1
|
Asghari Alashti F, Goliaei B. Rethinking fat Browning: Uncovering new molecular insights into the synergistic roles of fasting, exercise, and cold exposure. Eur J Pharmacol 2025; 998:177651. [PMID: 40274179 DOI: 10.1016/j.ejphar.2025.177651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
The global obesity epidemic highlights the need to understand the molecular mechanisms that regulate energy metabolism. Among emerging research areas, fat browning-the transformation of white adipose tissue into beige fat-has gained significant attention. This review explores the molecular pathways involved in fat browning triggered by fasting, physical exercise, and cold exposure, emphasizing both shared and distinct regulatory mechanisms. These stimuli consistently induce physiological responses such as lipolysis, mitochondrial biogenesis, and improved insulin sensitivity. Notably, PGC-1α and SIRT3 are upregulated across all three conditions, underscoring their central roles in mitochondrial function and energy metabolism and identifying them as promising therapeutic targets. In contrast, UCP1 and PRDM16 exhibit condition-specific regulation, suggesting they may not be universally essential for fat browning. In addition, the review discusses species-specific differences in brown adipose tissue (BAT) activation, particularly between rodents and humans, highlighting the challenges of translating animal model findings to human therapies. Future research should aim to develop selective pharmacological activators of PGC-1α and SIRT3 to enhance therapeutic outcomes while minimizing adverse effects. This review also proposes that integrating fasting, exercise, and cold exposure could provide innovative strategies to promote metabolic health.
Collapse
Affiliation(s)
- Fariborz Asghari Alashti
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran; Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, M4N 3M5, Canada.
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Huang H, Tan L, Wei L, Song H, Xu W, Dong M, Chu X, Wang X. Comparative transcriptomic analysis of left-right sensory differences in Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101417. [PMID: 39813920 DOI: 10.1016/j.cbd.2025.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Asymmetric development, in which functional differences occur between left-right symmetrical organs, is widespread in organisms, including fish and mollusks. However, the asymmetry of symmetrical sensory structures in Haliotis discus hannai, a gastropod with a sensitive sensory system, remains unknown. This study analyzed the transcriptomes of three sensory structures (eyestalks, cephalic tentacles, and epipodial tentacles) to explore potential asymmetries in this species. RNA-seq revealed functional differences in sensory ability and sperm-egg recognition between right and left eyestalks, with cephalic tentacles displaying asymmetry in cytoskeletal organization and cell cycle regulation. Epipodial tentacles showed similar asymmetries, including immune response differences. Moreover, the cAMP-protein kinase A (PKA)-CREB-binding protein (CBP) signaling pathway responded asymmetrically, with PKA responding to activators and inhibitors on both sides and CBP showing a stronger response on the right. These findings provide insights into sensory asymmetry in mollusks and guidance for further investigations of the molecular mechanisms underlying asymmetry in symmetrical organs.
Collapse
Affiliation(s)
- Haifeng Huang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan 264599, China
| | - Lei Wei
- School of Fisheries, Ludong University, Yantai 264025, China.
| | - Hongce Song
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, Yantai 264025, China; Rushan Marine Economy and Development Center, Rushan 264599, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaolong Chu
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
3
|
Zhao S, Dong G, Guo Y, Sun Y, Li M, Sha B, Huang W, Zhang Y, Du Y, Yan J, Ma Y, Yang R, Shi J, Li P, Hu T, Chen P. NSC632839 suppresses esophageal squamous cell carcinoma cell proliferation in vitro by triggering spindle assembly checkpoint-mediated mitotic arrest and CREB-Noxa-dependent apoptosis. Cancer Cell Int 2025; 25:198. [PMID: 40450316 DOI: 10.1186/s12935-025-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/15/2025] [Indexed: 06/03/2025] Open
Abstract
OBJECTIVE Esophageal cancer is one of the most common digestive cancers in the world. Because of the limitation and resistence of the traditional chemotherapy drugs, it is important to explore new therapeutic targets and strategies for this refractory cancer. Recently, targeting deubiquitinases has emerged as a promising avenue for the development of anti-tumor drugs. However, the role and underlying mechanism of NSC632839, a broad-spectrum deubiquitinases inhibitor, in esophageal squamous cell carcinoma in vitro remain elusive. METHODS Cell Counting Kit-8 assay, colony formation assay, EdU proliferation experiment and cell morphology observation were used to detect the effect of NSC632839 on cell growth. Flow cytometry was employed to detect cell apoptosis and cell cycle arrest. Immunoblot and immunofluorescence was used to evaluate the expression level of cell cycle-, apoptosis-, and autophagy-related proteins. RESULTS NSC632839 inhibited the proliferation of Kyse30 and Kyse450 cells. Mechanistically, NSC632839 induced the formation of multipolar spindles, and its concomitant spindle assembly checkpoint-dependent mitotic arrest, followed by CREB-Noxa-mediated apoptosis. Reversine, a classical MPS1 kinase inhibitor known for its ability to inhibit the spindle assembly checkpoint, could rescue NSC632839-induced cell cycle arrest and apoptosis. Additionally, NSC632839 could trigger pro-survival autophagy. Combination of autophagy inhibitor, CQ and BafA1, with NSC632839 could induce stronger cell proliferation inhibition and apoptosis than NSC632839 alone. CONCLUSIONS These findings provided a novel anti-cancer mechanism of NSC632839 and highlighted it as a potential anti-tumor agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Shan Zhao
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- XinJiang Hotan College, Xinjiang, 848000, China
| | - Guihong Dong
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Guo
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Wenjing Huang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Zhang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Du
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yangcheng Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruiyi Yang
- The Nursing College of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Al-Ashram MM, Nader MA, El-Sheakh AR. Role of sacubitril/valsartan in modulating diabetes mediated cognitive and neuronal impairment. Int Immunopharmacol 2025; 154:114431. [PMID: 40157081 DOI: 10.1016/j.intimp.2025.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Earlier investigations had established that Diabetes mellitus (DM) caused significant damage in the central nervous system, bringing about diabetic encephalopathy and increasing the risk of cognitive-related problems. Nonetheless, the inherent pathophysiology of cognitive dysfunctions in DM is not well understood. The current study aimed to examine the possible influences of sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker/neprilysin inhibitor (ARNI), on cognitive dysfunction associated with streptozotocin (STZ)-induced diabetic rats. SAC/VAL and VAL treatments were initiated three days after the diabetic condition was established and continued daily for eight weeks. Normal, non-diabetic rats were reserved as a control group. Both SAC/VAL and VAL treatment in diabetic rats ameliorated diabetes induced oxidative stress as indicated by reduced malondialdehyde (MDA), increased total antioxidant capacity (TAO) in hippocampal tissue and decreased serum advanced glycation end products (AGEs), also inflammatory and apoptotic changes were observed and proved by the reduction of tumor necrosis factor alpha (TNF-α) and caspase -3 in rat hippocampus. SAC/VAL administration to diabetic rats also improved neuronal damages as reflected by restored cAMP response element-binding protein (CREB), brain derived neurotrophic factor (BDNF) and pre-synaptic phosphoproteins, synapsin I and growth associated protein-43 (GAP-43) in the hippocampus of diabetic rats. Additionally, SAC/VAL treated diabetic rats markedly reduced signs of cognitive deterioration during the Morris water maze test. Collectively, these findings suggested that SAC/VAL might play a vital role in improvement of the cognitive impairment observed in diabetic rats through antioxidant, anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
- Mai M Al-Ashram
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt; Future studies and Risks management, National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| |
Collapse
|
5
|
El-Derany MO, Ramakrishnan SK, Li Y, Buscher K, Jarad CA, Schaller ML, Cantwell M, Vigil TM, Frieler RA, Sajjakulnukit P, Lyssiotis CA, Mortensen RM, Shah YM. Itaconate potentiates hepatic gluconeogenesis through NRF2 induction. PLoS One 2025; 20:e0322946. [PMID: 40323920 PMCID: PMC12052187 DOI: 10.1371/journal.pone.0322946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/31/2025] [Indexed: 05/07/2025] Open
Abstract
The interplay between systemic metabolism and immune responses is increasingly recognized as a significant factor in the dysregulation of glucose homeostasis associated with diabetes and obesity. Immune metabolites play crucial roles in mediating this crosstalk, with itaconate emerging as an important immune metabolite involved in the inflammatory response of macrophages. Recent studies have highlighted the role of itaconate as a regulator of glucose metabolism, particularly in the context of obesity, although the underlying mechanisms remain poorly understood. In this study, we identified itaconate as one of the metabolites that significantly increase in the liver during fasting compared to fed conditions. Mechanistically, we found that itaconate enhances glucagon-induced liver gluconeogenesis independently of insulin signaling. Notably, itaconate upregulates the expression of gluconeogenic genes both under basal conditions and in the presence of palmitic acid. Furthermore, our data indicate that the effects of itaconate occur independently of CREB activation. Instead, we demonstrate that these potentiating effects are mediated through the induction of nuclear factor erythroid 2-related factor 2 (NRF2). Our findings demonstrate that itaconate has a glucagon-potentiating effects in the liver, suggesting that itaconate may play a significant role in the pathogenesis of metabolic-associated liver diseases.
