1
|
Mlachak MK, Jahnke MA. Hypertrichosis Cubiti Presenting in a Female Child: A Case Report. Cureus 2025; 17:e83406. [PMID: 40322599 PMCID: PMC12049123 DOI: 10.7759/cureus.83406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Hypertrichosis cubiti is a rare form of unusual hair growth in the arms around the elbow area. Here, we report a case of hypertrichosis cubiti in a six-year-old female child with a sacral cleft, otherwise of normal health. Specifically, terminal hair growth was observed in this case. The excessive hair growth often poses aesthetic concerns for patients and can be treated to avoid emotional distress regarding physical appearance. Management of the condition typically involves common hair removal techniques, and over-the-counter depilatory creams and shaving were used to treat this case.
Collapse
|
2
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Kim MR, Yoo EG, Rhie S, Seo GH, Jung MK. Growth hormone deficiency in a boy with Wiedemann-Steiner syndrome: a case report and review. Ann Pediatr Endocrinol Metab 2023; 28:S25-S28. [PMID: 35798298 PMCID: PMC10783929 DOI: 10.6065/apem.2244052.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mi Ra Kim
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Eun-Gyong Yoo
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Seonkyeong Rhie
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | | | - Mo Kyung Jung
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
4
|
Wang S, Yan S, Xiao J, Chen Y, Chen A, Deng A, Wang T, He J, Peng X. A de novo mutation of ADAMTS8 in a patient with Wiedemann-Steiner syndrome. Mol Cytogenet 2023; 16:21. [PMID: 37649104 PMCID: PMC10469774 DOI: 10.1186/s13039-023-00654-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant disorder caused by mutations in the KMT2A gene and is usually characterized by hairy elbows, short stature, developmental delay, intellectual disability and obvious facial dysmorphism. CASE PRESENTATION Here, we report a 5-year-old girl with clinical features similar to WDSTS, including postnatal growth delay, retarded intellectual development, and ocular hypertelorism. Through whole-exome sequencing (WES), a frameshift variant of KMT2A was found in the patient but not in her parents' genomic DNA. By bioinformatics analysis, the KMT2A variant was demonstrated to be the top candidate pathogenic variant for the clinical phenotype consistent with WDSTS. Moreover, a duplication of exon 1 in ADAMTS8 (belonging to the zinc metalloproteinase family) was found in the genomic DNA of this patient, which may be responsible for the characteristics that are different from those of WDSTS, including early teething, rapid tooth replacement, and dysplastic enamel. CONCLUSIONS From the above results, we propose that in our patient, the frameshift variant in KMT2A is the main reason for the WDSTS phenotype, and the unreported mutation in ADAMTS8 may be the candidate reason for other characteristics that are different from those of WDSTS. Therefore, this study not only provides a new KMT2A variant associated with WDSTS but is also a reminder that combined mutations may be present in a case with more characteristics than those seen in WDSTS.
Collapse
Affiliation(s)
- Sifeng Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Shuyuan Yan
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Jingjun Xiao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Ying Chen
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Anji Chen
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Aimin Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Tuanmei Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiangwen Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Phenotypic Variation in Two Siblings Affected with Shwachman-Diamond Syndrome: The Use of Expert Variant Interpreter (eVai) Suggests Clinical Relevance of a Variant in the KMT2A Gene. Genes (Basel) 2022; 13:genes13081314. [PMID: 35893049 PMCID: PMC9394309 DOI: 10.3390/genes13081314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction. Shwachman-Diamond Syndrome (SDS) is an autosomal-recessive disorder characterized by neutropenia, pancreatic exocrine insufficiency, skeletal dysplasia, and an increased risk for leukemic transformation. Biallelic mutations in the SBDS gene have been found in about 90% of patients. The clinical spectrum of SDS in patients is wide, and variability has been noticed between different patients, siblings, and even within the same patient over time. Herein, we present two SDS siblings (UPN42 and UPN43) carrying the same SBDS mutations and showing relevant differences in their phenotypic presentation. Study aim. We attempted to understand whether other germline variants, in addition to SBDS, could explain some of the clinical variability noticed between the siblings. Methods. Whole-exome sequencing (WES) was performed. Human Phenotype Ontology (HPO) terms were defined for each patient, and the WES data were analyzed using the eVai and DIVAs platforms. Results. In UPN43, we found and confirmed, using Sanger sequencing, a novel de novo variant (c.10663G > A, p.Gly3555Ser) in the KMT2A gene that is associated with autosomal-dominant Wiedemann−Steiner Syndrome. The variant is classified as pathogenic according to different in silico prediction tools. Interestingly, it was found to be related to some of the HPO terms that describe UPN43. Conclusions. We postulate that the KMT2A variant found in UPN43 has a concomitant and co-occurring clinical effect, in addition to SBDS mutation. This dual molecular effect, supported by in silico prediction, could help to understand some of the clinical variations found among the siblings. In the future, these new data are likely to be useful for personalized medicine and therapy for selected cases.
