1
|
Shrestha A, Pillis DM, Felker S, Chi M, Wagner K, Gbotosho OT, Sieling J, Shadid M, Malik P. Preclinical efficacy of a modified gamma-globin lentivirus gene therapy in Berkeley sickle cell anemia mice and human xenograft models. Mol Ther Methods Clin Dev 2025; 33:101439. [PMID: 40176947 PMCID: PMC11964741 DOI: 10.1016/j.omtm.2025.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
We previously showed correction of sickle cell anemia (SCA) in mice utilizing a lentiviral vector (LV) expressing human γ-globin. Herein, we made a G16D mutation in the γ-globin gene to generate the G16D mutation (GbGM) LV to increase fetal hemoglobin formation. We also generated an insulated version of this LV, GbGMI, inserting a 36-bp insulator from the Foamy virus in the long terminal repeats of the LV. Preclinical batches of GbGM and GbGMI LV showed both were highly efficacious in correcting SCA in mice, with sustained gene transfer in primary transplanted SCA mice and high hematopoietic stem cell (HSC) transduction in colony-forming unit-spleen in secondary transplanted mice. CRISPR-mediated targeting of the proviruses into the LMO2 proto-oncogene showed remarkably reduced LMO2 activation by both insulated and uninsulated LV, compared to the SFFV γ-RV vector targeted to the same locus. We therefore used the GbGM LV to perform preclinical human CD34+ gene transfer. We assessed gene transfer and engraftment of human HSCs in two immunocompromised mouse models: persistent stable GbGM-transduced cell engraftment was comparable to that of untransduced cells with no detrimental effects on hematopoiesis up to 20 weeks post transplant. These robust preclinical studies in mouse and human HSCs allowed its translation into a clinical trial.
Collapse
Affiliation(s)
- Archana Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Aruvant Sciences, New York, NY 10036, USA
| | - Devin M. Pillis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Sydney Felker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Kimberly Wagner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Oluwabukola T. Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | | | | | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Chen D, Wang C, Chen X, Li J, Chen S, Li Y, Ma F, Li T, Zou M, Li X, Huang X, Zhang YW, Zhao Y, Bu G, Zheng H, Chen XF, Zhang J, Zhong L. Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders. Sci Transl Med 2025; 17:eads6111. [PMID: 40305572 DOI: 10.1126/scitranslmed.ads6111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 05/02/2025]
Abstract
Growing genetic and pathological evidence has identified microglial dysfunction as a key contributor to the pathogenesis and progression of various neurological disorders, positioning microglia replacement as a promising therapeutic strategy. Traditional bone marrow transplantation (BMT) methods for replenishing brain microglia have limitations, including low efficiency and the potential for brain injury because of preconditioning regimens, such as irradiation or chemotherapy. Moreover, BM-derived cells that migrate to the brain do not recapitulate the phenotypic and functional properties of resident microglia. Here, we present a microglia transplantation strategy devoid of any conditioning, termed "tricyclic microglial depletion for transplantation" (TCMDT). This approach leverages three cycles of microglial depletion using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, creating an optimal window for efficient engraftment of exogenous microglia. Transplantation of primary cultured microglia by TCMDT successfully restored the identity and functions of endogenous microglia. To evaluate the therapeutic potential of TCMDT, we applied this strategy to two distinct mouse models of neurologic disorder. In a Sandhoff disease model, a neurodegenerative lysosomal storage disorder caused by hexosaminidase subunit beta (Hexb) deficiency, TCMDT effectively replaced deficient microglia, attenuating neurodegeneration and improving motor performance. Similarly, in an Alzheimer's disease (AD)-related amyloid mouse model carrying the triggering receptor expressed on myeloid cells 2 (Trem2) R47H mutation, our transplantation strategy rescued microglial dysfunction and mitigated AD-related pathology. Overall, our study introduces TCMDT as a practical, efficient, and safe approach for microglia replacement, suggesting therapeutic potential for treating neurological disorders associated with microglial dysfunction.
Collapse
Affiliation(s)
- Dadian Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, Xiamen Medical Quality Control Center for Neurology, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xi Chen
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiayu Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanzhong Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fangling Ma
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengling Zou
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jie Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhong
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
3
|
Ramos-Hernández I, Fuster-García C, Aguilar-González A, Lozano-Vinagre M, Guenechea-Amurrio G, Sanchez-Luque F, Gonçalves MFV, Cathomen T, Muñoz P, Molina-Estévez F, Martín F. Donor insertion into CX3CR1 allows epigenetic modulation of a constitutive promoter on hematopoietic stem cells and its activation upon myeloid differentiation. Nucleic Acids Res 2025; 53:gkaf344. [PMID: 40298109 PMCID: PMC12038399 DOI: 10.1093/nar/gkaf344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
To improve ex vivo gene therapy strategies involving hematopoietic stem and progenitor cells (HSPCs), we propose a novel knock-in strategy (named KI-Ep) aiming to achieve transgene regulation of the inserted cassette through the acquisition of naturally occurring epigenetic marks. Based on this hypothesis, we selected CX3CR1 (a myeloid-specific gene presenting a poised histone signature on primitive HSPCs) as safe harbor to generate KI-Ep HSPCs. We demonstrated that, unlike the expression pattern achieved with lentiviral vectors (LVs), the insertion of a constitutive expression cassette into the intron 1 of the CX3CR1 locus (CX3CR1-I) in HSPCs resulted in very low expression levels in the more primitive HSPCs but, crucially, strong expression in HSPC-differentiated populations (especially myeloid cells), both in vitro and in vivo. Furthermore, we showed that the promoter of the expression cassette inserted into CX3CR1-I acquired epigenetic marks associated with poised genes during the HSPC stage. These marks transitioned to activated histone states upon KI-Ep HSPCs differentiation. In summary, here, we introduce the KI-Ep concept which enables the epigenetic modulation of the inserted transgene during the HSPCs stem cell stages and its subsequent activation upon differentiation.
Collapse
Affiliation(s)
- Iris Ramos-Hernández
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Carla Fuster-García
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Araceli Aguilar-González
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| | - María L Lozano-Vinagre
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Guillermo Guenechea-Amurrio
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine ‘López-Neyra’ (Spanish National Research Council), Avda. del Conocimiento 17 (PTS Granada), 18016 Armilla (Granada), Spain
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg,79110 Freiburg, Germany
| | - Pilar Muñoz
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco J Molina-Estévez
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco Martín
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de la Investigación 11, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016, 34 Granada, Spain
| |
Collapse
|
4
|
Chien YH, Hwu WL. Newborn screening of neurometabolic diseases for early treatment. Brain Dev 2025; 47:104323. [PMID: 39848089 DOI: 10.1016/j.braindev.2025.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
In recent years, the number of diseases included in newborn screening (NBS) tests has increased rapidly, led by the development of both technology and treatments. Many neurometabolic diseases can now be screened, but direct involvement of the brain, especially in the severe forms of these diseases, causes challenges in NBS. For example, differentiating between neuropathic and nonneuropathic types of disease is difficult but critical because the treatments used can differ. For many diseases with neurological manifestations, the long-term outcomes of new treatments and the influence of NBS are both unclear. In this review, we introduce the "new" NBS test using data from the Screening Center at National Taiwan University as an example. Subsequently, we explore the current challenges in NBS for several neurometabolic diseases.