Collapse
Affiliation(s)
- Marwa O. El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sadeesh K. Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yingjie Li
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathryn Buscher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christina A. Jarad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Megan L. Schaller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marc Cantwell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas M. Vigil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan A. Frieler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter Sajjakulnukit
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard M. Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Farhangdoost N, Liao C, Liu Y, Rochefort D, Aboasali F, Pietrantonio A, Alda M, Dion PA, Chaumette B, Khayachi A, Rouleau GA. Transcriptomic and epigenomic consequences of heterozygous loss-of-function mutations in AKAP11, a shared risk gene for bipolar disorder and schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-03040-x. [PMID: 40316678 DOI: 10.1038/s41380-025-03040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
The gene A-kinase anchoring protein 11 (AKAP11) recently emerged as a shared risk factor between bipolar disorder and schizophrenia, driven by large-effect loss-of-function (LoF) variants. Recent research has uncovered the neurophysiological characteristics and synapse proteomics profile of Akap11-mutant mouse models. Considering the role of AKAP11 in binding cAMP-dependent protein kinase A (PKA) and mediating phosphorylation of numerous substrates, such as transcription factors and epigenetic regulators, and given that chromatin alterations have been implicated in the brains of patients with bipolar disorder and schizophrenia, it is crucial to uncover the transcriptomic and chromatin dysregulations following the heterozygous knockout of AKAP11, particularly in human neurons. This study uses genome-wide approaches to investigate such aberrations in human induced pluripotent stem cell (iPSC)-derived neurons. We show the impact of heterozygous AKAP11 LoF mutations on the gene expression landscape and profile the DNA methylation and histone acetylation modifications. Altogether we highlight the involvement of aberrant activity of intergenic and intronic enhancers, which are enriched in PBX homeobox 2 (PBX2) and Nuclear Factor-1 (NF1) known binding motifs, respectively, in transcription dysregulations of genes mainly involved in DNA-binding transcription factor activity, actin binding and cytoskeleton regulation, and cytokine receptor binding. We also show significant downregulation of pathways related to ribosome structure and function, a pathway also altered in BD and SCZ post-mortem brain tissues and heterozygous Akap11-KO mice synapse proteomics. A better understanding of the dysregulations resulting from haploinsufficiency in AKAP11 improves our knowledge of the biological roots and pathophysiology of BD and SCZ, paving the way for better therapeutic approaches.
Collapse
Affiliation(s)
- Nargess Farhangdoost
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yumin Liu
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farah Aboasali
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), Institut Pasteur (CNRS UMR3571), GHU Paris Psychiatrie et Neurosciences, Paris, France.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Anouar Khayachi
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Lee HS, Cho SJ, Kang HC, Lee JY, Kwon YJ, Cho YY. RSK2 and its binding partners: an emerging signaling node in cancers. Arch Pharm Res 2025; 48:365-383. [PMID: 40320503 DOI: 10.1007/s12272-025-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025]
Abstract
The growth factor-mediated mitogen-activated protein kinase (MAPK) signaling pathways in cancer development have become increasingly important in the discovery of therapeutic agents for the treatment of cancer. RSK2 has been historically overlooked in studies regarding its involvement in physiology and signaling pathways related to human diseases, except for Coffin-Lowry syndrome, because it is located downstream of ERKs. For the last 25 years, the authors' laboratory has made groundbreaking discoveries regarding the role of RSK2, especially by elucidating its binding partners, signaling network, and crosstalk. RSK2 is an important emerging target for developing anticancer drugs. Nevertheless, further studies on the detailed mechanism and signaling network are necessary to avoid the unexpected effects of RSK2 inhibitors. This paper describes a new paradigm of RSK2, where it works as a signaling node to modulate diverse cellular processes, including cell proliferation and transformation, cell cycle regulation, chromatin remodeling, and immune response and inflammation regulation.
Collapse
Affiliation(s)
- Hye Suk Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sung-Jun Cho
- Internal Medicine Residency Program, Department Medicine, University of Minnesota Medical School, 401, East River Parkway, VCRC 1 floor, Suite 131, Minneapolis, MN, 55455, USA
| | - Han Chang Kang
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Yong-Yeon Cho
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
8
|
Farmand S, Du Preez A, Kim C, de Lucia C, Ruepp MD, Stubbs B, Thuret S. Cognition on the move: Examining the role of physical exercise and neurogenesis in counteracting cognitive aging. Ageing Res Rev 2025; 107:102725. [PMID: 40064399 DOI: 10.1016/j.arr.2025.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Structural and functional aspects of the hippocampus have been shown to be sensitive to the aging process, resulting in deficits in hippocampal-dependent cognition. Similarly, adult hippocampal neurogenesis (AHN), described as the generation of new neurons from neural stem cells in the hippocampus, has shown to be negatively affected by aging throughout life. Extensive research has highlighted the role of physical exercise (PE) in positively regulating hippocampal-dependent cognition and AHN. Here, by critically reviewing preclinical and clinical studies, we discuss the significance of PE in reversing age-associated changes of the hippocampus via modulation of AHN. We indicate that PE-induced changes operate on two main levels. On the first level, PE can potentially cause structural modifications of the hippocampus, and on the second level, it regulates the molecular and cellular pathways involved. These changes result in the vascular remodelling of the neurogenic niche, as well as the secretion of neurotrophic and antioxidant factors, which can in turn activate quiescent neural stem cells, while restoring their proliferation capacity and boosting their survival - features which are negatively impacted during aging. Understanding these mechanisms will allow us to identify new targets to tackle cognitive aging and improve quality of life.