Collapse
|
6
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
7
|
Evans DC, Novais EN. Severe Hip Dysplasia in Wiedemann-Steiner Syndrome Treated with Bilateral Bernese Periacetabular Osteotomy: A Case Report. JBJS Case Connect 2022; 12:01709767-202203000-00027. [PMID: 35050905 DOI: 10.2106/jbjs.cc.21.00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant disorder with many phenotypic characteristics, including multiple orthopaedic manifestations. Of these, symptomatic significant hip dysplasia has been variably noted. Nonetheless, few reports detail surgical treatment for these patients, including hip preservation for those with hip dysplasia. CONCLUSION Periacetabular osteotomy allows for the correction of severe hip dysplasia in patients with WDSTS. With proper recognition and timely intervention, adequate care may be provided for these patients.
Collapse
Affiliation(s)
- David C Evans
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
8
|
Wang S, Bleeck A, Nadif Kasri N, Kleefstra T, van Rhijn JR, Schubert D. SETD1A Mediated H3K4 Methylation and Its Role in Neurodevelopmental and Neuropsychiatric Disorders. Front Mol Neurosci 2021; 14:772000. [PMID: 34803610 PMCID: PMC8595121 DOI: 10.3389/fnmol.2021.772000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Posttranslational modification of histones and related gene regulation are shown to be affected in an increasing number of neurological disorders. SETD1A is a chromatin remodeler that influences gene expression through the modulation of mono- di- and trimethylation marks on Histone-H3-Lysine-4 (H3K4me1/2/3). H3K4 methylation is predominantly described to result in transcriptional activation, with its mono- di- and trimethylated forms differentially enriched at promoters or enhancers. Recently, dominant mostly de novo variants in SETD1A have clinically been linked to developmental delay, intellectual disability (DD/ID), and schizophrenia (SCZ). Affected individuals often display both developmental and neuropsychiatric abnormalities. The primary diagnoses are mainly dependent on the age at which the individual is assessed. Investigations in mouse models of SETD1A dysfunction have been able to recapitulate key behavioral features associated with ID and SCZ. Furthermore, functional investigations suggest disrupted synaptic and neuronal network function in these mouse models. In this review, we provide an overview of pre-clinical studies on the role of SETD1A in neuronal development. A better understanding of the pathobiology underlying these disorders may provide novel opportunities for therapeutic intervention. As such, we will discuss possible strategies to move forward in elucidating the genotype-phenotype correlation in SETD1A associated disorders.
Collapse
Affiliation(s)
- Shan Wang
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Anna Bleeck
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands.,Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
9
|
Luo S, Bi B, Zhang W, Zhou R, Chen W, Zhao P, Huang Y, Yuan L, He X. Three de novo variants in KMT2A (MLL) identified by whole exome sequencing in patients with Wiedemann-Steiner syndrome. Mol Genet Genomic Med 2021; 9:e1798. [PMID: 34469078 PMCID: PMC8580087 DOI: 10.1002/mgg3.1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/17/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Wiedemann–Steiner syndrome (WSS) is an autosomal dominant disorder characterized by short stature, hypertrichosis, intellectual disability, developmental delay, along with facial dysmorphism. WSS patients exhibit great phenotypic heterogeneities. Some variants in KMT2A (MLL) gene have been identified as the cause of WSS. Methods Whole exome sequencing on the probands followed by Sanger sequencing validations in the family were applied to determine genetic variants. In silico analyses were used for predicting potential effects of the variants. Results We identified three novel de novo heterozygous variants: c.883A>T (p.Lys295*), c.4171C>T (p.Gln1391*), and c.3499T>C (p.Cys1167Arg), in KMT2A gene from three unrelated Chinese WSS patients. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, these three variants were classified as pathogenic, pathogenic and likely pathogenic variant, respectively. By reviewing all the available cases with same mutated KMT2A regions as the three patients had, we found that in addition to the representative symptoms, our patients exhibited some sporadically observed symptoms, such as severe ophthalmological symptoms, endocardial fibroelastosis, cytomegalovirus infection, and feet eversion. We also revealed that variants in different KMT2A regions contribute to the phenotypic heterogeneity of WSS, highlighting challenges in the diagnosis of syndromic disorders spanning a broad phenotypic spectrum. Conclusion Our study would aid in further broadening our knowledge about the genotype–phenotype correlation of WSS.