Collapse
Affiliation(s)
- Y-H Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - W-L Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Bhatia D, Dolcetti R, Mazzieri R. Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors? J Exp Clin Cancer Res 2025; 44:98. [PMID: 40089746 PMCID: PMC11909881 DOI: 10.1186/s13046-025-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
In the last two decades, novel and promising cell-based therapies have populated the treatment landscape for haematological tumors. However, commonly exploited T and NK cell-based therapies show limited applicability to solid tumors. This is mainly given by the impaired tumor trafficking capability and limited effector activity of these cells within a highly immunosuppressive tumor microenvironment. Myeloid cells spontaneously home to tumors and can thus be reprogrammed and/or engineered to directly attack tumor cells or locally and selectively deliver therapeutically relevant payloads that may improve the efficacy of immunotherapy against difficult-to-access solid tumors. In the context of myeloid cell-based therapies, adoptive transfer of monocytes has often been overshadowed by infusion of differentiated macrophages or hematopoietic stem cell transplantation despite their promising therapeutic potential. Here, we summarize the recent improvements and benefits of using monocytes for the treatment of solid tumors, their current clinical applications and the challenges of their use as well as some possible strategies to overcome them.
Collapse
Affiliation(s)
- Daisy Bhatia
- Swiss Federal Institute of Technology, Lausanne, Switzerland
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
6
|
Park J, Rhoo KY, Kim Y, Kim YS, Paik SR. Cell-Division-Independent Rapid Expression of DNA Delivered with α-Synuclein-Gold Nanoparticle Conjugates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14846-14858. [PMID: 40014054 DOI: 10.1021/acsami.4c17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Gene delivery is a primary technology employed in diverse areas of biomedical science, from gene therapy to gene editing, cancer treatment, and stem cell research. Here, we introduce a gene delivery system utilizing an intrinsically disordered protein of α-synuclein (αS) demonstrated to interact with lipid membranes by transforming its original random structure to an α-helix. Since the helix bundle formation is a signature of cell-penetrating peptides for membrane translocation, a multitude of αS(Y136C)s replacing tyrosine at the C-terminus with cysteine were covalently attached onto gold nanoparticles (AuNPs) in a specific orientation with the helix-forming basic N-termini exposed outward. The resulting αS(Y136C)-AuNP conjugates were found to exhibit a rapid gene expression without causing cytotoxicity when the gene of the enhanced green fluorescent protein (EGFP) was delivered with the conjugates into the cells. Based on inhibition studies toward endocytosis and mitosis, the αS(Y136C)-AuNP/DNA complex was demonstrated to take both endosomal and non-endosomal intracellular transport pathways. The DNA translocation into the nucleus was independent of cell division. This nondisruptive and rapid DNA transfection by αS(Y136C)-AuNPs allowed a successful delivery of granzyme A gene leading to cellular pyroptosis. Modifications of αS(Y136C)-AuNP/DNA complex, such as antibody immobilization and replacement of DNA with biological suprastructures including RNA, protein, and nonbiological fusion materials, would allow the intracellular delivery system to be applied in diverse areas of future biotechnology.
Collapse
Affiliation(s)
- Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Yil Rhoo
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsoo Kim
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Zhou X, Ma CY, Zhang X, Xu X, Duan F, Kou M, Liu H, Zeng L, Guo L, Chen S, Chen L, Li Z, Luo J, Wu J, Li Z, Li Z, Sui T, Yuan P, Lin Z, Chen H, Lai L, Lian Q. Development of a rabbit model for adrenoleukodystrophy: A pilot study on gene therapy using rAAV9. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102469. [PMID: 40027885 PMCID: PMC11872110 DOI: 10.1016/j.omtn.2025.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a common peroxisomal disorder caused by mutations in the ABCD1 gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This progressive neurodegenerative disease manifests in three primary forms: childhood-acquired cerebral demyelination (CALD), adult myelopathy (AMN), and primary adrenal cortical insufficiency. Bone marrow transplantation effectively halts disease progression only in the early stages of CALD. A thorough investigation of the pathophysiology of X-ALD has been hampered by the lack of a reliable animal model. Valid animal models of X-ALD are urgently needed. To address this, we used CRISPR-Cas9 technology to knock out the ABCD1 gene and established a novel rabbit model of X-ALD. The mutants exhibited elevated serum levels of hexacosanoic acid (C26:0), lignoceric acid (C24:0), and an increased C26:0/C22:0 ratio, as well as significant white matter demyelination in the brain and spinal cord. We also investigated rAAV9-based gene therapy in this model and found a significant reduction in VLCFAs. This study introduces CRISPR-Cas9-mediated ABCD1 gene knockout rabbits as a novel animal model. It comprehensively evaluates the short-term outcomes and safety of rAAV-based gene therapy for X-ALD, providing a promising approach to explore the molecular and pharmacological mechanisms of the disease.
Collapse
Affiliation(s)
- Xiaoya Zhou
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China; HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong 999077, China
| | - Xiaoxian Zhang
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Xianchuan Xu
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Meng Kou
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liyan Guo
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Shaoxiang Chen
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Li Chen
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Ziyue Li
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Jie Luo
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Jieying Wu
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhejin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- Center for Translational Stem Cell Biology, Hong Kong, China; HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
8
|
Mousso T, Pham K, Drewes R, Babatunde S, Jong J, Krug A, Inserra G, Biber J, Brazzo JA, Gupte S, Bae Y. Survivin in cardiovascular diseases and its therapeutic potential. Vascul Pharmacol 2025; 159:107475. [PMID: 40015658 DOI: 10.1016/j.vph.2025.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Aberrant changes in cell behaviors, such as proliferation, apoptosis, and migration, are some of the contributing factors to the development of various cardiovascular diseases (CVDs) and pathologies, including atherosclerosis, neointimal hyperplasia, and heart failure. In recent years, numerous studies have identified survivin, a key player in the anti-apoptotic pathway, to be extensively involved in modulating cellular functioning in cancer, with many reaching clinical trials. Though seemingly different, CVDs and cancer share abundant similarities regarding abnormal cell modifications and behaviors. This overlap has sparked growing interest in investigating survivin as a therapeutic target in the context of CVD. With new findings emerging rapidly, a comprehensive understanding of survivin's role in cardiovascular pathology is crucial to revealing its full therapeutic potential and translating these discoveries into effective treatments. This review discusses recent findings of survivin in CVDs and related pathologies, focusing on its dual role in promoting proliferation and inhibiting apoptosis, specifically in atherosclerosis, neointimal hyperplasia, stroke, hypertension, myocardial infarction, and heart failure. Across different cell types and pathological contexts, survivin plays a pivotal role throughout the disease progression-from the onset of disease development to the facilitation of compensatory mechanisms post-injury-primarily through its function in regulating cell proliferation and apoptosis. Furthermore, given the limited research on survivin as a therapeutic target for CVDs, potential clinical avenues, including YM155 (a survivin inhibitor) or adenoviral, adeno-associated, and lentiviral vectors, are also discussed. Overall, this review highlights survivin as a promising target for mitigating the detrimental effects of CVDs and to provide new perspectives to advance research on the intervention of CVDs and associated pathologies.