Collapse
Affiliation(s)
- Sahand Farmand
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Curie Kim
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; UK Dementia Research Institute at King's College London, London, United Kingdom
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
9
|
Jayasinghe V, Joshi R, Joshi T, Paracha TU, Kooi C, Mostafa MM, Bauer CMT, Charlton SJ, Iartchouk O, Maillet A, Morris MK, Ruda VM, Sandham DA, Wang Y, Newton R, Giembycz MA. Genomic crosstalk between carbachol, a muscarinic receptor agonist, and the long-acting β 2-adrenoceptor agonist, indacaterol, in human airway epithelial cells. J Pharmacol Exp Ther 2025; 392:103579. [PMID: 40305997 DOI: 10.1016/j.jpet.2025.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Many patients with chronic obstructive pulmonary disease are susceptible to recurrent exacerbations. In this study, we hypothesized that endogenous acetylcholine (ACh) may act as a proinflammatory mediator because long-acting muscarinic receptor antagonists protect against exacerbations, which have an inflammatory basis. This possibility was explored by determining if carbachol (CCh), a stable ACh analog, was a genomic stimulus in BEAS-2B bronchial epithelial cells. The ability of CCh to interact with indacaterol (Ind), a long-acting β2-adrenoceptor agonist, was also assessed given that (1) sympathomimetic bronchodilators can promote adverse gene expression changes in airway structural cells, and (2) crosstalk between β2-adrenoceptor and Gq-coupled muscarinic receptor agonists is well described. Unlike Ind, which induced 624 unique genes, CCh was a relatively weak genomic stimulus, implying that ACh may not behave as a proinflammatory mediator as hypothesized. Nevertheless, checkerboard assays using BEAS-2B cells expressing a cAMP-response element luciferase reporter determined that CCh interacted with Ind in a supra-additive manner and that this interaction was replicated on 39 Ind-regulated genes. Functional annotation of the Ind-regulated transcriptomes identified "transcription" and "signalling" as the dominant themes, with gene ontology terms associated with "inflammation" and "immune processes" being highly represented. A comparable gene ontology signature was obtained when Ind and CCh were combined; however, the number, magnitude and duration of gene expression changes were significantly enhanced. If genomic interactions occur between a long-acting β2-adrenoceptor agonist and ACh in vivo, then they may enhance the expression of adverse-effect genes that could maintain, or even augment, features of lung pathology in chronic obstructive pulmonary disease. SIGNIFICANCE STATEMENT: Long-acting muscarinic receptor antagonists reduce exacerbation risk in chronic obstructive pulmonary disease, implying the etiology could have an inflammatory basis mediated by acetylcholine. However, in BEAS-2B cells, carbachol was a weak genomic stimulus, although it enhanced changes in indacaterol-regulated gene expression. Functional annotation of carbachol + indacaterol-regulated genes identified gene ontology terms associated with several themes, including inflammation. Interaction between a long-acting β2-adrenoceptor agonist and endogenous acetylcholine could, paradoxically, augment airway inflammation in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Vera M Ruda
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Yanqun Wang
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Robert Newton
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Thimme Gowda C, Siraganahalli Eshwaraiah M, Wang J, Lim Y, Tomasi ML, Mavila N, Ramani K. The AKAP12-PKA axis regulates lipid homeostasis during alcohol-associated liver disease. Signal Transduct Target Ther 2025; 10:109. [PMID: 40199859 PMCID: PMC11979000 DOI: 10.1038/s41392-025-02202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Disrupted lipogenic signaling and steatosis are key features of alcohol-associated liver disease (ALD). A-kinase anchoring protein 12 (AKAP12) is a scaffolding partner of the cAMP-dependent protein kinase, PKA that controls its spatiotemporal localization. Activation of PKA by cAMP inhibits lipogenesis and facilitates fatty acid oxidation (FAO). The goal of this work is to examine how AKAP12's PKA-anchoring ability regulates outcomes of alcohol-associated steatosis. Crosslinking proteomics identified PKA and its lipogenic substrates as interacting partners of AKAP12. Alcohol exposure diminished AKAP12's interaction with PKA regulatory subunits and PKA substrates, acetyl CoA carboxylase (ACC1), pyruvate dehydrogenase (PDHA) and adipose triglyceride lipase (ATGL). Alcohol inhibited PKA activity and increased triglyceride content in human hepatocytes. Forced expression of AKAP12 restored alcohol suppressed PKA activation and inhibited lipid accumulation, whereas silencing had the reverse effect. Since AKAP12 sustained PKA activity, we evaluated whether the AKAP12-PKA scaffold was important in lipid homeostasis. Inhibition of AKAP12-PKA interaction by CRISPR deletion of AKAP12's PKA binding domain in cultured hepatocytes or in mouse models of ALD dramatically suppressed PKA activity, enhanced ACC1 activity demonstrated by reduced inhibitory phosphorylation, increased lipid accumulation and reduced FAO in hepatocytes. Overexpression of AKAP12 in mouse livers sustained PKA activation, diminished basal and alcohol potentiated triglyceride content, and regulated inflammatory signaling altered by alcohol. Mechanistically, we discovered that alcohol enhanced the inhibitory activity of a kinase, serine/threonine-protein kinase 25 (STK25) on PKA that regulated its interaction with AKAP12. In conclusion, the AKAP12-PKA scaffold controls lipogenic signaling, disruption of which favors steatosis during ALD.
Collapse
Affiliation(s)
- Chandana Thimme Gowda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Youngyi Lim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Applied Cell Biology Division, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Hong J, Wu Y, Li M, Man KF, Song D, Koh SB. cAMP response element-binding protein: A credible cancer drug target. J Pharmacol Exp Ther 2025; 392:103529. [PMID: 40157009 PMCID: PMC12060161 DOI: 10.1016/j.jpet.2025.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/22/2025] [Indexed: 04/01/2025] Open
Abstract
Despite advancements in radiotherapy, chemotherapy, endocrine therapy, targeted therapy, and immunotherapy, resistance to therapy remains a pervasive challenge in oncology, in part owing to tumor heterogeneity. Identifying new therapeutic targets is key to addressing this challenge because it can both diversify and enhance existing treatment options, particularly through combination regimens. The cAMP response element-binding protein (CREB) is a transcription factor involved in various biological processes. It is aberrantly activated in several aggressive cancer types, including breast cancer. Clinically, high CREB expression is associated with increased breast tumor aggressiveness and poor prognosis. Functionally, CREB promotes breast cancer cell proliferation, survival, invasion, metastasis, as well as therapy resistance by deregulating genes related to apoptosis, cell cycle, and metabolism. Targeting CREB with small molecule inhibitors has demonstrated promise in preclinical studies. This review summarizes the current understanding of CREB mechanisms and their potential as a therapeutic target. SIGNIFICANCE STATEMENT: cAMP response element-binding protein (CREB) is a master regulator of multiple biological processes, including neurodevelopment, metabolic regulation, and immune response. CREB is a putative proto-oncogene in breast cancer that regulates the cell cycle, apoptosis, and cellular migration. Preclinical development of CREB-targeting small molecules is underway.
Collapse
Affiliation(s)
- Jinghui Hong
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China; Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Yuheng Wu
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengxin Li
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ki-Fong Man
- Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Dong Song
- Department of Breast Surgery, General Surgery Centre, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Siang-Boon Koh
- Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom; University Hospitals Bristol and Weston, National Health Service (NHS) Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
12
|
Villagrán-Silva F, Loren P, Sandoval C, Lanas F, Salazar LA. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes (Basel) 2025; 16:349. [PMID: 40149500 PMCID: PMC11942292 DOI: 10.3390/genes16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
In an obesogenic environment, such as the one we have been experiencing in recent decades, epigenetics provides answers to the relationship between hereditary and environmentally acquired patterns that have significantly contributed to the global rise in obesity prevalence. MicroRNA (miRNA) constitutes a diminutive non-coding small RNA molecule, 20 to 24 nucleotides in length, that functions as a regulator of gene regulation at the post-translational level. Circulating miRNAs (c-miRNAs) have been detected in multiple body fluids, including blood, plasma, serum, saliva, milk from breastfeeding mothers, and urine. These molecules hold significant therapeutic value and serve as extracellular biomarkers in metabolic diseases. They aid in the diagnosis and tracking of therapy responses, as well as dietary and physical habit modifications. Researchers have studied c-miRNAs as potential biomarkers for diagnosing and characterizing systemic diseases in people of all ages and backgrounds since then. These conditions encompass dyslipidemia, type 2 diabetes mellitus (T2DM), cardiovascular risk, metabolic syndrome, cardiovascular diseases, and obesity. This review therefore analyzes the usefulness of c-miRNAs as therapeutic markers over the past decades. It also provides an update on c-miRNAs associated with general obesity and overweight, as well as with the most prevalent pathologies in the adult population. It also examines the effect of different nutritional approaches and physical activity regarding the activity of miRNAs in circulation in adults with overweight or general obesity. All of this is done with the aim of evaluating their potential use as biomarkers in various research contexts related to overweight and obesity in adults.
