1
|
Bruckhoff R, Becker O, Steinhilber D, Suess B. Potential and Optimization of Mammalian Splice Riboswitches for the Regulation of Exon Skipping-Dependent Gene Expression and Isoform Switching within the ALOX5 Gene. ACS Synth Biol 2025; 14:804-818. [PMID: 40011207 PMCID: PMC11934966 DOI: 10.1021/acssynbio.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Synthetic riboswitches are attracting increasing interest for a diverse range of applications, including synthetic biology, functional genomics, and prospective therapeutic strategies. This study demonstrates that controlling alternative splicing with synthetic riboswitches represents a promising approach to effectively regulating transgene expression in mammalian cells. However, the function of synthetic riboswitches in the eukaryotic system in controlling gene expression is often limited to certain genes or cell types. So far, strategies to increase the dynamic range of regulation have been focused on adapting and modifying the riboswitch sequence itself without taking into account the context in which the riboswitch was inserted. In the present study, the tetracycline riboswitch was chosen to investigate the effects of the context and insertion site of a cassette exon within the gene to control the expression of an artificial arachidonate 5-lipoxygenase gene (ALOX5) in HEK293 cells. We demonstrate here that the use of riboswitch-controlled cassette exons for the control of gene expression via alternative splicing can be easily transferred to another gene through the process of contextual sequence adaptation. This was achieved through the introduction of gene-specific intronic and exonic sequences with different intron lengths and positions being tested. In contrast, the introduction of nonadapted constructs resulted in an unanticipated functionality outcome of the gene switch. Furthermore, we demonstrate that the combination of two cassette exons into a single gene resulted in a notable enhancement in the dynamic range. Finally, we generated a novel riboswitch-controlled splicing concept that enabled us to switch 5-LO wild-type to expression of an ALOX5 isoform that lacks exon 13 (5-LOΔ13). Taken together, this study demonstrates that synthetic riboswitches that control alternative splicing are a powerful tool to regulate gene expression when applied in combination with gene-specific intronic and exonic sequences.
Collapse
Affiliation(s)
- Robin
W. Bruckhoff
- Department
of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt D-64287, Germany
| | - Olga Becker
- Department
of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt D-64287, Germany
| | - Dieter Steinhilber
- Institute
of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, Frankfurt am Main D-60438, Germany
| | - Beatrix Suess
- Department
of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt D-64287, Germany
- Centre
for Synthetic Biology, Technical University
of Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
2
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. Nat Commun 2025; 16:953. [PMID: 39843437 PMCID: PMC11754884 DOI: 10.1038/s41467-024-55601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC50) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures and regulatory mechanisms demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Water Research, Northwestern University, Evanston, IL, USA.
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587317. [PMID: 38585885 PMCID: PMC10996619 DOI: 10.1101/2024.03.29.587317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z. Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Kaiser C, Vogel M, Appel B, Weigand J, Müller S, Suess B, Wachtveitl J. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering. J Mol Biol 2023; 435:168253. [PMID: 37640152 DOI: 10.1016/j.jmb.2023.168253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Engineering in vitro selected RNA aptamers into in vivo functional riboswitches represents a long-standing challenge in molecular biology. The highly specific aptamer domain of the riboswitch undergoes a conformational adjustment in response to ligand sensing, which in turn exerts the regulatory function. Besides essential factors like structural complexity and ligand binding kinetics, the active role of magnesium ions in stabilizing RNA tertiary structures and assisting in ligand binding can be a vital criterion. We present spectroscopic studies on the magnesium ion-driven folding of the Tetracycline binding aptamer. Using fluorescent labels, the aptamer pre-folding and subsequent ligand binding is monitored by magnesium titration experiments and time-resolved stopped-flow measurements. A minimum concentration of 0.5 mM magnesium is required to fold into a magnesium ion-stabilized binding-competent state with a preformed binding pocket. Tetracycline binding causes a pronounced conformational change that results in the establishment of the triple helix core motif, and that further propagates towards the closing stem. By a dynamic acquisition of magnesium ions, a kink motif is formed at the intersection of the triple helix and closing stem regions. This ultimately entails a stabilization of the closing stem which is discussed as a key element in the regulatory function of the Tetracycline aptamer.
