1
|
Nejat Dehkordi A, Maddahi M, Vafa P, Ebrahimi N, Aref AR. Salivary biomarkers: a promising approach for predicting immunotherapy response in head and neck cancers. Clin Transl Oncol 2025; 27:1887-1920. [PMID: 39377974 DOI: 10.1007/s12094-024-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 04/27/2025]
Abstract
Head and neck cancers, including cancers of the mouth, throat, voice box, salivary glands, and nose, are a significant global health issue. Radiotherapy and surgery are commonly used treatments. However, due to treatment resistance and disease recurrence, new approaches such as immunotherapy are being explored. Immune checkpoint inhibitors (ICIs) have shown promise, but patient responses vary, necessitating predictive markers to guide appropriate treatment selection. This study investigates the potential of non-invasive biomarkers found in saliva, oral rinses, and tumor-derived exosomes to predict ICI response in head and neck cancer patients. The tumor microenvironment significantly impacts immunotherapy efficacy. Oral biomarkers can provide valuable information on composition, such as immune cell presence and checkpoint expression. Elevated tumor mutation load is also associated with heightened immunogenicity and ICI responsiveness. Furthermore, the oral microbiota may influence treatment outcomes. Current research aims to identify predictive salivary biomarkers. Initial studies indicate that tumor-derived exosomes and miRNAs present in saliva could identify immunosuppressive pathways and predict ICI response. While tissue-based markers like PD-L1 have limitations, combining multiple oral fluid biomarkers could create a robust panel to guide treatment decisions and advance personalized immunotherapy for head and neck cancer patients.
Collapse
Affiliation(s)
| | - Moein Maddahi
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Parinaz Vafa
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chagas PS, Garcia CB, Leopoldino AM. Genomic Insights into Oral Cancer Highlight Mutant SIGMAR1 as a Critical Target to Overcome Chemoresistance. Biochem Genet 2025:10.1007/s10528-025-11108-0. [PMID: 40257692 DOI: 10.1007/s10528-025-11108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Oral cancer (OC) is a highly aggressive malignancy characterized by uncontrolled cell proliferation in the oral cavity. Recent studies have highlighted the role of Sigma-1 receptor (SIGMAR1) mutations in cancer progression, disrupting cellular homeostasis, altering gene and protein expression, and promoting drug resistance. However, its role in OC remains scarce. This study investigated SIGMAR1 mutations, expression profiles, and their potential link to drug resistance in OC. Using 2008 OC samples from the TCGA Pan-Cancer Atlas, we identified SIGMAR1 genetic alterations in 4% of cases, including missense mutations, deletions, and amplifications. In the HN13 OC cell line, Sanger sequencing revealed a novel heterozygous Asp-to-Gly (c.585C > G) missense mutation. Quantitative RT-PCR and Western blot analyses showed SIGMAR1 overexpression in HN13 cells compared to non-tumor oral keratinocytes (NOK-SI). Silencing SIGMAR1 increased HN13 cell sensitivity to cisplatin, indicating its role in drug resistance. This study is the first to report the c.585C > G mutation in SIGMAR1 and demonstrate its contribution to cisplatin resistance, a major chemotherapy challenge to OC treatment. These findings highlight SIGMAR1's critical role in OC pathogenesis and its potential as a therapeutic target to overcome chemoresistance. The results also pave the way for future research into RNA-based therapies and precision oncology interventions.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
3
|
Lin Y, Li Z, Zhang K, Li X, Shao L, Liu A. Correlation and prognosis analysis of human papillomavirus infection and P16 expression in oral and oropharyngeal squamous cell carcinomas. Sci Rep 2025; 15:11270. [PMID: 40175450 PMCID: PMC11965501 DOI: 10.1038/s41598-025-95643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The incidence of HPV-related oral squamous cell carcinomas (OSCC)and oropharyngeal squamous cell carcinomas (OPSCC) has increased significantly in recent years, but the role of HPV and P16 in OSCC and OPSCC remains controversial. Here, we evaluate the prevalence and prognostic significance of HPV-DNA, HPV E6E7 and P16 protein expression in OSCC and OPSCC patients. Additionally, we explore the correlation between P16 protein expression and HPV infection in these cases. The results show that the HPV DNA infection rate was significantly higher in OPSCC at 16.7% compared to 3.6% in OSCC (P = 0.002), HPV DNA positive cases were more prevalent in poorly- differentiated cases (P = 0.009). HPV E6E7 positive cases (10.4%) were only detected in OPSCC. P16 (+++) was observed in 6 of 48 OPSCC cases (12.5%) and in 1 of 140 OSCC cases (0.7%). P16 (+++) was significantly higher in OPSCC than in OSCC (P = 0.003). However, in OPSCC, Using P16 (+++) as a marker for HPV DNA infection yielded a sensitivity of 62.5%, Kappa coefficient between HPV DNA and P16 (+++) was 0.67 (P <0.0001). HPV DNA infection and P16 (+++) were not linked to prognosis (DFS: P = 0.35, P = 0.51; OS: P = 0.99, P = 0.96), Moreover, In OSCC, Age, T, N, and clinical stages were correlated with prognosis. Our results indicate that P16 (+++) can act as a biomarker for HPV- related high-risk tumors in OPSCC, yet not in OSCC. Besides, Older patients, less favorable T, N, and clinical stages having a worse prognosis in OSCC. In those with OPSCC, only the younger age of patients was associated with a better prognosis.
Collapse
Affiliation(s)
- Yandie Lin
- Department of Pathology, The Seventh Medical Center of PLA General Hospital, Beijinɡ, 100070, China
| | - Zhirui Li
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijinɡ, 100853, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Xiaoyue Li
- Department of Pathology, The Seventh Medical Center of PLA General Hospital, Beijinɡ, 100070, China
| | - Liwei Shao
- Department of Pathology, The Seventh Medical Center of PLA General Hospital, Beijinɡ, 100070, China
| | - Aijun Liu
- Department of Pathology, The Seventh Medical Center of PLA General Hospital, Beijinɡ, 100070, China.
| |
Collapse
|
4
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
5
|
Scheifer ST, Michels AC, Modolo F, Carla Dos Santos E, Scariot R, Aguiar MCF, Ignácio SA, de Noronha L, Martins LT, Frigeri HR, de Souza CM, Jham BC, Marins MH, Johann ACBR. Analysis of genetic polymorphism and expression of SOX2 in oral leukoplakia: a case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:430-438. [PMID: 39648056 DOI: 10.1016/j.oooo.2024.11.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024]
Abstract
PURPOSE To investigate the association of SOX2 polymorphisms with oral leukoplakia with dysplasia (OLD) and compare it with the immunohistochemical expression of SOX-2. METHODS The samples comprised 64 patients with oral leukoplakia and 20 with normal oral mucosa who were subjected to SOX2 polymorphism rs77677339 genotyping by real-time polymerase chain reaction and immunohistochemistry for SOX-2 (basal epithelium expression, suprabasal and total; nuclear area and intensity). Statistical tests included the Chi-square and Fisher's exact tests. RESULTS No significant difference was observed in genotype distribution between the OLD and control groups. The GG genotype (96.9%) was observed in the OLD group and 100% in the control group. The GA genotype was not observed in the control group. Statistical comparisons between the immunohistochemistry and genetic results were not statistically significant. No association was identified between rs77677339 and immunohistochemistry in OLD; however, the presence of allele A in heterozygotes with OLD suggests that this allele may serve as a risk marker. CONCLUSION The variant rs77677339 is localized in a region that contains different micro-RNA-binding sites, which can lead to changes in gene expression, contributing to OLD development through unclear molecular mechanisms. This study presents the preliminary results for this single nucleotide polymorphism in the literature.
Collapse
Affiliation(s)
- Suelen Teixeira Scheifer
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Arieli Carini Michels
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Filipe Modolo
- Universidade Federal de Santa Catarina, Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, Santa Catarina, Brazil, 88040-900
| | - Emanuela Carla Dos Santos
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Rafaela Scariot
- Universidade Federal do Paraná, Avenida Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba, Paraná, Brazil, 80210-170
| | - Maria Cassia Ferreira Aguiar
- Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil, 31270-901
| | - Sergio Aparecido Ignácio
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Lucia de Noronha
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Laysa Toschi Martins
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Henrique Ravanhol Frigeri
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Cleber Machado de Souza
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | - Bruno Correia Jham
- College of Dental Medicine - Illinois, Midwestern University, 555 31st Street, Cardinal Hall, Room 594, Downers Grove, Illinois, USA, 60515
| | - Mariana Hornung Marins
- Pontifícia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil, 80215-901
| | | |
Collapse
|
6
|
Hosseini TM, Jang SS, Bendik J, Guo T. Indisulam Shows an Anti-Cancer Effect on HPV+ and HPV- Head and Neck Cancer. Cancers (Basel) 2025; 17:1072. [PMID: 40227602 PMCID: PMC11987906 DOI: 10.3390/cancers17071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Background/Objectives: HPV+ head and neck squamous cell carcinoma has been shown to have a unique genomic background, requiring researchers to study it as its own distinct type of cancer. HPV+ tumors have been shown to exhibit fewer genetic mutations in cancer drivers as opposed to their HPV- counterparts. In this paper, we explored how targeting post-transcriptional changes, specifically alternative splicing events, could serve as a potential mechanism to treat HPV+ cancer. Methods: Using indisulam, a drug that targets alternative splicing through the degradation of RBM39, we treated various HPV+ and HPV- cell lines and assessed tumor cell viability. We also tested indisulam in vivo to evaluate its effect on tumor volume. Additionally, we analyzed gene expression differences between indisulam-treated subjects and their non-treated counterparts. Results: Indisulam treatment led to a reduction in tumor cell viability in both HPV+ and HPV- cell lines. In vivo experiments showed a reduction in tumor volume following indisulam treatment. Gene expression analysis revealed that indisulam induces consistent differential gene expression changes and highly enriches interferon pathways in treated HPV+ cell lines. Conclusions: These findings suggest that targeting alternative splicing via indisulam may be a promising therapeutic approach for HPV+ cancers. Further research is required to establish indisulam as a viable anti-cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Tara M. Hosseini
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophie S. Jang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Bendik
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otolaryngology-Head & Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Wang CP, Yu KJ, Chen TC, Tsai MS, Kang CJ, Chien CY, Engels EA, Hua CH, Hsu WL, Chang YL, Dawsey SM, Wentzensen N, Shi J, Mao F, Cheung LC, Katki HA, Boyd E, Wu CT, Gutkind JS, Molinolo A, Limbach AL, Lingen MW, Lou PJ, Chen CJ, Hildesheim A, Chaturvedi AK. Multistate oral carcinogenesis-A prospective cohort study and a parallel case-control study in Taiwan. Oral Oncol 2025; 162:107210. [PMID: 39947008 PMCID: PMC11912919 DOI: 10.1016/j.oraloncology.2025.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND To characterize multistate oral carcinogenesis, we conducted a cohort study of patients with oral precancer and a parallel case-control study of oral cancers and controls in Taiwan. METHODS During 2013-2019, we recruited patients with oral precancer (n = 1998) or invasive oral cancer (n = 768) and hospital-based controls (n = 717). Precancer patients were followed up biannually for up to five years; questionnaire data and biospecimens were collected at multiple timepoints. Precancer natural history (regression/persistence, incidence, progression) was evaluated through follow-up visits and linkages with Taiwan's Cancer Registry. COHORT UPDATES Cross-sectionally, 71 % of oral precancers and 62 % of cancers were attributable to betel-quid chewing, smoking, and alcohol. Precancer patients had substantially elevated risk of oral cancer (standardized-incidence-ratio vs. Taiwan general population = 14.1; 95 %CI = 12.0-16.6). Among precancer patients, 156 incident invasive oral cancers occurred (median follow-up = 6.4 years; incidence rate = 1,221/100,000 person-years; annual incidence = 1.2 %; 1-year cumulative-incidence = 1.8 %; 5-year cumulative-incidence = 6.9 %; 10-year cumulative-incidence = 9.5 %). Baseline precancer histopathology strongly predicted risk of progression to oral cancer (5-year cumulative-incidence: no-dysplasia = 5.2 %, mild-dysplasia = 7.1 %, moderate-dysplasia = 32.8 %, severe-dysplasia = 45.9 %). Most oral cancers (88.5 %) were preceded by precancers identified during the study. The study has established a resource of >63,500 biospecimens, including biopsies (n = 6,012), oral cytology (n = 18,422), oral rinses (n = 15,054), saliva (n = 15,066), and blood (n = 8,990). Ongoing investigations are characterizing oral carcinogenesis at the epidemiologic, macroscopic, microscopic, microbiomic, and genomic levels. CONCLUSIONS A majority of oral precancers/cancers in Taiwan are caused by betel-quid chewing, smoking, and alcohol. Patients with oral precancer have substantially elevated risk of site-concordant oral cancer. We highlight our study as a resource to collaboratively address questions regarding oral precancer/cancer natural history and clinical management.
