1
|
Li Y, Liao X, Yu X, Xiao Y, Tao X, Zhong T. Mediating Role of the ANGPTL3/TFPI Protein Ratio in Regulating T-Cell Surface Glycoprotein CD5 Levels on Knee Osteoarthritis (KOA): A Mendelian Randomization Study. Int J Mol Sci 2025; 26:4471. [PMID: 40429617 PMCID: PMC12111727 DOI: 10.3390/ijms26104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
This study utilized Mendelian randomization (MR) to investigate the impact of inflammatory proteins on knee osteoarthritis (KOA), measured using the ratio of protein levels (rQTLs). The primary objective was to identify potential intervention targets to mitigate KOA progression. Data from 2821 rQTLs, 91 inflammatory proteins, and KOA-related genetic variations were obtained through genome-wide association studies (GWAS). Bidirectional MR identified rQTLs with unidirectional causal relationships with KOA. Further analyses included false discovery rate (FDR) correction, colocalization, and mediation analysis. Two inflammatory proteins were found to be associated with KOA: T-cell surface glycoprotein CD5 [OR (95% CI) = 0.867 (0.760-0.990), PIVW = 0.035] and C-X-C motif chemokine 9 [OR (95% CI) = 1.150 (1.001-1.320), PIVW = 0.048]. Variations in their levels influenced rQTLs, producing differential effects on KOA. Specifically, rQTL-ANGPTL3/TFPI (human recombinant angiopoietin-like protein 3/Tissue factor pathway inhibitor) was identified as a mediator in the effect of T-cell surface glycoprotein CD5 levels on KOA. T-cell surface glycoprotein CD5 levels were negatively correlated with rQTL-ANGPTL3/TFPI (β1 = -0.084), while rQTL-ANGPTL3/TFPI was positively correlated with KOA (β2 = 0.159). These findings align with the total effect, where T-cell surface glycoprotein CD5 levels were negatively associated with KOA (β = -0.143). Thus, rQTL-ANGPTL3/TFPI may serve as a reliable mediator in the pathway through which T-cell surface glycoprotein CD5 levels affect KOA. This mediator may not only represent a potential therapeutic target but also serve as a biomarker for assessing KOA treatment efficacy, offering a novel direction for KOA diagnosis and management.
Collapse
Affiliation(s)
- Yongwei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China (X.T.)
| | | | | | | | | | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China (X.T.)
| |
Collapse
|
2
|
Xuan X, Fan J, Zhang J, Ren M, Feng L. Immune in myocardial ischemia/reperfusion injury: potential mechanisms and therapeutic strategies. Front Immunol 2025; 16:1558484. [PMID: 40406107 PMCID: PMC12094985 DOI: 10.3389/fimmu.2025.1558484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Myocardial infarction (MI), which is characterized by high morbidity and mortality, is a serious threat to human life and health, and timely reperfusion therapy to save ischemic myocardium is currently the most effective intervention. Although reperfusion therapy effectively restores coronary blood flow and maximally limits the infarct size, it triggers additional cell death and tissue damage, which is known as myocardial ischemia/reperfusion injury (MIRI). Multiple immune cells are present in the reperfusion area, executing specific functions and engaging in crosstalk during diverse stages, constituting a complex immune microenvironment involved in tissue repair and regeneration after MIRI. Immunotherapy brings new hope for treating ischemic heart disease by modulating the immune microenvironment. In this paper, we explore the regulatory roles of various immune cells during MIRI and the close relationship between different cell deaths and the immune microenvironment. In addition, we present the current status of research on targeting the immune system to intervene in MIRI, with the expectation of providing a basis for achieving clinical translation.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jilin Fan
- Department of Rehabilitation, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Jingyi Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shandong First Medical University, Shandong, Taian, China
| | - Ming Ren
- Baokang Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
3
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2025; 71:317-335. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
4
|
Sakamoto A, Grogan A, Kawakami R, Finn A, Shah P, Nair D, Batra K, Bailen C, Sakamoto M, Virmani R, Finn AV. Role of Hemoglobin-Stimulated Macrophages and Intraplaque Hemorrhage in the Development of Vascular Diseases. Arterioscler Thromb Vasc Biol 2025. [PMID: 40308195 DOI: 10.1161/atvbaha.125.321439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Intraplaque hemorrhage plays a critical role in the life of advancing atherosclerotic plaques, not only by triggering an acute increase in lesion size but also by attracting macrophages to the site. Lysis of erythrocytes in these areas is thought to be caused by oxidative stress, which induces the release of free Hb (hemoglobin), which is quickly bound by haptoglobin to form Hb-haptoglobin complexes. Macrophages are the only cells in the body capable of scavenging these complexes through the CD (cluster of differentiation) 163 scavenger receptor, which mediates Hb-haptoglobin ingestion, driving their differentiation. Emerging data suggest that these Hb-stimulated macrophages play an essential role in responding to intraplaque hemorrhage through mediating iron metabolism and influencing other cell types, including endothelial and smooth muscle cells. This review focuses on the role of Hb-stimulated macrophages in promoting atherogenesis through their effects on (1) endothelial activation, neoangiogenesis, and vascular permeability; (2) endothelial-to-mesenchymal cell transition and subsequent apoptosis; and (3) the prevention of smooth muscle cell osteogenic transformation and calcification. These functions may also be relevant to other vascular diseases where erythrocyte accumulation drives the formation of Hb-stimulated macrophages, which is a fundamental response to hemorrhage no matter the clinical setting.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
- Hamamatsu University School of Medicine, Shizuoka, Japan (A.S.)
