); GG2 without IDC-P, 46.1% (n = 470); GG3 without IDC-P, 15.7% (n = 160); GG4 without IDC-P, 2.6% (n = 27); GG5 without IDC-P, 4.1% (n = 42); any GG with IDC-P, 15.4% [n = 157; GG 2 (n = 29); GG3 (n = 60); GG4 (n = 13); GG5 (n = 55)]. Any grade Group with IDC-P showed significantly worse prognosis than any other group without IDC-P (P < 0.0001). In a multivariate analysis, integration of the IDC-P into the Grade Groups, the PSA level at diagnosis, and the surgical margin status were significant prognostic predictors (P < 0.0001, < 0.0001 and < 0.0001, respectively). CONCLUSIONS Integrating the presence of IDC-P into the grade group system will result in more accurate predictions of patient outcome.
Collapse
Affiliation(s)
- Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Kobayashi
- Statistical Analysis Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Akiyuki Yamamoto
- Department of Urology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Ryo Ishida
- Department of Urology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Tomoyasu Sano
- Department of Urology, Komaki City Hospital, Komaki, Japan
| | - Tohru Kimura
- Department of Urology, JCHO Chukyo Hospital, Nagoya, Japan
| | - Tsuyoshi Majima
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhito Funahashi
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoto Sassa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Fujita
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tokunori Yamamoto
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryohei Hattori
- Department of Urology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University, School of Medicine, Nagakute, Japan
| |
Collapse
|
38
|
[Prostate pathology recommendations from the Uropathology working group of the Spanish Society of Pathology]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2019; 52:167-177. [PMID: 31213258 DOI: 10.1016/j.patol.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/24/2022]
Abstract
These guidelines from the uropathology working group of the Spanish Society of Pathology (SEAP) are based on the European and ISUP 2015 recommendations and those of the College of American Pathologists, as well as the latest WHO 2016, TNM (AJCC) 2017 classifications. They include recommendations for specimen sampling, macro- and microscopic examination and immunohistochemistry. Gleason patterns are specified: Gleason pattern 3 includes hyperplastic, atrophic and microcystic glands, while pattern 4 includes all cribriform or glomeruloid glands. The Gleason score in prostatectomy specimens may change; if a tertiary pattern occurs in more than 5% of the tumour, it becomes a secondary pattern. In both biopsies and prostatectomy specimens, if the Gleason score is 7, the percentage of pattern 4 should be stated. Gleason scoring in tumor variants and special situations should also be specified. These recommendations should be adapted according to the resources available.
Collapse
|
39
|
Aldaoud N, Graboski-Bauer A, Abdo N, Al Bashir S, Oweis AO, Ebwaini H, Hasen Y, Alazab R, Trpkov K. ERG expression in prostate cancer biopsies with and without high-grade prostatic intraepithelial neoplasia: a study in Jordanian Arab patients. Res Rep Urol 2019; 11:149-155. [PMID: 31192172 PMCID: PMC6535407 DOI: 10.2147/rru.s207843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Background: High-grade prostatic intraepithelial neoplasia (HGPIN) is the most likely precancerous lesion for prostatic adenocarcinoma (PCa). Recent molecular studies have shown that HGPIN can harbor TMPRSS2-ERG fusion, a genetic marker also associated with PCa, which may provide an additional risk stratification tool for HGPIN, especially when present as an isolated lesion. Our aim was to assess the frequency of HGPIN and ERG expression in a cohort of prostatic needle core biopsies from Jordanian-Arab patients with PCa. Materials and methods: We studied 109 needle core biopsies from patients with PCa. Clinical data, including age and preoperative prostate specific antigen (PSA) level, were obtained from patients’ medical records. Results: HGPIN was present in 31 (28.4 %) of the 109 cases. Of the HGPIN cases, 13 (41.9%) expressed ERG immunostain. ERG expression in HGPIN was independent of patient age at presentation (P=0.4), pre-operative PSA (P=0.9), and the grade, using the novel Grade Groups (P=0.5). Conclusion: The frequency of HGPIN in our cohort appears similar to the one found in the Western patient populations and demonstrates a comparable frequency of ERG expression in these lesions.