Collapse
Affiliation(s)
- Cheng-Ping Wang
- National Taiwan University Hospital and College of Medicine Taiwan.
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Tseng-Cheng Chen
- National Taiwan University Hospital and College of Medicine Taiwan
| | | | | | | | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | | | | | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Cancer Center, National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Sanford M Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Fangya Mao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Li C Cheung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Hormuzd A Katki
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA
| | - Eric Boyd
- Information Management Systems Calverton MD USA
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center and National Taiwan University College of Medicine Taipei Taiwan
| | | | | | | | | | - Pei-Jen Lou
- National Taiwan University Hospital and College of Medicine Taiwan
| | | | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas (ACIB-FUNIN), Costa Rica
| | - Anil K Chaturvedi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville MD USA.
| |
Collapse
|
8
|
Lapa T, Páscoa RNMJ, Coimbra F, Medeiros L, Gomes PS. Oral squamous cell carcinoma identification by FTIR spectroscopy of oral biofluids. Oral Dis 2025; 31:729-740. [PMID: 39286967 DOI: 10.1111/odi.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This case study evaluated the efficacy of mid-infrared spectroscopy on the identification of oral squamous cell carcinoma, following the assessment of unstimulated whole saliva. STUDY DESIGN AND METHODS The trial follows a matched case-control design. Saliva samples were characterized through mid-infrared spectroscopy, and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions that played a pivotal role in the successful identification of oral squamous cell carcinoma. RESULTS Mid-infrared spectroscopy was capable to discriminate between cancer patients and matched controls with 100% of correct predictions. Additionally, the spectral regions mostly contributing to the successful prediction were identified and found to be potentially associated with significant molecular changes crucial to the carcinogenic process. CONCLUSION The application of mid-infrared spectroscopy in saliva analysis may be regarded as an innovative, noninvasive, low cost, and sensitive technique contributing to the identification of oral squamous cell carcionma.
Collapse
Affiliation(s)
- Teresa Lapa
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Filipe Coimbra
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Luís Medeiros
- Department of Stomatology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro S Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Skálová A, Bradová M, Agaimy A, Laco J, Badual C, Ihrler S, Damjanov I, Rupp NJ, Bacchi CE, Mueller S, Ventelä S, Zhang D, Comperat E, Martínek P, Šíma R, Vaněček T, Grossmann P, Steiner P, Hájková V, Kovářová I, Michal M, Leivo I. Molecular Profiling of Sinonasal Adenoid Cystic Carcinoma: Canonical and Noncanonical Gene Fusions and Mutation. Am J Surg Pathol 2025; 49:227-242. [PMID: 39760648 PMCID: PMC11834963 DOI: 10.1097/pas.0000000000002349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Adenoid cystic carcinomas (AdCC) of salivary gland origin have long been categorized as fusion-defined carcinomas owing to the almost universal presence of the gene fusion MYB::NFIB , or less commonly MYBL1::NFIB. Sinonasal AdCC is an aggressive salivary gland malignancy with no effective systemic therapy. Therefore, it is urgent to search for potentially targetable genetic alterations associated with AdCC. We have searched the authors' registries and selected all AdCCs arising in the sinonasal tract. The tumors were examined histologically, immunohistochemically, by next generation sequencing (NGS) and/or fluorescence in situ hybridization (FISH) looking for MYB/MYBL1 and/or NFIB gene fusions or any novel gene fusions and/or mutations. In addition, all tumors were tested for HPV by genotyping using (q)PCR. Our cohort comprised 88 cases of sinonasal AdCC, predominantly characterized by canonical MYB::NFIB (49 cases) and MYBL1::NFIB (9 cases) fusions. In addition, noncanonical fusions EWSR1::MYB ; ACTB::MYB; ESRRG::DNM3 , and ACTN4::MYB were identified by NGS, each of them in 1 case. Among nine fusion-negative AdCCs, FISH detected rearrangements in MYB (7 cases) , NFIB (1 case), and EWSR1 (1 case). Six AdCCs lacked fusions or gene rearrangements, while 11 cases were unanalyzable. Mutational analysis was performed by NGS in 31/88 (35%) AdCCs. Mutations in genes with established roles in oncogenesis were identified in 21/31 tumors (68%), including BCOR (4/21; 19%), NOTCH1 (3/21; 14%), EP300 (3/21; 14%), SMARCA4 (2/21; 9%), RUNX1 (2/21; 9%), KDM6A (2/21; 9%), SPEN (2/21; 9%), and RIT1, MGA, RB1, PHF6, PTEN, CREBBP, DDX41, CHD2, ROS1, TAF1, CCD1, NF1, PALB2, AVCR1B, ARID1A, PPM1D, LZTR1, GEN1 , PDGFRA , each in 1 case (1/21; 5%). Additional 24 cases exhibited a spectrum of gene mutations of uncertain pathogenetic significance. No morphologic differences were observed between AdCCs with MYBL1::NFIB and MYB::NFIB fusions. Interestingly, mutations in the NOTCH genes were seen in connection with both canonical and noncanonical fusions, and often associated with high-grade histology or metatypical phenotype, as well as with poorer clinical outcome. Noncanonical fusions were predominantly observed in metatypical AdCCs. These findings emphasize the value of comprehensive molecular profiling in correlating morphologic characteristics, genetic landscape, and clinical behavior in AdCC.
Collapse
Affiliation(s)
- Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Martina Bradová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU)
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Cécile Badual
- Service d’Anatomo-Pathologie, Department of Pathology, Hôpital Européen G Pompidou, APHP, Université de Paris
| | | | | | - Niels J. Rupp
- Department of Pathology, and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Sarina Mueller
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Erlangen, Erlanden
| | | | - Da Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Eva Comperat
- Department of Pathology, Tenon Hospital, Sorbonne University, Paris, France
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Petr Martínek
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Radek Šíma
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Tomas Vaněček
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Petr Grossmann
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Petr Steiner
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Veronka Hájková
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Inka Kovářová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Ilmo Leivo
- Pathology, Turku University Hospital
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Venetis K, Frascarelli C, Bielo LB, Cursano G, Adorisio R, Ivanova M, Mane E, Peruzzo V, Concardi A, Negrelli M, D'Ercole M, Porta FM, Zhan Y, Marra A, Trapani D, Criscitiello C, Curigliano G, Guerini-Rocco E, Fusco N. Mismatch repair (MMR) and microsatellite instability (MSI) phenotypes across solid tumors: A comprehensive cBioPortal study on prevalence and prognostic impact. Eur J Cancer 2025; 217:115233. [PMID: 39827722 DOI: 10.1016/j.ejca.2025.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Mismatch repair deficiency (MMR-d) and microsatellite instability (MSI) are prognostic and predictive biomarkers in oncology. Current testing for MMR/MSI relies on immunohistochemistry (IHC) for MMR proteins and molecular assays for MSI detection. This combined diagnostic strategy, however, lacks tumor specificity and does not account for gene variants. This study provides an in-depth analysis of MMR mutations frequency, spectrum, and distribution in solid tumors. Data from 23,893 patients across 11 tumor types, using 66 publicly available studies, were analyzed. MMR-mutated (MMR-m) status was defined by alterations in MLH1, PMS2, MSH2, and/or MSH6; MSI was assessed by MSIsensor. Cases with indeterminate labelling were excluded. Survival was analyzed using the Kaplan-Meier method. Among 19,353 tumors, 949 MMR variants were identified, comprising 432 pathogenic and 517 variants of unknown significance (VUS), as defined by OncoKB. MSH6 mutations were the most frequent (n = 279, 29.4 %), followed by MSH2 (n = 198, 20.9 %), MLH1 (n = 187, 19.7 %), and PMS2 (n = 161, 16.9 %). MMR-m cases were more frequent in endometrial (EC, 20.5 %), colorectal (CRC, 8.2 %), bladder (BLCA, 8.7 %), and gastroesophageal cancers (GEC, 5.4 %). Pathogenic mutations were more common than non-pathogenic in EC, CRC, and GEC (p < 0.001, p = 0.01, p = 0.32, respectively). MMR-m status was not associated with MSI in 247 (48.9 %) cases, including 67 (13.2 %) with pathogenic mutations. The highest concordance between MMR-m and MSI was observed in CRC (65.7 %), EC (91.2 %), and GEC (69.6 %), while the lowest in pancreatic (0.2 %) and lung cancers (0.1 %). MMR-m GECs showed improved overall survival compared to MMR-wt (p = 0.009), a relationship not observed in other tumor types. This study demonstrates that the MMR spectrum is extremely hetoerogeneous in solid tumors, highliting the need for comprehensive and tumor-specific testing strategies.