| | - Alyssa Grogan
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Rika Kawakami
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Alexandra Finn
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Palak Shah
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Diya Nair
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Krish Batra
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Caroline Bailen
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Mirai Sakamoto
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Renu Virmani
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
| | - Aloke V Finn
- CVPath Institute, Inc, Gaithersburg, MD (A.S., A.G., R.K., A.F., P.S., D.N., K.B., C.B., M.S., R.V., A.V.F.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
5
|
Li Z, Zhang Z, Zhang B, Zhou C, Yu H, Xu L, He Z, Chen P, Peng W, Ye M, Qu G, Zhang X, Song Y, Jin X, Zheng Y. Perfluorinated compounds exposure and atherogenic risk characteristics in a high-fat diet condition: In vitro/in vivo models and population panel study. PNAS NEXUS 2025; 4:pgaf153. [PMID: 40386678 PMCID: PMC12084870 DOI: 10.1093/pnasnexus/pgaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Perfluorinated compounds (PFCs) are a well-recognized environmental risk factor for atherosclerosis. However, corresponding atherogenic risk in susceptible populations consuming high-fat diets (HFDs) remains unclear. Here, we found that perfluorooctane sulfonic acid (PFOS), a canonical PFCs, elevated the atherogenic risk in mice fed with HFD, which was characterized by an increased number of pro-inflammatory phenotype macrophages. We also found that macrophages exhibited a metabolic reprogramming to glycolysis, which was attributed to increased intracellular Fe2+ level. Mechanistic investigation revealed that PFOS directly bound to the iron-storage site on the ferritin heavy chain, subsequently weakening the iron-storage function. Notably, PFCs with acidic substituents and short chains had a higher atherogenic risk, as evidenced in the crucial indicators and observed in a population with a high triglyceride level. These findings highlight the potential atherogenic risk posed by PFCs exposure in susceptible populations consuming HFD and provide a potential intervention target.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Biao Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengying Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongyan Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Liting Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhicong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’ an University, Xi’an 710054, China
| | - Pu Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Peng
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi’an 710061, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Zhu M, Yang Y, Tang X, Hou H, Zhang Y, Chen R. Exploring the role of the CD74 + cardiac macrophage subset in trastuzumab cardiotoxicity and its mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167875. [PMID: 40316056 DOI: 10.1016/j.bbadis.2025.167875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Trastuzumab (TRZ) is the standard treatment for human epidermal growth factor receptor 2 (HER-2) positive breast cancer, but its cardiotoxicity significantly impacts the prognosis and quality of survival of patients, and the underlying mechanism of TRZ-related cardiotoxicity remains incompletely understood. Macrophage subsets better reflect macrophage heterogeneity than the traditional macrophage M1/M2 type polarization classification. CD74, a receptor with strong binding affinity for macrophage migration inhibitory factor, plays an important role in macrophage activation. After successfully constructing a mouse TRZ cardiotoxicity model, flow cytometry indicated that CD74+ cardiac macrophages (CMφs) were significantly elevated in the TRZ group. Single-cell data were utilized to identify CD74+ CMφs, GO and KEGG analyses of the DEGs were conducted to further validate the CD74/STAT1 signaling pathway. Analyses using RT-PCR, immunofluorescence, and western blot revealed a marked increase in the expression of genes and proteins linked to this pathway in TRZ-treated group. Additionally, levels of inflammation-related factors and the expression of apoptotic proteins was elevated following TRZ treatment. CD74-knockdown RAW 264.7 macrophages cell line were constructed via Lentiviruses carrying CD74 (hU6-MCS-CBh-gcGFP-IRES-puromycin) transfection and co-cultured with HL-1 cardiomyocytes to establish an in vitro TRZ cardiotoxicity model. Western blot analysis of CD74/STAT1 signaling pathway protein levels demonstrated that CD74 knockdown rescued TRZ-induced cellular damage. These findings suggest that TRZ may promote inflammation and apoptosis in cardiomyocytes, leading to cardiotoxicity through the CD74+ CMφ subset, which regulates the CD74/STAT1 signaling pathway. CD74+ CMφs are anticipated to be a novel intervention target and therapeutic strategy for addressing TRZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Minyan Zhu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China
| | - Yaping Yang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China
| | - Xinchen Tang
- Department of Health Sciences in Physical Education, Macao Polytechnic University, Macao
| | - Huan Hou
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Wuxi, China.
| | - Rong Chen
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Jinson S, Zhang Z, Lancaster GI, Murphy AJ, Morgan PK. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc Res 2025; 121:44-61. [PMID: 39739567 DOI: 10.1093/cvr/cvae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Oxidation of lipids, excessive cell death, and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex inter-play among iron, ferroptosis, and atherosclerosis. Mechanistically, ferroptosis is caused by the lethal accumulation of iron-mediated lipid peroxides. Emerging studies have underscored ferroptosis as a contributor to worsened atherosclerosis. Herein, we review the evidence that oxidative damage and iron overload in the context of atherosclerosis may promote ferroptosis within plaques. Furthermore, we summarize recent findings of lipid peroxidation, thereby potentially ferroptosis, in various plaque cell types-such as endothelial cells, macrophages, dendritic cells, T cells, and vascular smooth muscle cells-across different stages of atherosclerosis. Understanding how these processes influence atherosclerotic plaque progression may permit targeting stage-dependent ferroptosis in each cell population and could provide a rationale for developing cell type-specific intervention strategies to mitigate atherogenic ferroptosis effectively.
Collapse
Affiliation(s)
- Swetha Jinson
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Ziyang Zhang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Kanuri B, Maremanda KP, Chattopadhyay D, Essop MF, Lee MKS, Murphy AJ, Nagareddy PR. Redefining Macrophage Heterogeneity in Atherosclerosis: A Focus on Possible Therapeutic Implications. Compr Physiol 2025; 15:e70008. [PMID: 40108774 DOI: 10.1002/cph4.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Atherosclerosis is a lipid disorder where modified lipids (especially oxidized LDL) induce macrophage foam cell formation in the aorta. Its pathogenesis involves a continuum of persistent inflammation accompanied by dysregulated anti-inflammatory responses. Changes in the immune cell status due to differences in the lesional microenvironment are crucial in terms of plaque development, its progression, and plaque rupture. Ly6Chi monocytes generated through both medullary and extramedullary cascades act as one of the major sources of plaque macrophages and thereby foam cells. Both monocytes and monocyte-derived macrophages also participate in pathological events in atherosclerosis-associated multiple organ systems through inter-organ communications. For years, macrophage phenotypes M1 and M2 have been shown to perpetuate inflammatory and resolution responses; nevertheless, such a dualistic classification is too simplistic and contains severe drawbacks. As the lesion microenvironment is enriched with multiple mediators that possess the ability to activate macrophages to diverse phenotypes, it is obvious that such cells should demonstrate substantial heterogeneity. Considerable research in this regard has indicated the presence of additional macrophage phenotypes that are exclusive to atherosclerotic plaques, namely Mox, M4, Mhem, and M(Hb) type. Furthermore, although the concept of macrophage clusters has come to the fore in recent years with the evolution of high-dimensional techniques, classifications based on such 'OMICS' approaches require extensive functional validation as well as metabolic phenotyping. Bearing this in mind, the current review provides an overview of the status of different macrophage populations and their role during atherosclerosis and also outlines possible therapeutic implications.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Krishna P Maremanda
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Dipanjan Chattopadhyay
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Man Kit Sam Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
Gu Q, Liu J, Shen LL. FXR activation reduces the formation of macrophage foam cells and atherosclerotic plaque, possibly by down regulating hepatic lipase in macrophages. FEBS Open Bio 2025; 15:311-323. [PMID: 39601316 PMCID: PMC11788749 DOI: 10.1002/2211-5463.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Macrophages are the most important immune cells affecting the formation of atherosclerotic plaque. Nevertheless, the mechanisms that promote formation of foamy macrophages during atherogenesis remain poorly understood. This study explored the effects of Farnesoid X receptor (FXR) and hepatic lipase (HL, encoded by LIPC) on atherogenesis, particularly in foamy macrophage formation. A luciferase reporter assay indicated that FXR could bind to the LIPC promoter and inhibit LIPC transcription. FXR agonist GW4064 decreased HL expression, foam cell formation, and increased the expression of FXR downstream genes and polarization to M2 in ox-LDL-induced THP-1 and U937 foam cells. In addition, GW4064 exerted anti-atherosclerotic effects in ApoE-/- mice, manifested as decreased serum cholesterol and triglyceride levels, and alleviated atherosclerotic plaque formation. Collectively, FXR exerted anti-atherosclerotic effects, possibly by negatively regulating HL expression in macrophages.