Collapse
Affiliation(s)
- Thomas Mousso
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rhonda Drewes
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sefunmi Babatunde
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica Jong
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alanna Krug
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gabrielle Inserra
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
Sakihara K, Gunji A, Kaga M, Furushima W, Suzuki S, Kaga Y, Inagaki M. Paroxysmal delta waves of awake EEG in childhood adrenoleukodystrophy: Possible indicator of the hematopoietic stem cell therapy (HSCT). Brain Dev 2025; 47:104310. [PMID: 39675181 DOI: 10.1016/j.braindev.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Childhood cerebral type of Adrenoleukodystrophy (CC-ALD) is fatal without hematopoietic stem cell transplantation (HSCT). We consider whether EEGs showing focal paroxysmal delta waves can be a candidate of early detector of the apparent ALD and HSCT therapy. METHODS Twenty-two male children with ALD (5-16 years; 10.4 ± 2.8) were evaluated. Fourteen children were diagnosed as CC-ALD and the rest 8 were yet asymptomatic both clinical and MRI findings. CC-ALD patients with frontal or occipital MRI main lesions were classified as Types F and O (4 and 10 patients). Asymptomatic patients were classified as Type A whose clinical types had not been known. Awake electroencephalogram was recorded during cognitive tasks and analyzed using fast Fourier transform (FFT). Eight children (1/4 F, 3/10 O and 4/8 A patients) were evaluated pre- and post-HSCT. RESULTS FFT analysis revealed the high voltage slow wave characterized by an increased delta band wave power volume (DBPV) in all children. The DBPV of Type F and O patients showed anterior and posterior dominance in 4/4 and 9/10 patients. Dominant DBPV in Type A patients were anterior and posterior in 6/8 and 1/8, respectively. We classified them as Type F' and O'. DBPV decreased in all (8/8) patients after HSCT therapy. CONCLUSION All patients showed paroxysmal delta wave. In symptomatic patients, abnormal delta wave appeared in their corresponding cortical lesions and decreased after therapy. In asymptomatic patients it may be the first sign of the apparent ALD onset and suggesting when to consider HSCT therapy.
Collapse
Affiliation(s)
- Kotoe Sakihara
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Japan.
| | - Atsuko Gunji
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; College of Education, Yokohama National University, Japan
| | - Makiko Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center, Japan
| | - Wakana Furushima
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Pediatrics, Tokyo Medical and Dental University, Japan
| | - Seiko Suzuki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Pediatrics, Kitakyushu Children's Rehabilitation Center, Japan
| | - Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Pediatrics, Faculty of Medicine, Yamanashi University, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Japan; Department of Pediatrics, Tottori Prefectural Tottori Rehabilitation Center, Japan
| |
Collapse
|
10
|
Yu Z, Liu J, Liu Z, Liu X, Tuo J, Li J, Tu Y, Tan Q, Ma Y, Bai Y, Xin J, Huang S, Zeng G, Shi A, Wang J, Liu Y, Bu X, Ye L, Wan Y, Liu T, Chen X, Qiu Z, Gao C, Wang Y. Roles of blood monocytes carrying TREM2 R47H mutation in pathogenesis of Alzheimer's disease and its therapeutic potential in APP/PS1 mice. Alzheimers Dement 2025; 21:e14402. [PMID: 39740209 PMCID: PMC11848385 DOI: 10.1002/alz.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2R47H mutation on blood monocytes. METHODS Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2R47H mutation to AD. RESULTS Aβ phagocytosis was compromised in mouse monocytes carrying the TREM2R47H mutation. Transplantation of bone marrow cells (BMCs) carrying TREM2R47H mutation increased cerebral Aβ burden and aggravated AD-type pathologies. Moreover, the replacement of TREM2R47H-BMCs restored monocytic Aβ phagocytosis, lowered Aβ levels in the blood and brain, and improved cognitive function. DISCUSSION Our study reveals that blood monocytes carrying the TREM2R47H mutation substantially contribute to the pathogenesis of AD, and correcting the TREM2R47H mutation in BMCs would be a potential therapeutic approach for those carrying this mutation. HIGHLIGHTS TREM2R47H mutation compromises the Aβ phagocytosis of blood monocytes. Blood monocytes carrying TREM2R47H mutation contribute substantially to AD pathogenesis. Correction of the TREM2R47H mutation in bone marrow cells ameliorates AD pathologies and cognitive impairments.