Collapse
Affiliation(s)
- Christoph Kaiser
- Institute for Physical and Theoretical Chemistry, Goethe University, Frankfurt/Main, Max-von-Laue Str. 9, D-60438, Germany.
| | - Marc Vogel
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany
| | - Bettina Appel
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Julia Weigand
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany; Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Marbacher Weg 6, D-35037, Germany. https://twitter.com/WachtveitlLab
| | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University, Frankfurt/Main, Max-von-Laue Str. 9, D-60438, Germany.
| |
Collapse
|
5
|
Datta D, Weiss EL, Wangpraseurt D, Hild E, Chen S, Golden JW, Golden SS, Pokorski JK. Phenotypically complex living materials containing engineered cyanobacteria. Nat Commun 2023; 14:4742. [PMID: 37550278 PMCID: PMC10406891 DOI: 10.1038/s41467-023-40265-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942 within a hydrogel matrix. Subsequently, a strain of S. elongatus is engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation.
Collapse
Affiliation(s)
- Debika Datta
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Elliot L Weiss
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Daniel Wangpraseurt
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Erica Hild
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - James W Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
7
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
9
|
Aptamer-based enzyme-linked oligonucleotide assay for specific detection of clinical bacterial strains isolated from cerebrospinal fluid samples. J Biosci Bioeng 2022; 134:441-449. [PMID: 36109302 DOI: 10.1016/j.jbiosc.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Meningitis, acute infection of the meninges, is the 10th leading cause of mortality among infectious diseases. Although many different causes for meningitis (viruses and bacteria) have been diagnosed, the most common ones are Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae. The effort to find a new method for detection of bacterial meningitis is an urgent need for clinical treatment. DNA aptamers generated by cell-systematic evolution of ligands by exponential enrichment (SELEX) against bacterial cells provide a novel cell labeling and biosensing technique. Here, we isolated single-stranded DNA aptamers during the SELEX method with a high affinity for different bacterial genera. This approach was demonstrated on H. influenzae type B, N. meningitidis serogroups A, B, C, and Y, and Streptococcus pneumoniae serotypes 18, 14, 19A, 6A, and 6B which served as targets in 20 rounds of cell-SELEX. After 20 rounds of SELEX, a total of 93 aptamers were identified. Among these, aptamers C65 and C50 showed the highest affinity toward targets with a dissociation constant of 6.98 and 15.79, respectively. Selected aptamers were able to successfully detect clinical bacterial strains isolated from cerebrospinal fluid samples of meningitis patients by double-aptamer sandwich enzyme-linked oligonucleotide assay (ELONA). Our findings demonstrated that aptamers with broad affinity to bacterial taxa in different genera can be isolated for the development of diagnostic tools for multiple targets. We further showed that sandwich ELONA based on single-stranded DNA aptamer is sensitive and specific enough for detection of the superior cause of bacterial meningitis.
Collapse
|
10
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Gustmann H, Segler ALJ, Gophane DB, Reuss AJ, Grünewald C, Braun M, Weigand JE, Sigurdsson ST, Wachtveitl J. Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer. Nucleic Acids Res 2019; 47:15-28. [PMID: 30462266 PMCID: PMC6326822 DOI: 10.1093/nar/gky1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of the cytidine analog Çmf to act as a position specific reporter of RNA-dynamics was spectroscopically evaluated. Çmf-labeled single- and double-stranded RNAs differ in their fluorescence lifetimes, quantum yields and anisotropies. These observables were also influenced by the nucleobases flanking Çmf. This conformation and position specificity allowed to investigate the binding dynamics and mechanism of neomycin to its aptamer N1 by independently incorporating Çmf at four different positions within the aptamer. Remarkably fast binding kinetics of neomycin binding was observed with stopped-flow measurements, which could be satisfactorily explained with a two-step binding. Conformational selection was identified as the dominant mechanism.
Collapse
Affiliation(s)
- Henrik Gustmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Anna-Lena J Segler
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | | | - Andreas J Reuss
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Christian Grünewald
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | | | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
13
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
14
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
16
|
Page K, Shaffer J, Lin S, Zhang M, Liu JM. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting. ACS Synth Biol 2018; 7:2000-2006. [PMID: 30119599 DOI: 10.1021/acssynbio.8b00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Riboswitches, noncoding RNAs that bind a small molecule effector to control gene expression at the level of transcription or translation, are uniquely suited to meet challenges in synthetic biology. To expand the limited set of existing riboswitches, we developed a riboswitch discovery platform that couples dual genetic selection and fluorescence-activated cell sorting to identify novel riboswitches from a 108 random-sequence library in which the aptamer domain of the ThiM#2 riboswitch was replaced with an N40 sequence. In a proof-of-principle validation, we identified novel riboswitches for the small molecule theophylline. Our best riboswitch (Hit 3-5) displays 2.3-fold activation of downstream gene expression in the presence of theophylline. Random mutagenesis of Hit 3-5, coupled with selections and screens, afforded improved riboswitches displaying nearly 3-fold activation. To the best of our knowledge, this is the first report of in vivo directed evolution of an aptamer domain to generate a functional riboswitch.