Collapse
Affiliation(s)
- Qiang Gu
- Institute of Cardiovascular Surgery, Xinqiao HospitalSecond Affiliated Hospital of the Army Military Medical UniversityChongqingChina
| | - Jia Liu
- Department of PathologyChongqing University Cancer HospitalChina
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC)Chongqing University Cancer HospitalChina
| | - Li Li Shen
- Department of PathologyChongqing University Cancer HospitalChina
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC)Chongqing University Cancer HospitalChina
| |
Collapse
|
10
|
Yang P, Rong X, Gao Z, Wang J, Liu Z. Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107588. [PMID: 39778637 DOI: 10.1016/j.phrs.2025.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoling Rong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhechang Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Fang F, Wang E, Fang M, Yue H, Yang H, Liu X. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Theranostics 2025; 15:1570-1588. [PMID: 39816684 PMCID: PMC11729549 DOI: 10.7150/thno.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies. This review provides an overview of the pathological characteristics of vulnerable plaques, emphasizes macrophages' critical role, and discusses advanced strategies for their diagnosis and treatment. It aims to present a comprehensive macrophage-centered perspective for addressing vulnerable plaques in atherosclerosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengjia Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hanqiao Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Santarsiero A, Convertini P, Iacobazzi D, Infantino V, Todisco S. Metabolic Crossroad Between Macrophages and Cancer Cells: Overview of Hepatocellular Carcinoma. Biomedicines 2024; 12:2684. [PMID: 39767591 PMCID: PMC11727080 DOI: 10.3390/biomedicines12122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
The metabolic interplay between macrophages and cancer cells mirrors the plasticity of both kinds of cells, which adapt to the microenvironment by sustaining cell growth and proliferation. In this way, cancer cells induce macrophage polarization, and, on the other hand, tumor-associated macrophages (TAMs) contribute to the survival of cancer cells. In a simplified manner, macrophages can assume two opposite subtypes: M1, pro-inflammatory and anti-tumor phenotype, and M2, anti-inflammatory and protumor phenotype. How do cancer cells induce macrophage polarization? Any actor involved in tumor growth, including the mitochondria, releases molecules into the tumor microenvironment (TME) that trigger a subtype transition. These metabolic changes are the primary cause of this polarization. Hepatocellular carcinoma (HCC), the prevalent type of liver primary tumor, is characterized by cells with extensive metabolic adaptions due to high flexibility in different environmental conditions. This review focuses on the main metabolic features of M1 and M2 macrophages and HCC cells underlying their metabolic behavior in response to TME.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Paolo Convertini
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK;
| | - Vittoria Infantino
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Simona Todisco
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
13
|
Yao M, Li M, Peng D, Wang Y, Li S, Zhang D, Yang B, Qiu HJ, Li LF. Unraveling Macrophage Polarization: Functions, Mechanisms, and "Double-Edged Sword" Roles in Host Antiviral Immune Responses. Int J Mol Sci 2024; 25:12078. [PMID: 39596148 PMCID: PMC11593441 DOI: 10.3390/ijms252212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous viruses that propagate through the respiratory tract may be initially engulfed by macrophages (Mφs) within the alveoli, where they complete their first replication cycle and subsequently infect the adjacent epithelial cells. This process can lead to significant pathological damage to tissues and organs, leading to various diseases. As essential components in host antiviral immune systems, Mφs can be polarized into pro-inflammatory M1 Mφs or anti-inflammatory M2 Mφs, a process involving multiple signaling pathways and molecular mechanisms that yield diverse phenotypic and functional features in response to various stimuli. In general, when infected by a virus, M1 macrophages secrete pro-inflammatory cytokines to play an antiviral role, while M2 macrophages play an anti-inflammatory role to promote the replication of the virus. However, recent studies have shown that some viruses may exhibit the opposite trend. Viruses have evolved various strategies to disrupt Mφ polarization for efficient replication and transmission. Notably, various factors, such as mechanical softness, the altered pH value of the endolysosomal system, and the homeostasis between M1/M2 Mφs populations, contribute to crucial events in the viral replication cycle. Here, we summarize the regulation of Mφ polarization, virus-induced alterations in Mφ polarization, and the antiviral mechanisms associated with these changes. Collectively, this review provides insights into recent advances regarding Mφ polarization in host antiviral immune responses, which will contribute to the development of precise prevention strategies as well as management approaches to disease incidence and transmission.