Collapse
Affiliation(s)
- Sukun Luo
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Bi
- Rehabilitation Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqian Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rui Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China
| | - Peiwei Zhao
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Yuan
- Ultrasonography Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
10
|
Sharawat IK, Panda PK, Dawman L. Clinical Characteristics and Genotype-Phenotype Correlation in Children with KMT2E Gene-Related Neurodevelopmental Disorders: Report of Two New Cases and Review of Published Literature. Neuropediatrics 2021; 52:98-104. [PMID: 33111303 DOI: 10.1055/s-0040-1715629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In recent years, many new candidate genes are being identified as putative pathogenic factors in children with developmental delay and autism. Recently, heterozygous mutations in the KMT2E gene have been identified as a cause of a unique neurodevelopmental disorder with variable combination of global developmental delay or isolated speech delay, intellectual disability, autistic features, and seizures. METHODS Here, we present two new cases of KMT2E mutation-associated neurodevelopmental disorder in a 4-year-old girl and 5-year-old boy. We also performed a pooled review of the previously published cases of KMT2E-related neurodevelopmental disorder. Articles were identified through search engines using appropriate search terms. RESULTS Along with the presented 2 cases, 40 cases were analyzed. Out of them, 30, 6, and 4 children had protein-truncating mutations, missense mutations, and copy number variants, respectively. The common features were global developmental delay (97%) followed by macrocephaly (35%), seizures (30%), and autism (25%). Children with missense variants had severe phenotype, with microcephaly, profound developmental delay, and increased frequency of seizures. Neuroimaging revealed nonspecific changes, including cerebral white matter signal abnormalities. CONCLUSION KMT2E-related neurodevelopmental disorder remains one of the clinical differentials in children with global developmental delay and/or autistic features/seizure. With the reporting of more cases in the future, the already heterogeneous clinical spectrum of this disease is likely to be widened.
Collapse
Affiliation(s)
- Indar Kumar Sharawat
- Division of Pediatric Neurology, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Prateek Kumar Panda
- Division of Pediatric Neurology, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lesa Dawman
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Hirst L, Evans R. Wiedemann-Steiner syndrome: A case report. Clin Case Rep 2021; 9:1158-1162. [PMID: 33768801 PMCID: PMC7981703 DOI: 10.1002/ccr3.3704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
Wiedemann-Steiner syndrome (WDSTS) is an exceptionally rare autosomal dominant syndrome with considerable phenotypical variation. Clinical features include dysmorphic facial and skeletal features, growth deficiency, developmental delay, hypertrichosis cubiti and various dental features. We present a 7-year-old female with premature exfoliation of primary teeth and premature eruption of permanent teeth.