Collapse
Affiliation(s)
- Francisca Villagrán-Silva
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile;
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| |
Collapse
|
13
|
Murillo-de-Ozores AR, Chen L, Ou SM, Park E, Khan S, Raghuram V, Yang CR, Chou CL, Knepper MA. CREB-family transcription factors and vasopressin-mediated regulation of Aqp2 gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642395. [PMID: 40161632 PMCID: PMC11952463 DOI: 10.1101/2025.03.10.642395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Water homeostasis is regulated by the peptide hormone arginine vasopressin (AVP), which promotes water reabsorption in the renal collecting duct. The regulation of Aqp2 gene transcription is a key mechanism through which AVP modulates water transport as disruption of this mechanism leads to water balance disorders. Therefore, an important goal is to understand the regulatory processes that control Aqp2 gene transcription. While CREB (CREB1) has been proposed as the primary transcription factor responsible for Aqp2 transcription, recent evidence challenges this view, suggesting that other CREB-like transcription factors, including ATF1 and CREM, may play a role. Methods We employed the CRISPR/Cas9 gene-editing system to delete Atf1, Creb1, and Crem in mpkCCD cells, an immortalized mouse collecting duct cell line. These cell lines were then exposed to the vasopressin analog, dDAVP, to assess the role of these transcription factors in regulating Aqp2 expression. AQP2 protein levels were measured by immunoblotting and RNA-seq was used to analyze changes in Aqp2 mRNA abundance, as well as other transcriptomic changes. Results Deletion of all three transcription factors (ATF1, CREB1, and CREM) led to a significant reduction in the vasopressin-induced upregulation of AQP2 protein, confirming their role in regulating Aqp2 expression. RNA-seq data showed that Aqp2 mRNA levels mirrored changes in protein abundance, supporting the idea that these transcription factors affect Aqp2 transcription. Rescue experiments in triple knockout cells showed that expressing any of the three transcription factors restored the response to vasopressin. Conclusions Our findings demonstrate that ATF1, CREB1, and CREM have redundant roles in regulating Aqp2 transcription. Based on these results and prior data, we propose that these CREB-family transcription factors may regulate Aqp2 gene transcription indirectly by controlling the expression of additional unidentified transcription factors.
Collapse
Affiliation(s)
- Adrian Rafael Murillo-de-Ozores
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shuo-Ming Ou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Fuchsberger T, Stockwell I, Woods M, Brzosko Z, Greger IH, Paulsen O. Dopamine increases protein synthesis in hippocampal neurons enabling dopamine-dependent LTP. eLife 2025; 13:RP100822. [PMID: 40063079 PMCID: PMC11893101 DOI: 10.7554/elife.100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Matty Woods
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
Galliot B, Wenger Y. Organizer formation, organizer maintenance and epithelial cell plasticity in Hydra: Role of the Wnt3/β-catenin/TCF/Sp5/Zic4 gene network. Cells Dev 2025:204002. [PMID: 39929422 DOI: 10.1016/j.cdev.2025.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
The experimental and conceptual knowledge in 1909 led to the discovery of the Hydra head organizer through transplantation experiments between pigmented and non-pigmented animals; a discovery followed by numerous transplantations demonstrating cross-regulation between activating and inhibiting components distributed along the body axis. This experimental work inspired mathematicians, engineers, physicists and computer scientists to develop theoretical models predicting the principles of developmental mechanisms. Today, we know that the Wnt/β-catenin/Sp5/Zic4 gene regulatory network (GRN) links organizer activity, morphogenesis and cellular identity in Hydra, with variable conformations depending on the region or epithelial layer, and varied phenotypes depending on which GRN element is misregulated. In intact animals, Wnt/β-catenin signaling acts as the head activator at the tip of the hypostome, restricted by Sp5 in the other regions of the animal. Moreover, in the tentacle ring, Sp5 and Zic4 act epistatically to support tentacle differentiation and prevent basal disc differentiation. Along the body column, Sp5 is self-repressed in the epidermis and acts as a head inhibitor along the gastrodermis. Other players modulate these activities, such as TSP and Margin/RAX apically, Notch signaling in the tentacle zone, Dkk1/2/4 and HAS-7 in the body column. In the developmental context of regeneration, cells below the amputation zone switch from repressed to locally de novo activated head organizer status, a transition driven by immediate symmetrical and asymmetrical metabolic changes that lead to gene expression regulations involving components and modulators of Wnt/β-catenin signaling, early-pulse and early-late transient both often symmetrical, together with sustained ones, specific to head regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Yvan Wenger
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Shi J, Zhu XY, Yu RH, Liu WX, Yang J, Tang L, Kong CY, Luo HQ, Chen F, Xie WS, Fu JL, Wang JJ, Zhou Q, Zhou Q, Wang DJ. Decreased METTL3 in atrial myocytes promotes atrial fibrillation. Europace 2025; 27:euaf021. [PMID: 39991872 PMCID: PMC11848519 DOI: 10.1093/europace/euaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
AIMS Methyltransferase like 3 (METTL3) plays a crucial role in cardiovascular diseases, but its involvement in atrial fibrillation (AF) remains unclear. The study aims to explore the relationship between METTL3 and AF in atrial myocytes. METHODS AND RESULTS The protein level of METTL3 was evaluated in left atrial appendages (LAAs) from patients with persistent AF and in experimental AF models. cAMP-responsive element modulator (CREM) transgenic mice and CaCl2-acetylcholine (ACh)-injected mice were used as AF mice models. Methyltransferase like 3 was globally and atrial conditionally deleted in vivo to assess its role in AF. Confocal fluorescence microscopy was employed to examine calcium handling in atrial myocytes. Methylated RNA immunoprecipitation sequencing was performed to identify the downstream target genes of METTL3. Methyltransferase like 3 protein and RNA N6-methyladenosine (m6A) modification levels were significantly reduced in the LAAs of patients with AF and experimental AF models. Genetic inhibition of METTL3 promoted the development of AF in CREM transgenic mice and CaCl2-ACh-injected mice. Knockdown of METTL3 in atrial myocytes resulted in enhanced calcium handling. Reduced METTL3 levels increased SR Ca2+-ATPase Type 2a activity by up-regulating protocadherin gamma subfamily A, 10. Decreased METTL3 protein in atrial myocytes was attributed to down-regulation of cAMP-responsive element-binding protein 1/ubiquitin-specific peptidase 9 X-linked axis. CONCLUSION Our study established the pathophysiological role of METTL3 involved in the development of AF and provided a potential mechanism-based target for its treatment.
Collapse
Affiliation(s)
- Jian Shi
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Xi-Yu Zhu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Rong-Huang Yu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Wen-Xue Liu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Lu Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Chui-Yu Kong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Han-Qing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Fen Chen
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Wen-Sen Xie
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Jia-Lei Fu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Jing-Jie Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Qian Zhou
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Qing Zhou
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| | - Dong-Jin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210000, Jiangsu, China
| |
Collapse
|
17
|
Kang K, Zhou T, Gong J, Chen W, Yue X, Zhang D, Yue L. A bitter taste receptor liganded by oxalic acid inhibits brown planthopper feeding by promoting CREB phosphorylation via the PI3K-AKT signaling pathway. Int J Biol Macromol 2025; 290:138999. [PMID: 39708894 DOI: 10.1016/j.ijbiomac.2024.138999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood. Our previous research identified the bitter taste receptor NlGr23a in the brown planthopper (BPH), which specifically binds to oxalic acid and elicits a significant feeding rejection response. In this study, using an Sf9 cell line stably expressing NlGr23a, we demonstrated that oxalic acid exposure significantly enhances phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB), a protein associated with BPH food consumption. Further analysis revealed the involvement of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway in facilitating CREB phosphorylation upon activation by oxalic acid-NlGr23a binding. These in vitro findings were corroborated by in vivo experiments examining the expression profiles of relevant proteins and protein kinases in BPHs fed an oxalic acid-supplemented diet. Our results elucidate the biochemical cascades triggered by oxalic acid-NlGr23a interaction, advancing our understanding of insect gustatory receptor-mediated feeding behavior modulation and potentially informing novel strategies for integrated pest management.