Collapse
Affiliation(s)
- Zhong‐Yuan Yu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jie Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Zhi‐Hao Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiao‐Yu Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe 991st Hospital of Chinese People's Liberation Army Joint Logistic Support ForceXiangyangChina
| | - Jin‐Mei Tuo
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jiang‐Hui Li
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yun‐Feng Tu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Qi Tan
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yuan‐Yuan Ma
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yu‐Di Bai
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jia‐Yan Xin
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Shan Huang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Gui‐Hua Zeng
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - An‐Yu Shi
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yu‐Hui Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Li‐Lin Ye
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Ying Wan
- Biomedical Analysis CentreThird Military Medical UniversityChongqingChina
| | - Tong‐Fei Liu
- Institute for Brain Science and DiseaseChongqing Medical UniversityChongqingChina
| | - Xiao‐Wei Chen
- Institute of Brain and IntelligenceChongqingChina
- Brain Research CentreCollaborative Innovation Centre for Brain ScienceThird Military Medical UniversityChongqingChina
| | - Zi‐Long Qiu
- Songjiang HospitalSongjiang InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chang‐Yue Gao
- Department of Rehabilitation MedicineDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
11
|
den Hollander B, Hoytema van Konijnenburg EMM, Hewitson B, van der Meijden JC, Balfoort BM, Winter B, Müller AR, Wasserman WW, Ferreira CR, van Karnebeek CD. The Metabolic Treatabolome and Inborn Errors of Metabolism Knowledgebase therapy tool: Do not miss the opportunity to treat! J Inherit Metab Dis 2025; 48:e12835. [PMID: 39777714 PMCID: PMC11707409 DOI: 10.1002/jimd.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Inborn errors of metabolism (IEMs) are rare genetic conditions with significant morbidity and mortality. Technological advances have increased therapeutic options, making it challenging to remain up to date. A centralized therapy knowledgebase is needed for early diagnosis and targeted treatment. This study aimed to identify all treatable IEMs through a scoping literature review, followed by data extraction and analysis according to the Treatabolome principles. Knowledge of treatable IEMs, therapeutic categories, efficacy, and evidence was integrated into the Inborn Errors of Metabolism Knowledgebase (IEMbase), an online database encompassing all IEMs. The study identified 275 treatable IEMs, 18% of all currently known 1564 IEMs, according to the International Classification of Inherited Metabolic Disorders. Disorders of fatty acid and ketone body metabolism had the highest treatability (67%), followed by disorders of vitamin and cofactor metabolism (60%), and disorders of lipoprotein metabolism (42%). The most common treatment strategies were pharmacological therapy (34%), nutritional therapy (34%), and vitamin and trace element supplementation (12%). Treatment effects were most commonly observed in nervous system abnormalities (34%), metabolism/homeostasis abnormalities (33%), and growth (7%). Predominant evidence sources included case reports with evidence levels 4 (48%) and 5 (12%), and individual cohort studies with evidence level 2b (12%). Our study generated the Metabolic Treatabolome 2024. IEMs are the largest group of monogenic disorders amenable to disease-modifying therapy. With drug repurposing efforts and advancements in gene therapies, this number will expand. IEMbase now provides up-to-date, comprehensive information on clinical and biochemical symptoms and therapeutic options, empowering patients, families, healthcare professionals, and researchers in improving patient outcomes.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Department of Pediatrics, Emma Children's HospitalAmsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
| | - Eva M. M. Hoytema van Konijnenburg
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Pediatric Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Brittany Hewitson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jan C. van der Meijden
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's HospitalRadboud University Medical CenterNijmegenThe Netherlands
| | - Berith M. Balfoort
- Department of Pediatrics, Emma Children's HospitalAmsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Laboratory of Genetic Metabolic DiseasesAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Brad Winter
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children's HospitalAmsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Carlos R. Ferreira
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Clara D. van Karnebeek
- Department of Pediatrics, Emma Children's HospitalAmsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Human Genetics, Amsterdam Reproduction and DevelopmentAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Xie K, Starzyk J, Majumdar I, Wang J, Rincones K, Tran T, Lee D, Niemi S, Famiglietti J, Suter B, Shan R, Wu H. Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration. Nat Biotechnol 2024:10.1038/s41587-024-02504-9. [PMID: 39663372 DOI: 10.1038/s41587-024-02504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.
Collapse
Affiliation(s)
- Keqiang Xie
- Full Circles Therapeutics, Cambridge, MA, USA.
| | | | | | - Jiao Wang
- Full Circles Therapeutics, Cambridge, MA, USA
| | | | - Thao Tran
- Full Circles Therapeutics, Cambridge, MA, USA
| | - Danna Lee
- Full Circles Therapeutics, Cambridge, MA, USA
| | - Sarah Niemi
- Full Circles Therapeutics, Cambridge, MA, USA
| | | | | | - Richard Shan
- Full Circles Therapeutics, Cambridge, MA, USA
- Stellate DNA, Cambridge, MA, USA
| | - Hao Wu
- Full Circles Therapeutics, Cambridge, MA, USA.
- Stellate DNA, Cambridge, MA, USA.
| |
Collapse
|
13
|
Calabria A, Spinozzi G, Cesana D, Buscaroli E, Benedicenti F, Pais G, Gazzo F, Scala S, Lidonnici MR, Scaramuzza S, Albertini A, Esposito S, Tucci F, Canarutto D, Omrani M, De Mattia F, Dionisio F, Giannelli S, Marktel S, Fumagalli F, Calbi V, Cenciarelli S, Ferrua F, Gentner B, Caravagna G, Ciceri F, Naldini L, Ferrari G, Aiuti A, Montini E. Long-term lineage commitment in haematopoietic stem cell gene therapy. Nature 2024; 636:162-171. [PMID: 39442556 PMCID: PMC11618100 DOI: 10.1038/s41586-024-08250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Haematopoietic stem cell (HSC) gene therapy (GT) may provide lifelong reconstitution of the haematopoietic system with gene-corrected cells1. However, the effects of underlying genetic diseases, replication stress and ageing on haematopoietic reconstitution and lineage specification remain unclear. In this study, we analysed haematopoietic reconstitution in 53 patients treated with lentiviral-HSC-GT for diverse conditions such as metachromatic leukodystrophy2,3 (MLD), Wiskott-Aldrich syndrome4,5 (WAS) and β-thalassaemia6 (β-Thal) over a follow-up period of up to 8 years, using vector integration sites as markers of clonal identity. We found that long-term haematopoietic reconstitution was supported by 770 to 35,000 active HSCs. Whereas 50% of transplanted clones demonstrated multi-lineage potential across all conditions, the remaining clones showed a disease-specific preferential lineage output and long-term commitment: myeloid for MLD, lymphoid for WAS and erythroid for β-Thal, particularly in adult patients. Our results indicate that HSC clonogenic activity, lineage output, long-term lineage commitment and rates of somatic mutations are influenced by the underlying disease, patient age at the time of therapy, the extent of genetic defect correction and the haematopoietic stress imposed by the inherited disease. This suggests that HSCs adapt to the pathological condition during haematopoietic reconstitution.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Buscaroli
