1
|
Mateo F, Mateo EM, Tarazona A, García-Esparza MÁ, Soria JM, Jiménez M. New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods. Toxins (Basel) 2025; 17:231. [PMID: 40423314 DOI: 10.3390/toxins17050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in food matrices as opposed to traditional approaches such as chemical fungicides, which may leave toxic residues and pose risks to human and animal health as well as the environment. The novel methodologies discussed include the use of plant-derived compounds such as essential oils, classified as Generally Recognized as Safe (GRAS), polyphenols, lactic acid bacteria, cold plasma technologies, nanoparticles (particularly metal nanoparticles such as silver or zinc nanoparticles), magnetic materials, and ionizing radiation. Among these, essential oils, polyphenols, and lactic acid bacteria offer eco-friendly and non-toxic alternatives to conventional fungicides while demonstrating strong antimicrobial and antifungal properties; essential oils and polyphenols also possess antioxidant activity. Cold plasma and ionizing radiation enable rapid, non-thermal, and chemical-free decontamination processes. Nanoparticles and magnetic materials contribute advantages such as enhanced stability, controlled release, and ease of separation. Furthermore, this review explores recent advancements in the application of artificial intelligence, particularly machine learning methods, for the identification and classification of fungal species as well as for predicting the growth of toxigenic fungi and subsequent mycotoxin production in food products and culture media.
Collapse
Affiliation(s)
- Fernando Mateo
- Department of Electronic Engineering, ETSE, (UV), Burjassot, 46100 Valencia, Spain
| | - Eva María Mateo
- Department of Microbiology and Ecology, Faculty of Medicine and Odontology, University of Valencia (UV), 46010 Valencia, Spain
| | - Andrea Tarazona
- Department of Microbiology and Ecology, Faculty of Biology, (UV), Burjassot, 46100 Valencia, Spain
| | | | - José Miguel Soria
- Department of Biomedical Sciences, Cardenal Herrera University-CEU Universities, 46115 Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, Faculty of Biology, (UV), Burjassot, 46100 Valencia, Spain
| |
Collapse
|
2
|
Saraiva A, Raheem D, Roy PR, BinMowyna MN, Romão B, Alarifi SN, Albaridi NA, Alsharari ZD, Raposo A. Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health. Nutrients 2025; 17:986. [PMID: 40290034 PMCID: PMC11944753 DOI: 10.3390/nu17060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Urinary tract infections (UTIs) are a prevalent global health issue, often requiring antibiotic treatment, which contributes to antimicrobial resistance. This narrative review explores the potential of probiotics and plant-based foods as alternative or complementary preventive strategies against UTIs. Fermented foods, such as yogurt, kefir, and kombucha, contain probiotic strains that can modulate the gut and urogenital microbiota, enhancing resistance to uropathogens. Likewise, plant-based foods, including cranberry, garlic, bearberry, juniper, and nettle, possess bioactive compounds with antimicrobial, anti-inflammatory, and diuretic properties. Laboratory and clinical studies suggest that these natural interventions may reduce the incidence of UTIs by inhibiting pathogen adhesion, modulating immune responses, and promoting urinary tract health. However, despite promising findings, inconsistencies in study methodologies, dosage standardization, and long-term efficacy warrant further investigation. Future research should focus on optimizing probiotic formulations, standardizing plant-based supplement dosages, and assessing potential food-drug interactions to establish evidence-based guidelines for UTI prevention.
Collapse
Affiliation(s)
- Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Dele Raheem
- Global Change Research, Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Poly Rani Roy
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Bernardo Romão
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil;
| | - Sehad N. Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa 11971, Saudi Arabia;
| | - Najla A. Albaridi
- Department of Health Science, College of Health and Rehabilitation, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
3
|
Tian P, Wan J, Yin T, Liu L, Ren H, Cai H, Liu X, Zhang H. Acidity, sugar, and alcohol contents during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics. PeerJ 2025; 13:e18826. [PMID: 39897497 PMCID: PMC11787802 DOI: 10.7717/peerj.18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Sweet rice wine is a popular traditional Chinese rice wine widely loved by Chinese people for its high nutritional value. Osmanthus flower petals contain various nutrients and have good medicinal value. However, the dynamics of the sugar level, acidity, alcohol content, and microbial community during the fermentation of Osmanthus-flavored sweet rice wine have not been evaluated, which can lead to the unstable quality of Osmanthus flower sweet rice wine (OFSRW). In this study, the dynamic changes in sugar level, acidity, alcohol content, microbial community composition, and microbial metabolic pathways during traditional fermentation of OFSRW at four-time points-0 h (AG0), 24 h (AG24), 36 h (AG36), and 43 h (AG43)-were analyzed via direct titration, total acid assays, alcoholometry, and high-throughput macrogenomic techniques. First, we found that bacteria were the dominant microorganisms in the early stage of OFSRW fermentation (AG0), fungi were the dominant microorganisms in the middle and late stages of fermentation (AG24 and AG36), and Rhizopus was the main fungal genus throughout fermentation. Acidity and total sugars increased with fermentation time, and alcohol was not detected until the end of fermentation. Diversity analysis revealed that the dominant species at the beginning of natural fermentation was A. johnsonii, and R. delemar became the dominant species as natural fermentation progressed. Metabolic pathway analysis revealed that energy production and conversion, carbohydrate transport, amino acid transport, and metabolic pathways were the most active metabolic pathways in the fermenter. These results provide a reference basis for changes in the microbial community during the fermentation of cinnamon-flavored sweet rice wine.
Collapse
Affiliation(s)
- Ping Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jiaqiong Wan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Li Liu
- R&D Department, Honghe Hongbin Food Co., Ltd., Jianshui, China
| | - Hongbing Ren
- R&D Department, Honghe Hongbin Food Co., Ltd., Jianshui, China
| | - Hanbing Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
4
|
Shim Y, Lee JY, Jung J. Effects of Kimchi-Derived Lactic Acid Bacteria on Reducing Biological Hazards in Kimchi. J Microbiol Biotechnol 2024; 34:2586-2595. [PMID: 39467693 PMCID: PMC11729699 DOI: 10.4014/jmb.2408.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
This study was performed to investigate the use of plant-based lactic acid bacteria (LAB) to reduce microbiological hazards in kimchi. Cell-free supernatants (CFS) from four LAB strains isolated from kimchi were tested for antimicrobial activity against five foodborne pathogens and two soft-rot pathogens. Each CFS showed antimicrobial activity against both foodborne and soft-rot pathogens. Washing salted kimchi cabbages inoculated with B. cereus with 5% CFS inhibited B. cereus to a greater extent than NaClO. The CFS from WiKim 83 and WiKim 87 exhibits inhibition rates of 25.09% and 24.21%, respectively, compared to the 19.19% rate of NaClO. Additionally, the CFS from WiKim 116 and WiKim 117 showed inhibition rates of 18.74% and 20.03%, respectively. Direct treatment of kimchi cabbage with soft-rot pathogens and CFS for five days inhibited the pathogens with similar efficacy to that of NaClO. To elucidate the antimicrobial activity mechanisms, pH neutralization, heat treatment, and organic acid analyses were performed. pH neutralization reduced the antimicrobial activity, whereas heat treatment did not, indicating that lactic, acetic, citric, and phenyllactic acids contribute to the thermal stability and antimicrobial properties of CFS. This study suggests that the four kimchi-derived LAB, which maintain a low pH through organic acid production, could be viable food preservatives capable of reducing biological hazards in kimchi.