Collapse
Affiliation(s)
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Riccardo Adorisio
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Virginia Peruzzo
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Gormley M, Adhikari A, Dudding T, Pring M, Hurley K, Macfarlane GJ, Lagiou P, Lagiou A, Polesel J, Agudo A, Alemany L, Ahrens W, Healy CM, Conway DI, Canova C, Holcatova I, Richiardi L, Znaor A, Olshan AF, Hung RJ, Liu G, Bratman S, Zhao X, Holt J, Cortez R, Gaborieau V, McKay JD, Waterboer T, Brennan P, Hayes N, Diergaarde B, Virani S. VOYAGER: an international consortium investigating the role of human papilloma virus and genetics in oral and oropharyngeal cancer risk and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25322399. [PMID: 40034767 PMCID: PMC11875266 DOI: 10.1101/2025.02.17.25322399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer globally. Incidence and survival rates vary significantly across geographic regions and tumor subsites. This is partly due to differences in risk factor exposure, which includes tobacco smoking, alcohol consumption and human papillomavirus (HPV) infection, alongside detection and treatment strategies. The VOYAGER (human papillomaVirus, Oral and oropharYngeal cAncer GEnomic Research) consortium is a collaboration between five large North American and European studies which generated data on 10,530 participants (7,233 cases and 3,297 controls). The primary goal of the collaboration was to improve understing of the role of HPV and genetic factors in oral cavity and oropharyngeal cancer risk and outcome. Demographic and clinical data collected by the five studies were harmonized, and HPV status was determined for the majority of cases. In addition, 999 tumors were sequenced to define somatic mutations. These activities generated a comprehensive biomedical resource that can be utilized to answer critical outsting research questions to help improve HNC prevention, early detection, treatment, and surveillance.
Collapse
Affiliation(s)
- M Gormley
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust Bristol Dental Hospital, Bristol, UK
| | - A Adhikari
- University Hospitals Bristol NHS Foundation Trust Bristol Dental Hospital, Bristol, UK
| | - T Dudding
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - M Pring
- Bristol Dental School, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust Bristol Dental Hospital, Bristol, UK
| | - K Hurley
- University Hospitals Bristol NHS Foundation Trust Bristol Dental Hospital, Bristol, UK
| | - G J Macfarlane
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - P Lagiou
- School of Medicine, National and Kapodistrian University of Athens, Greece
| | - A Lagiou
- School of Public Health, University of West Attica, Greece
| | - J Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) National Cancer Institute, IRCCS, Italy
| | - A Agudo
- Nutrition and Cancer Unit, Cancer Epidemiology Research Program, Catalan Institute of Oncology/IDIBELL, Barcelona, Spain
| | - L Alemany
- Infections and Cancer Unit, Cancer Epidemiology Research Program, Catalan Institute of Oncology/IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP CB06/02/0073), Madrid, Spain
| | - W Ahrens
- Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany
| | - C M Healy
- School of Dental Science, Dublin Dental University Hospital, Trinity College Dublin, Irel
| | - D I Conway
- School of Medicine, Dentistry, and Nursing, University of Glasgow, UK
| | - C Canova
- Department of Cardiac, Thoracic and Vascular Sciences University of Padova, Italy
| | - I Holcatova
- Institute of Hygiene and Epidemiology, Charles University Prague, Czech Republic
| | - L Richiardi
- Reference Centre for Epidemiology and Cancer Prevention in Piemonte, Italy
| | - A Znaor
- Cancer Surveillance, International Agency for Research on Cancer, France
| | - A F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, US
| | - R J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - G Liu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Computational Biology and Medicine Program, Princess Margaret Cancer Centre, Toronto Canada
| | - S Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - X Zhao
- Department of Medicine, University of Tennessee, USA
| | - J Holt
- Department of Medicine, University of Tennessee, USA
| | - R Cortez
- Genomic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| | - V Gaborieau
- Genomic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| | - J D McKay
- Genomic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| | - T Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Brennan
- Genomic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| | - N Hayes
- Department of Medicine, University of Tennessee, USA
| | - B Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, US
| | - S Virani
- Genomic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
12
|
Verhees F, Demers I, Legemaate D, Jacobs R, Hoeben A, Kremer B, Speel EJ. Exploring the antiproliferative effect of PI3K/Akt/mTOR pathway and CDK4/6 inhibitors in human papillomavirus‑positive and ‑negative head and neck squamous cell carcinoma cell lines. Int J Oncol 2025; 66:13. [PMID: 39791215 PMCID: PMC11753768 DOI: 10.3892/ijo.2025.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025] Open
Abstract
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in PI3KCA, loss of PTEN or activation of receptor tyrosine kinases. In HPV‑negative tumors, CDKN2A (encoding p16 protein) inactivation or CCND1 (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines. Inhibitor efficacy was assessed in vitro using MTT assay and western blotting analysis. Cell cycle analysis was performed using flow cytometry and apoptosis was assessed using annexin V staining. Metabolic changes in terms of glycolysis and oxidative metabolism were measured by Seahorse XF96 extracellular Flux analysis. The results of the present study showed that both HPV‑positive and ‑negative HNSCC cell lines were sensitive to PI3Ki. In general, PI3Ki decreased PI3K/Akt/mTOR pathway activity, resulting in apoptosis, and decreased oxidative and glycolytic metabolism. The CDKi were particularly effective in blocking HPV‑negative cell line viability, showing decreased retinoblastoma expression and G1‑phase cell cycle arrest, whereas apoptosis was not induced. Thus, PI3Ki and CDKi efficiently inhibited their respective pathways and HNSCC cell viability in vitro, with the latter occurring only in HPV‑negative cell lines. Whereas PI3Ki induced apoptosis and attenuated cellular metabolism, CDKi led to cell cycle arrest. Further research should be performed to elucidate whether (a combination of) these inhibitors may be effective therapeutic agents for patients with HNSCC.
Collapse
Affiliation(s)
- Femke Verhees
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Imke Demers
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Dion Legemaate
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Robin Jacobs
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ernst-Jan Speel
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| |
Collapse
|
13
|
Durfee C, Bergstrom EN, Díaz-Gay M, Zhou Y, Temiz NA, Ibrahim MA, Nandi SP, Wang Y, Liu X, Steele CD, Proehl J, Vogel RI, Argyris PP, Alexandrov LB, Harris RS. Tobacco smoke carcinogens exacerbate APOBEC mutagenesis and carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633716. [PMID: 39896515 PMCID: PMC11785121 DOI: 10.1101/2025.01.18.633716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mutations in somatic cells are inflicted by both extrinsic and intrinsic sources and contribute over time to cancer. Tobacco smoke contains chemical carcinogens that have been causatively implicated with cancers of the lung and head & neck1,2. APOBEC family DNA cytosine deaminases have emerged as endogenous sources of mutation in cancer, with hallmark mutational signatures (SBS2/SBS13) that often co-occur in tumors of tobacco smokers with an equally diagnostic mutational signature (SBS4)3,4. Here we challenge the dogma that mutational processes are thought to occur independently and with additive impact by showing that 4-nitroquinoline 1-oxide (NQO), a model carcinogen for tobacco exposure, sensitizes cells to APOBEC3B (A3B) mutagenesis and leads to synergistic increases in both SBS2 mutation loads and oral carcinomas in vivo. NQO-exposed/A3B-expressing animals exhibit twice as many head & neck lesions as carcinogen-exposed wildtype animals. This increase in carcinogenesis is accompanied by a synergistic increase in mutations from APOBEC signature SBS2, but not from NQO signature SBS4. Interestingly, a large proportion of A3B-catalyzed SBS2 mutations occurs as strand-coordinated pairs within 32 nucleotides of each other in transcribed regions, suggesting a mechanism in which removal of NQO-DNA adducts by nucleotide excision repair exposes short single-stranded DNA tracts to enzymatic deamination. These highly enriched pairs of APOBEC signature mutations are termed didyma (Greek for twins) and are mechanistically distinct from other types of clustered mutation (omikli and kataegis). Computational analyses of lung and head & neck tumor genomes show that both APOBEC mutagenesis and didyma are elevated in cancers from smokers compared to non-smokers. APOBEC signature mutations and didyma are also elevated in normal lung tissues in smokers prior to cancer initiation. Collectively, these results indicate that DNA adducting mutagens in tobacco smoke can amplify DNA damage and mutagenesis by endogenous APOBEC enzymes and, more broadly, suggest that mutational mechanisms can interact synergistically in both cancer initiation and promotion.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain, 28029
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Yaxi Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P. Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|
14
|
Yadollahi P, McCord KA, Li Y, Dayoub H, Saab K, Essien F, Hyslop S, Kan E, Ahmed KM, Kirby PR, Putluri V, Ambati CSR, Kami Reddy KR, Castro P, Skinner HD, Coarfa C, Decker WK, Osman AA, Patel R, Myers JN, Lai SY, Putluri N, Johnson FM, Frederick MJ, Hudson WH, Sandulache VC. Bypassing cisplatin resistance in Nrf2 hyperactivated head and neck cancer through effective PI3Kinase targeting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632413. [PMID: 39868226 PMCID: PMC11761649 DOI: 10.1101/2025.01.10.632413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g., NOTCH1 mutations). Purpose We evaluated the efficacy of PI3K inhibitors (PI3Ki) in bypassing Nrf2-mediated cisplatin resistance in HNSCC. Methods We measured transcriptomic, metabolomic and signaling changes driven by PI3Kis in cisplatin-resistant HNSCCs in vitro and tested efficacy in vivo in subcutaneous, orthotopic and metastatic xenograft models using immunodeficient and humanized murine models of HNSCC coupled with spatial transcriptomics. Results The PI3K pathway is activated in Nrf2-driven cisplatin-resistant HNSCC and is suitable for blockade as demonstrated in an in vivo shRNA screen. The PI3Ki gedatolisib inhibits cisplatin-resistant HNSCC proliferation, induces G2M arrest and potentiates cisplatin effectiveness through activation of autophagy, senescence and disruption of fatty acid metabolism. Gedatolisib suppresses HNSCC tumor growth in orthotopic and metastatic settings and demonstrates profound anti-tumor activity in humanized murine models of HNSCC, coupled with a reduction in hypoxia-rich regions and reduced infiltration by regulatory T lymphocytes. Conclusion Our findings emphasize the critical role of the PI3K-AKT-mTOR pathway in cisplatin-resistant HNSCC and highlight the therapeutic potential of PI3K inhibitors. Gedatolisib induced metabolic regulation and substantial re-sensitization of resistant cells to cisplatin, positioning it as a promising candidate for combination therapies aimed at overcoming primary chemo-radiation failure in HNSCC.