Collapse
Affiliation(s)
- Katharine Page
- Department of Chemistry, Pomona College, 645 N. College Avenue, Claremont, California 91711, United States
| | - Jeremy Shaffer
- Department of Chemistry, Pomona College, 645 N. College Avenue, Claremont, California 91711, United States
| | - Samuel Lin
- Department of Chemistry, Pomona College, 645 N. College Avenue, Claremont, California 91711, United States
| | - Mark Zhang
- Department of Chemistry, Pomona College, 645 N. College Avenue, Claremont, California 91711, United States
| | - Jane M. Liu
- Department of Chemistry, Pomona College, 645 N. College Avenue, Claremont, California 91711, United States
| |
Collapse
|
17
|
Renders M, Miller E, Lam CH, Perrin DM. Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Org Biomol Chem 2018; 15:1980-1989. [PMID: 28009914 DOI: 10.1039/c6ob02451c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In an effort to expand the binding and recognition capabilities of aptamers, a nucleoside triphosphate modified with a phenol that mimics the side chain of tyrosine was used in the selection of DNA aptamers against live bacteria. Of multiple modified aptamers that were isolated against Escherichia coli DH5α cells, one aptamer displays high selectivity and affinity for the target cells and is greatly enriched for phenol-modified dU nucleotides (dUy, 47.5%). When the same sequences are synthesized with TTP, no binding is observed. Taken together, these findings highlight the value of using modified nucleotide triphosphates in aptamer selections and portends success in SELEX against an array of whole cells as targets.
Collapse
Affiliation(s)
- Marleen Renders
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Emily Miller
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Curtis H Lam
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
18
|
Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. N Biotechnol 2017; 39:199-205. [DOI: 10.1016/j.nbt.2017.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
|
19
|
Abstract
Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.
Collapse
|
20
|
Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes. BMC Bioinformatics 2016; 17:225. [PMID: 27245069 PMCID: PMC4888498 DOI: 10.1186/s12859-016-1087-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Background Aptamer-protein interacting pairs play a variety of physiological functions and therapeutic potentials in organisms. Rapidly and effectively predicting aptamer-protein interacting pairs is significant to design aptamers binding to certain interested proteins, which will give insight into understanding mechanisms of aptamer-protein interacting pairs and developing aptamer-based therapies. Results In this study, an ensemble method is presented to predict aptamer-protein interacting pairs with hybrid features. The features for aptamers are extracted from Pseudo K-tuple Nucleotide Composition (PseKNC) while the features for proteins incorporate Discrete Cosine Transformation (DCT), disorder information, and bi-gram Position Specific Scoring Matrix (PSSM). We investigate predictive capabilities of various feature spaces. The proposed ensemble method obtains the best performance with Youden’s Index of 0.380, using the hybrid feature space of PseKNC, DCT, bi-gram PSSM, and disorder information by 10-fold cross validation. The Relief-Incremental Feature Selection (IFS) method is adopted to obtain the optimal feature set. Based on the optimal feature set, the proposed method achieves a balanced performance with a sensitivity of 0.753 and a specificity of 0.725 on the training dataset, which indicates that this method can solve the imbalanced data problem effectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous study with a sensitivity of 0.738 and a Youden’s Index of 0.451. Conclusions These results suggest that the proposed method can be a potential candidate for aptamer-protein interacting pair prediction, which may contribute to finding novel aptamer-protein interacting pairs and understanding the relationship between aptamers and proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1087-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
22
|
MacKay S, Hermansen P, Wishart D, Chen J. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications. SENSORS 2015; 15:22192-208. [PMID: 26364638 PMCID: PMC4610437 DOI: 10.3390/s150922192] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022]
Abstract
In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations.
Collapse
Affiliation(s)
- Scott MacKay
- Electrical and Computer Engineering Department, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada.
| | - Peter Hermansen
- Electrical and Computer Engineering Department, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada.
| | - David Wishart
- Department of Computing Science, 2-21 Athabasca Hall, University of Alberta, Edmonton, AB T6G 2E8, Canada.
| | - Jie Chen
- Electrical and Computer Engineering Department, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada.