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Triste, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gazzo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Esposito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Sabina Cenciarelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Triste, Italy
| | - Fabio Ciceri
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
14
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
15
|
Zhu E, Yu J, Li YR, Ma F, Wang YC, Liu Y, Li M, Kim YJ, Zhu Y, Hahn Z, Zhou Y, Brown J, Zhang Y, Pelegrini M, Hsiai T, Yang L, Huang Y. Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies. NATURE NANOTECHNOLOGY 2024; 19:1914-1922. [PMID: 39313679 DOI: 10.1038/s41565-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells represent a front-line therapy for cancers. However, the current CAR T cell manufacturing protocols do not adequately reproduce immunological synapse formation. Here, in response to this limitation, we have developed a flexible graphene oxide antigen-presenting platform (GO-APP) that anchors antibodies onto graphene oxide. By decorating anti-CD3 (αCD3) and anti-CD28 (αCD28) on graphene oxide (GO-APP3/28), we achieved remarkable T cell proliferation. In vitro interactions between GO-APP3/28 and T cells closely mimic the in vivo immunological synapses between antigen-presenting cells and T cells. This immunological synapse mimicry shows a high capacity for stimulating T cell proliferation while preserving their multifunctionality and high potency. Meanwhile, it enhances CAR gene-engineering efficiency, yielding a more than fivefold increase in CAR T cell production compared with the standard protocol. Notably, GO-APP3/28 stimulated appropriate autocrine interleukin-2 (IL-2) in T cells and overcame the in vitro reliance on external IL-2 supplementation, offering an opportunity to culture T cell-based products independent of IL-2 supplementation.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pelegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
17
|
Montepeloso A, Mattioli D, Pellin D, Peviani M, Genovese P, Biffi A. Haploinsufficiency at the CX3CR1 locus of hematopoietic stem cells favors the appearance of microglia-like cells in the central nervous system of transplant recipients. Nat Commun 2024; 15:10192. [PMID: 39587072 PMCID: PMC11589136 DOI: 10.1038/s41467-024-54515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Transplantation of engineered hematopoietic stem/progenitor cells (HSPCs) showed curative potential in patients affected by neurometabolic diseases treated in early stage. Favoring the engraftment and maturation of the engineered HSPCs in the central nervous system (CNS) could allow enhancing further the therapeutic potential of this approach. Here we unveil that HSPCs haplo-insufficient at the Cx3cr1 (Cx3cr1-/+) locus are favored in central nervous system (CNS) engraftment and generation of microglia-like progeny cells (MLCs) as compared to wild type (Cx3cr1+/+) HSPCs upon transplantation in mice. Based on this evidence, we have developed a CRISPR-based targeted gene addition strategy at the human CX3CR1 locus resulting in an enhanced ability of the edited human HSPCs to generate mature MLCs upon transplantation in immunodeficient mice, and in lineage specific, regulated and robust transgene expression. This approach, which benefits from the modulation of pathways involved in microglia maturation and migration in haplo-insufficient cells, may broaden the application of HSPC gene therapy to a larger spectrum of neurometabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Annita Montepeloso
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Gene Therapy Consulting, Padua, Italy
| | - Davide Mattioli
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy
| | - Danilo Pellin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Marco Peviani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy.
| |
Collapse
|
18
|
Zuo X, Chen Z. From gene to therapy: a review of deciphering the role of ABCD1 in combating X-Linked adrenoleukodystrophy. Lipids Health Dis 2024; 23:369. [PMID: 39529100 PMCID: PMC11552335 DOI: 10.1186/s12944-024-02361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a severe genetic disorder caused by ABCD1 mutations, resulting in the buildup of very-long-chain fatty acids, leading to significant neurological decline and adrenal insufficiency. Despite advancements in understanding the mechanisms of X-ALD, its pathophysiology remains incompletely understood, complicating the development of effective treatments. This review provides a comprehensive overview of X-ALD, with a focus on the genetic and biochemical roles of ABCD1 and the impacts of its mutations. Current therapeutic approaches are evaluated, discussing their limitations, and emphasizing the need to fully elucidate the pathogenesis of X-ALD. Additionally, this review highlights the importance of international collaboration to enhance systematic data collection and advance biomarker discovery, ultimately improving patient outcomes with X-ALD.
Collapse
Affiliation(s)
- Xinxin Zuo
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Zeyu Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
21
|
Duncan CN, Bledsoe JR, Grzywacz B, Beckman A, Bonner M, Eichler FS, Kühl JS, Harris MH, Slauson S, Colvin RA, Prasad VK, Downey GF, Pierciey FJ, Kinney MA, Foos M, Lodaya A, Floro N, Parsons G, Dietz AC, Gupta AO, Orchard PJ, Thakar HL, Williams DA. Hematologic Cancer after Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med 2024; 391:1287-1301. [PMID: 39383458 PMCID: PMC11846662 DOI: 10.1056/nejmoa2405541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND Gene therapy with elivaldogene autotemcel (eli-cel) consisting of autologous CD34+ cells transduced with lentiviral vector containing ABCD1 complementary DNA (Lenti-D) has shown efficacy in clinical studies for the treatment of cerebral adrenoleukodystrophy. However, the risk of oncogenesis with eli-cel is unclear. METHODS We performed integration-site analysis, genetic studies, flow cytometry, and morphologic studies in peripheral-blood and bone marrow samples from patients who received eli-cel therapy in two completed phase 2-3 studies (ALD-102 and ALD-104) and an ongoing follow-up study (LTF-304) involving the patients in both ALD-102 and ALD-104. RESULTS Hematologic cancer developed in 7 of 67 patients after the receipt of eli-cel (1 of 32 patients in the ALD-102 study and 6 of 35 patients in the ALD-104 study): myelodysplastic syndrome (MDS) with unilineage dysplasia in 2 patients at 14 and 26 months; MDS with excess blasts in 3 patients at 28, 42, and 92 months; MDS in 1 patient at 36 months; and acute myeloid leukemia (AML) in 1 patient at 57 months. In the 6 patients with available data, predominant clones contained lentiviral vector insertions at multiple loci, including at either MECOM-EVI1 (MDS and EVI1 complex protein EVI1 [ecotropic virus integration site 1], in 5 patients) or PRDM16 (positive regulatory domain zinc finger protein 16, in 1 patient). Several patients had cytopenias, and most had vector insertions in multiple genes within the same clone; 6 of the 7 patients also had somatic mutations (KRAS, NRAS, WT1, CDKN2A or CDKN2B, or RUNX1), and 1 of the 7 patients had monosomy 7. Of the 5 patients with MDS with excess blasts or MDS with unilineage dysplasia who underwent allogeneic hematopoietic stem-cell transplantation (HSCT), 4 patients remain free of MDS without recurrence of symptoms of cerebral adrenoleukodystrophy, and 1 patient died from presumed graft-versus-host disease 20 months after HSCT (49 months after receiving eli-cel). The patient with AML is alive and had full donor chimerism after HSCT; the patient with the most recent case of MDS is alive and awaiting HSCT. CONCLUSIONS Hematologic cancer developed in a subgroup of patients who were treated with eli-cel; the cases are associated with clonal vector insertions within oncogenes and clonal evolution with acquisition of somatic genetic defects. (Funded by Bluebird Bio; ALD-102, ALD-104, and LTF-304 ClinicalTrials.gov numbers, NCT01896102, NCT03852498, and NCT02698579, respectively.).