Collapse
Affiliation(s)
- P Yadollahi
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - K A McCord
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Y Li
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - H Dayoub
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - K Saab
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX
| | - F Essien
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - S Hyslop
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - E Kan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - K M Ahmed
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - P R Kirby
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - V Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - C S R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - K R Kami Reddy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - P Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - H D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - C Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - W K Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - A A Osman
- Department of Head and Neck Surgery, UT MD Anderson Cancer Center, Houston, TX
| | - R Patel
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX
| | - J N Myers
- Department of Head and Neck Surgery, UT MD Anderson Cancer Center, Houston, TX
| | - S Y Lai
- Department of Head and Neck Surgery, UT MD Anderson Cancer Center, Houston, TX
| | - N Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - F M Johnson
- Department of Thoracic-Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX
| | - M J Frederick
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - W H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - V C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| |
Collapse
|
15
|
Batsaki P, Fortis SP, Gritzapis AD, Razou A, Sakellaridis AC, Grouzi E, Moschandreou D, Koukourakis MI, Zoumpourlis V, Baxevanis CN, Goulielmaki M. Identification of a Novel Immune-Gene Signature with Prognostic Value in Patients with Head and Neck Cancer: A Pilot Study. Biochem Genet 2025:10.1007/s10528-024-11017-8. [PMID: 39779579 DOI: 10.1007/s10528-024-11017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
The tumor microenvironment has a significant input on prognosis and also for predicting clinical outcomes in various types of cancers. However, tumor tissue is not always available, thus, rendering peripheral blood a preferable alternative in the search for prognostic and predictive gene signatures. Head and neck squamous cell carcinoma (HNSCC) constitutes a quite heterogeneous disease characterized by poor prognosis. Therefore, the discovery of novel therapeutics based on prognostic gene signatures for effective disease governance is of paramount importance. In this study, we report for the first time an immune-gene signature identified in the peripheral blood of HNSCC patients comprising five genes (CLEC4C, IL23A, LCK, LY9, and CD19) which were more than threefold downregulated as compared to healthy individuals and were associated with poor prognosis. By performing analyses of HNSCC tumor samples from The Cancer Genome Atlas (TCGA) database, we discovered that decreased expression of these genes, both as single genes and as a 5-gene signature (5-GS), was significantly correlated with worse overall survival (OS). Our data show that the levels of expression of the 5-GS represent an immune profile predicting OS in patients with HNSCC.
Collapse
Grants
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
- Τ2EDK-03266 European Regional Development Fund and Greek funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call Research-Create-Innovate
Collapse
Affiliation(s)
- Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Andriana Razou
- Department of Otorhinolaryngology/Head & Neck Surgery, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Athanasios C Sakellaridis
- Department of Otorhinolaryngology/Head & Neck Surgery, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635, Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522, Athens, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522, Athens, Greece.
| |
Collapse
|
16
|
Kudelka MR, Lavin Y, Sun S, Fuchs E. Molecular and cellular dynamics of squamous cell carcinomas across tissues. Genes Dev 2025; 39:18-35. [PMID: 39455281 PMCID: PMC11789493 DOI: 10.1101/gad.351990.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Squamous cell carcinomas (SCCs), arising from the skin, head and neck, lungs, esophagus, and cervix, are collectively among the most common cancers and a frequent cause of cancer morbidity and mortality. Despite distinct stratified epithelial tissues of origin, converging evidence points toward shared biologic pathways across SCCs. With recent breakthroughs in molecular technologies have come novel SCC treatment paradigms, including immunotherapies and targeted therapy. This review compares commonalities and differences across SCCs from different anatomical sites, including risk factors and genetics, as well as cellular and molecular programs driving tumorigenesis. We review landmark discoveries of the "cancer stem cells" (CSCs) that initiate and propagate SCCs and their gene and translational regulation programs. This has led to an appreciation that interactions between CSCs and the immune system play key roles in invasion and therapeutic resistance. Here, we review the unifying principles of SCCs that have emerged from these exciting advances in our understanding of these epithelial cancers.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yonit Lavin
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Siman Sun
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
17
|
Rauf S, Ullah S, Abid MA, Ullah A, Khan G, Khan AU, Ahmad G, Ijaz M, Ahmad S, Faisal S. A computational study of gene expression patterns in head and neck squamous cell carcinoma using TCGA data. Future Sci OA 2024; 10:2380590. [PMID: 39140365 PMCID: PMC11326450 DOI: 10.1080/20565623.2024.2380590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/03/2023] [Indexed: 08/15/2024] Open
Abstract
Aim: Head and Neck squamous cell carcinoma (HNSCC) is the second most prevalent cancer in Pakistan. Methods: Gene expression data from TCGA and GETx for normal genes to analyze Differentially Expressed Genes (DEGs). Data was further investigated using the Enrichr tool to perform Gene Ontology (GO). Results: Our analysis identified most significantly differentially expressed genes and explored their established cellular functions as well as their potential involvement in tumor development. We found that the highly expressed Keratin family and S100A9 genes. The under-expressed genes KRT4 and KRT13 provide instructions for the production of keratin proteins. Conclusion: Our study suggests that factors such as poor oral hygiene and smokeless tobacco can result in oral stress and cellular damage and cause cancer.
Collapse
Affiliation(s)
- Saqib Rauf
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | - Sami Ullah
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | | | - Asad Ullah
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Gullzar Khan
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | - Ainee Urooj Khan
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| | - Gulzar Ahmad
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Muhammad Ijaz
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| | - Sidra Ahmad
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Sulaiman Faisal
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| |
Collapse
|
18
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
19
|
Sannigrahi MK, Raghav L, Diab A, Basu D. The imprint of viral oncoproteins on the variable clinical behavior among human papilloma virus-related oropharyngeal squamous cell carcinomas. Tumour Virus Res 2024; 18:200295. [PMID: 39489416 PMCID: PMC11584912 DOI: 10.1016/j.tvr.2024.200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human papilloma virus-related (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) are variable in their progression, immune landscape, treatment responses, and clinical outcomes. Their behavior is impacted not only by differences in host genomic alterations but also by diversity in levels and activity of HPV-encoded oncoproteins. Striking differences in HPV mRNA levels are found among HPV+ OPSCCs and likely derive in part from variations in the structurally diverse mix of integrated and episomal HPV genomes they often contain. Viral oncoprotein levels and function are also impacted by differential splicing of the two long polycistronic transcripts of HPV16, the HPV type within most HPV+ OPSCCs. Further variation in viral oncoprotein function arises from the distinct lineages and sub-lineages of HPV16, which encode polymorphisms in functionally important portions of oncogenes. Here we review the limited current knowledge linking HPV mRNA expression and splicing to differences in oncoprotein function that likely influence OPSCC behavior. We also summarize the evolving understanding of HPV16 physical genome state and genetic variants and their potential contributions to HPV oncoprotein levels and function. Addressing considerable remaining challenges in defining the quantitative and qualitative imprint of HPV oncoproteins on each OPSCC holds promise to guide personalization of therapy for this disease.
Collapse
Affiliation(s)
- Malay K Sannigrahi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lovely Raghav
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Diab
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Liang H, Fisher ML, Wu C, Ballon C, Sun X, Mills AA. PRMT5/WDR77 Enhances the Proliferation of Squamous Cell Carcinoma via the ΔNp63α-p21 Axis. Cancers (Basel) 2024; 16:3789. [PMID: 39594744 PMCID: PMC11592282 DOI: 10.3390/cancers16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a critical oncogenic factor in various cancers, and its inhibition has shown promise in suppressing tumor growth. However, the role of PRMT5 in squamous cell carcinoma (SCC) remains largely unexplored. In this study, we analyzed SCC patient data from The Cancer Genome Atlas (TCGA) and the Cancer Dependency Map (DepMap) to investigate the relationship between PRMT5 and SCC proliferation. We employed competition-based cell proliferation assays, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, flow cytometry, and in vivo mouse modeling to examine the regulatory roles of PRMT5 and its binding partner WDR77 (WD repeat domain 77). We identified downstream targets, including the p63 isoform ΔNp63α and the cyclin-dependent kinase inhibitor p21, through single-cell RNA-seq, RT-qPCR, and Western blot analyses. Our findings demonstrate that upregulation of PRMT5 and WDR77 correlates with the poor survival of head and neck squamous cell carcinoma (HNSCC) patients. PRMT5/WDR77 regulates the HNSCC-specific transcriptome and facilitates SCC proliferation by promoting cell cycle progression. The PRMT5 and WDR77 stabilize the ΔNp63α Protein, which in turn, inhibits p21. Moreover, depletion of PRMT5 and WDR77 repress SCC in vivo. This study reveals for the first time that PRMT5 and WDR77 synergize to promote SCC proliferation via the ΔNp63α-p21 axis, highlighting a novel therapeutic target for SCC.