- National Research Council/National Institute for Nanotechnology, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
23
|
Cao J, Arha M, Sudrik C, Mukherjee A, Wu X, Kane RS. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells. Nucleic Acids Res 2015; 43:4353-62. [PMID: 25845589 PMCID: PMC4417184 DOI: 10.1093/nar/gkv290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Jicong Cao
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Manish Arha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chaitanya Sudrik
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Abhirup Mukherjee
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ravi S Kane
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
24
|
Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 2014; 80:6704-13. [PMID: 25149516 DOI: 10.1128/aem.01697-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are photosynthetic bacteria that are currently being developed as biological production platforms. They derive energy from light and carbon from atmospheric carbon dioxide, and some species can fix atmospheric nitrogen. One advantage of developing cyanobacteria for renewable production of biofuels and other biological products is that they are amenable to genetic manipulation, facilitating bioengineering and synthetic biology. To expand the currently available genetic toolkit, we have demonstrated the utility of synthetic theophylline-responsive riboswitches for effective regulation of gene expression in four diverse species of cyanobacteria, including two recent isolates. We evaluated a set of six riboswitches driving the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942, Leptolyngbya sp. strain BL0902, Anabaena sp. strain PCC 7120, and Synechocystis sp. strain WHSyn. We demonstrated that riboswitches can offer regulation of gene expression superior to that of the commonly used isopropyl-β-d-thiogalactopyranoside induction of a lacI(q)-Ptrc promoter system. We also showed that expression of the toxic protein SacB can be effectively regulated, demonstrating utility for riboswitch regulation of proteins that are detrimental to biomass accumulation. Taken together, the results of this work demonstrate the utility and ease of use of riboswitches in the context of genetic engineering and synthetic biology in diverse cyanobacteria, which will facilitate the development of algal biotechnology.
Collapse
|
25
|
Weigand JE, Gottstein-Schmidtke SR, Demolli S, Groher F, Duchardt-Ferner E, Wöhnert J, Suess B. Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch. Chembiochem 2014; 15:1627-37. [PMID: 24954073 DOI: 10.1002/cbic.201402067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 01/16/2023]
Abstract
Synthetic riboswitches can serve as sophisticated genetic control devices in synthetic biology, regulating gene expression through direct RNA-ligand interactions. We analyzed a synthetic neomycin riboswitch, which folds into a stem loop structure with an internal loop important for ligand binding and regulation. It is closed by a terminal hexaloop containing a U-turn and a looped-out adenine. We investigated the relationship between sequence, structure, and biological activity in the terminal loop by saturating mutagenesis, ITC, and NMR. Mutants corresponding to the canonical U-turn fold retained biological activity. An improvement of stacking interactions in the U-turn led to an RNA element with slightly enhanced regulatory activity. For the first position of the U-turn motif and the looped out base, sequence-activity relationships that could not initially be explained on the basis of the structure of the aptamer-ligand complex were observed. However, NMR studies of these mutants revealed subtle relationships between structure and dynamics of the aptamer in its free or bound state and biological activity.
Collapse
Affiliation(s)
- Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt (Germany)
| | | | | | | | | | | | | |
Collapse
|
26
|
Walsh S, Gardner L, Deiters A, Williams GJ. Intracellular light-activation of riboswitch activity. Chembiochem 2014; 15:1346-51. [PMID: 24861567 DOI: 10.1002/cbic.201400024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Indexed: 12/18/2022]
Abstract
By combining a riboswitch with a cell-permeable photocaged small-molecule ligand, an optochemical gene control element was constructed that enabled spatial and temporal control of gene expression in bacterial cells. The simplicity of this strategy, coupled with the ability to create synthetic riboswitches with tailored ligand specificities and output in a variety of microorganisms, plants, and fungi might afford a general strategy to photocontrol gene expression in vivo. The ability to activate riboswitches by using light enables the interrogation and manipulation of a wide range of biological processes with high precision, and will have broad utility in the regulation of artificial genetic circuits.
Collapse
Affiliation(s)
- Steven Walsh
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204 (USA)
| | | | | | | |
Collapse
|
27
|
Eichhorn CD, Kang M, Feigon J. Structure and function of preQ 1 riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:939-950. [PMID: 24798077 DOI: 10.1016/j.bbagrm.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/17/2022]
Abstract
PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mijeong Kang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Peng Z, Ling M, Ning Y, Deng L. Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc 2014; 24:1159-68. [PMID: 24763818 DOI: 10.1007/s10895-014-1396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Nucleic acid aptamers have long demonstrated the capacity to bind cells with high affinity so that they have been utilized to diagnose various important pathogens. In this study, a DNA aptamer library was on initial efforts developed to act as a specific reporter for rapid detection of enter toxigenic Escherichia coli (ETEC) K88 combined with immuno-magnetic separation (IMS). During a Whole-cell Systematic Evolution of Ligands by Exponential Enrichment (CELL-SELEX) procedure, the last selection pool against ETEC K88, which is named "DNA aptamer library" here, was selected and subsequently identified by flow cytometric analysis and confocal imaging. A K88 monoclonal antibody (mAb) with high affinity (K(aff): 1.616 ± 0.033 × 10(8) M(-1)) against K88 fimbrial protein was prepared, biotinylated and conjugated to streptavidin-coated magnetic beads (MBs). After the bacteria were effectively captured and enriched from the complex sample by immuno-magnetic beads (IMBs), 5'-FITC modified aptamer library was directly bound to target cells as a specific reporter for its detection. The detection system showed clearly high specificity and sensitivity with the detection limit of 1.1 × 10(3) CFU/ml in pure culture and 2.2 × 10(3) CFU/g in artificially contaminated fecal sample. The results also indicated that fluorophore-lablled DNA aptamer library as specific reporter could generate more reliable signals than individual aptamer with best affinity against target cells and implied it would have great applied potential in directly reporting bacteria from complex samples combined with IMS technology.