Collapse
Affiliation(s)
- Lorna Hirst
- Dental and Maxillofacial DepartmentGreat Ormond Street HospitalLondonUK
| | - Robert Evans
- Dental and Maxillofacial DepartmentGreat Ormond Street HospitalLondonUK
| |
Collapse
|
12
|
Wang X, Zhang G, Lu Y, Luo X, Wu W. Trio-WES reveals a novel de novo missense mutation of KMT2A in a Chinese patient with Wiedemann-Steiner syndrome: A case report. Mol Genet Genomic Med 2020; 9:e1533. [PMID: 33325147 PMCID: PMC7963408 DOI: 10.1002/mgg3.1533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Wiedemann-Steiner Syndrome (WSS) is an autosomal dominant genetic condition caused by mutations in the KMT2A gene. Lysine methyltransferase, encoded by KMT2A, plays critical roles in the regulation of gene expression during early development. METHODS Trio-based whole exome sequencing (Trio-WES) was performed on a 15 months old Chinese girl and her two parents by MyGenostics (Beijing, China) using the Illumina HiSeq X ten system. Variants were confirmed with Sanger sequencing. She exhibited mild/moderate intellectual disability (ID), hypotonia, hypertrichosis cubiti, hypertrichosis on the back, dysmorphic facies, psychomotor retardation, growth delay, small and puffy hands, fat pads anterior to calcanei, and palmar/plantar grooves. RESULTS Trio-WES revealed a novel de novo mutation of KMT2A gene (NM_001197104.1: c.3566G>T, p.Cys1189Phe). WSS was diagnosed based on WES and clinical features. CONCLUSION Our findings expand the phenotypic and mutation spectra of WSS.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guijiao Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Fontana P, Passaretti FF, Maioli M, Cantalupo G, Scarano F, Lonardo F. Clinical and molecular spectrum of Wiedemann-Steiner syndrome, an emerging member of the chromatinopathy family. World J Med Genet 2020; 9:1-11. [DOI: 10.5496/wjmg.v9.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Wiedemann-Steiner syndrome (OMIM #605130) is a rare congenital malformation syndrome characterized by hypertrichosis cubiti associated with short stature; consistent facial features, including long eyelashes, thick or arched eyebrows with a lateral flare, wide nasal bridge, and downslanting and vertically narrow palpebral fissures; mild to moderate intellectual disability; behavioral difficulties; and hypertrichosis on the back. It is caused by heterozygous pathogenic variants in KMT2A. This gene has an established role in histone methylation, which explains the overlap of Wiedemann-Steiner syndrome with other chromatinopathies, a heterogeneous group of syndromic conditions that share a common trigger: The disruption of one of the genes involved in chromatin modification, leading to dysfunction of the epigenetic machinery.
Collapse
Affiliation(s)
- Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento 82100, Italy
| | | | - Marianna Maioli
- Medical Genetics Unit, San Pio Hospital, Benevento 82100, Italy
| | | | | | | |
Collapse
|
14
|
Zhang H, Xiang B, Chen H, Chen X, Cai T. A novel deletion mutation in KMT2A identified in a child with ID/DD and blood eosinophilia. BMC MEDICAL GENETICS 2019; 20:38. [PMID: 30841869 PMCID: PMC6402113 DOI: 10.1186/s12881-019-0776-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
Abstract
Background The KMT2A gene encoded lysine methyltransferase plays an essential role in regulating gene expression during early development and hematopoiesis. To date, 92 different mutations of KMT2A have been curated in the human gene mutation database (HGMD), resulting in Wiedemann-Steiner syndrome (WDSTS) and intellectual disability (ID)/developmental delay (DD). Case presentation In this report, we present a de novo heterozygous deletion mutation [c.74delG; p. (Gly26Alafs*2)] in the KMT2A gene, which was identified by trio-based whole exome sequencing from a 5.5-year-old boy with ID/DD, stereotypic hand movements and blood eosinophilia. Many deleterious germline mutations of KMT2A have been documented to affect development of central nervous system, oral and craniofacial tissues, but not blood eosinophils. Conclusions This is the first report of a rare case with ID/DD as well as eosinophilia, resulting from a previously undescribed null mutation of KMT2A. Our findings expand the phenotypical spectrum in affected individuals with KMT2A mutations, and may shed some insight into the role of KMT2A in eosinophil metabolism. Electronic supplementary material The online version of this article (10.1186/s12881-019-0776-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haixia Zhang
- Second Xiangya Hospital, Central South University, Changsha, 410002, Hunan, China.,Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bingwu Xiang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hui Chen
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Feldman HR, Dlouhy SR, Lah MD, Payne KK, Weaver DD. The progression of Wiedemann-Steiner syndrome in adulthood and two novel variants in the KMT2A gene. Am J Med Genet A 2018; 179:300-305. [PMID: 30549396 DOI: 10.1002/ajmg.a.60698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Wiedemann-Steiner syndrome is a genetic condition associated with dysmorphic facies, hypertrichosis, short stature, developmental delay, and intellectual disability. Congenital malformations of the cerebral, cardiac, renal, and optic structures have also been reported. Because the majority of reported individuals with this condition have been under age 20, the long-term prognosis is not well defined. Here we report on two further unrelated individuals diagnosed with Wiedemann-Steiner syndrome, one of whom is in her third decade of life. In addition, both individuals have novel KMT2A mutations. The information provided below about the outcome in Wiedemann-Steiner syndrome is important for families of affected individuals.