Collapse
Affiliation(s)
- Yeonsoo Shim
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jae Yong Lee
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jihye Jung
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
5
|
Saragoça A, Canha H, Varanda CMR, Materatski P, Cordeiro AI, Gama J. Lactic acid bacteria: A sustainable solution against phytopathogenic agents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70021. [PMID: 39623703 PMCID: PMC11611765 DOI: 10.1111/1758-2229.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 12/06/2024]
Abstract
Biological control agents (BCAs) are beneficial living organisms used in plant protection to control pathogens sustainably. Lactic acid bacteria (LAB) have gained attention in biopesticides due to their safety as recognized by the Food and Drug Administration. These bacteria possess antifungal properties, demonstrating inhibitory effects through nutrient competition or the production of antimicrobial metabolites. Numerous Lactobacillus species have shown the ability to inhibit pathogenic microorganisms, primarily through acid production. The organic acids secreted by LAB reduce the pH of the medium, creating a hostile environment for microorganisms. These organic acids are a primary inhibition mechanism of LAB. This article reviews several studies on LAB as BCAs, focusing on their inhibition modes. Additionally, it discusses the limitations and future challenges of using LAB to control phytopathogens for sustainable agriculture.
Collapse
Affiliation(s)
- Andreia Saragoça
- Biosciences School of ElvasPolytechnic Institute of PortalegreElvasPortugal
| | - Henrique Canha
- Biosciences School of ElvasPolytechnic Institute of PortalegreElvasPortugal
| | - Carla M. R. Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development, & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchPólo da Mitra, Ap. 94Évora7006‐554Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Santarém Polytechnic University, School of AgricultureQuinta do Galinheiro ‐ S. PedroSantarém2001‐904Portugal
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development, & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchPólo da Mitra, Ap. 94Évora7006‐554Portugal
| | - Ana Isabel Cordeiro
- Biosciences School of ElvasPolytechnic Institute of PortalegreElvasPortugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchPólo da Mitra, Ap. 94Évora7006‐554Portugal
| | - José Gama
- Biosciences School of ElvasPolytechnic Institute of PortalegreElvasPortugal
- VALORIZA—Centro de Investigação para a Valorização de Recursos EndógenosPortalegrePortugal
| |
Collapse
|
6
|
Habib H, Kumar A, Amin T, Bhat TA, Aziz N, Rasane P, Ercisli S, Singh J. Process optimization, growth kinetics, and antioxidant activity of germinated buckwheat and amaranth-based yogurt mimic. Food Chem 2024; 457:140138. [PMID: 38901337 DOI: 10.1016/j.foodchem.2024.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study aimed to investigate the integration of cereal and germinated pseudocereals into set-type yogurt mimic, resulting in a novel and nutritious product. Four groups of yogurts mimic, namely CPY-1, CPY-2, CPY-3, and CPY-4, were prepared using different probiotic cultures, including L. acidophilus 21, L. plantarum 14, and L. rhamnosus 296 along with starter cultures. Notably, CPY-2 cultured with L. plantarum and L. rhamnosus and incubated for 12 h exhibited the most desirable attributes. The resulting yogurt demonstrated an acidity of 0.65%, pH of 4.37 and a probiotic count of 6.38 log CFU/mL. The logistic growth model fit revealed maximum growth rates (k, 1/h) and maximum bacterial counts (Nm log CFU/mL) for each CPY variant. The results revealed that CPY-2 significantly improved protein, dietary fiber, phenols and antioxidant capacities compared to the control. Scanning electron microscopy showed more structured and compact casein network in CPY-2, highlighting its superior textural characteristics. Overall, this study demonstrates the incorporation of cereal and germinated pseudocereals into set-type yogurt mimic offers health benefits through increased dietary fiber and β-glucan.
Collapse
Affiliation(s)
- Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ashwani Kumar
- Institute of Food Technology, Bundelkhand University Jhansi, 284128, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Nargis Aziz
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
7
|
Dobreva L, Atanasova N, Donchev P, Krumova E, Abrashev R, Karakirova Y, Mladenova R, Tolchkov V, Ralchev N, Dishliyska V, Danova S. Candidate-Probiotic Lactobacilli and Their Postbiotics as Health-Benefit Promoters. Microorganisms 2024; 12:1910. [PMID: 39338583 PMCID: PMC11434380 DOI: 10.3390/microorganisms12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus species are widely recognized for their probiotic potential, focusing on their mechanisms of health benefits and protection. Here we conducted an in vitro investigation of the probiotic potential with a role in microbiome homeostasis of four strains: Lactiplantibacillus plantarum L6 and F53, Ligilactobacillus salivarius 1, and Lactobacillus helveticus 611. A broad spectrum of antibacterial and antifungal activity was determined. The strain-specific inhibition of Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, and saprophytic/toxigenic fungi makes them promising as protective cultures. DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) measurements showed that tested samples had strain-specific capacity for scavenging of radicals. The molecular base for the antioxidant potential of two lyophilized forms of active strains was investigated by electron paramagnetic resonance spectroscopy. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with fractions of the most active postbiotics obtained by SEC-FPLC (fast protein liquid chromatography) analysis, showed a wide variety of effects on the growth of a K562 myeloid leukemia cell line. The IC50 (half-maximal inhibitory concentration) of L. salivarius 1 was determined to be 46.15 mg/mL. The proven in vitro functionality of the selected lactobacilli make them suitable for development of target probiotics with specific beneficial effects expected in vivo. Further investigations on produced postbiotics and safety have to be completed before they can be considered as scientifically proven probiotic strains.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Petar Donchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Yordanka Karakirova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ralitsa Mladenova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladimir Tolchkov
- National Center of Infectious and Parasitic Diseases, Yanko Sakuzov Blvd 26, 1504 Sofia, Bulgaria
| | - Nikola Ralchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Huang J, Yang G, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Anti-fungal effects of lactic acid bacteria from pickles on the growth and sterigmatocystin production of Aspergillus versicolor. Int J Food Microbiol 2024; 422:110809. [PMID: 38955023 DOI: 10.1016/j.ijfoodmicro.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.
Collapse
Affiliation(s)
- Jun Huang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Al-Mohammadi AR, Abdel-Shafi S, Moustafa AH, Fouad N, Enan G, Ibrahim RA. Potential Use and Chemical Analysis of Some Natural Plant Extracts for Controlling Listeria spp. Growth In Vitro and in Food. Foods 2024; 13:2915. [PMID: 39335846 PMCID: PMC11431611 DOI: 10.3390/foods13182915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria are Gram-negative intracellular foodborne pathogens that can cause invasive infections with high mortality rates. In this work, the antibacterial activity of ten essential oils, infusion extracts, and decoction extracts of some medicinal plants was tested against Listeria monocytogenes and listeria ivanovii strains. The effects of different physical conditions including temperature, pH, sodium chloride, and some organic acids were studied. The results showed that the water extracts gave the maximum bacterial inhibition, while ethanolic extract was inactive against the tested Listeria spp. The antibiotic sensitivity of L. monocytogenes LMG10470 and L. ivanovii LMZ11352 was tested against five antibiotics including imipenem, levofloxacin, amikacin, ampicillin, and amoxicillin. Imipenem was the most effective antibiotic, resulting in inhibition zones of 40 mm and 31 mm for L. monocytogenes and L. ivanovii, respectively. When imipenem mixed with Syzygium aromaticum oil, Salvia officinalis oil, Pimpinella anisum infusion, and Mentha piperita infusion each, the water extract of Moringa oleifera leaves and seeds against LMG10470 and LMZ11352 resulted in broader antibacterial activity. The antimicrobial activity of both Pimpinella anisum and Mentha piperita plant extracts is related to a variety of bioactive compounds indicated by gas chromatography-mass spectrometry analysis of these two plant extracts. These two plant extracts seemed to contain many chemical compounds elucidated by gas chromatography-mass spectrometry (GC-MS) and infrared radiation spectra. These compounds could be classified into different chemical groups such as ethers, heterocyclic compounds, aromatic aldehydes, condensed heterocyclic compounds, ketones, alicyclic compounds, aromatics, esters, herbicides, saturated fatty acids, and unsaturated fatty acids. The use of these natural compounds seems to be a useful technological adjuvant for the control of Listeria spp. in foods.