Collapse
Affiliation(s)
- Kui Kang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Ting Zhou
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Jun Gong
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Weiwen Chen
- College of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiangzhao Yue
- School of Life Sciences, Shangrao Normal University, Shangrao 334001, China
| | - Daowei Zhang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China.
| | - Lei Yue
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
18
|
Cao Y, Peng Y, Tang Y. ATF1 regulates MAL2 expression through inhibition of miR-630 to mediate the EMT process that promotes cervical cancer cell development and metastasis. J Gynecol Oncol 2025; 36:e11. [PMID: 38991944 PMCID: PMC11790996 DOI: 10.3802/jgo.2025.36.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE The existence of activating transcription factor 1 (ATF1) could be employed as a clinical marker in the context of cervical cancer development, although its specific mechanism has not been fully clarified. METHODS To evaluate the presence of ATF1, miR-630, and myelin and lymphocyte protein 2 (MAL2) in cervical malignancies, we conducted quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot assays; further studied the expansion, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells using colony formation assay, transwell, loss cytometry, Western blot. Chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were used to verify that ATF1 could directly transcriptionally repress miR-630; dual luciferase reporter assay and RIP assay were employed to confirm that miR-630 targeted to repress MAL2. RESULTS In cervical cancer cases, elevated ATF1 expression and reduced miR-630 expression were detected, displaying a negative relationship between them. Inhibition of ATF1 hindered the growth, migration, infiltration, and EMT in cervical carcinoma cells, while upregulation of miR-630 mitigated the aggressive characteristics of these cells. ATF1 was found to transcriptionally repress miR-630 by TransmiR and ALGGEN prediction and ChIP validation. MicroRNA modulates gene expression and affects cancer progression, and we discovered that miR-630 regulates cancer progression by targeting and inhibiting MAL2. CONCLUSION ATF1, which modulates the miR-630/MAL2 pathway, affects the EMT process and cervical carcinoma cell growth and spread. Therefore, ATF1 may serve as a promising marker and treatment target for cervical malignancies intervention.
Collapse
Affiliation(s)
- Yanming Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuping Peng
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Youqun Tang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
19
|
Zhang L, Wang JM, Wang L, Zheng S, Bai Y, Fu JL, Wang Y, Zhang JP, Xiao Y, Hou M, Nie Q, Gan YW, Liang XM, Hu XB, Li DWC. The transcription factor CREB regulates epithelial-mesenchymal transition of lens epithelial cells by phosphorylation-dependent and phosphorylation-independent mechanisms. J Biol Chem 2025; 301:108064. [PMID: 39662835 PMCID: PMC11773003 DOI: 10.1016/j.jbc.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and phosphorylation-independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract model. The interaction between CREB and p300 is necessary for CREB regulation of TGFβ-induced EMT, since inhibition of CREB-p300 interaction and p300 knockdown led to attenuated expression of mesenchymal genes. Second, S133A-CREB, a mutant mimicking constant dephosphorylation at S133, exhibits notable occupancy in the enhancers of mesenchymal genes and confers robust transcription activity on EMT genes. Introduction of R314A mutation in S133A-CREB, which abolishes the interaction between S133A-CREB and its co-activator, cAMP-regulated transcriptional co-activators led to substantial suppression of mesenchymal gene expression in mouse LECs. Taken together, our results showed that CREB regulates lens EMT in dual mechanisms and that the S133A-CREB acts as a novel transcription factor. Mechanistically, CREB interacts with p300 in a S133 phosphorylation-dependent manner to positively regulate lens EMT genes. In contrast, S133A-CREB interacts with cAMP-regulated transcriptional co-activators to confer a robust activation of lens EMT genes.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing-Miao Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuyu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yueyue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Wen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing-Miao Liang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Li Z, Chen J, Huang Z, Huang W, Wang K, Liang X, Su W. Topical application of 666-15, a potent inhibitor of CREB, alleviates alkali-induced corneal neovascularization. Exp Eye Res 2025; 250:110165. [PMID: 39571779 DOI: 10.1016/j.exer.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
Abstract
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins. This study aimed to assess the impact of 666-15, a potent inhibitor of CREB, on angiogenesis using human microvascular retinal endothelial cells (HMRECs), RAW 264.7 macrophage cell line and alkali-induce CNV mouse model. In vivo, the topical application of 666-15 (0.05 mg/mL) to the alkali-burn corneas led to 45% reduction in CNV. Additionally, in vitro treatment with 666-15 is effective in suppressing the migration, proliferation, and tube formation by HMRECs. Furthermore, treatment with 666-15 resulted in a down-regulation of pro-angiogenic cytokines expression, including VEGF-A, TGF-β1, b-FGF, and MMP-2 but simultaneously increasing anti-angiogenic cytokines expression, such as ADAMTS-1, Thrombospondin-1 (Tsp-1) and Tsp-2, both in alkali-burn corneas and HMRECs. And 666-15 inhibited the recruitment and the cytokines expression (VEGF-A, MMP-2, IL-1β, TNF-α, MCP-1 and MIP-1) of macrophage. Our findings revealed that 666-15 may suppress the function of endothelial cells and angiogenesis by restoring the homeostasis of pro-angiogenic stimuli, suggesting its potential as a therapeutic agent in the treatment of CNV and other angiogenesis-driven diseases.
Collapse
Affiliation(s)
- Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kerui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
21
|
Atsumi Y, Yamamoto N, Sugo N. Protocol for single-molecule imaging of transcription and epigenetic factors in human neural stem cell-derived neurons. STAR Protoc 2024; 5:103432. [PMID: 39487983 PMCID: PMC11565389 DOI: 10.1016/j.xpro.2024.103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Single-molecule imaging (SMI) is a powerful approach to quantify the spatiotemporal dynamics of transcription in living cells. Here, we describe a protocol of SMI for transcription and epigenetic factors in human cortical neurons derived from embryonic stem cells or induced pluripotent stem cells. Specifically, we detail the procedures for neural stem cell culture, gene transfer, microscopy, and data analysis. This protocol can be applied to the study of transcription dynamics in response to various cellular stimuli. For complete details on the use and execution of this protocol, please refer to Atsumi et al.1.
Collapse
Affiliation(s)
- Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Li J, Zeng Q, Chen X, Huang H. Malignant epithelioid tumors with EWSR1::CREB fusion involving the kidney: a report of two cases. Virchows Arch 2024:10.1007/s00428-024-03989-0. [PMID: 39648206 DOI: 10.1007/s00428-024-03989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Soft tissue tumors with EWSR1/FUS fusion to genes encoding the cyclic adenosine monophosphate response element-binding (CREB) transcription factor family (ATF1, CREB1, and CREM) are rare and heterogeneous aggressive tumors, often found in the peritoneal cavity. Here, we report two cases of malignant epithelioid tumors with EWSR1::CREB fusion involving the kidney in females in their 30 s. Both tumors appeared as solitary masses, measuring 5.4 cm and 4.0 cm in diameter. Histologically, the tumors were similar, growing invasively with unclear boundaries and composed of epithelial cells with eosinophilic and clear cytoplasm arranged in sheets, nests, and trabeculae. Immunohistochemically, case 1 showed focal AE1/AE3 positivity, whereas case 2 was negative. Anaplastic lymphoma kinase was diffusely positive in case 1 and focally positive in case 2. Both cases were positive for epithelial membrane antigen, mucin-4, and synaptophysin. High-throughput sequencing identified EWSR1::CREM fusion in case 1, whereas fluorescence in situ hybridization detected EWSR1::CREB1 fusion in case 2. These cases expand the morphological and immunophenotypic characteristics of malignant epithelioid tumors with EWSR1::CREB fusion, highlighting the diagnostic challenges of immunohistochemistry and value of molecular testing for accurate diagnosis.