Collapse
Affiliation(s)
- Zhihui Peng
- The Co-construction Laboratory of Microbial Molecular Biology of Province and Ministry of Science and Technology, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | | | | | | |
Collapse
|
29
|
Cao J, Arha M, Sudrik C, Schaffer DV, Kane RS. Bidirectional Regulation of mRNA Translation in Mammalian Cells by Using PUF Domains. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Cao J, Arha M, Sudrik C, Schaffer DV, Kane RS. Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains. Angew Chem Int Ed Engl 2014; 53:4900-4. [PMID: 24677733 DOI: 10.1002/anie.201402095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 12/12/2022]
Abstract
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
Collapse
Affiliation(s)
- Jicong Cao
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | | | | | | | | |
Collapse
|
31
|
Development of β -lactamase as a tool for monitoring conditional gene expression by a tetracycline-riboswitch in Methanosarcina acetivorans. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:725610. [PMID: 24678266 PMCID: PMC3942078 DOI: 10.1155/2014/725610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
The use of reporter gene fusions to assess cellular processes such as protein targeting and regulation of transcription or translation is established technology in archaeal, bacterial, and eukaryal genetics. Fluorescent proteins or enzymes resulting in chromogenic substrate turnover, like β-galactosidase, have been particularly useful for microscopic and screening purposes. However, application of such methodology is of limited use for strictly anaerobic organisms due to the requirement of molecular oxygen for chromophore formation or color development. We have developed β-lactamase from Escherichia coli (encoded by bla) in conjunction with the chromogenic substrate nitrocefin into a reporter system usable under anaerobic conditions for the methanogenic archaeon Methanosarcina acetivorans. By using a signal peptide of a putative flagellin from M. acetivorans and different catabolic promoters, we could demonstrate growth substrate-dependent secretion of β-lactamase, facilitating its use in colony screening on agar plates. Furthermore, a series of fusions comprised of a constitutive promoter and sequences encoding variants of the synthetic tetracycline-responsive riboswitch (tc-RS) was created to characterize its influence on translation initiation in M. acetivorans. One tc-RS variant resulted in more than 11-fold tetracycline-dependent regulation of bla expression, which is in the range of regulation by naturally occurring riboswitches. Thus, tc-RS fusions represent the first solely cis-active, that is, factor-independent system for controlled gene expression in Archaea.
Collapse
|
32
|
Nomura Y, Zhou L, Miu A, Yokobayashi Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2013; 2:684-9. [PMID: 23697539 PMCID: PMC3874218 DOI: 10.1021/sb400037a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We engineered small molecule responsive
allosteric ribozymes based
on the genomic hepatitis delta virus (HDV) ribozyme by replacing the
P4-L4 stem-loop with an RNA aptamer through a connector stem. When
embedded in the 3′ untranslated region of a reporter gene mRNA,
these RNA devices enabled regulation of cis-gene
expression by theophylline and guanine by up to 29.5-fold in mammalian
cell culture. Furthermore, a NOR logic gate device was constructed
by placing two engineered ribozymes in tandem, demonstrating the modularity
of the RNA devices. The significant improvement in the regulatory
dynamic range (ON/OFF ratio) of the RNA devices based on the HDV ribozyme
should provide new opportunities for practical applications.