Collapse
Affiliation(s)
- Najla Aldaoud
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour Abdo
- Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Samir Al Bashir
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan
| | - Ashraf O Oweis
- Division of Nephrology, Department of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanadi Ebwaini
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan
| | - Yousef Hasen
- Department of Pathology and Microbiology, King Abdullah University Hospital, Irbid, Jordan.,Jordan University of Science and Technology, Irbid, Jordan.,Attasami Diagnostic Center, Tripoli, Libya
| | - Rami Alazab
- Division of Urology, Jordan University of Science and Technology, Irbid, Irbid
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Khani F, Wobker SE, Hicks JL, Robinson BD, Barbieri CE, De Marzo AM, Epstein JI, Pritchard CC, Lotan TL. Intraductal carcinoma of the prostate in the absence of high‐grade invasive carcinoma represents a molecularly distinct type of
in situ
carcinoma enriched with oncogenic driver mutations. J Pathol 2019; 249:79-89. [DOI: 10.1002/path.5283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Francesca Khani
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Department of Urology Weill Cornell Medicine New York NY USA
| | - Sara E Wobker
- Department of Pathology and Laboratory Medicine UNC Chapel Hill Chapel Hill NC USA
| | - Jessica L Hicks
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Department of Urology Weill Cornell Medicine New York NY USA
| | | | - Angelo M De Marzo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jonathan I Epstein
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Colin C Pritchard
- Department of Laboratory Medicine University of Washington Seattle WA USA
| | - Tamara L Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
41
|
Signature maps for automatic identification of prostate cancer from colorimetric analysis of H&E- and IHC-stained histopathological specimens. Sci Rep 2019; 9:6992. [PMID: 31061447 PMCID: PMC6502869 DOI: 10.1038/s41598-019-43486-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) is a major cause of cancer death among men. The histopathological examination of post-surgical prostate specimens and manual annotation of PCa not only allow for detailed assessment of disease characteristics and extent, but also supply the ground truth for developing of computer-aided diagnosis (CAD) systems for PCa detection before definitive treatment. As manual cancer annotation is tedious and subjective, there have been a number of publications describing methods for automating the procedure via the analysis of digitized whole-slide images (WSIs). However, these studies have focused only on the analysis of WSIs stained with hematoxylin and eosin (H&E), even though there is additional information that could be obtained from immunohistochemical (IHC) staining. In this work, we propose a framework for automating the annotation of PCa that is based on automated colorimetric analysis of both H&E and IHC WSIs stained with a triple-antibody cocktail against high-molecular weight cytokeratin (HMWCK), p63, and α-methylacyl CoA racemase (AMACR). The analysis outputs were then used to train a regression model to estimate the distribution of cancerous epithelium within slides. The approach yielded an AUC of 0.951, sensitivity of 87.1%, and specificity of 90.7% as compared to slide-level annotations, and generalized well to cancers of all grades.
Collapse
|
42
|
Paner GP, Gandhi J, Choy B, Amin MB. Essential Updates in Grading, Morphotyping, Reporting, and Staging of Prostate Carcinoma for General Surgical Pathologists. Arch Pathol Lab Med 2019; 143:550-564. [PMID: 30865487 DOI: 10.5858/arpa.2018-0334-ra] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Within this decade, several important updates in prostate cancer have been presented through expert international consensus conferences and influential publications of tumor classification and staging. OBJECTIVE.— To present key updates in prostate carcinoma. DATA SOURCES.— The study comprised a review of literature and our experience from routine and consultation practices. CONCLUSIONS.— Grade groups, a compression of the Gleason system into clinically meaningful groups relevant in this era of active surveillance and multidisciplinary care management for prostate cancer, have been introduced. Refinements in the Gleason patterns notably result in the contemporarily defined Gleason score 6 cancers having a virtually indolent behavior. Grading of tertiary and minor higher-grade patterns in radical prostatectomy has been clarified. A new classification for prostatic neuroendocrine tumors has been promulgated, and intraductal, microcystic, and pleomorphic giant cell carcinomas have been officially recognized. Reporting the percentage of Gleason pattern 4 in Gleason score 7 cancers has been recommended, and data on the enhanced risk for worse prognosis of cribriform pattern are emerging. In reporting biopsies for active surveillance criteria-based protocols, we outline approaches in special situations, including variances in sampling or submission. The 8th American Joint Commission on Cancer TNM staging for prostate cancer has eliminated pT2 subcategorization and stresses the importance of nonanatomic factors in stage groupings and outcome prediction. As the clinical and pathology practices for prostate cancer continue to evolve, it is of utmost importance that surgical pathologists become fully aware of the new changes and challenges that impact their evaluation of prostatic specimens.