Collapse
Affiliation(s)
| | - Seham Abdel-Shafi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Ahmed H. Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Nehal Fouad
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| |
Collapse
|
10
|
Yang H, Hao L, Jin Y, Huang J, Zhou R, Wu C. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol Adv 2024; 74:108397. [PMID: 38909664 DOI: 10.1016/j.biotechadv.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Ou D, Zou Y, Zhang X, Jiao R, Zhang D, Ling N, Ye Y. The potential of antifungal peptides derived from Lactiplantibacillus plantarum WYH for biocontrol of Aspergillus flavus contamination. Int J Food Microbiol 2024; 418:110727. [PMID: 38759292 DOI: 10.1016/j.ijfoodmicro.2024.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
Aspergillus flavus is a notorious fungus that contaminates food crops with toxic aflatoxins, posing a serious threat to human health and the agricultural economy. To overcome the inadequacy of traditional control methods and meet consumer preferences for natural-sources additives, there is an urgent demand for novel biocontrol agents that are safe and efficient. This study aims to investigate the antifungal properties of a novel antifungal agent derived from the biologically safe Lactiplantibacillus plantarum WYH. Firstly, antifungal peptides (AFPs) with a molecular weight of less than 3kD, exhibiting remarkable temperature stability and effectively retarding fungal growth in a dose-dependent manner specifically against A. flavus, were concentrated from the fermentation supernatant of L. plantarum WYH and were named as AFPs-WYH. Further analysis demonstrated that AFPs-WYH might exert antifungal effects through the induction of oxidative stress, disruption of mitochondrial function, alteration of membrane permeability, and cell apoptosis in A. flavus. To further validate our findings, a transcriptomics analysis was conducted on A. flavus treated with 2 and 5 mg/mL of AFPs-WYH, which elucidated the potential effect of AFPs-WYH administration on the regulation of genes involved in impairing fungal development and preventing aflatoxin biosynthesis pathways. Overall, AFPs-WYH reduced the A. flavus proliferation and affected the AFB1 biosynthesis, exhibiting a promising potential for food industry applications as a biopreservative and biocontrol agent.
Collapse
Affiliation(s)
- Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanyan Zou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Danfeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Layla A, Syed QA, Zahoor T, Shahid M. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Int Microbiol 2024; 27:753-764. [PMID: 37700156 DOI: 10.1007/s10123-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5-7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.
Collapse
Affiliation(s)
- Anam Layla
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Qamar Abbas Syed
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Tahir Zahoor
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
13
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
14
|
Xin WG, Li XD, Zhou HY, Li X, Liu WX, Lin LB, Wang F. Isolation, antibacterial characterization, and alternating tangential flow-based preparation of viable cells of Lacticaseibacillus paracasei XLK 401: Potential application in milk preservation. J Dairy Sci 2024; 107:1355-1369. [PMID: 37776999 DOI: 10.3168/jds.2023-23622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Wei-Xin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| |
Collapse
|
15
|
Ponzio A, Rebecchi A, Zivoli R, Morelli L. Reuterin, Phenyllactic Acid, and Exopolysaccharides as Main Antifungal Molecules Produced by Lactic Acid Bacteria: A Scoping Review. Foods 2024; 13:752. [PMID: 38472865 PMCID: PMC10930965 DOI: 10.3390/foods13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary goal of this scoping review is to collect, analyze, and critically describe information regarding the role of the main compounds (reuterin, phenyllactic acid, and exopolysaccharides) produced by LAB that possess antifungal properties and provide some suggestions for further research. The use of lactic acid bacteria (LAB) to mitigate spoilage and extend the shelf life of foodstuffs has a long history. Recently, there has been a growing interest in the unique properties of these additions to the foodstuffs in which they are applied. In recent studies regarding biopreservation, significant attention has been given to the role of these microorganisms and their metabolites. This fascinating recent discipline aims not only to replace traditional preservation systems, but also to improve the overall quality of the final product. The biologically active by-products produced by lactic acid bacteria are synthesized under certain conditions (time, temperature, aerobiosis, acidity, water activity, etc.), which can be enacted through one of the oldest approaches to food processing: fermentation (commonly used in the dairy and bakery sectors). This study also delves into the biosynthetic pathways through which they are synthesized, with a particular emphasis on what is known about the mechanisms of action against molds in relation to the type of food.
Collapse
Affiliation(s)
- Andrea Ponzio
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| | - Rosanna Zivoli
- Soremartec Italia S.r.l. (Ferrero Group), P.le P. Ferrero 1, 12051 Alba, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| |
Collapse
|
16
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Dobreva L, Borisova D, Paunova-Krasteva T, Dimitrova PD, Hubenov V, Atanasova N, Ivanov I, Danova S. From Traditional Dairy Product "Katak" to Beneficial Lactiplantibacillus plantarum Strains. Microorganisms 2023; 11:2847. [PMID: 38137991 PMCID: PMC10745348 DOI: 10.3390/microorganisms11122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Traditional milk products, widely consumed in many countries for centuries, have been drawing renewed attention in recent years as sources of bacteria with possible bioprotective properties. One such product for which only limited information exists is the traditional Bulgarian "katak". This fermented yogurt-like product, renowned for its taste and long-lasting properties, possesses specific sensory characteristics. In this study, 18 lactic acid bacteria (LABs) were isolated from artisanal samples made in the Northwest part of Bulgaria. A polyphasic taxonomic approach combining classical phenotypic and molecular taxonomic methods, such as multiplex PCR, 16S rDNA sequencing, and MALDI-TOF MS, was applied, leading to the identification of 13 strains. The dominance of Lactiplantibacillus plantarum was confirmed. In vitro tests with the identified strains in model systems showed a promising broad strain-specific spectrum of activity against food-borne and human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Non-purified Lactobacillus postbiotics, produced during fermentation in skimmed and soya milks and in MRS broth, were estimated as limiting agents of virulence factors. The LAB's production of lactate, acetate, and butyrate is a promising probiotic feature. A further characterization of the active strains and analysis of the purified post-metabolites are needed and are still in progress.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Dayana Borisova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Petya D. Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Venelin Hubenov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Ivan Ivanov
- National Center of Infectious and Parasitic Diseases, bvd. “Yanko Sakazov” 26, 1504 Sofia, Bulgaria;
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| |
Collapse
|
18
|
Selmi H, Rocchetti MT, Capozzi V, Semedo-Lemsaddek T, Fiocco D, Spano G, Abidi F. Lactiplantibacillus plantarum from Unexplored Tunisian Ecological Niches: Antimicrobial Potential, Probiotic and Food Applications. Microorganisms 2023; 11:2679. [PMID: 38004691 PMCID: PMC10673251 DOI: 10.3390/microorganisms11112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The continued exploration of the diversity of lactic acid bacteria in little-studied ecological niches represents a fundamental activity to understand the diffusion and biotechnological significance of this heterogeneous class of prokaryotes. In this study, Lactiplantibacillus plantarum (Lpb. plantarum) strains were isolated from Tunisian vegetable sources, including fermented olive and fermented pepper, and from dead locust intestines, which were subsequently evaluated for their antimicrobial activity against foodborne pathogenic bacteria, including Escherichia coli O157:H7 CECT 4267 and Listeria monocytogenes CECT 4031, as well as against some fungi, including Penicillium expansum, Aspergilus niger, and Botrytis cinerea. In addition, their resistance to oro-gastro-intestinal transit, aggregation capabilities, biofilm production capacity, adhesion to human enterocyte-like cells, and cytotoxicity to colorectal adenocarcinoma cell line were determined. Further, adhesion to tomatoes and the biocontrol potential of this model food matrix were analyzed. It was found that all the strains were able to inhibit the indicator growth, mostly through organic acid production. Furthermore, these strains showed promising probiotic traits, including in vitro tolerance to oro-gastrointestinal conditions, and adhesion to abiotic surfaces and Caco-2 cells. Moreover, all tested Lpb. plantarum strains were able to adhere to tomatoes with similar rates (4.0-6.0 LogCFU/g tomato). The co-culture of LAB strains with pathogens on tomatoes showed that Lpb. plantarum could be a good candidate to control pathogen growth. Nonetheless, further studies are needed to guarantee their use as probiotic strains for biocontrol on food matrices.