Collapse
Affiliation(s)
- Christine N Duncan
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Jacob R Bledsoe
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Bartosz Grzywacz
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Amy Beckman
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Melissa Bonner
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Florian S Eichler
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Jörn-Sven Kühl
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Marian H Harris
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Sarah Slauson
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Richard A Colvin
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Vinod K Prasad
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Gerald F Downey
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Francis J Pierciey
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Melissa A Kinney
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Marianna Foos
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Ankit Lodaya
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Nicole Floro
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Geoffrey Parsons
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Andrew C Dietz
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Ashish O Gupta
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Paul J Orchard
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Himal L Thakar
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - David A Williams
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| |
Collapse
|
22
|
Dunbar CE. Weighing the Risks of Lentiviral Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med 2024; 391:1358-1359. [PMID: 39383463 DOI: 10.1056/nejme2409399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Cynthia E Dunbar
- From the Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Zakas PM, Cunningham SC, Doherty A, van Dijk EB, Ibraheim R, Yu S, Mekonnen BD, Lang B, English EJ, Sun G, Duncan MC, Benczkowski MS, Altshuler RC, Singh MJ, Kibbler ES, Tonga GY, Wang ZJ, Wang ZJ, Li G, An D, Rottman JB, Bhavsar Y, Purcell C, Jain R, Alberry R, Roquet N, Fu Y, Citorik RJ, Rubens JR, Holmes MC, Cotta-Ramusino C, Querbes W, Alexander IE, Salomon WE. Sleeping Beauty mRNA-LNP enables stable rAAV transgene expression in mouse and NHP hepatocytes and improves vector potency. Mol Ther 2024; 32:3356-3371. [PMID: 38981468 PMCID: PMC11489535 DOI: 10.1016/j.ymthe.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.
Collapse
Affiliation(s)
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Ann Doherty
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Eva B van Dijk
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Raed Ibraheim
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Stephanie Yu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Brendan Lang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Gang Sun
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Gulen Y Tonga
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Zi Jun Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Z Jane Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Guangde Li
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ding An
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | - Rachit Jain
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ryan Alberry
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Yanfang Fu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
24
|
Shi X, Qi X, Zheng J, Ma J, Li D. A case of adrenomyeloneuropathy caused by a novel point mutation in the ABCD1 gene and functional verification. Front Genet 2024; 15:1421122. [PMID: 39399217 PMCID: PMC11466755 DOI: 10.3389/fgene.2024.1421122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
Adrenoleukodystrophy is a rare neurogenetic disease, and adrenomyeloneuropathy is the most common phenotype in adults. The clinical data of a patient with adrenoleukodystrophy and spinal-peripheral neuropathy caused by a novel point mutation in exon 4 of the ABCD1 gene (c.1256T > G (p.Val419Gly)) were retrospectively analyzed. Furthermore, we constructed wild-type and mutant vectors of the ABCD1 (NM0000334) gene to validate the effect of this mutation on the expression of the ABCD1 gene and protein and to explore the mechanism of X-linked adrenoleukodystrophy occurrence and development to identify therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Xiaoxue Shi
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
26
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
27
|
Wang QH, Wang J, Ling ZP, Cui ZQ, Gong J, Zhang R, Li SJ, Wang YY, Yang R, Huang DH, He W, Gao J, Feng C, Hu PL, Liu LY, Chang LJ, Zou LP. Phase I clinical trial of intracerebral injection of lentiviral-ABCD1 for the treatment of cerebral adrenoleukodystrophy. Sci Bull (Beijing) 2024; 69:2596-2603. [PMID: 39025777 DOI: 10.1016/j.scib.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024]
Abstract
This was a single-arm, multicenter, open-label phase I trial. Lentiviral vectors (LV) carrying the ABCD1 gene (LV-ABCD1) was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy (CCALD), and multi-site injection was performed. The injection dose increased from 200 to 1600 μL (vector titer: 1×109 transduction units per mL (TU/mL)), and the average dose per kilogram body weight ranges from 8 to 63.6 μL/kg. The primary endpoint was safety, dose-exploration and immunogenicity and the secondary endpoint was initial evaluation of efficacy and the expression of ABCD1 protein. A total of 7 patients participated in this phase I study and were followed for 1 year. No injection-related serious adverse event or death occurred. Common adverse events associated with the injection were irritability (71%, 5/7) and fever (37.2-38.5 ℃, 57%, 4/7). Adverse events were mild and self-limited, or resolved within 3 d of symptomatic treatment. The maximal tolerable dose is 1600 μL. In 5 cases (83.3%, 5/6), no lentivirus associated antibodies were detected. The overall survival at 1-year was 100%. The ABCD1 protein expression was detected in neutrophils, monocytes and lymphocytes. This study suggests that the intracerebral injection of LV-ABCD1 for CCALD is safe and can achieve successful LV transduction in vivo; even the maximal dose did not increase the risk of adverse events. Furthermore, the direct LV-ABCD1 injection displayed low immunogenicity. In addition, the effectiveness of intracerebral LV-ABCD1 injection has been preliminarily demonstrated while further investigation is needed. This study has been registered in the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, registration number: ChiCTR1900026649).
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jing Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, Hainan Hospital of PLA General Hospital, Sanya 572013, China
| | - Zhi-Qiang Cui
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Zhang
- Beijing Meikang Biotechnology Co., LTD., Beijing 100085, China
| | - Shi-Jun Li
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - De-Hui Huang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen He
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Gao
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Feng
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Pei-Li Hu
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Ying Liu
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Geno-Immune Medical Institute, Shenzhen 518057, China.
| | - Li-Ping Zou
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China; Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
28
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Gopalappa R, Lee M, Kim G, Jung ES, Lee H, Hwang HY, Lee JG, Kim SJ, Yoo HJ, Sung YH, Kim D, Baek IJ, Kim HH. In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model. Mol Ther 2024; 32:2190-2206. [PMID: 38796705 PMCID: PMC11286820 DOI: 10.1016/j.ymthe.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Collapse
Affiliation(s)
- Ramu Gopalappa
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinYoung Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; JES Clinic, Incheon 21550, Republic of Korea
| | - Hanahrae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
30
|
Biffi A. Hematopoietic stem cell gene therapy to halt neurodegeneration. Neurotherapeutics 2024; 21:e00440. [PMID: 39276677 PMCID: PMC11417237 DOI: 10.1016/j.neurot.2024.e00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Microglia play fundamental roles in multiple pathological primary and secondary processes affecting the central nervous system that ultimately result in neurodegeneration and for this reason they are considered as a key therapeutic target in several neurodegenerative diseases. Microglia-targeted therapies are directed at either restoring or modulating microglia function, to redirect their functional features toward neuroprotection. Among these strategies, hematopoietic stem cell gene therapy have proven to be endowed with a unique potential for replacing diseased microglia with engineered, transplant progeny cells that can integrate and exert relevant beneficial effects in the central nervous system of patients affected by inherited and acquired neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padova and Padova University Hospital, Padova, Italy.
| |
Collapse
|
31
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Anderson JS, Lodigiani AL, Barbaduomo CM, Beegle JR. Hematopoietic stem cell gene therapy for the treatment of SYNGAP1-related non-specific intellectual disability. J Gene Med 2024; 26:e3717. [PMID: 38967915 DOI: 10.1002/jgm.3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.
