1
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
2
|
Yuan W, Zhang J, Chen H, Zhuang Y, Zhou H, Li W, Qiu W, Zhou H. Natural compounds modulate the mechanism of action of tumour-associated macrophages against colorectal cancer: a review. J Cancer Res Clin Oncol 2024; 150:502. [PMID: 39546016 PMCID: PMC11568041 DOI: 10.1007/s00432-024-06022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Colorectal cancer (CRC) exhibits a substantial morbidity and mortality rate, with its aetiology and pathogenesis remain elusive. It holds significant importance within the tumour microenvironment (TME) and exerts a crucial regulatory influence on tumorigenesis, progression, and metastasis. TAMs possess the capability to foster CRC pathogenesis, proliferation, invasion, and metastasis, as well as angiogenesis, immune evasion, and tumour resistance. Furthermore, TAMs can mediate the prognosis of CRC. In this paper, we review the mechanisms by which natural compounds target TAMs to exert anti-CRC effects from the perspective of the promotional effects of TAMs on CRC, mainly regulating the polarization of TAMs, reducing the infiltration and recruitment of TAMs, enhancing the phagocytosis of macrophages, and regulating the signalling pathways and cytokines, and discuss the potential value and therapeutic strategies of natural compounds-targeting the TAMs pathway in CRC clinical treatment.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiexiang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
4
|
Kasikci M, Sen S. Resveratrol and quercetin protect from Benzo(a)pyrene-induced autophagy in retinal pigment epithelial cells. Int Ophthalmol 2024; 44:12. [PMID: 38319442 DOI: 10.1007/s10792-024-02957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE This study aims to investigate the role of Resveratrol (RES) and quercetin (QR) treatments against Benzo(a)pyrene (B(a)p)-induced autophagy in retinal pigment epithelial cells. METHODS The IC50 doses of B(a)p, RES and QR in retinal pigment epithelial cells were determined by MTT assay and the relevant agents were administered singly or in combinations to ARPE-19 cells for 24 h. Occurrence of autophagy in the cells was verified by detection of autophagosomes using fluorescence microscope. Also, the mRNA expression levels of LC3 and Beclin 1 genes were analyzed by RT-PCR to collect further data on autophagy. Caspase-3 and IL-1β levels in lysed cells were analyzed by ELISA. RESULTS Autophagosomes were detected in B(a)p-treated ARPE-19 cell lines, as well as a 1.787-fold increase in LC3 mRNA expression levels. No autophagosome occurred in RES and QR treatments, and a significant decrease in their percentage amounts were observed in B(a)p + RES and B(a)p + QR. The mRNA expression levels of LC3 and Beclin 1 also supported these findings. B(a)p had no effect on Caspase-3 levels in ARPE-19 cells, but combined with RES and QR, it increased Caspase-3 levels significantly.IL-1β levels were higher in B(a)p, B(a)p + QR, B(a)p + RES, RES and QR than control group. This rise in IL-1β levels was correlated with suppression of mRNA expression levels of Beclin 1. CONCLUSION B(a)p exposure caused autophagy in ARPE-19 cells, but did not induce apoptosis. RES and QR treatments prevented B(a)p-induced autophagy. Therefore, RES and QR treatments showed protective effect against potential degenerative diseases caused by chronic exposure to B(a)p.
Collapse
Affiliation(s)
- Murat Kasikci
- Department of Ophthalmology, Muğla Training and Research Hospital, Muğla, Turkey.
| | - Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Wu Y, Luo J, Xu B. Network pharmacology and bioinformatics to identify the molecular mechanisms of Gleditsiae Spina against colorectal cancer. Curr Res Toxicol 2023; 5:100139. [PMID: 38059131 PMCID: PMC10696432 DOI: 10.1016/j.crtox.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Objective In this study, network pharmacology, bioinformatics and molecular docking were used to explore the active phytochemicals, hub genes, and potential molecular mechanisms of Gleditsiae Spina in treating of colorectal cancer.. Methods The targets of Gleditsiae Spina, and targets related to CRC were derived from databases. We identified the hub genes for Gleditsiae Spina anti-colorectal cancer following the protein-protein-interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the hub genes from a macro perspective. Finally, we verified the hub genes by molecular docking, GEPIA, HPA, and starBase database. Results We identified nine active phytochemicals and 36 intersection targets. The GO enrichment analysis results showed that Gleditsiae Spina may be involved in gene targets affecting multiple biological processes, including response to radiation, response to ionizing radiation, cyclin-dependent protein kinase holoenzyme complex, serine/threonine protein kinase complex, cyclin-dependent protein serine/threonine kinase regulator activity and protein kinase regulator activity. KEGG enrichment analysis results indicated that the P53 signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, PI3K-Akt signaling pathway, and JAK-STAT signaling pathway were mainly related to the effect of Gleditsiae Spina on colorectal cancer. Molecular docking analysis suggested that the active phytochemicals of Gleditsiae Spina could combine well with hub genes (PTGS1, PIK3CG, CCND1, CXCL8 and ADRB2). Conclusion This study provides clues for further study of anti-CRC phytochemicals as well as their mechanisms of provides a basis for their development model.
Collapse
Affiliation(s)
- Yingzi Wu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
6
|
Li C, Xu Y, Zhang J, Zhang Y, He W, Ju J, Wu Y, Wang Y. The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice. Sci Rep 2023; 13:13278. [PMID: 37587146 PMCID: PMC10432483 DOI: 10.1038/s41598-023-39279-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
Resveratrol, curcumin, and quercetin are the secondary metabolites from medicinal food homology plants, that have been proven their potency in cancer treatment. However, the antitumor effect of a single component is weak. So, herein, we designed an antitumor compound named RCQ composed of resveratrol, curcumin, and quercetin. This study examined the effect on tumorigenesis and development of 4T1 breast cancer-bearing mice following administering RCQ by intragastric administration. RCQ increased the recruitment of T cells and reduced the accumulation of neutrophils and macrophages in the tumor microenvironment. Meanwhile, RCQ suppressed the development of tumor-infiltrating lymphocytes into immunosuppressive cell subpopulations, including CD4+ T cells to T helper Type 2 type (Th2), tumor-associated neutrophils (TANs) to the N2 TANs, and tumor-associated macrophages (TAMs) cells to M2 TAMs. RCQ reversed the predominance of immunosuppressive infiltrating cells in the tumor microenvironment and tipped the immune balance toward an immune activation state. In vitro the study showed that RCQ significantly increased reactive oxygen species (ROS), reduce mitochondrial membrane potentials in cancer cells, and modulate pro-apoptotic Bcl-2 family members. In conclusion, RCQ can promote the ROS apoptosis mechanism of tumor cells and alleviate immunosuppression of the tumor microenvironment to enhance the anti-tumor effect.
Collapse
Affiliation(s)
- Chenchen Li
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Associated Research Center for Intelligent Human Computer Collaboration on Tumor Precision Medicine, School of Pharmacy and The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yajun Xu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Junfeng Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuxi Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Wen He
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiale Ju
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yinghua Wu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yanli Wang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
7
|
Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis 2023; 14:132. [PMID: 36797245 PMCID: PMC9935907 DOI: 10.1038/s41419-023-05647-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Circular RNA (circRNAs) is a covalently closed circular non-coding RNA formed by reverse back-splicing from precursor messenger RNA. It is found widely in eukaryotic cells and can be released to the surrounding environment and captured by other cell types. This, circRNAs serve as connections between different cell types for the mediation of multiple signaling pathways. CircRNAs reshape the tumor microenvironment (TME), a key factor involved in all stages of cancer development, by regulating epithelial-stromal transformation, tumor vascularization, immune cell function, and inflammatory responses. Immune cells are the most abundant cellular TME components, and they have profound toxicity to cancer cells. This review summarizes circRNA regulation of immune cells, including T cells, natural killer cells, and macrophages; highlights the impact of circRNAs on tumor progression, treatment, and prognosis; and indicates new targets for tumor immunotherapy.
Collapse
|