Collapse
Affiliation(s)
- Yoko Nomura
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Linlin Zhou
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Anh Miu
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Yohei Yokobayashi
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| |
Collapse
|
33
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
34
|
Meitert J, Aram R, Wiesemann K, Weigand JE, Suess B. Monitoring the expression level of coding and non-coding RNAs using a TetR inducing aptamer tag. Bioorg Med Chem 2013; 21:6233-8. [PMID: 23993971 DOI: 10.1016/j.bmc.2013.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/21/2013] [Accepted: 07/17/2013] [Indexed: 01/31/2023]
Abstract
RNA aptamers have been widely used as regulators for conditional gene expression. The TetR binding aptamer can activate tetracycline repressor TetR controlled gene expression with high efficiency. Here we demonstrate that the aptamer can also activate TetR controlled gene expression when expressed in the context of a natural transcripts. The aptamer was inserted into the untranslated regions of mRNAs as well as into small non-coding RNAs and was expressed both from a plasmid and from an endogenous locus. Our data suggest that the aptamer is a valuable tool to easily monitor the expression level of different RNAs, and it therefore represents a powerful tool for the construction of complex synthetic gene networks.
Collapse
Affiliation(s)
- Johannes Meitert
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany
| | | | | | | | | |
Collapse
|
35
|
Ozbal S, Ergur BU, Erbil G, Tekmen I, Bagrıyanık A, Cavdar Z. The effects of α-lipoic acid against testicular ischemia-reperfusion injury in Rats. ScientificWorldJournal 2012. [PMID: 23193380 PMCID: PMC3488399 DOI: 10.1100/2012/489248] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Testicular torsion is one of the urologic emergencies occurring frequently in neonatal and adolescent period. Testis is sensitive to ischemia-reperfusion injury, and, therefore, ischemia and consecutive reperfusion cause an enhanced formation of reactive oxygen species that result in testicular cell damage and apoptosis. α-lipoic acid is a free radical scavenger and a biological antioxidant. It is widely used in the prevention of oxidative stress and cellular damage. We aimed to investigate the protective effect of α-lipoic acid on testicular damage in rats subjected to testicular ischemia-reperfusion injury. 35 rats were randomly divided into 5 groups: control, sham operated, ischemia, ischemia-reperfusion, and ischemia-reperfusion +lipoic acid groups, 2 h torsion and 2 h detorsion of the testis were performed. Testicular cell damage was examined by H-E staining. TUNEL and active caspase-3 immunostaining were used to detect germ cell apoptosis. GPx , SOD activity, and MDA levels were evaluated. Histological evaluation showed that α-lipoic acid pretreatment reduced testicular cell damage and decreased TUNEL and caspase-3-positive cells. Additionally, α-lipoic acid administration decreased the GPx and SOD activity and increased the MDA levels. The present results suggest that LA is a potentially beneficial agent in protecting testicular I/R in rats.
Collapse
Affiliation(s)
- Seda Ozbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University Inciralti, 35340 İzmir, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012; 2012:748913. [PMID: 23150810 PMCID: PMC3488411 DOI: 10.1155/2012/748913] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/08/2012] [Indexed: 12/14/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|
37
|
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|
38
|
Abstract
Small GTP-binding proteins of the ADP-ribosylation factor (Arf) family control various cell functional responses including protein transport and recycling between different cellular compartments, phagocytosis, proliferation, cytoskeletal remodelling, and migration. The activity of Arfs is tightly regulated. GTPase-activating proteins (GAPs) inactivate Arfs by stimulating GTP hydrolysis, and guanine nucleotide exchange factors (GEFs) stimulate the conversion of inactive GDP-bound Arf to the active GTP-bound conformation. There is increasing evidence that Arf small GTPases contribute to cancer growth and invasion. Increased expression of Arf6 and of Arf-GEPs, or deregulation Arf-GAP functions have been correlated with enhanced invasive capacity of tumor cells and metastasis. The spatiotemporal specificity of Arf activation is dictated by their GEFs that integrate various signals in stimulated cells. Brefeldin A (BFA), which inactivates a subset of Arf-GEFs, has been very useful for assessing the function of Golgi-localized Arfs. However, specific inhibitors to investigate the individual function of BFA-sensitive and insensitive Arf-GEFs are lacking. In recent years, specific screens have been developed, and new inhibitors with improved selectivity and potency to study cell functional responses regulated by BFA-sensitive and BFA-insensitive Arf pathways have been identified. These inhibitors have been instrumental for our understanding of the spatiotemporal activation of Arf proteins in cells and demonstrate the feasibility of developing small molecules interfering with Arf activation to prevent tumor invasion and metastasis.