Collapse
Affiliation(s)
- Heng Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
- Molecular and Cell Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matthew L. Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| |
Collapse
|
21
|
Faraji F, Ramirez SI, Clubb L, Sato K, Burghi V, Hoang TS, Officer A, Anguiano Quiroz PY, Galloway WM, Mikulski Z, Medetgul-Ernar K, Marangoni P, Jones KB, Molinolo AA, Kim K, Sakaguchi K, Califano JA, Smith Q, Goren A, Klein OD, Tamayo P, Gutkind JS. YAP-Driven Oral Epithelial Stem Cell Malignant Reprogramming at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550427. [PMID: 37546810 PMCID: PMC10402053 DOI: 10.1101/2023.07.24.550427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells (TIC) at single cell resolution. TIC displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal (pEMT) invasive gene programs. YAP-mediated TIC programs included the activation of oncogenic transcriptional networks and mTOR signaling, and the recruitment of myeloid cells to the invasive front contributing to tumor infiltration. TIC transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.
Collapse
|
22
|
Philips R, Yalamanchi P, Topf MC. Trends and Future Directions in Margin Analysis for Head and Neck Cancers. Surg Oncol Clin N Am 2024; 33:651-667. [PMID: 39244285 DOI: 10.1016/j.soc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Margin status in head and neck cancer has important prognostic implications. Currently, resection is based on manual palpation and gross visualization followed by intraoperative specimen or tumor bed-based margin analysis using frozen sections. While generally effective, this protocol has several limitations including margin sampling and close and positive margin re-localization. There is a lack of evidence on the association of use of frozen section analysis with improved survival in head and neck cancer. This article reviews novel technologies in head and neck margin analysis such as 3-dimensional scanning, augmented reality, molecular margins, optical imaging, spectroscopy, and artificial intelligence.
Collapse
Affiliation(s)
- Ramez Philips
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA.
| | - Pratyusha Yalamanchi
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Michael C Topf
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA; Vanderbilt University School of Engineering, 1211 Medical Center Drive, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
24
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
25
|
Zhao J, Williams MD, Hernandez M, Kuang G, Goldberg H, Fan J, Ning J, Ferrarotto R, Esmaeli B. Prognostic Impact of Notch1 Intracellular Domain, P63, and c-MYC in Lacrimal Gland Adenoid Cystic Carcinoma. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 39230995 PMCID: PMC11379087 DOI: 10.1167/iovs.65.11.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 09/06/2024] Open
Abstract
Purpose We assessed whether NICD1 expression, c-MYC expression, and P63 expression by immunohistochemistry (IHC) correlate with prognosis and high-risk clinicopathological features in lacrimal gland adenoid cystic carcinoma (ACC). Methods Records of patients with lacrimal gland ACC who underwent surgery between 1998 to 2018 were reviewed. Clinicopathologic and treatment data were collected. Tumor tissues were subjected to light microscopy and IHC. Results Of 43 patients treated during the study period, 21 had archived tumor tissue available and were included. The median age at diagnosis was 47 years, and 13 patients (62%) were male. Thirteen patients (62%) had T2 disease, and none had nodal or distant metastasis at diagnosis. Tumors were positive for NICD1 expression in eight cases (38%), c-MYC expression in eight (38%), and P63 expression in 11 (52%). Positive NICD1 expression was associated with predominantly solid (vs. cribriform/tubular) pattern (P < 0.001), treatment with orbital exenteration (vs. eye-sparing surgery) (P = 0.008), local recurrence (P = 0.047), and death (P = 0.012). Negative P63 expression was associated with predominantly solid pattern (P = 0.001), local recurrence (P = 0.012), distant metastasis (P = 0.001), and death (P = 0.035). A higher percentage of tumor cells staining for c-MYC was associated with presence of perineural invasion (P = 0.036). Positive NICD1 expression was associated with worse disease-free survival (hazard ratio, 6.27; 95% CI, 1.29-30.46), whereas positive P63 expression was associated with better disease-free survival (hazard ratio, 0.03; 95% CI, 0.0002-0.26). Conclusions IHC for NICD1 and P63 should be considered in lacrimal gland ACC because of their prognostic value and potential as treatment targets.
Collapse
Affiliation(s)
- Jiawei Zhao
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Michelle D. Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Mike Hernandez
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Grace Kuang
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Hila Goldberg
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Janet Fan
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
26
|
La Banca V, De Domenico S, Nicolai S, Gatti V, Scalera S, Maugeri M, Mauriello A, Montanaro M, Pahnke J, Candi E, D’Amico S, Peschiaroli A. ABCC1 Is a ΔNp63 Target Gene Overexpressed in Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:8741. [PMID: 39201428 PMCID: PMC11354449 DOI: 10.3390/ijms25168741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The transcription factor ΔNp63 plays a pivotal role in maintaining the integrity of stratified epithelial tissues by regulating the expression of distinct target genes involved in lineage specification, cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily member ABCC1 as a novel ΔNp63 target gene. We found that in immortalized human keratinocytes and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels are positively correlated raising the possibility that ABCC1 might be involved in the regulation of the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice. Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment. Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those skin diseases characterized by dysregulation of proliferation/differentiation balance.
Collapse
Affiliation(s)
- Veronica La Banca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara De Domenico
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Stefano Scalera
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Marcello Maugeri
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology (PAT), Medical Faculty/Clinical Medicine (KlinMed), Clinics for Laboratory Medicine (KLM), University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway;
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, The Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv 6997801, Israel
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166 Rome, Italy
| | - Silvia D’Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| |
Collapse
|
27
|
Tian Y, Liu C, Yang W, Li X, Zhang M, Xiong Y, Ren X, Ma Z, Jin X, Wu Y, Dong X, Hu N, Xie Z, Qin Y, Wu S. Highlighting immune features of the tumor ecosystem and prognostic value of Tfh and Th17 cell infiltration in head and neck squamous cell carcinoma by single-cell RNA-seq. Cancer Immunol Immunother 2024; 73:187. [PMID: 39093451 PMCID: PMC11297013 DOI: 10.1007/s00262-024-03767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) typically present with a complex anatomical distribution, often accompanied by insidious symptoms. This combination contributes to its high incidence and poor prognosis. It is now understood that the immune features of cellular components within the tumor ecosystem and their complex interactions are critical factors influencing both tumor progression and the effective immune response. METHODS We obtained single-cell RNA sequencing data of 26,496 cells from three tumor tissues and five normal tissues and performed subsequent analyses. Immunohistochemical staining on tumor sections was used to validate the presence of malignant cells. Additionally, we included bulk RNA sequencing data from 502 HNSCC patients. Kaplan-Meier analysis and the log-rank test were employed to assess predictors of patient outcomes. RESULTS We identified three epithelial subclusters exhibiting immune-related features. These subclusters promoted the infiltration of T cells, dendritic cells, and monocytes into the tumor microenvironment. Additionally, cancer-associated fibroblasts displayed tumor-promoting and angiogenesis characteristics, contrasting with the predominant antigen-presenting and inflammatory roles observed in fibroblasts from normal tissues. Furthermore, tumor endothelial subsets exhibited a double-sided effect, promoting tumor progression and enhancing the effectiveness of immune response. Finally, follicular helper T cells and T helper 17 cells were found to be significantly correlated with improved outcomes in HNSCC patients. These CD4+ T cell subpopulations could promote the anti-tumor immune response by recruiting and activating B and T cells. CONCLUSION Our findings provide deeper insights into the immune features of the tumor ecosystem and reveal the prognostic significance of follicular helper T cells and T helper 17 cells. These findings may pave the way for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Yan Tian
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Wenhui Yang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Li
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Min Zhang
- Department of Radiation Oncology, Peking University People's Hospital, Beijing, China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Xueying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhiguo Ma
- Department of Neurology, Xi' an Aerospace General Hospital, Xian, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yanping Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Xin Dong
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Nanlin Hu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Zhijun Xie
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yong Qin
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China.
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
28
|
Joshi A, Ghosh A, Ramachandran V, Kuriakose M, Prabhash K, Kumar P. Precision Medicine and Clinical Trials in Advanced and Metastatic Oral Cancer. J Maxillofac Oral Surg 2024; 23:772-782. [PMID: 39118916 PMCID: PMC11303629 DOI: 10.1007/s12663-024-02254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Oral cancer is a significant global health concern, with high morbidity and mortality rates, particularly in regions with prevalent tobacco usage such as Asia. Majority of oral cancers are detected at an advanced stage resulting in poor survival outcomes. Moreover, the treatment modalities of oral cancers have remained constant with surgery and concurrent chemoradiotherapy being mainstays of the treatment. This review provides a significant progress made in understanding the molecular landscape of oral cancers and the evolution of therapeutic strategies toward precision medicine. Methods A comprehensive literature review was conducted to gather recent studies on the molecular landscape of oral cancers, genomic insights, and clinical trials. Results Firstly, genomic insights into oral cancers, including key driver mutations and copy number alterations, are discussed in the context of personalized medicine approaches. Subsequently, advancements in therapeutic strategies, particularly focusing on clinical trials investigating immunotherapy and targeted agents, are highlighted. Conclusion Despite promising results, challenges persist in identifying reliable biomarkers for treatment response and resistance. Continued research efforts are warranted to validate biomarkers and optimize therapeutic interventions, with the goal of enhancing patient outcomes and reducing the global burden of oral cancer.
Collapse
Affiliation(s)
- Asim Joshi
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
| | - Abantika Ghosh
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
| | - Venkataramanan Ramachandran
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
- Center of Excellence for Cancer – Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| | - Moni Kuriakose
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094 India
| | - Prashant Kumar
- Karkinos Healthcare Pvt Ltd, 21st Floor, Rupa Renaissance, D33, Turbhe MIDC Road, Navi Mumbai, Maharashtra 400705 India
- Karkinos Foundation, Mumbai, Maharashtra 400086 India
- Center of Excellence for Cancer – Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
| |
Collapse
|
29
|
Renz PF, Ghoshdastider U, Baghai Sain S, Valdivia-Francia F, Khandekar A, Ormiston M, Bernasconi M, Duré C, Kretz JA, Lee M, Hyams K, Forny M, Pohly M, Ficht X, Ellis SJ, Moor AE, Sendoel A. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution. Nature 2024; 632:419-428. [PMID: 39020166 PMCID: PMC11306103 DOI: 10.1038/s41586-024-07663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ameya Khandekar
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Minkyoung Lee
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Katie Hyams
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Marcel Pohly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland.
| |
Collapse
|
30
|
Tabatabaeian H, Bai Y, Huang R, Chaurasia A, Darido C. Navigating therapeutic strategies: HPV classification in head and neck cancer. Br J Cancer 2024; 131:220-230. [PMID: 38643337 PMCID: PMC11263586 DOI: 10.1038/s41416-024-02655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/22/2024] Open
Abstract
The World Health Organisation recognised human papillomavirus (HPV) as the cause of multiple cancers, including head and neck cancers. HPV is a double-stranded DNA virus, and its viral gene expression can be controlled after infection by cellular and viral promoters. In cancer cells, the HPV genome is detected as either integrated into the host genome, episomal (extrachromosomal), or a mixture of integrated and episomal. Viral integration requires the breakage of both viral and host DNA, and the integration rate correlates with the level of DNA damage. Interestingly, patients with HPV-positive head and neck cancers generally have a good prognosis except for a group of patients with fully integrated HPV who show worst clinical outcomes. Those patients present with lowered expression of viral genes and limited infiltration of cytotoxic T cells. An impediment to effective therapy applications in the clinic is the sole testing for HPV positivity without considering the HPV integration status. This review will discuss HPV integration as a potential determinant of response to therapies in head and neck cancers and highlight to the field a novel therapeutic avenue that would reduce the cancer burden and improve patient survival.