Collapse
Affiliation(s)
- Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| |
Collapse
|
14
|
Zhang H, Wang Y, Liu M, Qi Y, Shen S, Gang Q, Jiang H, Lun Y, Zhang J. Deep Learning and Single-Cell Sequencing Analyses Unveiling Key Molecular Features in the Progression of Carotid Atherosclerotic Plaque. J Cell Mol Med 2024; 28:e70220. [PMID: 39586797 PMCID: PMC11588433 DOI: 10.1111/jcmm.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Rupture of advanced carotid atherosclerotic plaques increases the risk of ischaemic stroke, which has significant global morbidity and mortality rates. However, the specific characteristics of immune cells with dysregulated function and proven biomarkers for the diagnosis of atherosclerotic plaque progression remain poorly characterised. Our study elucidated the role of immune cells and explored diagnostic biomarkers in advanced plaque progression using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis. We identified a subcluster of monocytes with significantly increased infiltration in the advanced plaques. Based on the monocyte signature and machine-learning approaches, we accurately distinguished advanced plaques from early plaques, with an area under the curve (AUC) of 0.899 in independent external testing. Using microenvironment cell populations (MCP) counter and non-negative matrix factorisation, we determined the association between monocyte signatures and immune cell infiltration as well as the heterogeneity of the patient. Finally, we constructed a convolutional neural network deep learning model based on gene-immune correlation, which achieved an AUC of 0.933, a sensitivity of 92.3%, and a specificity of 87.5% in independent external testing for diagnosing advanced plaques. Our findings on unique subpopulations of monocytes that contribute to carotid plaque progression are crucial for the development of diagnostic tools for clinical diseases.
Collapse
Affiliation(s)
- Han Zhang
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yixian Wang
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mingyu Liu
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yao Qi
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shikai Shen
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Qingwei Gang
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Han Jiang
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yu Lun
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jian Zhang
- Department of Vascular SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
15
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
16
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
17
|
Djannah F, Setijo Rahaju A, Nasrum Massi M, Hatta M, Bukhari A, Handayani I. The Relationship Between Natural Resistance –Associated Macrophage Protein 1 (NRAMP-1) Levels and Hb and Body Mass Index (BMI) in Tuberculosis Lymphadenitis Patients. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2024:4422-4426. [DOI: 10.52711/0974-360x.2024.00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Backgrounds: Tuberculosis lymphadenitis (LnTB) is the most common extrapulmonary tuberculosis (EPTB). The NRAMP-1 gene is located in macrophages which functions to secrete iron needed by MTB to live. Enzyme-linked immunosorbent assay (Elisa) is a serological test commonly used in various immunology laboratories. Objectives: This study aimed to investigate the relationship of NRAMP-1 levels with Hb and BMI in tuberculosis lymphadenitis patients. Method: This study is a descriptive cross-sectional carried out from January to September 2021 on 50 LnTB patients. Blood was taken before treatment and then an ELISA examination was performed to determine NRAMP-1 levels, as well as an Hb examination. Nutritional status was determined by body mass index (BMI) assessment. Results: Of the 78 respondents, 34.6% are male and 65.4% are female. The mean age of the respondents in this study is 26.89. Histopathologically, it was found that 56.4% are well-organized granulomas and the respondent patients are mostly from Mataram with a percentage of 30.7%. The mean nodule complaint is 3.0064 cm. The mean NRAMP-1 level is 256.88, the mean Hb is 12.05, and the mean BMI is 20.31. After the spearman-rho test, it was found that the relationship between NRAMP-1 levels and Hb is p=0.018 and the relationship between NRAMP-1 levels and BMI is p=0.242. Conclusion: There is a relationship between NRAMP-1 levels and Hb. However, there is no significant relationship between NRAMP-1 levels and BMI.
Collapse
Affiliation(s)
- Fathul Djannah
- Dept. of Anatomical Pathology of Medical Faculty, Universitas Mataram, Mataram, West Nusa Tenggara Indonesia
| | - Anny Setijo Rahaju
- Dept.of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Muhammad Nasrum Massi
- Dept. of Microbiology of Medical Faculty, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Mochammad Hatta
- Dept. of Microbiology of Medical Faculty, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Dept. of Nutrition of Medical Faculty, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Irda Handayani
- Dept. of Clinical Pathology of Medical Faculty, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
18
|
Nakahara T, Miyazawa R, Iwabuchi Y, Tonda K, Narula N, Strauss HW, Narula J, Jinzaki M. Aortic Uptake of 18F-NaF and 18F-FDG and Calcification Predict the Development of Abdominal Aortic Aneurysms and Is Attenuated by Drug Therapy. Arterioscler Thromb Vasc Biol 2024; 44:1975-1985. [PMID: 39051097 DOI: 10.1161/atvbaha.124.321110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Abdominal aortic aneurysms expand over time and increase the risk of fatal ruptures. To predict expansion, the isolated assessment of 18F-fluorodeoxyglucose (FDG) and sodium fluoride (NaF) uptake or calcification volume in aneurysms has been investigated with variability in results. We systematically evaluated whether 18F-FDG and 18F-NaF uptake was predictive of abdominal aortic aneurysm expansion. METHODS Seventy-four male Sprague-Dawley rat abdominal aortic aneurysm models were imaged using positron emission tomography-computed tomography with 18F-FDG and 18F-NaF at 1, 2, 4, 6, and 8 weeks after CaCl2 or saline stimulation. In the 1-week cohort (n=25), the correlation between 18F-FDG or 18F-NaF uptake and pathological markers was investigated. In the time course cohort (n=49), animals received either atorvastatin, losartan, aldactone, or risedronate to assess the effect of these drugs, and the relationship between aortic size and sequential 18F-FDG and 18F-NaF uptake or calcification volume was examined. RESULTS In the 1-week cohort, the maximum standard unit value of 18F-FDG and 18F-NaF uptake correlated with CD68- (r=0.82; P=0.001) and von Kossa staining-positive areas (r=0.89; P<0.001), respectively. In the time course cohort, 18F-FDG and 18F-NaF uptake changed in a time-dependent manner and drugs attenuated this uptake. Specifically, 18F-FDG showed high uptake at weeks 1 and 2, whereas a high 18F-NaF uptake was noted throughout the study period. Atorvastatin and risedronate showed a decreased and increased aortic size, respectively. The final aortic area correlated well with 18F-FDG and 18F-NaF uptake and calcification volume, especially at 1 and 2 weeks (18F-NaF [1 week]: r=0.61, 18F-FDG [2 weeks]: r=0.51, calcification volume [1 week]: r=0.59; P<0.001). Multiple linear regression analysis showed that the combination of these factors predicted the final aortic size, with 18F-NaF uptake at 1 week being the strongest predictor. CONCLUSIONS The uptake of 18F-NaF and 18F-FDG and the calcification volume at appropriate times correlated with the development of abdominal aortic aneurysms, with 18F-NaF uptake being the strongest predictor.