Collapse
Affiliation(s)
| | | | | | - Mahul B Amin
- From the Departments of Pathology (Drs Paner and Choy) and Surgery (Urology) (Dr Paner), University of Chicago, Chicago, Illinois; and the Departments of Pathology and Laboratory Medicine (Drs Gandhi and Amin) and Urology (Dr Amin), University of Tennessee Health Science Center, Memphis
| |
Collapse
|
43
|
Intraductal carcinoma of the prostate: a critical re-appraisal. Virchows Arch 2019; 474:525-534. [PMID: 30825003 PMCID: PMC6505500 DOI: 10.1007/s00428-019-02544-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/11/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Intraductal carcinoma of the prostate gland (IDCP), which is now categorised as a distinct entity by WHO 2016, includes two biologically distinct diseases. IDCP associated with invasive carcinoma (IDCP-inv) generally represents a growth pattern of invasive prostatic adenocarcinoma while the rarely encountered pure IDCP is a precursor of prostate cancer. This review highlights issues that require further discussion and clarification. The diagnostic criterion “nuclear size at least 6 times normal” is ambiguous as “size” could refer to either nuclear area or diameter. If area, then this criterion could be re-defined as nuclear diameter at least three times normal as it is difficult to visually compare area of nuclei. It is also unclear whether IDCP could also include tumours with ductal morphology. There is no consensus whether pure IDCP in needle biopsies should be managed with re-biopsy or radical therapy. A pragmatic approach would be to recommend radical therapy only for extensive pure IDCP that is morphologically unequivocal for high-grade prostate cancer. Active surveillance is not appropriate when low-grade invasive cancer is associated with IDCP, as such patients usually have unsampled high-grade prostatic adenocarcinoma. It is generally recommended that IDCP component of IDCP-inv should be included in tumour extent but not grade. However, there are good arguments in favour of grading IDCP associated with invasive cancer. All historical as well as contemporary Gleason outcome data are based on morphology and would have included an associated IDCP component in the tumour grade. WHO 2016 recommends that IDCP should not be graded, but it is unclear whether this applies to both pure IDCP and IDCP-inv.
Collapse
|
44
|
Pathological Assessment of Prostate Cancer. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42603-7_71-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Pathological Assessment of Prostate Cancer. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Iczkowski KA. Large-Gland Proliferations of the Prostate. Surg Pathol Clin 2018; 11:687-712. [PMID: 30447836 DOI: 10.1016/j.path.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Large-gland proliferations of the prostate have gained considerable attention in the past decade. The differential diagnosis is quite broad but can be refined using histologic criteria and, sometimes, immunostains. Pathologists have come to realize that cribriform and intraductal as well as ductal carcinomas are particularly aggressive patterns, and should name them in diagnostic reporting when present.