Collapse
Affiliation(s)
- Hiba Selmi
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122 Foggia, Italy;
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| |
Collapse
|
19
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
De Simone N, Rocchetti MT, la Gatta B, Spano G, Drider D, Capozzi V, Russo P, Fiocco D. Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey. Probiotics Antimicrob Proteins 2023; 15:1406-1423. [PMID: 36173591 PMCID: PMC10491547 DOI: 10.1007/s12602-022-09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Honey is a valuable reservoir of lactic acid bacteria (LAB) and, particularly, of fructophilic LAB (FLAB), a relatively novel subgroup of LAB whose functional potential for human and food application has yet to be explored. In this study, FLAB and LAB strains have been isolated from honeys of different floral origins and selected for their broad antimicrobial activity against typical foodborne pathogenic bacteria and spoilage filamentous fungi. The best candidates, two strains belonging to the species Lactiplantibacillus plantarum and Fructobacillus fructosus, were submitted to partial characterisation of their cell free supernatants (CFS) in order to identify the secreted metabolites with antimicrobial activity. Besides, these strains were examined to assess some major functional features, including in vitro tolerance to the oro-gastrointestinal conditions, potential cytotoxicity against HT-29 cells, adhesion to human enterocyte-like cells and capability to stimulate macrophages. Moreover, when the tested strains were applied on table grapes artificially contaminated with pathogenic bacteria or filamentous fungi, they showed a good ability to antagonise the growth of undesired microbes, as well as to survive on the fruit surface at a concentration that is recommended to develop a probiotic effect. In conclusion, both LAB and FLAB honey-isolated strains characterised in this work exhibit functional properties that validate their potential use as biocontrol agents and for the design of novel functional foods. We reported antimicrobial activity, cytotoxic evaluation, probiotic properties and direct food application of a F. fructosus strain, improving the knowledge of this species, in particular, and on FLAB, more generally.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy
| | - Barbara la Gatta
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
21
|
Tong Y, Guo H, Abbas Z, Zhang J, Wang J, Cheng Q, Peng S, Yang T, Bai T, Zhou Y, Li J, Wei X, Si D, Zhang R. Optimizing postbiotic production through solid-state fermentation with Bacillus amyloliquefaciens J and Lactiplantibacillus plantarum SN4 enhances antibacterial, antioxidant, and anti-inflammatory activities. Front Microbiol 2023; 14:1229952. [PMID: 37744928 PMCID: PMC10512978 DOI: 10.3389/fmicb.2023.1229952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Background Postbiotics are an emerging research interest in recent years and are fairly advanced compared to prebiotics and probiotics. The composition and function of postbiotics are closely related to fermentation conditions. Methods In this study, we developed a solid-state fermentation preparation method for postbiotics with antimicrobial, antioxidant, and anti-inflammatory activities. The antibacterial activity was improved 3.62 times compared to initial fermentation conditions by using optimization techniques such as single factor experiments, Plackett-Burman design (PBD), steepest ascent method (SAM), and central composite design (CCD) methods. The optimized conditions were carried out with an initial water content of 50% for 8 days at 37°C and fermentation strains of Bacillus amyloliquefaciens J and Lactiplantibacillus plantarum SN4 at a ratio of 1:1 with a total inoculum size of 8%. The optimized SSF medium content ratios of peptide powder, wheat bran, corn flour, and soybean meal were 4, 37.4, 30, and 28.6%, respectively. Results Under these optimized conditions, postbiotics with a concentration of 25 mg/mL showed significant broad-spectrum antibacterial capabilities against Escherichia coli, Salmonella, and Staphylococcus aureus and strong antioxidant activity against ABTS, DPPH, and OH radicals. Moreover, the optimized postbiotics exhibited good anti-inflammatory ability for reducing nitric oxide (NO) secretion in RAW 264.7 macrophage cells in response to LPS-induced inflammation. Furthermore, the postbiotics significantly improved intestinal epithelial wound healing capabilities after mechanical injury, such as cell scratches in IPEC-J2 cells (p < 0.05). Conclusion In brief, we developed postbiotics through optimized solid-state fermentation with potential benefits for gut health. Therefore, our findings suggested that the novel postbiotics could be used as potential functional food products for improving body health.
Collapse
Affiliation(s)
- Yucui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - He'nan Guo
- School of Medicine, Tsinghua University, Beijing, China
| | - Zaheer Abbas
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuyue Peng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Yang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting Bai
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yichen Zhou
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinzhuan Li
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Rouhi E, Sadeghi A, Jafari SM, Abdolhoseini M, Assadpour E. Effect of the controlled fermented quinoa containing protective starter culture on technological characteristics of wheat bread supplemented with red lentil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2193-2203. [PMID: 37273558 PMCID: PMC10232387 DOI: 10.1007/s13197-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/06/2022] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
Selected antifungal lactic acid bacteria (LAB) isolated from mature spontaneous quinoa sourdough was used as potential starter culture to produce loaf wheat bread containing controlled fermented quinoa (CFQ) supplemented with red lentil (RL) flour. Phylogenetic evolutionary tree led to the identification of Enterococcus hirae as the selected LAB isolate. Furthermore, there was no significant difference (P > 0.05) between bread containing CFQ and control in terms of hardness. The highest loaf specific volume and overall acceptability were also observed in control sample and wheat bread containing CFQ + RL, respectively. Meanwhile, the rate of surface fungal growth on wheat bread enriched with CFQ was significantly lower than the other samples. In accordance with a non-linear multivariable model, positive and negative correlations were observed between porosity and specific volume (+ 0.79), and also specific volume and crumb hardness (- 0.70), respectively. Accordingly, CFQ can be used as bio-preservative to produce clean-label supplemented wheat bread.