Collapse
MESH Headings
- Animals
- Male
- Fluorodeoxyglucose F18/pharmacokinetics
- Sodium Fluoride
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/diagnostic imaging
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Rats, Sprague-Dawley
- Positron Emission Tomography Computed Tomography
- Radiopharmaceuticals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Disease Models, Animal
- Predictive Value of Tests
- Time Factors
- Fluorine Radioisotopes
- Disease Progression
- Rats
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Raita Miyazawa
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Kai Tonda
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Nupoor Narula
- Division of Cardiology, Weill Cornell Medicine, New York, NY (N.N.)
| | - H William Strauss
- Molecular Imaging and Therapy Section, Memorial Sloan Kettering Cancer Center, New York, NY (H.W.S.)
| | - Jagat Narula
- Department of Medicine and Cardiology, McGovern Medical School, Houston, TX (J.N.)
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| |
Collapse
|
19
|
Mackay CDA, Meechem MB, Patel VB. Macrophages in vascular disease: Roles of mitochondria and metabolic mechanisms. Vascul Pharmacol 2024; 156:107419. [PMID: 39181483 DOI: 10.1016/j.vph.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Macrophages are a dynamic cell type of the immune system implicated in the pathophysiology of vascular diseases and are a major contributor to pathological inflammation. Excessive macrophage accumulation, activation, and polarization is observed in aortic aneurysm (AA), atherosclerosis, and pulmonary arterial hypertension. In general, macrophages become activated and polarized to a pro-inflammatory phenotype, which dramatically changes cell behavior to become pro-inflammatory and infiltrative. These cell types become cumbersome and fail to be cleared by normal mechanisms such as autophagy. The result is a hyper-inflammatory environment causing the recruitment of adjacent cells and circulating immune cells to further augment the inflammatory response. In AA, this leads to excessive ECM degradation and chemokine secretion, ultimately causing macrophages to dominate the immune cell landscape in the aortic wall. In atherosclerosis, monocytes are recruited to the vascular wall, where they polarize to the pro-inflammatory phenotype and induce inflammatory pathway activation. This leads to the development of foam cells, which significantly contribute to neointima and necrotic core formation in atherosclerotic plaques. Pro-inflammatory macrophages, which affect other vascular diseases, present with fragmented mitochondria and corresponding metabolic dysfunction. Targeting macrophage mitochondrial dynamics has proved to be an exciting potential therapeutic approach to combat vascular disease. This review will summarize mitochondrial and metabolic mechanisms of macrophage activation, polarization, and accumulation in vascular diseases.
Collapse
Affiliation(s)
- Cameron D A Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Ahmad JN, Sebo P. cAMP signaling of Bordetella adenylate cyclase toxin blocks M-CSF triggered upregulation of iron acquisition receptors on differentiating CD14 + monocytes. mSphere 2024; 9:e0040724. [PMID: 39078132 PMCID: PMC11351043 DOI: 10.1128/msphere.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Bordetella pertussis infects the upper airways of humans and disarms host defense by the potent immuno-subversive activities of its pertussis (PT) and adenylate cyclase (CyaA) toxins. CyaA action near-instantly ablates the bactericidal activities of sentinel CR3-expressing myeloid phagocytes by hijacking cellular signaling pathways through the unregulated production of cAMP. Moreover, CyaA-elicited cAMP signaling also inhibits the macrophage colony-stimulating factor (M-CSF)-induced differentiation of incoming inflammatory monocytes into bactericidal macrophages. We show that CyaA/cAMP signaling via protein kinase A (PKA) downregulates the M-CSF-elicited expression of monocyte receptors for transferrin (CD71) and hemoglobin-haptoglobin (CD163), as well as the expression of heme oxygenase-1 (HO-1) involved in iron liberation from internalized heme. The impact of CyaA action on CD71 and CD163 levels in differentiating monocytes is largely alleviated by the histone deacetylase inhibitor trichostatin A (TSA), indicating that CyaA/cAMP signaling triggers epigenetic silencing of genes for micronutrient acquisition receptors. These results suggest a new mechanism by which B. pertussis evades host sentinel phagocytes to achieve proliferation on airway mucosa.IMPORTANCETo establish a productive infection of the nasopharyngeal mucosa and proliferate to sufficiently high numbers that trigger rhinitis and aerosol-mediated transmission, the pertussis agent Bordetella pertussis deploys several immunosuppressive protein toxins that compromise the sentinel functions of mucosa patrolling phagocytes. We show that cAMP signaling elicited by very low concentrations (22 pM) of Bordetella adenylate cyclase toxin downregulates the iron acquisition systems of CD14+ monocytes. The resulting iron deprivation of iron, a key micronutrient, then represents an additional aspect of CyaA toxin action involved in the inhibition of differentiation of monocytes into the enlarged bactericidal macrophage cells. This corroborates the newly discovered paradigm of host defense evasion mechanisms employed by bacterial pathogens, where manipulation of cellular cAMP levels blocks monocyte to macrophage transition and replenishment of exhausted phagocytes, thereby contributing to the formation of a safe niche for pathogen proliferation and dissemination.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
22
|
Mori M, Sakamoto A, Kawakami R, Guo L, Slenders L, Mosquera JV, Ghosh SKB, Wesseling M, Shiraki T, Bellissard A, Shah P, Weinkauf CC, Konishi T, Sato Y, Cornelissen A, Kawai K, Jinnouchi H, Xu W, Vozenilek AE, Williams D, Tanaka T, Sekimoto T, Kelly MC, Fernandez R, Grogan A, Coslet AJ, Fedotova A, Kurse A, Mokry M, Romero ME, Kolodgie FD, Pasterkamp G, Miller CL, Virmani R, Finn AV. CD163 + Macrophages Induce Endothelial-to-Mesenchymal Transition in Atheroma. Circ Res 2024; 135:e4-e23. [PMID: 38860377 DOI: 10.1161/circresaha.123.324082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa β) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.
