Minireviews
Copyright ©2013 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Med Genet. Nov 27, 2013; 3(4): 34-40
Published online Nov 27, 2013. doi: 10.5496/wjmg.v3.i4.34
Regulation of the cell fate by DNA damage and hypoxia
Ramkumar Rajendran, Marija Krstic-Demonacos, Constantinos Demonacos
Ramkumar Rajendran, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
Marija Krstic-Demonacos, School of Environment and Life Sciences, College of Science and Technology, Cockcroft Building, University of Salford, Manchester M5 4WT, United Kingdom
Constantinos Demonacos, Molecular Pharmacology and Cancer Biology, Faculty of Medical and Human Sciences, Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, United Kingdom
Author contributions: All authors contributed substantially to conception and design, acquisition of data described in the articles, drafting the article, designing the figures of the manuscript and revising it critically for important intellectual content, and approved the final version to be published.
Correspondence to: Constantinos Demonacos, PhD, Lecturer, Principal Investigator, Molecular Pharmacology and Cancer Biology, Faculty of Medical and Human Sciences, Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom. cdemonacos@manchester.ac.uk
Telephone: +44-161-2751793 Fax: +44-161-2752396
Received: June 13, 2013
Revised: September 6, 2013
Accepted: September 18, 2013
Published online: November 27, 2013
Core Tip

Core tip: The results of our work endorse the notion that specific features determine targeting of transcription factors to distinct clusters of their target genes including the nature of the DNA binding sites found within the regulatory region of the promoter of each one of the target genes, the composition of the cofactor network associated with different transcription factors under diverse types of stress conditions and the precise posttranslational modifications of each one of the transcription factors linking characteristic PTM codes with discrete types of micro-environmental stress. These features are essential considerations for the design of effective therapeutics and individualised cancer treatment.