Collapse
Affiliation(s)
- Elham Rouhi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739 Islamic Republic of Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739 Islamic Republic of Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Abdolhoseini
- Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Islamic Republic of Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
23
|
Abdel-Nasser A, Hathout AS, Badr AN, Barakat OS, Fathy HM. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00799. [PMID: 37206916 PMCID: PMC10189384 DOI: 10.1016/j.btre.2023.e00799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Aflatoxins are toxic carcinogens and mutagens formed by some moulds, specifically Aspergillus spp. Therefore, this study aimed to extract and identify bioactive secondary metabolites from Lactobacillus species, to evaluate their efficacy in reducing fungal growth and aflatoxin production and to investigate their toxicity. The bioactive secondary metabolites of Lactobacillus species showed variable degrees of antifungal activity, whereas L. rhamnosus ethyl acetate extract No. 5 exhibited the highest antifungal activity and, thus, was selected for further identification studies. Data revealed that L. rhamnosus ethyl acetate extract No. 5 produced various organic acids, volatile organic compounds and polyphenols, displayed antifungal activity against A. flavus, and triggered morphological changes in fungal conidiophores and conidiospores. L. rhamnosus ethyl acetate extract No. 5 at a 9 mg/mL concentration reduced AFB1 production by 99.98%. When the effect of L. rhamnosus ethyl acetate extract No. 5 on brine shrimp mortality was studied, the extract attained a 100% mortality at a concentration of 400 µg/mL, with an IC50 of 230 µg/mL. Meanwhile, a mouse bioassay was performed to assess the toxicity of L. rhamnosus ethyl acetate extract No. 5, whereas there were no harmful effects or symptoms in mice injected with L. rhamnosus ethyl acetate extract at concentrations of 1, 3, 5, 7, and 9 mg/kg body weight.
Collapse
Affiliation(s)
- Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Amal S. Hathout
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
- Corresponding author.
| | - Ahmed N. Badr
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Olfat S. Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt
| | - Hayam M. Fathy
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
24
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
25
|
Jang HY, Kim MJ, Bae M, Hwang IM, Lee JH. Transcriptional analysis of the molecular mechanism underlying the response of Lactiplantibacillus plantarum to lactic acid stress conditions. Heliyon 2023; 9:e16520. [PMID: 37303574 PMCID: PMC10250755 DOI: 10.1016/j.heliyon.2023.e16520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Lactic acid bacteria (LAB) present various benefits to humans; they play key roles in the fermentation of food and as probiotics. Acidic conditions are common to both LAB in the intestinal tract as well as fermented foods. Lactiplantibacillus plantarum is a facultative homofermentative bacterium, and lactic acid is the end metabolite of glycolysis. To characterize how L. plantarum responds to lactic acid, we investigated its transcriptome following treatment with hydrochloride (HCl) or dl-lactic acid at an early stage of growth. Bacterial growth was more attenuated in the presence of lactic acid than in the presence of HCl at the same pH range. Bacterial transcriptome analysis showed that the expression of 67 genes was significantly altered (log2FC > 2 or < 2). A total of 31 genes were up- or downregulated under both conditions: 19 genes in the presence of HCl and 17 genes in the presence of dl-lactic acid. The fatty acid synthesis-related genes were upregulated in both acidic conditions, whereas the lactate racemization-related gene (lar) was only upregulated following treatment with dl-lactic acid. In particular, lar expression increased following l-lactic acid treatment but did not increase following HCl or d-lactic acid treatment. Expression of lar and production of d-lactic acid were investigated with malic and acetic acid; the results revealed a higher expression of lar and production of d-lactic acid in the presence of malic acid than that in the presence of acetic acid.
Collapse
|
26
|
Ren J, He F, Yu D, Xu H, Li N, Cao Z, Wen J. 16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Vet Sci 2023; 10:vetsci10040288. [PMID: 37104443 PMCID: PMC10145630 DOI: 10.3390/vetsci10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Probiotics, also referred to as "living microorganisms," are mostly present in the genitals and the guts of animals. They can increase an animal's immunity, aid in digestion and absorption, control gut microbiota, protect against sickness, and even fight cancer. However, the differences in the effects of different types of probiotics on host gut microbiota composition are still unclear. In this study, 21-day-old specific pathogen-free (SPF) mice were gavaged with Lactobacillus acidophilus (La), Lactiplantibacillus plantarum (Lp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), LB broth medium, and MRS broth medium. We sequenced 16S rRNA from fecal samples from each group 14 d after gavaging. According to the results, there were significant differences among the six groups of samples in Firmicutes, Bacteroidetes, Proteobacteria, Bacteroidetes, Actinobacteria, and Desferribacter (p < 0.01) at the phylum level. Lactobacillus, Erysipelaceae Clostridium, Bacteroides, Brautella, Trichospiraceae Clostridium, Verummicroaceae Ruminococcus, Ruminococcus, Prevotella, Shigella, and Clostridium Clostridium differed significantly at the genus level (p < 0.01). Four kinds of probiotic changes in the composition and structure of the gut microbiota in mice were observed, but they did not cause changes in the diversity of the gut microbiota. In conclusion, the use of different probiotics resulted in different changes in the gut microbiota of the mice, including genera that some probiotics decreased and genera that some pathogens increased. According to the results of this study, different probiotic strains have different effects on the gut microbiota of mice, which may provide new ideas for the mechanism of action and application of microecological agents.
Collapse
Affiliation(s)
- Jianwei Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fang He
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Detao Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hang Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Nianfeng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
27
|
Nazareth TDM, Calpe J, Luz C, Mañes J, Meca G. Manufacture of a Potential Antifungal Ingredient Using Lactic Acid Bacteria from Dry-Cured Sausages. Foods 2023; 12:foods12071427. [PMID: 37048247 PMCID: PMC10093346 DOI: 10.3390/foods12071427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The growing interest in functional foods has fueled the hunt for novel lactic acid bacteria (LAB) found in natural sources such as fermented foods. Thus, the aims of this study were to isolate, identify, characterize, and quantify LAB’s antifungal activity and formulate an ingredient for meat product applications. The overlay method performed a logical initial screening by assessing isolated bacteria’s antifungal activity in vitro. Next, the antifungal activity of the fermented bacteria-free supernatants (BFS) was evaluated by agar diffusion assay against six toxigenic fungi. Subsequently, the antifungal activity of the most antifungal BFS was quantified using the microdilution method in 96-well microplates. The meat broth that showed higher antifungal activity was selected to elaborate on an ingredient to be applied to meat products. Finally, antifungal compounds such as organic acids, phenolic acids, and volatile organic compounds were identified in the chosen-fermented meat broth. The most promising biological candidates belonged to the Lactiplantibacillus plantarum and Pediococcus pentosaceus. P. pentosaceus C15 distinguished from other bacteria by the production of antifungal compounds such as nonanoic acid and phenyl ethyl alcohol, as well as the higher production of lactic and acetic acid.
Collapse
|
28
|
Functional Characterization of Lactobacillus plantarum Isolated from Cow Milk and the Development of Fermented Coconut and Carrot Juice Mixed Beverage. Curr Microbiol 2023; 80:139. [PMID: 36920622 DOI: 10.1007/s00284-023-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Screening probiotics are crucial for assessing their safety, security, and further production of functional foods for human health. The present study aimed to isolate and identify bacteria from raw cow's milk samples that exhibit health benefits upon consumption. We characterized the probiotic properties of Lactobacillus plantarum (also called Lactiplantibacillus plantarum) strains CMGC2 and CMJC7 isolated from cow milk by in vitro study. The strains exhibited tolerance to simulated gastric conditions and were further identified by 16S rRNA sequencing as Lactobacillus plantarum (L. plantarum) CMGC2 and CMJC7. Both isolates were evaluated in vitro for their probiotic attributes, viz. hydrophobicity, autoaggregation, co-aggregation, lysozyme tolerance, antibacterial activity, antibiotic susceptibility, hemolytic activity, and phenol tolerance. The isolates CMGC2 and CMJC7 showed excellent probiotic attributes; hence, both strains were selected to produce coconut and carrot juice mixed beverages (CCMB). The CCMB was evaluated for the pH, acid-production rate, and total viable bacterial counts. The results showed that the CCMB was an excellent medium for the growth of CMGC2 and CMJC7 as it supported adequate growth of organisms (8.93 CFU/mL and 8.68 CFU/mL, respectively) even after 48 h of incubation. In conclusion, CMGC2 and CMJC7 can be used to develop different beverages possessing nutritive and probiotic values, and these beverages can be used for producing unique products.