Collapse
Affiliation(s)
- Hailey R Feldman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen R Dlouhy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa D Lah
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katelyn K Payne
- Section of Child Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Li N, Wang Y, Yang Y, Wang P, Huang H, Xiong S, Sun L, Cheng M, Song C, Cheng X, Ding Y, Chang G, Chen Y, Xu Y, Yu T, Yao RE, Shen Y, Wang X, Wang J. Description of the molecular and phenotypic spectrum of Wiedemann-Steiner syndrome in Chinese patients. Orphanet J Rare Dis 2018; 13:178. [PMID: 30305169 PMCID: PMC6180513 DOI: 10.1186/s13023-018-0909-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023] Open
Abstract
Background Wiedemann–Steiner syndrome (WDSTS) is a rare genetic disorder characterized by facial gestalt, neurodevelopmental delay, skeletal anomalies and growth retardation, which is caused by variation of KMT2A gene. To date, only 2 Chinese WDSTS patients have been reported. Here, we report the phenotypes and KMT2A gene variations in 14 unrelated Chinese WDSTS patients and investigate the phenotypic differences between the Chinese and French cohorts. Methods Next generation sequencing was performed for each patient, and the variants in the KMT2A gene were validated by Sanger sequencing. The phenotypes of 16 Chinese WDSTS patients were summarized and compared to 33 French patients. Results Genetic sequencing identified 13 deleterious de novo KMT2A variants in 14 patients, including 10 truncating, 2 missenses and 1 splicing variants. Of the 13 variants, 11 are novel and two have been reported previously. One of the patients is mosaic in the KMT2A gene. The variation spectra and phenotypic profiles of the Chinese WDSTS patients showed no difference with patients of other ethnicities; however, differ in the frequencies of several clinical features. We demonstrated that variations in the KMT2A gene can lead to both advanced and delayed bone age. We identified 6 novel phenotypes, which include microcephaly, deep palmar crease, external ear deformity, carpal epiphyseal growth retardation, dyslipidemia, and glossoptosis. In addition, patients harbored missense variants in the CXXC zinc finger domain of KMT2A showed more severe neurophenotypes. Conclusion Our study consists of the largest cohort of Chinese WDSTS patients that continues to expand the WDSTS phenotypic and variation spectrum. Our results support the notion that the CXXC zinc finger domain of KMT2A gene is a hotspot for missense variants associated with more severe neurophenotypes. Electronic supplementary material The online version of this article (10.1186/s13023-018-0909-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | | | - Hui Huang
- Central laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | - Shiyi Xiong
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Luming Sun
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolic Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders. Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xinran Cheng
- Department of Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, Sichuan Province, Chengdu, 610091, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
17
|
Stoyle G, Banka S, Langley C, Jones EA, Banerjee I. Growth hormone deficiency as a cause for short stature in Wiedemann-Steiner Syndrome. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM180085. [PMID: 30159147 PMCID: PMC6109209 DOI: 10.1530/edm-18-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
Wiedemann-Steiner Syndrome (WSS) is a rare condition characterised by short stature, hypertrichosis of the elbow, intellectual disability and characteristic facial dysmorphism due to heterozygous loss of function mutations in KMT2A, a gene encoding a histone 3 lysine 4 methyltransferase. Children with WSS are often short and until recently, it had been assumed that short stature is an intrinsic part of the syndrome. GHD has recently been reported as part of the phenotypic spectrum of WSS. We describe the case of an 8-year-old boy with a novel heterozygous variant in KMT2A and features consistent with a diagnosis of WSS who also had growth hormone deficiency (GHD). GHD was diagnosed on dynamic function testing for growth hormone (GH) secretion, low insulin-like growth factor I (IGF-I) levels and pituitary-specific MRI demonstrating anterior pituitary hypoplasia and an ectopic posterior pituitary. Treatment with GH improved height performance with growth trajectory being normalised to the parental height range. Our case highlights the need for GH testing in children with WSS and short stature as treatment with GH improves growth trajectory. Learning points Growth hormone deficiency might be part of the phenotypic spectrum of Wiedemann-Steiner Syndrome (WSS).Investigation of pituitary function should be undertaken in children with WSS and short stature. A pituitary MR scan should be considered if there is biochemical evidence of growth hormone deficiency (GHD).Recombinant human growth hormone treatment should be considered for treatment of GHD.