Collapse
Affiliation(s)
- Joseph S Anderson
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Alyse L Lodigiani
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Camilla M Barbaduomo
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Julie R Beegle
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Skeate JG, Pomeroy EJ, Slipek NJ, Jones BJ, Wick BJ, Chang JW, Lahr WS, Stelljes EM, Patrinostro X, Barnes B, Zarecki T, Krueger JB, Bridge JE, Robbins GM, McCormick MD, Leerar JR, Wenzel KT, Hornberger KM, Walker K, Smedley D, Largaespada DA, Otto N, Webber BR, Moriarity BS. Evolution of the clinical-stage hyperactive TcBuster transposase as a platform for robust non-viral production of adoptive cellular therapies. Mol Ther 2024; 32:1817-1834. [PMID: 38627969 PMCID: PMC11184336 DOI: 10.1016/j.ymthe.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Bryce J Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jae-Woong Chang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob E Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gabrielle M Robbins
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madeline D McCormick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Neil Otto
- Bio-Techne, Minneapolis, MN 55413, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
37
|
Ren M, Yang L, He L, Wang J, Zhao W, Yang C, Yang S, Cheng H, Huang M, Gou M. Non-viral Gene Therapy for Melanoma Using Lysenin from Eisenia Foetida. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306076. [PMID: 38445883 PMCID: PMC11077637 DOI: 10.1002/advs.202306076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.
Collapse
Affiliation(s)
- Min Ren
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ling Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liming He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jie Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Zhao
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chunli Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shuai Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Hao Cheng
- Huahang Microcreate Technology Co., LtdChengduSichuan610041China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Maling Gou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
38
|
Ge G, Sivasubramanian BP, Geng BD, Zhao S, Zhou Q, Huang G, O'Connor JC, Clark RA, Li S. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson's disease. Gene Ther 2024; 31:324-334. [PMID: 38627469 PMCID: PMC11245959 DOI: 10.1038/s41434-024-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.
Collapse
Affiliation(s)
- Guo Ge
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou, 550025, China
| | | | - Bill D Geng
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Shujie Zhao
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Qing Zhou
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jason C O'Connor
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert A Clark
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Senlin Li
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
39
|
Yska HAF, Engelen M, Bugiani M. The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology. Orphanet J Rare Dis 2024; 19:138. [PMID: 38549180 PMCID: PMC10976706 DOI: 10.1186/s13023-024-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Das S, Rruga F, Montepeloso A, Dimartino A, Spadini S, Corre G, Patel J, Cavalca E, Ferro F, Gatti A, Milazzo R, Galy A, Politi LS, Rizzardi GP, Vallanti G, Poletti V, Biffi A. An empowered, clinically viable hematopoietic stem cell gene therapy for the treatment of multisystemic mucopolysaccharidosis type II. Mol Ther 2024; 32:619-636. [PMID: 38310355 PMCID: PMC10928283 DOI: 10.1016/j.ymthe.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/14/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.
Collapse
Affiliation(s)
- Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Fatlum Rruga
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Agnese Dimartino
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Silvia Spadini
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | | | - Janki Patel
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Francesca Ferro
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | | | | | | | - Letterio S Politi
- Humanitas University and IRCCS Humanitas Research Hospital, 20090 Pieve Emanuele (MI), Italy
| | | | | | - Valentina Poletti
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy.
| |
Collapse
|
41
|
Rao Y, Peng B. Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. FUNDAMENTAL RESEARCH 2024; 4:237-245. [PMID: 38933508 PMCID: PMC11197774 DOI: 10.1016/j.fmre.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that play vital roles in CNS development, homeostasis and disease pathogenesis. Genetic defects in microglia lead to microglial dysfunction, which in turn leads to neurological disorders. The correction of the specific genetic defects in microglia in these disorders can lead to therapeutic effects. Traditional genetic defect correction approaches are dependent on viral vector-based genetic defect corrections. However, the viruses used in these approaches, including adeno-associated viruses, lentiviruses and retroviruses, do not primarily target microglia; therefore, viral vector-based genetic defect corrections are ineffective in microglia. Microglia replacement is a novel approach to correct microglial genetic defects via replacing microglia of genetic defects with allogenic healthy microglia. In this paper, we systematically review the history, rationale and therapeutic perspectives of microglia replacement, which would be a novel strategy for treating CNS disorders.
Collapse
Affiliation(s)
- Yanxia Rao
- Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
42
|
Araki D, Hong S, Linde N, Fisk B, Redekar N, Salisbury-Ruf C, Krouse A, Engels T, Golomb J, Dagur P, Magnani DM, Wang Z, Larochelle A. cMPL-Based Purification and Depletion of Human Hematopoietic Stem Cells: Implications for Pre-Transplant Conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581887. [PMID: 38464076 PMCID: PMC10925094 DOI: 10.1101/2024.02.24.581887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPLhigh LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Nathaniel Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Bryan Fisk
- Integrated Data Science Services, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- Integrated Data Science Services, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christi Salisbury-Ruf
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Theresa Engels
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
- Priority One Services, Inc., Alexandria, VA 22310, USA
| | - Justin Golomb
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
- Priority One Services, Inc., Alexandria, VA 22310, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Diogo M. Magnani
- Nonhuman Primate Reagent Resource, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, and Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Kimmelman J. Ethics of gene and cell therapy development for neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:111-121. [PMID: 39341648 DOI: 10.1016/b978-0-323-90120-8.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this chapter, I provide a condensed overview of nine recurring policy and ethical challenges encountered with the development of gene and cell therapies for neurologic disease. These include the question of when to initiate first-in-human trials, the ethics and policy of expanded/special access, the conduct of individualized therapy trials, subject selection in trials, designing trials for negative results, unintended effects of interventions on personal identity, comparator choice in randomized trials, consent and therapeutic misestimation, and cost and access for effective therapies. Broadly speaking, I argue that early in their development, the justification of risk in trials of gene and cell therapies derives from the social and scientific value of a trial and not the therapeutic value for trial participation. This generates strong imperatives to justify, design, and report trials appropriately and select patient populations that incur the least burden and opportunity cost for trial participation. Late in intervention development, policy makers must contend with the fact that proven effective interventions will almost certainly amplify strains in healthcare budgets as well as the ethical justifications standing behind reimbursement decisions.