Collapse
Affiliation(s)
| | - Yuchen Bai
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Ruihong Huang
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Charbel Darido
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
31
|
Gill JS, Bansal B, Poojary R, Singh H, Huang F, Weis J, Herman K, Schultz B, Coban E, Guo K, Mathur R. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets. Cancers (Basel) 2024; 16:2399. [PMID: 39001461 PMCID: PMC11240534 DOI: 10.3390/cancers16132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rayansh Poojary
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jett Weis
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kristian Herman
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Brock Schultz
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Emre Coban
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| |
Collapse
|
32
|
Balhara N, Yadav R, Ranga S, Ahuja P, Tanwar M. Understanding the HPV associated cancers: A comprehensive review. Mol Biol Rep 2024; 51:743. [PMID: 38874682 DOI: 10.1007/s11033-024-09680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Human papillomavirus (HPV), a common cause of sexually transmitted diseases, may cause warts and lead to various types of cancers, which makes it important to understand the risk factors associated with it. HPV is the leading risk factor and plays a crucial role in the progression of cervical cancer. Viral oncoproteins E6 and E7 play a pivotal role in this process. Beyond cervical cancer, HPV-associated cancers of the mouth and throat are also increasing. HPV can also contribute to other malignancies like penile, vulvar, and vaginal cancers. Emerging evidence links HPV to these cancers. Research on the oncogenic effect of HPV is still ongoing and explorations of screening techniques, vaccination, immunotherapy and targeted therapeutics are all in progress. The present review offers valuable insight into the current understanding of the role of HPV in cancer and its potential implications for treatment and prevention in the future.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
33
|
Tveriakhina L, Scanavachi G, Egan ED, Da Cunha Correia RB, Martin AP, Rogers JM, Yodh JS, Aster JC, Kirchhausen T, Blacklow SC. Temporal dynamics and stoichiometry in human Notch signaling from Notch synaptic complex formation to nuclear entry of the Notch intracellular domain. Dev Cell 2024; 59:1425-1438.e8. [PMID: 38574735 DOI: 10.1016/j.devcel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.
Collapse
Affiliation(s)
- Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy S Yodh
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Ou D, Wu Y, Zhang J, Liu J, Liu Z, Shao M, Guo X, Cui S. MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochem Genet 2024; 62:1657-1674. [PMID: 37667096 DOI: 10.1007/s10528-023-10484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.
Collapse
Affiliation(s)
- Deming Ou
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China.
| | - Ying Wu
- Department of Stomatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jibin Zhang
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Jun Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Zeyu Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Minfeng Shao
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Xiaoying Guo
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Shiman Cui
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
35
|
Michikawa C, Gleber-Netto FO, Pickering CR, Rao X, Wang J, Sikora AG, Myers JN, Frederick MJ. Immune infiltration at the primary tumor is associated with clinical outcome of patients with extranodal extension of lymph node metastasis in oral cancer. Oral Oncol 2024; 153:106729. [PMID: 38663156 DOI: 10.1016/j.oraloncology.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Extranodal extension (ENE) of lymph node metastasis is one of the most reliable prognostic indicators for patients with locally advanced oral cancer. Although multiple reports have found a close relationship between immune infiltration of tumors and patient clinical outcomes, its association with ENE is unknown. METHODS We identified 234 human papillomavirus-negative (HPV-) oral cavity squamous cell carcinoma (OSCC) patients in The Cancer Genome Atlas and investigated the immune infiltration profiles of primary tumors and their association with survival. RESULTS Hierarchical clustering analysis clearly classified the overall immune infiltration status in OSCC into high immune or low immune groups. The combination of ENE positivity and low immune infiltration was strongly associated with poor overall survival (OS) compared to the combination of ENE positivity and high immune infiltration [hazard ratio 2.04 (95 %CI, 1.08-3.83); p = 0.024]. The immune infiltration status was not associated with OS rates in patients with ENE-negative or node negative tumors. CONCLUSION Overall Immune infiltration at the primary site was significantly associated with clinical outcome of OSCC patients with ENE.
Collapse
Affiliation(s)
- Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
36
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Fatima S, Bibi A, Qureshi SS, Khan S. Analysis of mutational variations in TP53 tumour suppressor gene among Pakistani head and neck cancer patients. Ecancermedicalscience 2024; 18:1703. [PMID: 39021553 PMCID: PMC11254404 DOI: 10.3332/ecancer.2024.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Indexed: 07/20/2024] Open
Abstract
The aim of this study was to determine the frequency of TP53 mutation among Pakistani head and neck cancer (HNC) patients who visited Nishtar Hospital Multan and Nishtar Institute of Dentistry (NID), Multan, Pakistan. While significant research has been conducted on the role of p53 in HNC throughout the world, this study is the first of its kind in Southern Punjab, Pakistan. A total of 242 samples (121 cases and 121 controls) were collected from Nishtar Hospital Multan and NID, Multan, Pakistan. After histopathological analysis to determine the stage type and grade of malignancy, DNA extraction and sequencing were carried out to assess any mutations in the TP53 region (exons 5-8). Genetic screening was performed by the polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) technique and Chromas 2.6.6 was used to visualise the sequencing results. The mean age of cases was 50.73 ±16.41 years and controls were 37.55 ± 15.51 years. The frequency of HNC was higher in male patients (65.28%) than in female patients (34.71%). Overall, this cancer was found to be significantly more prevalent in the age group of >35-55 years (p < 0.001). Smoking (51% versus 14%), naswar usage (15.7% versus 6.6%), poor oral hygiene (52.9% versus 29.8%) and anemic status (57.0% versus 4.1%) were significantly associated with cases (p ≤ 0.05) compared to controls. Only 04 samples exon 5 (1 sample), exon 7 (2 samples) and exon 8 (1 sample) with changed mobility patterns were found on the SSCP gel. All mutations were missense and heterozygous. Out of four mutant samples, three mutations were in the hotspot regions (codon 175, 245 and 248) of p53. Based on this study, there may be a weak association between the TP53 exon 5-8 mutation and HNC patients in Southern Punjab, Pakistan.
Collapse
Affiliation(s)
- Summera Fatima
- Department of Zoology, The Women University Multan, Multan 60000, Pakistan
| | - Asia Bibi
- Department of Zoology, The Women University Multan, Multan 60000, Pakistan
| | | | - Suman Khan
- Nishtar Medical University & Hospital, Multan 60000, Pakistan
| |
Collapse
|
38
|
Ono S, Hirose K, Sukegawa S, Obata K, Masui M, Hasegawa K, Fujimura A, Shimada K, Nakamura S, Teramoto A, Hori Y, Morii E, Motooka D, Igawa T, Tanaka T, Nagatsuka H, Toyosawa S, Yamamoto H. Squamous cell carcinoma initially occurring on the tongue dorsum: a case series report with molecular analysis. Diagn Pathol 2024; 19:63. [PMID: 38650013 PMCID: PMC11034101 DOI: 10.1186/s13000-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) of the dorsum of the tongue is extremely rare, and it clinically resembles various benign lesions. Somatic mutations in TP53 and some driver genes were implicated in the development of SCC; however, the somatic genetic characteristics of dorsal tongue SCC remain unknown. With a detailed analysis of gene mutations in dorsal tongue SCC, we aimed to better understand its biology. METHODS Four cases of SCC initially occurring on the tongue dorsum were evaluated for clinical and histological findings and immunohistochemical expression of p53 and p16. Gene mutations were analyzed using next-generation sequencing with a custom panel of driver genes. RESULTS We retrospectively investigated 557 cases of tongue SCC, and only four cases of SCC initially occurred on the tongue dorsum. The four patients (cases 1-4) were one woman and three men with a mean age of 53.75 years (range: 15-74 years). Histological analysis revealed well-differentiated SCC. Through molecular analysis, we identified pathogenic somatic mutations, namely, TP53 p.C176F (c.527G > T) in case 3 and TP53 p.R282W (c.844 C > T) in case 4. No pathogenic variants were identified in the PI3K/AKT or RAS/RAF pathways. The p53 immunohistochemical examination revealed a wild-type expression pattern in cases 1-3 and strong expression in case 4. The results of p16 immunostaining were negative in all cases. CONCLUSIONS We described four previously unreported genetic characteristics of dorsal tongue SCC. Somatic TP53 mutations may contribute to the development of a subset of dorsal tongue SCC; however, more cases with genetic analysis need to be accumulated.