Collapse
|
29
|
Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int J Food Microbiol 2023; 387:110054. [PMID: 36525768 DOI: 10.1016/j.ijfoodmicro.2022.110054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The occurrence of fungi and mycotoxins in foods is a serious global problem. Most of the regulated mycotoxins in food are produced by Fusarium spp. This work aimed to assess the antifungal activity of selected lactic acid bacteria (LAB) strains against the main toxigenic Fusarium spp. isolated from cereals. Various machine learning (ML) algorithms such as neural networks (NN), random forest (RF), extreme gradient boosted trees (XGBoost), and multiple linear regression (MLR), were applied to develop models able to predict the percentage of fungal growth inhibition caused by the LAB strains tested. In addition, the ability of the assayed LAB strains to reduce/inhibit the production of the main mycotoxins associated with these fungi was studied by UPLC-MS/MS. All assays were performed at 20, 25, and 30 °C in dual culture (LAB plus fungus) on MRS agar-cereal-based media. All factors and their interactions very significantly influenced the percentage of growth inhibition compared to controls. The efficacy of LAB strains was higher at 20 °C followed by 30 °C and 25 °C. Overall, the order of susceptibility of the fungi to LAB was F. oxysporum > F. poae = F. culmorum ≥ F. sporotrichioides > F. langsethiae > F. graminearum > F. subglutinans > F. verticillioides. In general, the most effective LAB was Leuconostoc mesenteroides ssp. mesenteroides (T3Y6b), and the least effective were Latilactobacillus sakei ssp. carnosus (T3MM1 and T3Y2). XGBoost and RF were the algorithms that produced the most accurate predicting models of fungal growth inhibition. Mycotoxin levels were usually lower when fungal growth decreased. In the cultures of F. langsethiae treated with LAB, T-2 and HT-2 toxins were not detected except in the treatments with Pediococcus pentosaceus (M9MM5b, S11sMM1, and S1M4). These three strains of P. pentosaceus, L. mesenteroides ssp. mesenteroides (T3Y6b) and L. mesenteroides ssp. dextranicum (T2MM3) inhibited fumonisin production in cultures of F. proliferatum and F. verticillioides. In F. culmorum cultures, zearalenone production was inhibited by all LAB strains, except L. sakei ssp. carnosus (T3MM1) and Companilactobacillus farciminis (T3Y6c), whereas deoxynivalenol and 3-acetyldeoxynivalenol were only detected in cultures of L. sakei ssp. carnosus (T3MM1). The results show that an appropriate selection and use of LAB strains can be one of the most impacting tools in the control of toxigenic Fusarium spp. and their mycotoxins in food and therefore one of the most promising strategies in terms of efficiency, positive impact on the environment, food safety, food security, and international economy.
Collapse
|
30
|
Afreen A, Ahmed Z, Khalid N, Ferheen I, Ahmed I. Optimization and cholesterol-lowering activity of exopolysaccharide from Lactiplantibacillus paraplantarum NCCP 962. Appl Microbiol Biotechnol 2023; 107:1189-1204. [PMID: 36680589 DOI: 10.1007/s00253-023-12372-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Exopolysaccharides (EPSs) are biological polymers with unique structural features have gained particular interest in the fields of food, chemistry and medicine, and food industry. EPS from the food-grade lactic acid bacteria (LAB) can be used as a natural food additives to commercial ones in the processing and development of functional foods and nutraceuticals. The current study was aimed to explore the EPS-producing LAB from the dahi; to optimize the fermentation conditions through Plackett-Burman (PB) and response surface methodology (RSM); and to study its physicochemical, rheological, functional attributes, and cholesterol-lowering activity. Lactiplantibacillus paraplantarum NCCP 962 was isolated among the 08 strains screened at the initial stage. The PB design screened out four independent factors that had a significant positive effect, i.e., lactose, yeast extract, CaCl2, and tryptone, while the remaining seven had a non-significant effect. The RSM exhibited lactose, yeast extract, and CaCl2, significantly contributing to EPS yield. The maximum EPS yield (0.910 g/L) was obtained at 6.57% lactose, 0.047% yeast extract, 0.59% CaCl2, and 1.37% tryptone. The R2 value above 97% explains the higher variability and depicts the model's validity. The resulted EPS was a heteropolysaccharide in nature with mannose, glucose, and galactose monosaccharides. FTIR spectrum reflected the presence of functional groups, i.e., O-H, C-H, C = O, C-O-H, and CH2. SEM revealed a porous and rough morphology of EPS, also found to be thermally stable and negligible weight loss, i.e., 14.0% at 257 °C and 35.4% at 292.9 °C was observed in the 1st and 2nd phases, respectively. Rheological attributes revealed that strain NCCP 962 had high viscosity by increasing the EPS concentration, low pH, and temperature with respectable water holding, oil capacities, foaming abilities, and stability. NCCP 962 EPS possessed up to 46.4% reduction in cholesterol concentration in the supernatant. Conclusively, these results suggested that strain NCCP 962 can be used in food processing applications and other medical fields. KEY POINTS: • The fermentation conditions affect EPS yield from L. paraplantarum and significantly increased yield to 0.910 g/L. • The EPS was heteropolysaccharide in nature and thermally stable with amorphous morphology. • Good cholesterol-lowering potential with the best rheological, emulsifying, and foaming capacities.
Collapse
Affiliation(s)
- Asma Afreen
- Department of Nutritional Sciences and Environmental Design, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaheer Ahmed
- Department of Nutritional Sciences and Environmental Design, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
| | - Ifra Ferheen
- Department of Biosciences, and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Bioresource Conservation Institute (BCI), PGRI Building, National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| |
Collapse
|
31
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
32
|
Rodrigues F, Cedran M, Bicas J, Sato H. Inhibitory effect of reuterin-producing Limosilactobacillus reuteri and edible alginate-konjac gum film against foodborne pathogens and spoilage microorganisms. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Peng Q, Yang J, Wang Q, Suo H, Hamdy AM, Song J. Antifungal Effect of Metabolites from a New Strain Lactiplantibacillus Plantarum LPP703 Isolated from Naturally Fermented Yak Yogurt. Foods 2023; 12:foods12010181. [PMID: 36613401 PMCID: PMC9818598 DOI: 10.3390/foods12010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
The antifungal effect of metabolites produced by a new strain of Lactiplantibacillus (Lpb.) plantarum LPP703, isolated from naturally fermented yak yogurt, was investigated. The results showed that Lpb. plantarum LPP703 significantly inhibited four fungal species, including Penicillium sp., Rhizopus delemar, Aspergillus flavus, and Aspergillus niger. The metabolites produced after 20 h of Lpb. plantarum LPP703 fermentation showed the highest antifungal activity against Penicillium sp. Compared with the control group, the Lpb. plantarum LPP703 metabolites-treated Penicillium sp. spores were stained red by propidium iodide, indicating that the cell membrane of the fungal spores was damaged. Moreover, the antifungal effect of the Lpb. plantarum LPP703 metabolites on Penicillium sp. was not changed after heating or treatment with various proteases, but showed a sharp decrease when the pH value was regulated to 5.0 or above. The oleamide, trans-cinnamic acid, and citric acid were the three most abundant in the Lpb. plantarum LPP703 metabolites. Molecular docking predicated that the oleamide interacted with the active site of lanosterol 14-alpha-demethylase (CYP51, a crucial enzyme for fungal membrane integrity) through hydrogen bonds and had the lowest docking score, representing the strongest binding affinity to CYP51. Taken together, the metabolites from a new strain of Lpb. plantarum, LPP703, had potent antifungal activity against Penicillium sp., which might be associated with the damage of the active ingredient to fungal membrane integrity. This study indicated that Lpb. plantarum LPP703 and its metabolites might act as biological control agents to prevent fungal growth in the food industry.