Collapse
MESH Headings
- Humans
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Animals
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Mice
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Apoptosis
- Female
- Epithelial-Mesenchymal Transition
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
Collapse
Affiliation(s)
- Masayuki Mori
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Atsushi Sakamoto
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- Hamamatsu University School of Medicine, Shizuoka, Japan (A.S.)
| | - Rika Kawakami
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Liang Guo
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Lotte Slenders
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Jose Verdezoto Mosquera
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, Center for Public Health Genomics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Saikat Kumar B Ghosh
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Marian Wesseling
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Tatsuya Shiraki
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Arielle Bellissard
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Palak Shah
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | | | - Takao Konishi
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Yu Sato
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Anne Cornelissen
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Kenji Kawai
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Hiroyuki Jinnouchi
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Weili Xu
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Aimee E Vozenilek
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Desiree Williams
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Takamasa Tanaka
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Teruo Sekimoto
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD (M.C.K.)
| | - Raquel Fernandez
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Alyssa Grogan
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - A J Coslet
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Alisa Fedotova
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Anjali Kurse
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Michal Mokry
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Maria E Romero
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Frank D Kolodgie
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Gerard Pasterkamp
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Clint L Miller
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, Center for Public Health Genomics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
23
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
24
|
Yuan Y, Zhang Y, Lu X, Li J, Wang M, Zhang W, Zheng M, Sun Z, Xing Y, Li Y, Qu Y, Jiao Y, Han H, Xie C, Mao T. Novel insights into macrophage immunometabolism in nonalcoholic steatohepatitis. Int Immunopharmacol 2024; 131:111833. [PMID: 38503012 DOI: 10.1016/j.intimp.2024.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | | | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China; Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
25
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
26
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
28
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
29
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
30
|
Kaiser R, Escaig R, Nicolai L. Hemostasis without clot formation: how platelets guard the vasculature in inflammation, infection, and malignancy. Blood 2023; 142:1413-1425. [PMID: 37683182 DOI: 10.1182/blood.2023020535] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Platelets are key vascular effectors in hemostasis, with activation signals leading to fast recruitment, aggregation, and clot formation. The canonical process of hemostasis is well-characterized and shares many similarities with pathological thrombus formation. However, platelets are also crucially involved in the maintenance of vascular integrity under both steady-state and inflammatory conditions by ensuring blood vessel homeostasis and preventing microbleeds. In these settings, platelets use distinct receptors, signaling pathways, and ensuing effector functions to carry out their deeds. Instead of simply forming clots, they mainly act as individual sentinels that swiftly adapt their behavior to the local microenvironment. In this review, we summarize previously recognized and more recent studies that have elucidated how anucleate, small platelets manage to maintain vascular integrity when faced with challenges of infection, sterile inflammation, and even malignancy. We dissect how platelets are recruited to the vascular wall, how they identify sites of injury, and how they prevent hemorrhage as single cells. Furthermore, we discuss mechanisms and consequences of platelets' interaction with leukocytes and endothelial cells, the relevance of adhesion as well as signaling receptors, in particular immunoreceptor tyrosine-based activation motif receptors, and cross talk with the coagulation system. Finally, we outline how recent insights into inflammatory hemostasis and vascular integrity may aid in the development of novel therapeutic strategies to prevent hemorrhagic events and vascular dysfunction in patients who are critically ill.
Collapse
Affiliation(s)
- Rainer Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
31
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
32
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
33
|
Sakamoto A, Suwa K, Kawakami R, Finn AV, Maekawa Y, Virmani R, Finn AV. Significance of Intra-plaque Hemorrhage for the Development of High-Risk Vulnerable Plaque: Current Understanding from Basic to Clinical Points of View. Int J Mol Sci 2023; 24:13298. [PMID: 37686106 PMCID: PMC10487895 DOI: 10.3390/ijms241713298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Acute coronary syndromes due to atherosclerotic coronary artery disease are a leading cause of morbidity and mortality worldwide. Intra-plaque hemorrhage (IPH), caused by disruption of intra-plaque leaky microvessels, is one of the major contributors of plaque progression, causing a sudden increase in plaque volume and eventually plaque destabilization. IPH and its healing processes are highly complex biological events that involve interactions between multiple types of cells in the plaque, including erythrocyte, macrophages, vascular endothelial cells and vascular smooth muscle cells. Recent investigations have unveiled detailed molecular mechanisms by which IPH leads the development of high-risk "vulnerable" plaque. Current advances in clinical diagnostic imaging modalities, such as magnetic resonance image and intra-coronary optical coherence tomography, increasingly allow us to identify IPH in vivo. To date, retrospective and prospective clinical trials have revealed the significance of IPH as detected by various imaging modalities as a reliable prognostic indicator of high-risk plaque. In this review article, we discuss recent advances in our understanding for the significance of IPH on the development of high-risk plaque from basic to clinical points of view.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Kenichiro Suwa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Rika Kawakami
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Alexandra V. Finn
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan; (K.S.); (Y.M.)
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| | - Aloke V. Finn
- CVPath Institute, Inc., Gaithersburg, MD 20878, USA; (A.S.); (R.K.); (A.V.F.); (R.V.)
| |
Collapse
|
34
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
35
|
Pham TT, Le AH, Dang CP, Chong SY, Do DV, Peng B, Jayasinghe MK, Ong HB, Hoang DV, Louise RA, Loh Y, Hou HW, Wang J, Le MTN. Endocytosis of red blood cell extracellular vesicles by macrophages leads to cytoplasmic heme release and prevents foam cell formation in atherosclerosis. J Extracell Vesicles 2023; 12:e12354. [PMID: 37553837 PMCID: PMC10410060 DOI: 10.1002/jev2.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Thach Tuan Pham
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cong Phi Dang
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Hong Boon Ong
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Dong Van Hoang
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Roma Anne Louise
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Yuin‐Han Loh
- A*STAR Institute of Molecular and Cell BiologySingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Han Wei Hou
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh TN Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- A*STAR Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
36
|
Dib L, Koneva LA, Edsfeldt A, Zurke YX, Sun J, Nitulescu M, Attar M, Lutgens E, Schmidt S, Lindholm MW, Choudhury RP, Cassimjee I, Lee R, Handa A, Goncalves I, Sansom SN, Monaco C. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. NATURE CARDIOVASCULAR RESEARCH 2023; 2:656-672. [PMID: 38362263 PMCID: PMC7615632 DOI: 10.1038/s44161-023-00295-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/31/2023] [Indexed: 02/17/2024]
Abstract
The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
Collapse
Grants
- FS/18/63/34184 British Heart Foundation
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- British Heart Foundation (BHF)
- Fondation Leducq
- European Commission (EC)
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004), Oxford NIHR Biomedical Research Centre.