Collapse
Affiliation(s)
- Jiezhen Li
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qiang Zeng
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Xin Chen
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Haijian Huang
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
23
|
Chongtham A, Sharma A, Nath B, Murtha K, Gorbachev K, Ramakrishnan A, Schmidt EF, Shen L, Pereira AC. Common and divergent pathways in early stages of glutamate and tau-mediated toxicities in neurodegeneration. Exp Neurol 2024; 382:114967. [PMID: 39326823 DOI: 10.1016/j.expneurol.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
It has been shown that excitotoxicity and tau-mediated toxicities are major contributing factors to neuronal death in Alzheimer's disease (AD). The excitatory amino acid transporter 2 (EAAT2 or GLT-1), the major glutamate transporter in the brain that regulates glutamate levels synaptically and extrasynaptically, has been shown to be deficient in AD brains, leading to excitotoxicity and subsequent cell death. Similarly, buildup of neurofibrillary tangles, which consist of hyperphosphorylated tau protein, correlates with cognitive decline and neuronal atrophy in AD. However, common genes and pathways that are critical in the aforementioned toxicities have not been well elucidated. To investigate the impact of glutamate dyshomeostasis and tau accumulation on translational profiles of affected hippocampal neurons, we used mouse models of excitotoxicity and tau-mediated toxicities (GLT-1-/- and P301S, respectively) in conjunction with BAC-TRAP technology. Our data show that GLT-1 deficiency in CA3 pyramidal neurons leads to translational signatures characterized by dysregulation of pathways associated with synaptic plasticity and neuronal survival, while the P301S mutation induces changes in endocytic pathways and mitochondrial dysfunction. Finally, the commonly dysregulated pathways include impaired ion homeostasis and metabolic pathways. These common pathways may shed light on potential therapeutic targets for ameliorating glutamate and tau-mediated toxicities in AD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Abhijeet Sharma
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Banshi Nath
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kaitlin Murtha
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kirill Gorbachev
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Eric F Schmidt
- The Rockefeller University, Laboratory of Molecular Biology, New York, NY 10065, United States of America
| | - Li Shen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
24
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
25
|
Rahman AFMT, Bulbule S, Belayet JB, Benko A, Gottschalk CG, Frick DN, Arnold LA, Hossain MM, Roy A. JRM-28, a Novel HDAC2 Inhibitor, Upregulates Plasticity-Associated Proteins in Hippocampal Neurons and Enhances Morphological Plasticity via Activation of CREB: Implications for Alzheimer's Disease. Cells 2024; 13:1964. [PMID: 39682714 PMCID: PMC11640089 DOI: 10.3390/cells13231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer's disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1. Specifically, JRM-28 stimulated the NMDA- and AMPA-receptor-sensitive ionotropic calcium influx in hippocampal neurons. Interestingly, JRM-28 did not induce NMDA- and AMPA-sensitive calcium influx in hippocampal neurons once the expression of CREB was knocked down by creb siRNA, suggesting the critical role of CREB in JRM-28-mediated upregulation of synaptic plasticity. Finally, JRM-28 upregulated CREB mRNA, CREB-dependent plasticity-associated markers, and ionotropic calcium influx in iPSC-derived AD human neurons, indicating its therapeutic implications in the amelioration of AD pathologies.
Collapse
Affiliation(s)
- A. F. M. Towheedur Rahman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Sarojini Bulbule
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Anna Benko
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Carl Gunnar Gottschalk
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - David N. Frick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - M. Mahmun Hossain
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Avik Roy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
- Simmaron Research and Development Laboratory, University of Wisconsin-Milwaukee, Chemistry Building, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI 53211, USA
| |
Collapse
|
26
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
27
|
Araki K, Torii T, Takeuchi K, Kinoshita N, Urano R, Nakajima R, Zhou Y, Kobayashi T, Hanyu T, Ohtani K, Ambe K, Kawauchi K. Non-canonical olfactory pathway activation induces cell fusion of cervical cancer cells. Neoplasia 2024; 57:101044. [PMID: 39222591 PMCID: PMC11402306 DOI: 10.1016/j.neo.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Multinucleation occurs in various types of advanced cancers and contributes to their malignant characteristics, including anticancer drug resistance. Therefore, inhibiting multinucleation can improve cancer prognosis; however, the molecular mechanisms underlying multinucleation remain elusive. Here, we introduced a genetic mutation in cervical cancer cells to induce cell fusion-mediated multinucleation. The olfactory receptor OR1N2 was heterozygously mutated in these fused cells; the same OR1N2 mutation was detected in multinucleated cells from clinical cervical cancer specimens. The mutation-induced structural change in the OR1N2 protein activated protein kinase A (PKA), which, in turn, mediated the non-canonical olfactory pathway. PKA phosphorylated and activated furin protease, resulting in the cleavage of the fusogenic protein syncytin-1. Because this cleaved form of syncytin-1, processed by furin, participates in cell fusion, furin inhibitors could suppress multinucleation and reduce surviving cell numbers after anticancer drug treatment. The improved anticancer drug efficacy indicates a promising therapeutic approach for advanced cervical cancers.
Collapse
Affiliation(s)
- Keigo Araki
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan.
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Kohei Takeuchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Ryoto Urano
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Tokuo Kobayashi
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Tadayoshi Hanyu
- Department of Gynecology, Tsuboi Cancer Center Hospital, Koriyama, Fukushima 963-0197, Japan
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
28
|
Wang X, Zhou X, Li C, Qu C, Shi Y, Li CJ, Kang X. Integrative analysis of whole genome bisulfite and transcriptome sequencing reveals the effect of sodium butyrate on DNA methylation in the differentiation of bovine skeletal muscle satellite cells. Genomics 2024; 116:110959. [PMID: 39521294 DOI: 10.1016/j.ygeno.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Butyric acid as a short-chain fatty acid (SCFA) is one of the key microbial metabolites of ruminants. Numerous studies indicate that butyrate is crucial in muscle growth and development, and plays an important molecular regulatory role mainly by inhibiting histone deacetylation. DNA methylation, a major epigenetic modification, is involved in cell differentiation. Butyrate, in addition to its role in acetylation modifications, can alter the DNA methylation status of cells. However, the impact of butyrate on the DNA methylation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. In this study, we developed a differentiation model of SMSCs and employed RNA sequencing (RNA-seq) alongside whole genome bisulfite sequencing (WGBS) to explore the effects of butyrate treatment on DNA methylation status and its relationship with gene expression. Treatment of SMSCs with sodium butyrate (NaB) at 1.0 mM for 2 days significantly inhibited the expression of DNA methyltransferases (DNMT1, DNMT2, DNMT3A) at the mRNA and protein levels while promoting the expression of demethylases (TET1, TET2, TET3) at mRNA levels. WGBS identified 4292 differentially methylated regions (DMRs), comprising 2294 hypermethylated and 1998 hypomethylated regions. These DMRs were significantly enriched in the MAPK, cAMP, and Wnt signaling pathways, all of which are implicated in myogenesis and development. Combining RNA-seq and WGBS data revealed a total of 130 overlapping genes, including MDFIC, CREBBP, DMD, LTBP2 and KLF4. These genes are predominantly involved in regulating the FoxO, MAPK, PI3K-Akt, and Wnt signaling pathways. This study provides new insights into the effects of butyrate-mediated DNA methylation on SMSC development and enhances our understanding of butyrate as an epigenetic modifier beyond its role in acetylation.
Collapse
Affiliation(s)
- Xiaowei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia Yinchuan 750002, China
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chang Qu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
29
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
30
|
Xing S, Zhang X, Mu T, Cao J, Zhao K, Han B, Peng X. Goat Milk Protein-Derived ACE Inhibitory Peptide SLPQ Exerts Hypertension Alleviation Effects Partially by Regulating the Inflammatory Stress of Endothelial Cells. Foods 2024; 13:3392. [PMID: 39517176 PMCID: PMC11545510 DOI: 10.3390/foods13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has always posed a severe threat to people's health. Food-derived angiotensin-converting enzyme (ACE)-inhibitory peptides have the potential to both prevent and treat hypertension. In the current investigation, two ACE-inhibitory peptides (SLPQ and PYVRYL) from goat milk were studied for their endothelial effects using EA.hy926 cells. PYVRYL outperformed SLPQ, yet neither impacted cell survival below 200 μg/mL. Investigation of SLPQ's impact on EA.hy926 cell expression revealed 114 differentially expressed genes, with 65 downregulated and 49 upregulated. The genes were enriched in cytokine interactions, coagulation cascades, Hippo signaling, and ECM-receptor interaction. Decreased c-x-c motif chemokine ligand 2 (CXCL2), integrin subunit beta 2 (ITGB2), and fbj murine osteosarcoma viral oncogene homologue (FOS) expression and increased secreted phosphoprotein 1 (SPP1) expression may protect endothelial cells from inflammation. Our findings suggest that beyond ACE inhibition, SLPQ aids blood pressure control by influencing endothelial function, paving the way for its use as an antihypertensive food ingredient.