Collapse
Affiliation(s)
- Qian Peng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiang Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Ahmed Mahmoud Hamdy
- Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
34
|
Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Hernández-Figueroa RH, Mani-López E, López-Malo A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics (Basel) 2022; 11:1813. [PMID: 36551470 PMCID: PMC9774549 DOI: 10.3390/antibiotics11121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to evaluate the antifungal capacity of the aqueous extracts (AE) of poolish-type sourdoughs fermented with Lactiplantibacillus plantarum NRRL B-4496 on broth, agar, and bread. The aqueous extracts were obtained by centrifugation and separating the supernatant from the poolish sourdoughs once the fermentation time had ended. The aqueous extracts inhibited 80% of the growth of Penicillium chrysogenum and Penicillium corylophilum and <20% of Aspergillus niger in broth. The AEs delayed the radial growth rate and increased the lag time for the three molds tested. The addition of poolish-type sourdoughs inhibited fungal growth in bread for ten days. The extracts’ fungistatic capacity was primarily attributed to lactic and acetic acids and probably the antifungal peptides occurring in the AE. The L. plantarum sourdough is an alternative to calcium propionate as an organic antifungal agent.
Collapse
Affiliation(s)
| | | | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico
| |
Collapse
|
37
|
Assessment of probiotic and antifungal activity of Lactiplantibacillus plantarum MYSAGT3 isolated from locally available herbal juice against mycotoxigenic Aspergillus species. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Petkova M, Gotcheva V, Dimova M, Bartkiene E, Rocha JM, Angelov A. Screening of Lactiplantibacillus plantarum Strains from Sourdoughs for Biosuppression of Pseudomonas syringae pv. syringae and Botrytis cinerea in Table Grapes. Microorganisms 2022; 10:2094. [PMID: 36363685 PMCID: PMC9696664 DOI: 10.3390/microorganisms10112094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 09/06/2023] Open
Abstract
Grapes (Vitis vinifera L.) are an essential crop for fresh consumption and wine production. Vineyards are attacked by several economically important bacterial and fungal diseases that require regular pesticide treatment. Among them, Pseudomonas syringae pv. syringae (Ps. syringae) and Botrytis cinerea (B. cinerea) infections cause huge economic losses. The fresh fruit market has shifted to functional natural foodstuffs with clear health benefits and a reduced use of chemicals along the production chain. Lactic acid bacteria (LAB) have a biopreservative effect and are applied to ensure food safety in response to consumers' demands. In the present study, the possibilities of using microorganisms with a potential antimicrobial effect against Ps. syringae and B. cinerea in the production of table grapes were investigated. LAB of the genus Lactiplantibacillus can be a natural antagonist of pathogenic bacteria and fungi by releasing lactic acid, acetic acid, ethanol, carbon dioxide and bacteriocins in the medium. The present study focuses on the characterization of nine Lactiplantibacillus plantarum (Lp. plantarum) strains isolated from spontaneously fermented sourdoughs. Species-specific PCR identified the isolated LAB for partial recA gene amplification with an amplicon size of 318 bp. RAPD-PCR analysis showed the intraspecific diversity of the individual strains. Thirteen plantaricin-like peptides (PlnA, PlnB, PlnC, PlnD, PlnEF, PlnG, PlnI, PlnJ, PlnK, PlnN, PlnNC8, PlnS, and PlnW) produced by isolated Lp. plantarum strains were detected by PCR with gene-specific primers. The key features for future industrial applications were their antimicrobial properties. The culture medium and cell-free supernatant (CFS) were used to establish in vitro antimicrobial activities of Lp. plantarum strains against Ps. syringae and B. cinerea, and inhibition of phytopathogen development was observed. The inhibitory effect of the CFS (cell-free supernatant) of all strains was assessed by infecting table grapes with these pathogens in in vivo experiments. Lp. plantarum Q4 showed the most effective suppression of the pathogens both in vitro and in vivo, which indicates its potential use as a biocontrol agent against berry rot and grey rot on grapes, caused by Ps. syringae and B. cinerea.
Collapse
Affiliation(s)
- Mariana Petkova
- Department of Microbiology and Environmental Biotechnology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Milena Dimova
- Department of Phytopathology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-44307 Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
| | - Angel Angelov
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
39
|
Quality Characteristics of Novel Sourdough Breads Made with Functional Lacticaseibacillus paracasei SP5 and Prebiotic Food Matrices. Foods 2022; 11:3226. [PMCID: PMC9601700 DOI: 10.3390/foods11203226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lacticaseibacillus paracasei SP5, isolated from kefir, was assessed as a starter culture for sourdough bread making in freeze-dried form, both free (BSP5 bread) and immobilised on wheat bran (BIWB) and on a traditional flour/sour milk food, ‘trahanas’ (BITR). Physicochemical characteristics, shelf-life, volatilome, phytic acid, and sensory properties of the breads were evaluated. The BITR breads had higher acidity (9.05 ± 0.14 mL of 0.1 M NaOH/10 g) and organic acid content (g/Kg; 2.90 ± 0.05 lactic, 1.04 ± 0.02 acetic), which justifies the better resistance against mould and rope spoilage (>10 days). The highest number of volatiles (35) and at higher concentration (11.14 μg/g) were also found in BITR, which is in line with the sensory (consumer) evaluation regarding flavour. Finally, higher reduction of phytate (an antinutrient) was observed in all L. paracasei SP5 sourdoughs (83.3–90.7%) compared to the control samples (71.4%). The results support the use of the new strain for good quality sourdough bread.
Collapse
|
40
|
Insights into the Metabolic Response of Lactiplantibacillus plantarum CCFM1287 upon Patulin Exposure. Int J Mol Sci 2022; 23:ijms231911652. [PMID: 36232948 PMCID: PMC9570479 DOI: 10.3390/ijms231911652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.
Collapse
|
41
|
Salman M, Javed MR, Ali H, Mustafa G, Tariq A, Sahar T, Naheed S, Gill I, Abid M, Tawab A. Bioprotection of Zea mays L. from aflatoxigenic Aspergillus flavus by Loigolactobacillus coryniformis BCH-4. PLoS One 2022; 17:e0271269. [PMID: 35917314 PMCID: PMC9345345 DOI: 10.1371/journal.pone.0271269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.
Collapse
Affiliation(s)
- Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Tanzila Sahar
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Iqra Gill
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Statistics, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| |
Collapse
|
42
|
Lactiplantibacillus plantarum as an adjunct culture exhibits antifungal activity in shredded Cheddar cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Cardoso de Oliveira R, Mendonça CMN, Verissimo NV, de Almeida SRY, Correa B, Watanabe I, de Souza de Azevedo PO, de Souza Oliveira RP. Evaluating the potential of
Pediococcus pentosaceus
as a biocontrol agent against tenuazonic acid‐producing
Alternaria alternata
on livestock feeds. J Appl Microbiol 2022; 133:3020-3029. [DOI: 10.1111/jam.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rodrigo Cardoso de Oliveira
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | - Carlos Miguel Nobrega Mendonça
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | - Nathalia Vieira Verissimo
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
| | | | - Benedito Correa
- Laboratory of Mycotoxins and Toxigenic Fungi, Department of Microbiology University of São Paulo São Paulo Brazil
| | - Ii‐Sei Watanabe
- Department of Anatomy, Biomedical Sciences Institute University of São Paulo Brazil
| | - Pamela Oliveira de Souza de Azevedo
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology University of São Paulo São Paulo Brazil
- SAZ Animal Nutrition São Paulo Brazil
| | | |
Collapse
|
44
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
45
|
Byrne MB, Thapa G, Doohan FIM, Burke JI. Lactic Acid Bacteria as Potential Biocontrol Agents for Fusarium Head Blight Disease of Spring Barley. Front Microbiol 2022; 13:912632. [PMID: 35935224 PMCID: PMC9355582 DOI: 10.3389/fmicb.2022.912632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.