Collapse
|
39
|
Lin PH, Tsai CW, Wu JW, Ruaan RC, Chen WY. Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide. Biotechnol J 2012; 7:1367-75. [PMID: 22678933 DOI: 10.1002/biot.201200003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 11/11/2022]
Abstract
Aptamers are rare functional nucleic acids with binding affinity to and specificity for target ligands. Recent experiments have lead to the proposal of an induced-fit binding mechanism for L-argininamide (Arm) and its binding aptamer. However, at the molecular level, this mechanism between the aptamer and its coupled ligand is still poorly understood. The present study used explicit solvent molecular dynamics (MD) simulations to examine the critical bases involved in aptamer-Arm binding and the induced-fit binding process at atomic resolution. The simulation results revealed that the Watson-Crick pair (G10-C16), C9, A12, and C17 bases play important roles in aptamer-Arm binding, and that binding of Arm results in an aptamer conformation optimized through a general induced-fit process. In an aqueous solution, the mechanism has the following characteristic stages: (a) adsorption stage, the Arm anchors to the binding site of aptamer with strong electrostatic interaction; (b) binding stage, the Arm fits into the binding site of aptamer by hydrogen-bond formation; and (c) complex stabilization stage, the hydrogen bonding and electrostatic interactions cooperatively stabilize the complex structure. This study provides dynamics information on the aptamer-ligand induced-fit binding mechanism. The critical bases in aptamer-ligand binding may provide a guideline in aptamer design for molecular recognition engineering.
Collapse
Affiliation(s)
- Po-Hsun Lin
- Institute of Systems Biology and Bioinformatics, National Central University, Jhong-Li, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Nomura Y, Kumar D, Yokobayashi Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb) 2012; 48:7215-7. [PMID: 22692003 DOI: 10.1039/c2cc33140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Allosteric hammerhead ribozymes (aptazymes) that are activated by guanine were used to control mammalian gene expression in cis and in trans. Coexpression of the two mechanistically distinct riboswitches resulted in an improved dynamic range of gene expression.
Collapse
Affiliation(s)
- Yoko Nomura
- Department of Biomedical Engineering, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | |
Collapse
|
41
|
|
42
|
Weigand JE, Wittmann A, Suess B. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices. Methods Mol Biol 2012; 813:157-68. [PMID: 22083741 DOI: 10.1007/978-1-61779-412-4_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Within the last few years, a set of synthetic riboswitches has been engineered, which expands the toolbox of genetic regulatory devices. Small molecule binding aptamers have been used for the design of such riboswitches by insertion into untranslated regions of mRNAs, exploiting the fact that upon ligand binding the RNA structure interferes either with translation initiation or pre-mRNA splicing in yeast. In combination with self-cleaving ribozymes, aptamers have been used to modulate RNA stability. In this chapter, we discuss the applicability of different aptamers, ways to identify novel genetic devices, the pros and cons of various insertion sites and the application of allosteric ribozymes. Our expertise help to apply synthetic riboswitches to engineer complex genetic circuits.
Collapse
Affiliation(s)
- Julia E Weigand
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Suess B, Entian KD, Kötter P, Weigand JE. Aptamer-regulated expression of essential genes in yeast. Methods Mol Biol 2012; 824:381-91. [PMID: 22160910 DOI: 10.1007/978-1-61779-433-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Conditional gene expression systems are important tools for the functional analysis of essential genes. Tetracycline (tc)-binding aptamers can be exploited as artificial riboswitches for the efficient control of gene expression by inserting them into the 5' untranslated region of an mRNA. The ligand-bound form of those mRNAs inhibits gene expression by interfering with translation initiation. In contrast to previous tc-dependent regulatory systems, where tc inhibits or activates transcription upon binding to the repressor protein TetR, the tc-binding aptamer system inhibits translation of the respective mRNA. We describe here a simple and powerful PCR-based strategy which allows easy tagging of any target gene in yeast using a tc aptamer-containing insertion cassette. The expression window can be adjusted with different promoters and protein synthesis is rapidly switched off.
Collapse
Affiliation(s)
- Beatrix Suess
- Department of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | |
Collapse
|
44
|
Müller S, Appel B, Krellenberg T, Petkovic S. The many faces of the hairpin ribozyme: Structural and functional variants of a small catalytic rna. IUBMB Life 2011; 64:36-47. [DOI: 10.1002/iub.575] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/18/2011] [Indexed: 12/15/2022]
|
45
|
Wang B, Guo C, Chen G, Park B, Xu B. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements. Chem Commun (Camb) 2011; 48:1644-6. [PMID: 22076867 DOI: 10.1039/c1cc15644f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single molecule recognition imaging and dynamic force spectroscopy (DFS) analysis showed strong binding affinity between an aptamer and ricin, which was comparable with antibody-ricin interaction. Molecular simulation showed a ricin binding conformation with aptamers and gave different ricin conformations immobilizing on substrates that were consistent with AFM images.