Collapse
Affiliation(s)
- George Stoyle
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK.,Manchester Medical School, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University, NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Claire Langley
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University, NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University, NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
18
|
Baer S, Afenjar A, Smol T, Piton A, Gérard B, Alembik Y, Bienvenu T, Boursier G, Boute O, Colson C, Cordier MP, Cormier-Daire V, Delobel B, Doco-Fenzy M, Duban-Bedu B, Fradin M, Geneviève D, Goldenberg A, Grelet M, Haye D, Heron D, Isidor B, Keren B, Lacombe D, Lèbre AS, Lesca G, Masurel A, Mathieu-Dramard M, Nava C, Pasquier L, Petit A, Philip N, Piard J, Rondeau S, Saugier-Veber P, Sukno S, Thevenon J, Van-Gils J, Vincent-Delorme C, Willems M, Schaefer E, Morin G. Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases. Clin Genet 2018; 94:141-152. [PMID: 29574747 DOI: 10.1111/cge.13254] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 families and mosaicism in one family. Clinically, we observed a broad phenotypic spectrum with regard to ID (mild to severe), the facies (typical or not of WSS) and associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Hypertrichosis cubiti that was supposed to be pathognomonic in the literature was found only in 61% of our cases. This is the largest series of WSS cases yet described to date. A majority of patients exhibited suggestive features, but others were less characteristic, only identified by molecular diagnosis. The prevalence of WSS was higher than expected in patients with ID, suggesting than KMT2A is a major gene in ID.
Collapse
Affiliation(s)
- S Baer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A Afenjar
- Unité de Génétique, Hôpital Armand Trousseau-La Roche-Guyon, AP-HP, Paris, France
| | - T Smol
- Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - A Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - B Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Y Alembik
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - T Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - G Boursier
- Département Génétique Médicale, Laboratoire génétique moléculaire maladies auto inflammatoires et maladies rares, CHRU de Montpellier, Montpellier, France
| | - O Boute
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - C Colson
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M-P Cordier
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - V Cormier-Daire
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - B Delobel
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Doco-Fenzy
- Service de Génétique, CHU de Reims, Reims, France
| | - B Duban-Bedu
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Fradin
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - D Geneviève
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - A Goldenberg
- Service de Génétique Médicale, CHU de Rouen, Rouen, France
| | - M Grelet
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - D Haye
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Heron
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - B Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - B Keren
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - A-S Lèbre
- Laboratoire de Génétique, Service de Génétique et Biologie de la Reproduction, CHU de Reims, Reims, France
| | - G Lesca
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - A Masurel
- Centre de Génétique, CHU Dijon, Hôpital d'Enfants, Dijon, France
| | | | - C Nava
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - L Pasquier
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - A Petit
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| | - N Philip
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - J Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU Besançon, Besançon, France
| | - S Rondeau
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - P Saugier-Veber
- Département de Génétique, CHU Rouen, Inserm U1079, Institut pour la recherche et l'innovation en Biomédecine, Université de Rouen, Rouen, France
| | - S Sukno
- Service de Neuropédiatrie, Hôpital Saint Vincent de Paul, Groupe Hospitalier de l'Institut Catholique Lillois, Faculté Libre de Médecine, Lille, France
| | - J Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - J Van-Gils
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - C Vincent-Delorme
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M Willems
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - E Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - G Morin
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
19
|
Lebrun N, Giurgea I, Goldenberg A, Dieux A, Afenjar A, Ghoumid J, Diebold B, Mietton L, Briand-Suleau A, Billuart P, Bienvenu T. Molecular and cellular issues of KMT2A variants involved in Wiedemann-Steiner syndrome. Eur J Hum Genet 2017; 26:107-116. [PMID: 29203834 DOI: 10.1038/s41431-017-0033-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Variants in KMT2A, encoding the histone methyltransferase KMT2A, are a growing cause of intellectual disability (ID). Up to now, the majority of KMT2A variants are non-sense and frameshift variants causing a typical form of Wiedemann-Steiner syndrome. We studied KMT2A gene in a cohort of 200 patients with unexplained syndromic and non-syndromic ID and identified four novel variants, one splice and three missense variants, possibly deleterious. We used primary cells from the patients and molecular approaches to determine the deleterious effects of those variants on KMT2A expression and function. For the putative splice variant c.11322-1G>A, we showed that it led to only one nucleotide deletion and loss of the C-terminal part of the protein. For two studied KMT2A missense variants, c.3460C>T (p.(Arg1154Trp)) and c.8558T>G (p.(Met2853Arg)), located at the cysteine-rich CXXC domain and the transactivation domain of the protein, respectively, we found altered KMT2A target genes expression in patient's fibroblasts compared to controls. Furthermore, we found a disturbed subcellular distribution of KMT2A for the c.3460C>T mutant. Taken together, our results demonstrated the deleterious impact of the splice variant and of the missense variants located at two different functional domains and suggested reduction of KMT2A function as the disease-causing mechanism.