Collapse
Affiliation(s)
- Sawako Ono
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shintaro Sukegawa
- Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, 1-2-1 Asahimachi, Takamatsu, Kagawa, 760-8557, Japan
| | - Kazuaki Hasegawa
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, 1-2-1 Asahimachi, Takamatsu, Kagawa, 760-8557, Japan
| | - Ai Fujimura
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, 1-2-1 Asahimachi, Takamatsu, Kagawa, 760-8557, Japan
| | - Katsumitsu Shimada
- Department of Clinical Pathophysiology, Matsumoto Dental University Graduate School of Oral Medicine, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Satoko Nakamura
- Department of Pathology, Kagawa Prefectural Central Hospital, 1-2-1 Asahimachi, Takamatsu, Kagawa, 760-8557, Japan
| | - Akari Teramoto
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, Osaka, 540-0006, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Igawa
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetaka Yamamoto
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
39
|
Prime SS, Darski P, Hunter KD, Cirillo N, Parkinson EK. A Review of the Repair of DNA Double Strand Breaks in the Development of Oral Cancer. Int J Mol Sci 2024; 25:4092. [PMID: 38612901 PMCID: PMC11012950 DOI: 10.3390/ijms25074092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Piotr Darski
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Keith D. Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
40
|
Han Q, Shi J, Liu J, Fu Y, Li Z, Guo H, Guan X, Xue X, Liu H, Zhao L, Zhang C. Decoding the research landscape of drug resistance and therapeutic approaches in head and neck cancer: a bibliometric analysis from 2000 to 2023. Front Pharmacol 2024; 15:1375110. [PMID: 38645557 PMCID: PMC11026562 DOI: 10.3389/fphar.2024.1375110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Head and neck cancer is one of the most common tumors worldwide. However, drug resistance in its treatment has become a major factor limiting the efficacy. This study aims to comprehensively understand the current status of research in this field. Methods The study analyzes papers related to therapeutic resistance in head and neck cancer published between 2000 and 2023 in the Web of Science Core Collection To achieve the research objectives, we searched the WoSCC for research and review papers on therapeutic resistance in head and neck cancer from 2000 to 2023, screened the English literature, and analyzed the research hotspots, academic collaborations, and trends in detail using tools such as Citespace, SCImago Graphica, and VOS viewer. Results This study summarizes 787 head and neck cancer treatment resistance publications from WoSCC. The analysis showed that China and the United States are the major contributors in this field, and Grandis Jennifer R and Yang Jai-Sing are the key scholars. Keyword analysis showed that "cisplatin resistance" is a continuing focus of attention, while "Metastasis" and "Ferroptosis" may be emerging research hotspots. Literature clustering analysis pointed out that "Ferroptosis", "Immunotherapy" and "ERK signaling" were the recent hotspots that received extensive attention and citations. Finally, we discuss the current status and challenges in drug-resistant therapies for head and neck cancer. Conclusion This study is the first comprehensive bibliometric analysis of drug resistance in head and neck cancer. Reveals current trends and helps researchers grasp cutting-edge hotspots in the field.
Collapse
Affiliation(s)
- Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqi Shi
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jiaojiao Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yang Fu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
Ahmed AA, Sborchia M, Bye H, Roman-Escorza M, Amar A, Henley-Smith R, Odell E, McGurk M, Simpson M, Ng T, Sawyer EJ, Mathew CG. Mutation detection in saliva from oral cancer patients. Oral Oncol 2024; 151:106717. [PMID: 38412584 PMCID: PMC11393295 DOI: 10.1016/j.oraloncology.2024.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES The incidence of head and neck squamous cell carcinoma (HNSCC) continues to increase and although advances have been made in treatment, it still has a poor overall survival with local relapse being common. Conventional imaging methods are not efficient at detecting recurrence at an early stage when still potentially curable. The aim of this study was to test the feasibility of using saliva to detect the presence of oral squamous cell carcinoma (OSCC) and to provide additional evidence for the potential of this approach. MATERIALS AND METHODS Fresh tumor, whole blood and saliva were collected from patients with OSCC before treatment. Whole exome sequencing (WES) or gene panel sequencing of tumor DNA was performed to identify somatic mutations in tumors and to select genes for performing gene panel sequencing on saliva samples. RESULTS The most commonly mutated genes identified in primary tumors by DNA sequencing were TP53 and FAT1. Gene panel sequencing of paired saliva samples detected tumor derived mutations in 9 of 11 (82%) patients. The mean variant allele frequency for the mutations detected in saliva was 0.025 (range 0.004 - 0.061). CONCLUSION Somatic tumor mutations can be detected in saliva with high frequency in OSCC irrespective of site or stage of disease using a limited panel of genes. This work provides additional evidence for the suitability of using saliva as liquid biopsy in OSCC and has the potential to improve early detection of recurrence in OSCC. Trials are currently underway comparing this approach to standard imaging techniques.
Collapse
Affiliation(s)
- Ahmed A Ahmed
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London SE1 9RT, United Kingdom.
| | - Mateja Sborchia
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London SE1 9RT, United Kingdom
| | - Hannah Bye
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Maria Roman-Escorza
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London SE1 9RT, United Kingdom
| | - Ariella Amar
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Rhonda Henley-Smith
- KHP Head & Neck Cancer Biobank, Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Edward Odell
- King's College London and Head and Neck Pathology Guy's Hospital, London SE1 9RT, United Kingdom
| | - Mark McGurk
- Department of Head and Neck Surgery, University College London Hospital, London NW1 2BU, United Kingdom
| | - Michael Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Medical School Campus, London SE1 1UL, United Kingdom
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London SE1 9RT, United Kingdom
| | - Christopher G Mathew
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom; Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
42
|
Thamilselvan S, Pandiar D, Krishnan RP, Chitra S. Cytokeratin 8 depicts nodal metastasis in head and neck squamous cell carcinoma. J Oral Maxillofac Pathol 2024; 28:247-252. [PMID: 39157840 PMCID: PMC11329098 DOI: 10.4103/jomfp.jomfp_168_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024] Open
Abstract
Background Nodal involvement in squamous cell carcinoma is an important feature directly associated with the poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). There are no clear cut indicators available currently to identify the lymph node metastases and overall prognosis in HNSCC. Thus, the current study was conducted to correlate the immunoexpression of cytokeratins (CK) 8, 10, and 14 with lymph node metastases and tumour differentiation in patients with HNSCC. Material and Methods The study population included 61 retrospective cases of HNSCC with lymph node metastases (n = 31) and without lymph node metastases (n = 30). Expression of CK 8, 10, and 14 was assessed by immunohistochemical staining procedure. Using Pearson's Chi-square test and Spearman's correlation coefficient, the correlation of these markers with lymph node metastases and tumour differentiation was statistically analysed. Results The expression of CKs in HNSCC cases was higher than in controls. In nodal metastasis cases, CK 8 expression was noted in >50% of the tumour cells at the invasive tumour front (ITF) (P value 0.008), and in cases without nodal metastasis, <1% or negative expression was noted. CK 10 expression gradually decreased as the tumour grade increased. Association of CK 10 expression and tumour differentiation exhibited statistically significant results (P value 0.03). CK 14 expression was noted in the entire epithelium and at the ITF, strongly in most cases; however, CK 14 did not correlate with the lymph node metastasis and tumour differentiation as well. Conclusion We found a strong correlation of CK 8 expression with nodal metastasis in HNSCC, and it can be utilised as a reliable prognostic indicator.
Collapse
Affiliation(s)
- Snega Thamilselvan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Reshma P. Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - S. Chitra
- Department of Pathology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
43
|
Zhou X, Bao W, Zhu X, Wang D, Zeng P, Xia G, Xing M, Zhan Y, Yan J, Yuan M, Zhao Q. Molecular characteristics and multivariate survival analysis of 43 patients with locally advanced or metastatic esophageal squamous cell carcinoma. J Thorac Dis 2024; 16:1843-1853. [PMID: 38617776 PMCID: PMC11009591 DOI: 10.21037/jtd-23-1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 04/16/2024]
Abstract
Background Esophageal cancer (EC) is an aggressive malignant tumor with poor prognosis and high incidence. It is the sixth leading cause of cancer-related death in the world, and the 5-year overall survival (OS) rate is only 12-20%. The rapid development of next-generation sequencing (NGS) has provided powerful help for the treatment and management of EC patients. Methods Tumor tissue and blood samples of 43 Chinese patients with nonsurgical esophageal squamous cell carcinoma (ESCC) were sequenced using a 425 gene-panel. Genomic profiling was explored and and the Cox proportional hazards model was used to analyze the correlations between gene or signaling pathway alterations and prognosis. Results In this study, the most common mutated genes were TP53 (90.5%), CCND1 (45.2%), FGF19 (38.1%), NOTCH1 (26.2%), PI3KCA (21.4%) and CDKN2A (19%). Among these mutations, PI3KCA and NOTCH1 showed mutual exclusion to some extent. In the univariate model, mutations in NOTCH1, CBLB and TSC2 genes and tumor mutation burden (TMB) ≥7 were independent biomarkers of OS. NOTCH1 (P=0.007, HR =2.87), CBLB (P=0.011, HR =4.68) and TSC2 (P=0.024, HR =3.7) were significantly associated with poorer OS, and patients with TMB ≥7 had longer OS (P=0.151, HR =0.31). In addition, patients who carried alteration in NOTCH signaling pathway had reduced OS (P=0.014, HR =2.54). Conclusions NOTCH1, CBLB and TSC2 alterations were found to be potential indicators of poor prognosis in patients with ESCC. TMB was also positively correlated with the OS of ESCC patients, providing valuable insights for their treatment strategies.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Wuan Bao
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiang Zhu
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Di Wang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Pengfei Zeng
- Department of Digestology, Zhejiang Medical & Health Group, Hangzhou Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guojie Xia
- Department of Medical Oncology, Traditional Chinese Medical Hospital of Huzhou, Huzhou, China
| | - Minyan Xing
- Department of Medical Oncology, Haining Branch, The First Affiliated Hospital, Zhejiang University, Haining, China
| | - Yanyan Zhan
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Junrong Yan
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Minchi Yuan
- Department of Oncology, The First People’s Hospital of Jiashan, Jiashan, China
| | - Qiang Zhao
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
44
|
Payungwong T, Angkulkrerkkrai K, Chaiboonchoe A, Lausoontornsiri W, Jirawatnotai S, Chindavijak S. Comparison of mutation landscapes of pretreatment versus recurrent squamous cell carcinoma of the oral cavity: The possible mechanism of resistance to standard treatment. Cancer Rep (Hoboken) 2024; 7:e2004. [PMID: 38477073 DOI: 10.1002/cnr2.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A high recurrent rate of oral squamous cell carcinoma (OSCC) is a major concern in head and neck cancer treatment. The study of the genetic mutation landscape in recurrent OSCC may provide information on certain mutations associated with the pathobiology and treatment response of the OSCC. AIM We investigated the mutation landscape of matched pretreatment and recurrent tumors to understand the influence of genetic mutations on the pathobiology and clinical outcomes in OSCC. METHODS AND RESULTS We sequenced 33 formalin-fixed paraffin-embedded (FFPE) recurrent tumors, primary tumors, and primary tumors before recurrence that matched the recurrent tumors collected from Rajavithi Hospital during 2019-2021. We identified recurrent mutations from these samples by the Oncomine Ion Torrent-based next-generation sequencing on the 517 cancer-associated gene panel. From the results, we found that the most commonly mutated gene in the cohort is a histone methyltransferase KMT2D (54.55%), implicating that aberrance in epigenetic regulation may play a role in oral cancer tumorigenesis. Functional protein association network analysis of the gene frequently mutated in the recurrent tumors showed enrichment of genes that regulate the cancer cell cycle, that is, MRE11A, CDKN2A, and CYLD. This finding was confirmed in the primary-recurring matched pair. We found that recurrent tumors possess a small but recurring group of genes, with presumably the subclonal mutations driving the recurrence of the tumor, suggesting that the recurrent disease originated from a small fraction of the cancer cell that survives standard treatment. These genes were absent in the primary tumor with a good response to the standard treatment. On the other hand, we found an enrichment of DNA repair genes, namely ATR, BRCA1, BRCA2, RAD50, and MUTYH, in nonrecurrent tumors suggesting that the mutations in the DNA repair pathway may at least partially explain the different response to the standard treatment. CONCLUSIONS Our pilot study identified pathways of carcinogenesis in oral cancer and specific gene sets that indicate treatment responses and prognoses in this group of patients.