Collapse
Affiliation(s)
- Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine, Department of Equity, Ethics and Policy, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
Baruteau J, Keshavan N, Venditti CP. Mission possible: Gene therapy for inherited metabolic diseases. J Inherit Metab Dis 2024; 47:5-6. [PMID: 38221761 DOI: 10.1002/jimd.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Nandaki Keshavan
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Charles P Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
45
|
Tawbeh A, Raas Q, Tahri-Joutey M, Keime C, Kaiser R, Trompier D, Nasser B, Bellanger E, Dessard M, Hamon Y, Benani A, Di Cara F, Cunha Alves T, Berger J, Weinhofer I, Mandard S, Cherkaoui-Malki M, Andreoletti P, Gondcaille C, Savary S. Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation. Front Mol Neurosci 2023; 16:1299314. [PMID: 38164407 PMCID: PMC10757945 DOI: 10.3389/fnmol.2023.1299314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.
Collapse
Affiliation(s)
- Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Dessard
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS, Canada
| | - Tânia Cunha Alves
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stéphane Mandard
- LipSTIC LabEx, University of Bourgogne, INSERM LNC UMR1231, Dijon, France
| | | | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| |
Collapse
|
46
|
Poletti V, Montepeloso A, Pellin D, Biffi A. Prostaglandin E2 as transduction enhancer affects competitive engraftment of human hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev 2023; 31:101131. [PMID: 37920236 PMCID: PMC10618226 DOI: 10.1016/j.omtm.2023.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Ex vivo gene therapy (GT) is a promising treatment for inherited genetic diseases. An ideal transduction protocol should determine high gene marking in long-term self-renewing hematopoietic stem cells (HSCs), preserving their repopulation potential during in vitro manipulation. In the context of the improvement of a clinically applicable transduction protocol, we tested prostaglandin E2 (PGE2) as a transduction enhancer (TE). The addition of PGE2 shortly before transduction of human CD34+ cells determined a significant transduction increase in the in vitro cell progeny paralleled by a significant reduction of their clonogenic potential. This effect increased with the duration of PGE2 exposure and correlated with an increase of CXCR4 expression. Blockage of CXCR4 with AMD3100 (plerixafor, Mozobil) did not affect transduction efficiency but partially rescued CD34+ clonogenic impairment in vitro. Once transplanted in vivo in a competitive repopulation assay, human CD34+ cells transduced with PGE2 contributed significantly less than cells transduced with a standard protocol to the repopulation of recipient mice, indicating a relative repopulation disadvantage of the PGE2-treated CD34+ cells and a counter-selection for the PGE2-treated cell progeny in vivo. In conclusion, our data indicate the need for risk/benefit evaluations in the use of PGE2 as a TE for clinical protocols of GT.
Collapse
Affiliation(s)
- Valentina Poletti
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Danilo Pellin
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| |
Collapse
|
47
|
Catalano F, Vlaar EC, Katsavelis D, Dammou Z, Huizer TF, van den Bosch JC, Hoogeveen-Westerveld M, van den Hout HJ, Oussoren E, Ruijter GJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Tagged IDS causes efficient and engraftment-independent prevention of brain pathology during lentiviral gene therapy for Mucopolysaccharidosis type II. Mol Ther Methods Clin Dev 2023; 31:101149. [PMID: 38033460 PMCID: PMC10684800 DOI: 10.1016/j.omtm.2023.101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen C. van den Bosch
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - George J.G. Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| |
Collapse
|
48
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
49
|
Villoria-González A, Zierfuss B, Parzer P, Heuböck E, Zujovic V, Waidhofer-Söllner P, Ponleitner M, Rommer P, Göpfert J, Forss-Petter S, Berger J, Weinhofer I. Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders. Biomolecules 2023; 13:1696. [PMID: 38136568 PMCID: PMC10741867 DOI: 10.3390/biom13121696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in β-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal β-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal β-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation.
Collapse
Affiliation(s)
- Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Elisabeth Heuböck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Violetta Zujovic
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière—University Hospital, Sorbonne University, DMU Neuroscience 6, 75013 Paris, France
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Göpfert
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| |
Collapse
|
50
|
Cappa M, Todisco T, Bizzarri C. X-linked adrenoleukodystrophy and primary adrenal insufficiency. Front Endocrinol (Lausanne) 2023; 14:1309053. [PMID: 38034003 PMCID: PMC10687143 DOI: 10.3389/fendo.2023.1309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD; OMIM:300100) is a progressive neurodegenerative disorder caused by a congenital defect in the ATP-binding cassette transporters sub-family D member 1 gene (ABCD1) producing adrenoleukodystrophy protein (ALDP). According to population studies, X-ALD has an estimated birth prevalence of 1 in 17.000 subjects (considering both hemizygous males and heterozygous females), and there is no evidence that this prevalence varies among regions or ethnic groups. ALDP deficiency results in a defective peroxisomal β-oxidation of very long chain fatty acids (VLCFA). As a consequence of this metabolic abnormality, VLCFAs accumulate in nervous system (brain white matter and spinal cord), testis and adrenal cortex. All X-ALD affected patients carry a mutation on the ABCD1 gene. Nevertheless, patients with a defect on the ABCD1 gene can have a dramatic difference in the clinical presentation of the disease. In fact, X-ALD can vary from the most severe cerebral paediatric form (CerALD), to adult adrenomyeloneuropathy (AMN), Addison-only and asymptomatic forms. Primary adrenal insufficiency (PAI) is one of the main features of X-ALD, with a prevalence of 70% in ALD/AMN patients and 5% in female carriers. The pathogenesis of X-ALD related PAI is still unclear, even if a few published data suggests a defective adrenal response to ACTH, related to VLCFA accumulation with progressive disruption of adrenal cell membrane function and ACTH receptor activity. The reason why PAI develops only in a proportion of ALD/AMN patients remains incompletely understood. A growing consensus supports VLCFA assessment in all male children presenting with PAI, as early diagnosis and start of therapy may be essential for X-ALD patients. Children and adults with PAI require individualized glucocorticoid replacement therapy, while mineralocorticoid therapy is needed only in a few cases after consideration of hormonal and electrolytes status. Novel approaches, such as prolonged release glucocorticoids, offer potential benefit in optimizing hormonal replacement for X-ALD-related PAI. Although the association between PAI and X-ALD has been observed in clinical practice, the underlying mechanisms remain poorly understood. This paper aims to explore the multifaceted relationship between PAI and X-ALD, shedding light on shared pathophysiology, clinical manifestations, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tommaso Todisco
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Unit of Paediatric Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|