Collapse
Affiliation(s)
- Shenghao Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaotong Zhang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tong Mu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Jianxin Cao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Bing Han
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
31
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Li Z, Schneikert J, Tripathi SR, Jin M, Bal G, Zuberbier T, Babina M. CREB Is Critically Implicated in Skin Mast Cell Degranulation Elicited via FcεRI and MRGPRX2. Cells 2024; 13:1681. [PMID: 39451199 PMCID: PMC11506305 DOI: 10.3390/cells13201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF) with over 4,000 binding sites in the genome, was recently found to form a feedforward loop with KIT, maintaining MC survival. The most selective MC function is degranulation with its acute release of prestored mediators. Herein, we asked whether CREB contributes to the expression and function of the degranulation-competent receptors FcεRI and MRGPRX2. Interference with CREB by pharmacological inhibition (CREBi, 666-15) or RNA interference only slightly affected the expression of these receptors, while KIT was strongly attenuated. Interestingly, MRGPRX2 surface expression moderately increased following CREB-knockdown, whereas MRGPRX2-dependent exocytosis simultaneously decreased. FcεRI expression and function were regulated consistently, although the effect was stronger at the functional level. Preformed MC mediators (tryptase, histamine, β-hexosaminidase) remained comparable following CREB attenuation, suggesting that granule synthesis did not rely on CREB function. Collectively, in contrast to KIT, FcεRI and MRGPRX2 moderately depend on unperturbed CREB function. Nevertheless, CREB is required to maintain MC releasability irrespective of stimulus, insinuating that CREB may operate by safeguarding the degranulation machinery. To our knowledge, CREB is the first factor identified to regulate MRGPRX2 expression and function in opposite direction. Overall, the ancient TF is an indispensable component of skin MCs, orchestrating not only survival and proliferation but also their secretory competence.
Collapse
Affiliation(s)
- Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manqiu Jin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
33
|
Carrillo ED, Alvarado JA, Hernández A, Lezama I, García MC, Sánchez JA. Thyroid Hormone Upregulates Cav1.2 Channels in Cardiac Cells via the Downregulation of the Channels' β4 Subunit. Int J Mol Sci 2024; 25:10798. [PMID: 39409130 PMCID: PMC11476369 DOI: 10.3390/ijms251910798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Thyroid hormone binds to specific nuclear receptors, regulating the expression of target genes, with major effects on cardiac function. Triiodothyronine (T3) increases the expression of key proteins related to calcium homeostasis, such as the sarcoplasmic reticulum calcium ATPase pump, but the detailed mechanism of gene regulation by T3 in cardiac voltage-gated calcium (Cav1.2) channels remains incompletely explored. Furthermore, the effects of T3 on Cav1.2 auxiliary subunits have not been investigated. We conducted quantitative reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence experiments in H9c2 cells derived from rat ventricular tissue, examining the effects of T3 on the expression of α1c, the principal subunit of Cav1.2 channels, and Cavβ4, an auxiliary Cav1.2 subunit that regulates gene expression. The translocation of phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) by T3 was also examined. We found that T3 has opposite effects on these channel proteins, upregulating α1c and downregulating Cavβ4, and that it increases the nuclear translocation of pCREB while decreasing the translocation of Cavβ4. Finally, we found that overexpression of Cavβ4 represses the mRNA expression of α1c, suggesting that T3 upregulates the expression of the α1c subunit in response to a decrease in Cavβ4 subunit expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge A. Sánchez
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (E.D.C.); (J.A.A.); (A.H.); (I.L.); (M.C.G.)
| |
Collapse
|
34
|
Bai Z, He Y, Hu G, Cheng L, Wang M. Microplastics at an environmentally relevant dose enhance mercury toxicity in a marine copepod under multigenerational exposure: Multi-omics perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135529. [PMID: 39154477 DOI: 10.1016/j.jhazmat.2024.135529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Here, we subjected the marine copepod Tigriopus japonicus to environmentally-relevant concentrations of microplastics (MPs) and mercury (Hg) for three generations (F0-F2) to investigate their physiological and molecular responses. Hg accumulation and phenotypic traits were measured in each generation, with multi-omics analysis conducted in F2. The results showed that MPs insignificantly impacted the copepod's development and reproduction, however, which were significantly compromised by Hg exposure. Interestingly, MPs significantly increased Hg accumulation and consequently aggravated this metal toxicity in T. japonicus, demonstrating their carrier role. Multi-omics analysis indicated that Hg pollution produced numerous toxic events, e.g., induction of apoptosis, damage to cell/organ morphogenesis, and disordered energy metabolism, ultimately resulting in retarded development and decreased fecundity. Importantly, MPs enhanced Hg toxicity mainly via increased oxidative apoptosis, compromised cell/organ morphogenesis, and energy depletion. Additionally, phosphoproteomic analysis revealed extensive regulation of the above processes, and also impaired neuron activity under combined MPs and Hg exposure. These alterations adversely affected development and reproduction of T. japonicus. Overall, our findings should offer novel molecular insights into the response of T. japonicus to long-term exposure to MPs and Hg, with a particular emphasis on the carrier role of MPs on Hg toxicity.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yaohui He
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Guosheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
35
|
Zhu GQ, Qu L, Xue HW. Casein kinase 1 AELs promote senescence by enhancing ethylene biosynthesis through phosphorylating WRKY22 transcription factor. THE NEW PHYTOLOGIST 2024; 244:116-130. [PMID: 38702992 DOI: 10.1111/nph.19785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.
Collapse
Affiliation(s)
- Guo-Qing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
36
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
37
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
38
|
Herring JA, Crabtree JE, Hill JT, Tessem JS. Loss of glucose-stimulated β-cell Nr4a1 expression impairs insulin secretion and glucose homeostasis. Am J Physiol Cell Physiol 2024; 327:C1111-C1124. [PMID: 39219449 PMCID: PMC11482045 DOI: 10.1152/ajpcell.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A central aspect of type 2 diabetes is decreased functional β-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the β-cell. Nr4a1 expression is decreased in type 2 diabetes rodent β-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced β-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 β-cells. Here, we demonstrate that glucose concentration directly regulates β-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 β-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the β-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and β-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.
Collapse
Affiliation(s)
- Jacob A Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah, United States
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah, United States
| | - Jeffery S Tessem
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
39
|
Sheikh A, Ganguli D, Vickers TJ, Singer BB, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic Escherichia coli for elimination and toxin neutralization. Proc Natl Acad Sci U S A 2024; 121:e2410679121. [PMID: 39264739 PMCID: PMC11420188 DOI: 10.1073/pnas.2410679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bernhard B. Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, 45147Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Clayton Harro
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Nicole Maier
- Center for Vaccine Innovation and Access, PATH, Seattle, WA98121
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Subhra Chakraborty
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Taufiqur R. Bhuiyan
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Firdausi Qadri
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, MO63106
| |
Collapse
|
40
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
41
|
Zheng S, Zhang Y, Gong X, Teng Z, Chen J. CREB1 regulates RECQL4 to inhibit mitophagy and promote esophageal cancer metastasis. J Clin Biochem Nutr 2024; 75:102-110. [PMID: 39345293 PMCID: PMC11425078 DOI: 10.3164/jcbn.23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 10/01/2024] Open
Abstract
Mitophagy plays a vital role in carcinogenesis and tumor progression. However, the research on the mechanism of mitophagy in esophageal cancer metastasis is limited. This study explored the regulatory mechanism of RECQL4 in mitophagy and affects esophageal cancer metastasis. The RECQL4 expression in esophageal cancer tissues and cells was examined by bioinformatics and qRT-PCR. Bioinformatics analysis was used to determine the upstream regulatory factor of RECQL4 and CREB1. Their binding relationship was evaluated by dual luciferase and Chromatin Immunoprecipitation assays. The effects of RECQL4 on esophageal cancer cells viability, metastasis, and mitophagy were examined using CCK-8, Transwell, immunofluorescence, and Western blot assays. The expression of RECQL4 was up-regulated in esophageal cancer tissues and cells. Overexpression of RECQL4 promoted the cells viability, invasion, migration, and epithelial-mesenchymal transition by inhibiting mitophagy. Bioinformatics analysis revealed a positive correlation between RECQL4 and CREB1, their binding relationship was validatied by dual luciferase and ChIP assays. CREB1 knockdown promoted mitophagy and prevented the metastasis of cancer cells, which could be countered by overexpressing RECQL4. In conclusion, CREB1 was found to transcriptionally activate RECQL4 to inhibit mitophagy, thereby promoting esophageal cancer metastasis. Targeting mitophagy could be an effective therapeutic approach for esophageal cancer.