Collapse
Affiliation(s)
- Micheal B. Byrne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ganesh Thapa
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - FIona M. Doohan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Abouloifa H, Rokni Y, Hasnaoui I, Bellaouchi R, Gaamouche S, Ghabbour N, Karboune S, Ben Salah R, Brasca M, D'hallewin G, Saalaoui E, Asehraou A. Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent. Braz J Microbiol 2022; 53:1501-1513. [PMID: 35804284 PMCID: PMC9433471 DOI: 10.1007/s42770-022-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
Abstract
This work aimed to characterize the antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61, isolated from traditional fermented green olive, involved in their activity against fungi and bacteria responsible for food spoilage and poisonings. Their application as a biopreservative agent was also investigated. The culture of L. plantarum S61 showed substantial antifungal and antibacterial activity against yeasts (Rhodotorula glutinis and Candida pelliculosa), molds (Penicillium digitatum, Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae), and pathogenic bacteria (Listeria monocytogenes ATCC 19,117, Salmonella enterica subsp. enterica ATCC 14,028, Staphylococcus aureus subsp. aureus ATCC 6538, Pseudomonas aeruginosa ATCC 49,189), with inhibition zones > 10 mm. Likewise, the cell-free supernatant (CFS) of L. plantarum S61 showed an essential inhibitory effect against fungi and bacteria, with inhibition diameters of 12.25-22.05 mm and 16.95-17.25 mm, respectively. The CFS inhibited molds' biomass and mycelium growth, with inhibition ranges of 63.18-83.64% and 22.57-38.93%, respectively. The antifungal activity of the CFS was stable during 4 weeks of storage at 25 °C, while it gradually decreased during storage at 4 °C. Several antimicrobial compounds were evidenced in the CFS of L. plantarum S61, including organic acids, ethanol, hydrogen peroxide, diacetyl, proteins, and fatty acids. The protein fraction, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), demonstrated important antifungal activity, in relation to the fraction with molecular weight between 2 and 6 kDa. L. plantarum S61 and its CFS, tested in apple and orange fruit biopreservation, demonstrated their protective effect against P. digitatum spoilage. The CFS exhibited effectiveness in reducing Salmonella enterica subsp. enterica ATCC 14,028 in apple juice. L. plantarum S61 and/or its bioactive compounds CFS represent a promising strategy for biocontrol against pathogens and spoilage microorganisms in the agro-industry.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Research Unit of Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry-Physics and Biotechnology of Molecules and Materials, Faculty of Sciences and Techniques - Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco. .,Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.
| | - Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, Mghila, 23000, Beni Mellal, Morocco
| | - Ismail Hasnaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Sara Gaamouche
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B. P 1223, Taza, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, Via Celoria 2, 20133, Milan, Italy
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council of Italy, UOS Sassari, Traversa La Crucca, 3 Loc. Baldinca, 07040, Sassari, Italy
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| |
Collapse
|
47
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
48
|
Abd Ellatif SA, Bouqellah NA, Abu-Serie MM, Razik ESA, Al-Surhanee AA, Askary AE, Daigham GE, Mahfouz AY. Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39684-39701. [PMID: 35112259 DOI: 10.1007/s11356-022-18537-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Resistance to antibiotics is on the rise, and its indiscriminate usage has resulted in human and animal management constraints. In the research for an innovative treatment to diminish antimicrobial resistance, lactic acid bacteria (LAB) throw light on diminishing this problem in public health. As a result, this paper looked at the efficacy of LAB isolates and their active metabolites to combat pathogens, reduce antibiotic use in clinical settings, and explore the anticancer potential of 8 strains of LAB isolated from dairy products. Antifungal and antibacterial potential of LAB isolates against selected crop pathogenic fungi and food pathogenic bacteria had been estimated. Results revealed that all isolates exert antioxidant efficacy relating to DPPH, NO scavenging ability, reducing power, superoxide anion, hydroxyl radical, and anti-lipid peroxidation potential. Additionally, 12B isolate exert the highest anticancer upshot with IC50 values of 43.98 ± 0.4; 36.7 ± 0.6, 43.1 ± 0.8, and 35.1 ± 0.3 μg/ml, versus Caco-2, MCF-7, HepG-2, and PC3 cell lines respectively, whereas 13B isolate significantly had the highest selectivity index between peripheral blood mononuclear cells (PBMCs) and the tested human cancer cell lines compared to 5-fluorouracil. 13B was the most apoptosis-dependent death inducer for all human cancer cell lines besides exerting the lowest percentage of apoptosis against PBMCs suggesting its safety against PBMCs. The most promising strains 12B and 13B were identified by 16S rRNA sequencing as Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1). LAB and their extracts are superb substitutive, safe, and efficient antimicrobial, antioxidant, and antitumor curative agents.
Collapse
Affiliation(s)
- Sawsan A Abd Ellatif
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Nahla Alsayed Bouqellah
- Science College, Biology Department, Taibah University, 42317- 8599, Al-Madinah Al-Munawara, Kingdom of Saudi Arabia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the City of Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Ameena A Al-Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Kingdom of Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
49
|
Krska R, Leslie JF, Haughey S, Dean M, Bless Y, McNerney O, Spence M, Elliott C. Effective approaches for early identification and proactive mitigation of aflatoxins in peanuts: An EU-China perspective. Compr Rev Food Sci Food Saf 2022; 21:3227-3243. [PMID: 35638328 DOI: 10.1111/1541-4337.12973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Nearly 700,000 tonnes of peanuts are consumed annually in Europe. In the last 5 years, peanuts imported from China exceeded legal European Union (EU) aflatoxin limits more than 180 times. To prevent and mitigate aflatoxin contamination, the stages of the peanut chain most vulnerable to contamination must be assessed to determine how to interrupt the movement of contaminated produce. This paper discusses effective approaches for early identification and proactive mitigation of aflatoxins in peanuts to reduce a contaminant that is an impediment to trade. We consider (i) the results of the EU Commission's Directorate-General (DG) for Health and Food Safety review, (ii) the Code of Practice for the prevention and reduction of aflatoxins in peanuts issued by Food and Agriculture Organization/World Health Organization, (iii) the results from previous EU-China efforts, and (iv) the latest state-of-the-art technology in pre- and postharvest methods as essential elements of a sustainable program for integrated disease and aflatoxin management. These include preharvest use of biocontrol, biofertilizers, improved tillage, forecasting, and risk monitoring based on analysis of big data obtained by remote sensing. At the postharvest level, we consider rapid testing methods along the supply chain, Decision Support Systems for effective silo management, and effective risk monitoring during drying, storage, and transport. Available guidance and current recommendations are provided for successful practical implementation. Food safety standards also influence stakeholder and consumer trust and confidence, so we also consider the results of multiactor stakeholder group discussions.
Collapse
Affiliation(s)
- Rudolf Krska
- Vienna (BOKU), Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - John F Leslie
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas, USA
| | - Simon Haughey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Moira Dean
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Yoneal Bless
- Vienna (BOKU), Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Oonagh McNerney
- IRIS Technology Solutions S.L., Cornellà de Llobregat, Spain
| | - Michelle Spence
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
50
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|