Collapse
Affiliation(s)
- Bin Wang
- Single Molecule Study Laboratory, Faculty of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
46
|
Steber M, Arora A, Hofmann J, Brutschy B, Suess B. Mechanistic basis for RNA aptamer-based induction of TetR. Chembiochem 2011; 12:2608-14. [PMID: 22021209 DOI: 10.1002/cbic.201100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 12/16/2022]
Abstract
The TetR aptamer induces TetR controlled gene expression, and represents an interesting tool for application in synthetic biology. We have analysed the mechanistic basis for RNA aptamer-based induction of TetR. The aptamer binds TetR with a high affinity in the order of 10(7) M(-1), which is similar to operator DNA binding under the used ionic conditions. We identified the binding epitope of the aptamer on TetR, which consists of amino acids T27, N47 and K48 of both monomers, using loss-of-function analysis and electrophoretic mobility shift assays. Tetracycline-induced conformational changes of TetR led to reorientation of the DNA reading head. This movement destroys the composite binding epitope for the aptamer and leads to reduced RNA binding by one order of magnitude. The aptamer can actively displace TetR from the operator DNA; this could be the key factor for its activity in vivo.
Collapse
Affiliation(s)
- Markus Steber
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
47
|
Soulière MF, Haller A, Rieder R, Micura R. A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding. J Am Chem Soc 2011; 133:16161-7. [PMID: 21882876 DOI: 10.1021/ja2063583] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A precise tertiary structure must be adopted to allow the function of many RNAs in cells. Accordingly, increasing resources have been devoted to the elucidation of RNA structures and the folding of RNAs. 2-Aminopurine (2AP), a fluorescent nucleobase analogue, can be substituted in strategic positions of DNA or RNA molecules to act as site-specific probe to monitor folding and folding dynamics of nucleic acids. Recent studies further demonstrated the potential of 2AP modifications in the assessment of folding kinetics during ligand-induced secondary and tertiary RNA structure rearrangements. However, an efficient way to unambiguously identify reliable positions for 2AP sensors is as yet unavailable and would represent a major asset, especially in the absence of crystallographic or NMR structural data for a target molecule. We report evidence of a novel and direct correlation between the 2'-OH flexibility of nucleotides, observed by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing and the fluorescence response following nucleotide substitutions by 2AP. This correlation leads to a straightforward method, using SHAPE probing with benzoyl cyanide, to select appropriate nucleotide sites for 2AP substitution. This clear correlation is presented for three model RNAs of biological significance: the SAM-II, adenine (addA), and preQ(1) class II (preQ(1)cII) riboswitches.
Collapse
Affiliation(s)
- Marie F Soulière
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
48
|
Luo Y, Eldho NV, Sintim HO, Dayie TK. RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency. Nucleic Acids Res 2011; 39:8559-71. [PMID: 21742763 PMCID: PMC3201860 DOI: 10.1093/nar/gkr464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obtaining homogeneous population of natively folded RNAs is a crippling problem encountered when preparing RNAs for structural or enzymatic studies. Most of the traditional methods that are employed to prepare large quantities of RNAs involve procedures that partially denature the RNA. Here, we present a simple strategy using ‘click’ chemistry to couple biotin to a ‘caged’ photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC GMP, accepted by T7 RNA polymerase, has been used to transcribe RNAs ranging in size from 27 to 527 nt. Furthermore we show, using an in-gel fluorescence assay, that natively prepared 160 and 175 kDa minimal group II intron ribozymes have enhanced catalytic activity over the same RNAs, purified via denaturing conditions and refolded. We conclude that large complex RNAs prepared by non-denaturing means form a homogeneous population and are catalytically more active than those prepared by denaturing methods and subsequent refolding; this facile approach for native RNA preparation should benefit synthesis of RNAs for biophysical and therapeutic applications.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg, College Park, MD 20742-3360, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Wittmann A, Suess B. Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. MOLECULAR BIOSYSTEMS 2011; 7:2419-27. [PMID: 21603688 DOI: 10.1039/c1mb05070b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic regulatory devices are key components for the development of complex biological systems and the reprogramming of cellular functions and networks. Here we describe the selection of tetracycline inducible hammerhead ribozymes. A tetracycline aptamer was fused to the full-length hammerhead ribozyme via a variable linker region. 11 rounds of in vitro selection were applied to isolate linker sequences that mediate tetracycline dependent hammerhead cleavage. We identified allosteric ribozymes that cleave in the presence of 1 μM tetracycline as fast as the full-length ribozyme whereas cleavage is inhibited up to 333-fold in the absence of tetracycline. Reporter gene assays indicate that the allosteric ribozymes can be employed to control gene expression in yeast.
Collapse
Affiliation(s)
- Alexander Wittmann
- Institute for Molecular Biosciences, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|