Collapse
Affiliation(s)
- Tongchai Payungwong
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittaya Angkulkrerkkrai
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somjin Chindavijak
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| |
Collapse
|
45
|
Montoro-Jiménez I, Granda-Díaz R, Menéndez ST, Prieto-Fernández L, Otero-Rosales M, Álvarez-González M, García-de-la-Fuente V, Rodríguez A, Rodrigo JP, Álvarez-Teijeiro S, García-Pedrero JM, Hermida-Prado F. Combined PIK3CA and SOX2 Gene Amplification Predicts Laryngeal Cancer Risk beyond Histopathological Grading. Int J Mol Sci 2024; 25:2695. [PMID: 38473941 DOI: 10.3390/ijms25052695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.
Collapse
Affiliation(s)
- Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sofía T Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Álvarez-González
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Aida Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
46
|
Ludwig M, Birkeland A, Smith J, Gensterblum-Miller E, Zhai JI, Kulkarni A, Jiang H, Brenner C. A Genome Wide CRISPR Pro filing Approach Identi fies Mechanisms of Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3922565. [PMID: 38464196 PMCID: PMC10925415 DOI: 10.21203/rs.3.rs-3922565/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with poor survival rates, especially for cancers arising in the oral cavity or larynx. Cisplatin is a key chemotherapeutic for HNSCC; however poor survival rates may be partially due to cisplatin resistance observed in some HNSCCs. Here, we examined the utility of genome-wide CRISPR knockout profiling for nominating pivotal mechanisms of cisplatin resistance in HNSCC models. Methods We characterized the cisplatin sensitivity of 18 HNSCC cell lines. Next, we used a genome-wide CRISPR/Cas9 library to identify genes involved in cisplatin resistance. We next performed validation assays in the UM-SCC-49 cell line model. Results Our data prioritized 207 genes as pivotal for cisplatin resistance in HNSCC, including novel genes VGLL3, CIRHA1, NCOR1, SPANXA1, MAP2K7, ULK1, and CDK16. Gene set enrichment analysis identified several NOTCH family genes comprising the top pathway driving cisplatin resistance, which we then validated using a targeted NOTCH1 knockout model. Interestingly, we noted that HNSCC models with natural NOTCH pathway alterations including single allele mutations and/or frameshift alterations had diverse responses to cisplatin treatment suggesting that complex and multi-faceted mechanisms contribute to cisplatin resistance in HNSCC. Conclusions Collectively, our study validates a genome-wide CRISPR/Cas9 approach for the discovery of resistance mechanisms in HNSCC, adds to the growing evidence that NOTCH1 status should be evaluated as a biomarker of cisplatin response and provides a framework for future work aimed at overcoming cisplatin resistance.
Collapse
|
47
|
Zhang S, Lai Y, Pan J, Saeed M, Li S, Zhou H, Jiang X, Gao J, Zhu Y, Yu H, Zhang W, Xu Z. PROTAC Prodrug-Integrated Nanosensitizer for Potentiating Radiation Therapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314132. [PMID: 38353332 DOI: 10.1002/adma.202314132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2 ) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2 O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.
Collapse
Affiliation(s)
- Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 2000092, China
| | - Madiha Saeed
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
48
|
Keam B, Hong MH, Shin SH, Heo SG, Kim JE, Ahn HK, Lee YG, Park KU, Yun T, Lee KW, Kim SB, Lee SC, Kim MK, Cho SH, Oh SY, Park SG, Hwang S, Nam BH, Kim S, Kim HR, Yun HJ. Personalized Biomarker-Based Umbrella Trial for Patients With Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: KCSG HN 15-16 TRIUMPH Trial. J Clin Oncol 2024; 42:507-517. [PMID: 37699162 DOI: 10.1200/jco.22.02786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023] Open
Abstract
PURPOSE A precise oncologic approach for head and neck squamous cell carcinoma (HNSCC) is necessary. We performed a genomic profile-based umbrella trial for the patients with platinum-refractory recurrent and/or metastatic HNSCC. METHODS In this multicenter, open-label, single-arm phase II trial, we performed targeted next-generation sequencing (NGS). Patients were assigned to each treatment arm on the basis of their matching genomic profiles: arm 1, alpelisib, a PIK3CA inhibitor; arm 2, poziotinib, an epidermal growth factor receptor/HER2 inhibitor; arm 3, nintedanib, an fibroblast growth factor receptor inhibitor; and arm 4, abemaciclib, a CDK4/6 inhibitor. If there was no matching target, patients were allocated to arm 5, duvalumab ± tremelimumab, anti-PD-L1/cytotoxic T-cell lymphocyte-4 inhibitor. When progressive disease (PD) occurred in arms 1-4, cross over to arm 5 was allowed. The primary end point was disease control rate (DCR) in arm 1 and overall response rate (ORR) in arms 2-5 by investigator assessment. RESULTS Between October 2017 and August 2020, 203 patients were enrolled, including crossover. In arm 1, the ORR was 21.2% and DCR was 65.6%. The ORR was 0% for arm 2, 42.9% for arm 3, 0% for arm 4, and 15.6% for arm 5. In the case of PD with durvalumab, tremelimumab was added, and the ORR for durvalumab + tremelimumab was 2.2%. The median progression-free survival was 3.4, 3.2, 5.6, 1.6, and 1.7 months for each arm, respectively. The median overall survival was 12.4, 6.1, 11.1, 9.1, and 12.7 months, respectively. Overall, the toxicity profiles were manageable, and there were no treatment-related deaths. CONCLUSION To our knowledge, this study is the first biomarker-driven umbrella trial for platinum-refractory HNSCC using matched molecular targeted agents. We found that NGS-based genomic phenotyping was methodologically feasible and applicable.
Collapse
Affiliation(s)
- Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Divison of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Hoon Shin
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Seong Gu Heo
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Cancer Data Science, National Cancer Center, Goyang, Republic of Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul National University College of Medicine, SMG-SNU Boramae Hospital, Seoul, Republic of Korea
| | - Hee Kyung Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon-Uk Park
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Tak Yun
- Rare Cancers Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Cheol Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Min Kyoung Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Sang Hee Cho
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - So Yeon Oh
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang-Gon Park
- Department of Hemato-Oncology, Chosun University Hospital, Gwangju, Republic of Korea
| | - Shinwon Hwang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Physician-Scientist Program, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Divison of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwan Jung Yun
- Division of Hemato-Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
49
|
Sharif R, Ooi TC. Understanding exposomes and its relation with cancer risk in Malaysia based on epidemiological evidence: a narrative review. Genes Environ 2024; 46:5. [PMID: 38326915 PMCID: PMC10851543 DOI: 10.1186/s41021-024-00300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
The prevalence of cancer is increasing globally, and Malaysia is no exception. The exposome represents a paradigm shift in cancer research, emphasizing the importance of a holistic approach that considers the cumulative effect of diverse exposures encountered throughout life. The exposures include dietary factors, air and water pollutants, occupational hazards, lifestyle choices, infectious agents and social determinants of health. The exposome concept acknowledges that each individual's cancer risk is shaped by not only their genetic makeup but also their unique life experiences and environmental interactions. This comprehensive review was conducted by systematically searching scientific databases such as PubMed, Scopus and Google Scholar, by using the keywords "exposomes (environmental exposures AND/OR physical exposures AND/OR chemical exposures) AND cancer risk AND Malaysia", for relevant articles published between 2010 and 2023. Articles addressing the relationship between exposomes and cancer risk in the Malaysian population were critically evaluated and summarized. This review aims to provide an update on the epidemiological evidence linking exposomes with cancer risk in Malaysia. This review will provide an update for current findings and research in Malaysia related to identified exposomes-omics interaction and gap in research area related to the subject matter. Understanding the interplay between complex exposomes and carcinogenesis holds the potential to unveil novel preventive strategies that may be beneficial for public health.
Collapse
Affiliation(s)
- Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
| | - Theng Choon Ooi
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
50
|
da Silva Santos ME, de Carvalho Abreu AK, Martins da Silva FW, Barros Ferreira E, Diniz Dos Reis PE, do Amaral Rabello Ramos D. KMT2 (MLL) family of methyltransferases in head and neck squamous cell carcinoma: A systematic review. Head Neck 2024; 46:417-434. [PMID: 38102754 DOI: 10.1002/hed.27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The involvement of the KMT2 methyltransferase family in the pathogenesis of head and neck squamous cell carcinoma (HNSCC) remains elusive. METHOD This study adhered to the PRISMA guidelines, employing a search strategy in the LIVIVO, PubMed, Scopus, Embase, Web of Science, and Google Scholar databases. The methodological quality of the studies was assessed by the Joanna Briggs Institute. RESULTS A total of 33 studies involving 4294 individuals with HNSCC were included in this review. The most important alteration was the high mutational frequency in the KMT2C and KMT2D genes, with reported co-occurrence. The expression of the KMT2D gene exhibited considerable heterogeneity across the studies, while limited data was available for the remaining genes. CONCLUSIONS KMT2C and KMT2D genes seem to have tumor suppressor activities, with involvement of cell cycle inhibitors, regulating different pathways that can lead to tumor progression, disease aggressiveness, and DNA damage accumulation.
Collapse
Affiliation(s)
| | | | | | - Elaine Barros Ferreira
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Paula Elaine Diniz Dos Reis
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | | |
Collapse
|