Collapse
Affiliation(s)
- Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| |
Collapse
|
47
|
Udager AM, Tomlins SA. Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030601. [PMID: 29311125 PMCID: PMC6211380 DOI: 10.1101/cshperspect.a030601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer, one of the most common noncutaneous malignancies in men, is a heterogeneous disease with variable clinical outcome. Although the majority of patients harbor indolent tumors that are essentially cured by local therapy, subsets of patients present with aggressive disease or recur/progress after primary treatment. With this in mind, modern clinical approaches to prostate cancer emphasize the need to reduce overdiagnosis and overtreatment via personalized medicine. Advances in our understanding of prostate cancer pathogenesis, coupled with recent technologic innovations, have facilitated the development and validation of numerous molecular biomarkers, representing a range of macromolecules assayed from a variety of patient sample types, to help guide the clinical management of prostate cancer, including early detection, diagnosis, prognostication, and targeted therapeutic selection. Herein, we review the current state of the art regarding prostate cancer molecular biomarkers, emphasizing those with demonstrated utility in clinical practice.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5948
- Comprehensive Cancer Center, Michigan Medicine, Ann Arbor, Michigan 48109-0944
- Michigan Center for Translational Pathology, Ann Arbor, Michigan 48109-5940
| |
Collapse
|
48
|
Athanazio DA, Souza VC. Current topics on prostate and bladder pathology. SURGICAL AND EXPERIMENTAL PATHOLOGY 2018. [DOI: 10.1186/s42047-018-0015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
49
|
Association of ERG/PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Med Oncol 2018; 35:152. [PMID: 30291535 DOI: 10.1007/s12032-018-1212-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
We have previously demonstrated a significant correlative relationship between PTEN deletion and ERG rearrangement, both in the development of clinically localized prostate cancers and metastases. Herein, we evaluate the cooperative role of ERG and PTEN in oncological outcomes after radical prostatectomy for clinically localized prostate cancer. We evaluated ERG and PTEN status using three previously described cohorts. The first cohort included 235 clinically localized prostate cancer cases represented on tissue microarrays (TMA), evaluated using previously validated FISH assays for ERG and PTEN. The second cohort included 167 cases of clinically localized prostate cancer on TMAs evaluated for PTEN by FISH, and for PTEN and ERG by dual IHC. The third cohort comprised 59 clinically localized prostate cancer cases assessed by array comparative genomic hybridization (aCGH). Kaplan-Meir plots and long rank tests were used to assess the association of ERG and PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Of the 317 cases eligible for analyses with evaluable ERG and PTEN status, 88 (27.8%) patients developed biochemical recurrence over a median follow-up of 5.7 years. Overall, 45% (142/317) of cases demonstrated ERG rearrangement and 20% (62/317) of cases demonstrated PTEN loss. Hemizygous and homozygous deletion of PTEN was seen in 10% (18/175) and 3% (5/175) of ERG-negative cases, respectively. In contrast, hemizygous and homozygous deletion of PTEN was seen in 11% (15/142) and 17% (24/123) of ERG-positive cases, respectively. PTEN loss (heterozygous or homozygous) was significantly associated with shorter time to biochemical recurrence compared to no PTEN loss (p < 0.001). However, ERG rearrangement versus no rearrangement was not associated with time to PSA recurrence (p = 0.15). Patients who exhibited ERG rearrangement and loss of PTEN had no significant difference in time to recurrence compared to patients with wild-type ERG and loss of PTEN (p = 0.30). Our findings confirm a mutual cooperative role of ERG and PTEN in the pathogenesis of prostate cancer, particularly for homozygous PTEN deletion. ERG did not stratify outcome either alone or in combination with PTEN in this cohort.
Collapse
|
50
|
Unfavorable Pathology, Tissue Biomarkers and Genomic Tests With Clinical Implications in Prostate Cancer Management. Adv Anat Pathol 2018; 25:293-303. [PMID: 29727322 DOI: 10.1097/pap.0000000000000192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer management has traditionally relied upon risk stratification of patients based on Gleason score, pretreatment prostate-specific antigen and clinical tumor stage. However, these factors alone do not adequately reflect the inherent complexity and heterogeneity of prostate cancer. Accurate and individualized risk stratification at the time of diagnosis is instrumental to facilitate clinical decision-making and treatment selection tailored to each patient. The incorporation of tissue and genetic biomarkers into current prostate cancer prediction models may optimize decision-making and improve patient outcomes. In this review we discuss the clinical significance of unfavorable morphologic features such as cribriform architecture and intraductal carcinoma of the prostate, tissue biomarkers and genomic tests and assess their potential use in prostate cancer risk assessment and treatment selection.
Collapse
|