Collapse
Affiliation(s)
- Nicolas Lebrun
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Irina Giurgea
- Service de Génétique, Hôpital Trousseau, Paris, France
| | - Alice Goldenberg
- Service de génétique, CHU de Rouen et Inserm U1079, Université de Rouen, Center Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Anne Dieux
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Alexandra Afenjar
- GRC Concer-LD, Sorbonne universités, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Jamal Ghoumid
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Bertrand Diebold
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Léo Mietton
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Briand-Suleau
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Pierre Billuart
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Bienvenu
- Inserm, Institut Cochin, U1016, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France.
| |
Collapse
|
20
|
Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis. Genet Med 2017; 20:645-654. [DOI: 10.1038/gim.2017.162] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
|
21
|
Enokizono T, Ohto T, Tanaka R, Tanaka M, Suzuki H, Sakai A, Imagawa K, Fukushima H, Iwabuti A, Fukushima T, Sumazaki R, Uehara T, Takenouchi T, Kosaki K. Preaxial polydactyly in an individual with Wiedemann-Steiner syndrome caused by a novel nonsense mutation in KMT2A. Am J Med Genet A 2017; 173:2821-2825. [PMID: 28815892 DOI: 10.1002/ajmg.a.38405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Wiedemann-Steiner syndrome (WDSTS) is an autosomal dominant disorder characterized by hypertrichosis, intellectual disability, and dysmorphic facial appearances (down-slanted vertically narrow palpebral fissures, wide nasal bridge, broad nasal tip, and thick eyebrows). In 2012, Jones and co-workers identified heterozygous mutations in KMT2A (lysine methyltransferase 2A) as the molecular cause of WDSTS. Although the phenotype of this syndrome continues to expand, the associated features are not fully understood. Here, we report WDSTS in a 12-year-old Japanese boy with a novel nonsense mutation in KMT2A. He had right preaxial polydactyly, which has not been previously reported in WDSTS. We could not identify a causal relationship between the KMT2A mutation and preaxial polydactyly, and cannot exclude the preaxial polydactyly is a simple coincidence. We summarized the clinical features of WDSTS associated with KMT2A mutation and discussed the cardinal symptoms in detail.
Collapse
Affiliation(s)
- Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tatsuyuki Ohto
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryuta Tanaka
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hisato Suzuki
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Aiko Sakai
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Iwabuti
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Aggarwal A, Rodriguez-Buritica DF, Northrup H. Wiedemann-Steiner syndrome: Novel pathogenic variant and review of literature. Eur J Med Genet 2017; 60:285-288. [PMID: 28359930 DOI: 10.1016/j.ejmg.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/30/2017] [Accepted: 03/15/2017] [Indexed: 01/28/2023]
Abstract
Wiedemann-Steiner syndrome (WDSTS) is a very rare genetic disorder characterized by short stature, intellectual disability and distinctive facial appearance. We present a five-year-old boy who was diagnosed with WDSTS based on identification of a novel de novo pathogenic variant in the KMT2A gene (OMIM: 159555) by Whole Exome Sequencing and supported by some characteristic clinical features. Genotype and phenotype of the patient is compared with the earlier reported patients in the literature, in an attempt to broaden our knowledge of this rare syndrome.
Collapse
Affiliation(s)
- Anjali Aggarwal
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States.
| | - David F Rodriguez-Buritica
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|