Collapse
Affiliation(s)
- Shiyi Zheng
- Department of Cardiothoracic and Vascular Surgery, Guangyuan First People’s Hospital, Guangyuan 628017, China
| | - Yi Zhang
- Department of Cardiothoracic and Vascular Surgery, Guangyuan First People’s Hospital, Guangyuan 628017, China
| | - Xiaozhou Gong
- Department of Cardiothoracic and Vascular Surgery, Guangyuan First People’s Hospital, Guangyuan 628017, China
| | - Zhangyu Teng
- Department of Cardiothoracic and Vascular Surgery, Guangyuan First People’s Hospital, Guangyuan 628017, China
| | - Jun Chen
- Department of Cardiothoracic and Vascular Surgery, Guangyuan First People’s Hospital, Guangyuan 628017, China
| |
Collapse
|
42
|
Pan H, Huang M, Zhu C, Lin S, He L, Shen R, Chen Y, Fang F, Qiu Y, Qin M, Bao P, Tan Y, Xu J, Ding J, Chen S. A novel compound alleviates oxidative stress via PKA/CREB1-mediated DJ-1 upregulation. J Neurochem 2024; 168:3034-3049. [PMID: 38994800 DOI: 10.1111/jnc.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Oxidative stress is one of the major culprits causing dopaminergic neuron loss in Parkinson's disease (PD). DJ-1 is a protein with multiple actions against oxidative stress, apoptosis, neuroinflammation, etc. DJ-1 expression is decreased in sporadic PD, therefore increasing DJ-1 expression might be beneficial in PD treatment. However, drugs known to upregulate DJ-1 are still lacking. In this study, we identified a novel DJ-1-elevating compound called ChemJ through luciferase assay-based high-throughput compound screening in SH-SY5Y cells and confirmed that ChemJ upregulated DJ-1 in SH-SY5Y cell line and primary cortical neurons. DJ-1 upregulation by ChemJ alleviated MPP+-induced oxidative stress. In exploring the underlying mechanisms, we found that the transcription factor CREB1 bound to DJ-1 promoter and positively regulated its expression under both unstressed and 1-methyl-4-phenylpyridinium-induced oxidative stress conditions and that ChemJ promoted DJ-1 expression via activating PKA/CREB1 pathway in SH-SY5Y cells. Our results demonstrated that ChemJ alleviated the MPP+-induced oxidative stress through a PKA/CREB1-mediated regulation of DJ-1 expression, thus offering a novel and promising avenue for PD treatment.
Collapse
Affiliation(s)
- Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxiang Zhu
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Xu
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| |
Collapse
|
43
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
44
|
Kim DW, Moon HC, Lee BH, Park HY. Decoding Arc transcription: a live-cell study of stimulation patterns and transcriptional output. Learn Mem 2024; 31:a054024. [PMID: 39260877 PMCID: PMC11407692 DOI: 10.1101/lm.054024.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) plays a crucial role in synaptic plasticity, a process integral to learning and memory. Arc transcription is induced within a few minutes of stimulation, making it a useful marker for neuronal activity. However, the specific neuronal activity patterns that initiate Arc transcription have remained elusive due to the inability to observe mRNA transcription in live cells in real time. Using a genetically encoded RNA indicator (GERI) mouse model that expresses endogenous Arc mRNA tagged with multiple GFPs, we investigated Arc transcriptional activity in response to various electrical field stimulation patterns. The GERI mouse model was generated by crossing the Arc-PBS knock-in mouse, engineered with binding sites in the 3' untranslated region (UTR) of Arc mRNA, and the transgenic mouse expressing the cognate binding protein fused to GFP. In dissociated hippocampal neurons, we found that the pattern of stimulation significantly affects Arc transcription. Specifically, theta-burst stimulation consisting of high-frequency (100 Hz) bursts delivered at 10 Hz frequency induced the highest rate of Arc transcription. Concurrently, the amplitudes of nuclear calcium transients also reached their peak with 10 Hz burst stimulation, indicating a correlation between calcium concentration and transcription. However, our dual-color single-cell imaging revealed that there were no significant differences in calcium amplitudes between Arc-positive and Arc-negative neurons upon 10 Hz burst stimulation, suggesting the involvement of other factors in the induction of Arc transcription. Our live-cell RNA imaging provides a deeper insight into the complex regulation of transcription by activity patterns and calcium signaling pathways.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
45
|
Sheikh A, Ganguli D, Vickers TJ, Singer B, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic E. coli for elimination and toxin neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604983. [PMID: 39091797 PMCID: PMC11291149 DOI: 10.1101/2024.07.24.604983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bernhard Singer
- Institute of Anatomy, Medical Faculty, University of Suisberg-Essen, 45147 Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Clayton Harro
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | | | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | - Tafiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, Missouri, USA
| |
Collapse
|
46
|
Lin W, Szabo C, Liu T, Tao H, Wu X, Wu J. STING trafficking activates MAPK-CREB signaling to trigger regulatory T cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2320709121. [PMID: 38985760 PMCID: PMC11260101 DOI: 10.1073/pnas.2320709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-β2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.
Collapse
Affiliation(s)
- Wei Lin
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Claudia Szabo
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Tao Liu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Huangheng Tao
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Xianfang Wu
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Jianjun Wu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| |
Collapse
|
47
|
King-Lyons ND, Bhati AS, Hu JC, Mandell LM, Shenoy GN, Willison HJ, Connell TD. A Novel Cytotoxic Mechanism for Triple-Negative Breast Cancer Cells Induced by the Type II Heat-Labile Enterotoxin LT-IIc through Ganglioside Ligation. Toxins (Basel) 2024; 16:311. [PMID: 39057951 PMCID: PMC11281474 DOI: 10.3390/toxins16070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
Collapse
Affiliation(s)
- Natalie D. King-Lyons
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Aryana S. Bhati
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - John C. Hu
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Department of Medicine, Division of Infectious Disease, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Lorrie M. Mandell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Gautam N. Shenoy
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Terry D. Connell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| |
Collapse
|
48
|
Qiao M, Huang Q, Wang X, Han J. ZBTB21 suppresses CRE-mediated transcription to impair synaptic function in Down syndrome. SCIENCE ADVANCES 2024; 10:eadm7373. [PMID: 38959316 PMCID: PMC11221507 DOI: 10.1126/sciadv.adm7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
Collapse
Affiliation(s)
- Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
49
|
Kaimala S, Lootah SS, Mehra N, Kumar CA, Marzooqi SA, Sampath P, Ansari SA, Emerald BS. The Long Non-Coding RNA Obesity-Related (Obr) Contributes To Lipid Metabolism Through Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401939. [PMID: 38704700 PMCID: PMC11234455 DOI: 10.1002/advs.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 05/07/2024]
Abstract
Obesity is a multifactorial disease that is part of today's epidemic and also increases the risk of other metabolic diseases. Long noncoding RNAs (lncRNAs) provide one tier of regulatory mechanisms to maintain metabolic homeostasis. Although lncRNAs are a significant constituent of the mammalian genome, studies aimed at their metabolic significance, including obesity, are only beginning to be addressed. Here, a developmentally regulated lncRNA, termed as obesity related (Obr), whose expression in metabolically relevant tissues such as skeletal muscle, liver, and pancreas is altered in diet-induced obesity, is identified. The Clone 9 cell line and high-fat diet-induced obese Wistar rats are used as a model system to verify the function of Obr. By using stable expression and antisense oligonucleotide-mediated downregulation of the expression of Obr followed by different molecular biology experiments, its role in lipid metabolism is verified. It is shown that Obr associates with the cAMP response element-binding protein (Creb) and activates different transcription factors involved in lipid metabolism. Its association with the Creb histone acetyltransferase complex, which includes the cAMP response element-binding protein (CBP) and p300, positively regulates the transcription of genes involved in lipid metabolism. In addition, Obr is regulated by Pparγ in response to lipid accumulation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Shareena Saeed Lootah
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Neha Mehra
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Prabha Sampath
- A*STAR Skin Research Laboratory, Agency for Science Technology & Research (A*STAR), Singapore, 138648, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Genome Institute of Singapore, Agency for Science Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| |
Collapse
|
50
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|