- Vetenskapsrådet (Swedish Research Council)
- The Swedish Society for Medical Research, Crafoord foundation; The Swedish Society of Medicine, the Swedish Heart and Lung Foundation, Diabetes foundation, SUS foundation, Lund University Diabetes Center, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne.
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004)
- Netcare-Physicians-Partnership trust
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
Collapse
Affiliation(s)
- Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lada A. Koneva
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN USA
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Ismail Cassimjee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
38
|
Sakamoto A, Kawakami R, Mori M, Guo L, Paek KH, Mosquera JV, Cornelissen A, Ghosh SKB, Kawai K, Konishi T, Fernandez R, Fuller DT, Xu W, Vozenilek AE, Sato Y, Jinnouchi H, Torii S, Turner AW, Akahori H, Kuntz S, Weinkauf CC, Lee PJ, Kutys R, Harris K, Killey AL, Mayhew CM, Ellis M, Weinstein LM, Gadhoke NV, Dhingra R, Ullman J, Dikongue A, Romero ME, Kolodgie FD, Miller CL, Virmani R, Finn AV. CD163+ macrophages restrain vascular calcification, promoting the development of high-risk plaque. JCI Insight 2023; 8:e154922. [PMID: 36719758 PMCID: PMC10077470 DOI: 10.1172/jci.insight.154922] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification (VC) is concomitant with atherosclerosis, yet it remains uncertain why rupture-prone high-risk plaques do not typically show extensive calcification. Intraplaque hemorrhage (IPH) deposits erythrocyte-derived cholesterol, enlarging the necrotic core and promoting high-risk plaque development. Pro-atherogenic CD163+ alternative macrophages engulf hemoglobin:haptoglobin (HH) complexes at IPH sites. However, their role in VC has never been examined to our knowledge. Here we show, in human arteries, the distribution of CD163+ macrophages correlated inversely with VC. In vitro experiments using vascular smooth muscle cells (VSMCs) cultured with HH-exposed human macrophage - M(Hb) - supernatant reduced calcification, while arteries from ApoE-/- CD163-/- mice showed greater VC. M(Hb) supernatant-exposed VSMCs showed activated NF-κB, while blocking NF-κB attenuated the anticalcific effect of M(Hb) on VSMCs. CD163+ macrophages altered VC through NF-κB-induced transcription of hyaluronan synthase (HAS), an enzyme that catalyzes the formation of the extracellular matrix glycosaminoglycan, hyaluronan, within VSMCs. M(Hb) supernatants enhanced HAS production in VSMCs, while knocking down HAS attenuated its anticalcific effect. NF-κB blockade in ApoE-/- mice reduced hyaluronan and increased VC. In human arteries, hyaluronan and HAS were increased in areas of CD163+ macrophage presence. Our findings highlight an important mechanism by which CD163+ macrophages inhibit VC through NF-κB-induced HAS augmentation and thus promote the high-risk plaque development.
Collapse
Affiliation(s)
| | | | | | - Liang Guo
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Ka Hyun Paek
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Jose Verdezoto Mosquera
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Kenji Kawai
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | | | | | - Weili Xu
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | - Yu Sato
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | - Sho Torii
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Adam W. Turner
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hirokuni Akahori
- Department of Cardiovascular and Renal Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Salome Kuntz
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Craig C. Weinkauf
- Division of Vascular and Endovascular Surgery, University of Arizona, Tucson, Arizona, USA
| | | | - Robert Kutys
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Kathryn Harris
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Roma Dhingra
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | | | | | | | - Clint L. Miller
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Aloke V. Finn
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Duan R, Liu Y, Tang D, Xiao S, Lin R, Zhao M. Single-cell RNA-Seq reveals CVI-mAb-induced Lyve1 + M2-like macrophages reduce atherosclerotic plaque area in Apoe -/- mice. Int Immunopharmacol 2023; 116:109794. [PMID: 36736225 DOI: 10.1016/j.intimp.2023.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Atherosclerosis is a lipid imbalance-induced autoimmune disease. Macrophages participate in the development and progression of atherosclerosis. Although numerous studies have utilized single-cell RNA sequencing to identify the role of various macrophage phenotypes in atherosclerosis, the macrophage subpopulations that have therapeutic benefits against atherosclerosis are not fully understood. METHODS In this study, a single-cell RNA sequencing analysis was performed on the F4/80+ macrophages of apolipoprotein E-deficient (Apoe-/-) mice on a normal diet (ND), a high-fat diet (HFD), and a high-fat diet (HFD) with collagen VI monoclonal antibodies (CVI-mAb) treatment. A population of M2-like macrophages expressing the hyaluronan receptor Lyve1 was almost exclusively detectable in Apoe-/- mice on an HFD with CVI-mAb treatment, compared with other groups. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns that distinguished this macrophage subset and uncovered its functions. RESULTS Lyve1+ M2 macrophages appear to have specialized functions in lipid metabolism. Lyve1+ M2-like macrophages were sorted via fluorescence- activated cell sorting (FACS) and adoptively transferred to Apoe-/- mice fed an HFD. CONCLUSION Our result showed that Lyve1+ M2 macrophages could reduce the plaque areas in Apoe-/- mice.
Collapse
Affiliation(s)
- Rui Duan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Tang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Run Lin
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
40
|
Hansakon A, Ngamphiw C, Tongsima S, Angkasekwinai P. Arginase 1 Expression by Macrophages Promotes Cryptococcus neoformans Proliferation and Invasion into Brain Microvascular Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:408-419. [PMID: 36548474 DOI: 10.4049/jimmunol.2200592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
41
|
Zhu L, Luo S, Zhu Y, Tang S, Li C, Jin X, Wu F, Jiang H, Wu L, Xu Y. The Emerging Role of Ferroptosis in Various Chronic Liver Diseases: Opportunity or Challenge. J Inflamm Res 2023; 16:381-389. [PMID: 36748023 PMCID: PMC9899014 DOI: 10.2147/jir.s385977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a recently identified iron-dependent form of intracellular lipid peroxide accumulation-mediated cell death. Different from other types of cell death mechanisms, it exhibits distinct biological and morphological features characterized by the loss of lipid peroxidase repair activity caused by glutathione peroxidase 4, the presence of redox-active iron, and the oxidation of phospholipids-containing polyunsaturated fatty acids. In recent years, studies have shown that ferroptosis plays a key role in various liver diseases such as alcoholic liver injury, non-alcoholic steatohepatitis, liver cirrhosis, and liver cancer. However, the mechanism of ferroptosis and its regulation on chronic liver disease are controversial among different types of cells in the liver. Herein, we summarize the current studies on mechanism of ferroptosis in chronic liver disease, aiming to outline the blueprint of ferroptosis as an effective option for chronic liver disease therapy.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Shengnan Luo
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Shiyue Tang
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Chenge Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaozhi Jin
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Faling Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lina Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China,Correspondence: Yejin Xu, Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China, Email
| |
Collapse
|
42
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
43
|
Wang L, Cai J, Qiao T, Li K. Ironing out macrophages in atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-10. [PMID: 36647723 PMCID: PMC10157607 DOI: 10.3724/abbs.2022196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
<p indent="0mm">The most common cause of death worldwide is atherosclerosis and related cardiovascular disorders. Macrophages are important players in the pathogenesis of atherosclerosis and perform critical functions in iron homeostasis due to recycling iron by phagocytosis of senescent red blood cells and regulating iron availability in the tissue microenvironment. With the growth of research on the "iron hypothesis" of atherosclerosis, macrophage iron has gradually become a hotspot in the refined iron hypothesis. Macrophages with the M1, M2, M(Hb), Mox, and other phenotypes have been defined with different iron-handling capabilities related to the immune function and immunometabolism of macrophages, which influence the progression of atherosclerosis. In this review, we focus on macrophage iron and its effects on the development of atherosclerosis. We also cover the contradictory discoveries and propose a possible explanation. Finally, pharmaceutical modulation of macrophage iron is discussed as a promising target for atherosclerosis therapy.</p>.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kuanyu Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
44
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|
45
|
Fan Z, Kernan KF, Sriram A, Benos PV, Canna SW, Carcillo JA, Kim S, Park HJ. Deep neural networks with knockoff features identify nonlinear causal relations and estimate effect sizes in complex biological systems. Gigascience 2022; 12:giad044. [PMID: 37395630 PMCID: PMC10316696 DOI: 10.1093/gigascience/giad044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/31/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Learning the causal structure helps identify risk factors, disease mechanisms, and candidate therapeutics for complex diseases. However, although complex biological systems are characterized by nonlinear associations, existing bioinformatic methods of causal inference cannot identify the nonlinear relationships and estimate their effect size. RESULTS To overcome these limitations, we developed the first computational method that explicitly learns nonlinear causal relations and estimates the effect size using a deep neural network approach coupled with the knockoff framework, named causal directed acyclic graphs using deep learning variable selection (DAG-deepVASE). Using simulation data of diverse scenarios and identifying known and novel causal relations in molecular and clinical data of various diseases, we demonstrated that DAG-deepVASE consistently outperforms existing methods in identifying true and known causal relations. In the analyses, we also illustrate how identifying nonlinear causal relations and estimating their effect size help understand the complex disease pathobiology, which is not possible using other methods. CONCLUSIONS With these advantages, the application of DAG-deepVASE can help identify driver genes and therapeutic agents in biomedical studies and clinical trials.
Collapse
Affiliation(s)
- Zhenjiang Fan
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kate F Kernan
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Center for Critical Care Nephrology and Clinical Research Investigation and Systems Modeling of Acute Illness Center, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Aditya Sriram
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, USA
| | - Scott W Canna
- Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joseph A Carcillo
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Center for Critical Care Nephrology and Clinical Research Investigation and Systems Modeling of Acute Illness Center, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
47
|
Xie Y, Chen H, Qu P, Qiao X, Guo L, Liu L. Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 2022; 113:109260. [DOI: 10.1016/j.intimp.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
|
48
|
Ma J, Zhang H, Chen Y, Liu X, Tian J, Shen W. The Role of Macrophage Iron Overload and Ferroptosis in Atherosclerosis. Biomolecules 2022; 12:1702. [PMID: 36421722 PMCID: PMC9688033 DOI: 10.3390/biom12111702] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a new type of cell death caused by iron-dependent lipid peroxidation. In recent years, it has been found that ferroptosis can promote the progression of atherosclerosis (AS). Macrophages have been proven to play multiple roles in the occurrence and development of AS. Iron is a necessary mineral that participates in different functions of macrophages under physiological conditions. But iron overload and ferroptosis in macrophages may promote the progression of AS. Herein, we summarize the role of iron overload and ferroptosis in macrophages in AS from the perspective of iron metabolism, and iron overload and ferroptosis are significant contributors to AS development.
Collapse
Affiliation(s)
- Jiedong Ma
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiamin Tian
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Shen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
49
|
Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated Necrosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:1283-1306. [PMID: 36134566 DOI: 10.1161/atvbaha.122.318177] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Michelle Zurek
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, ON, Canada (K.J.R.).,University of Ottawa Heart Institute, ON, Canada (K.J.R.)
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| |
Collapse
|
50
|
Humar R, Schaer DJ, Vallelian F. Erythrophagocytes in hemolytic anemia, wound healing, and cancer. Trends Mol Med 2022; 28:906-915. [PMID: 36096988 DOI: 10.1016/j.molmed.2022.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Hemolysis is a ubiquitous pathology defined as premature red blood cell destruction within the circulation or local tissues. One of the most archetypal functions of macrophages is phagocytosis of damaged or extravasated red blood cells, preventing the extracellular release of toxic hemoglobin and heme. Upon erythrophagocytosis, spiking intracellular heme concentrations drive macrophage transformation into erythrophagocytes, leveraging antioxidative and iron recycling capacities to defend against hemolytic stress. This unique phenotype transformation is coordinated by a regulatory network comprising the transcription factors BACH1, SPI-C, NRF2, and ATF1. Erythrophagocytes negatively regulate inflammation and immunity and may modulate disease-specific outcomes in hemolytic anemia, wound healing, atherosclerosis, and cancer. In this opinion article, we outline the known and presumed functions of erythrophagocytes and their implications for therapeutic innovation and research.
Collapse
Affiliation(s)
- Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|