1
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Wang N, Cen LL, Tian Z, An MM, Gu Q, Zhou XH, Zhang YH, Liu L, Zhang J, Yang D, Huang YZ, Long XD, Yang Q. eEF2K as an important kinase associated with cancer survival and prognosis. Sci Rep 2024; 14:29284. [PMID: 39592671 PMCID: PMC11599947 DOI: 10.1038/s41598-024-78652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Eukaryotic Elongation Factor 2 Kinase (eEF2K), a member of the α-kinase family, services as a crucial negative regulator of protein synthesis, particularly under conditions of cellular stress. A pan-cancer analysis of eEF2K expression, genetic variants, and clinical relevance across multiple tumor types was performed using data from the Cancer Genome Atlas (TCGA) and GEO. Our findings suggest that eEF2K has dual roles in cancer progression, with its expression correlating with patient prognosis. Significant phosphorylation of eEF2 at T57, Y434, and T59 was observed, which may regulate protein synthesis during stress. The elevated T59 phosphorylation in COAD, despite the low eEF2K expression, indicates that this may be regulated by alternative kinases, such as AMPK or mTOR. This suggests that compensatory mechanisms may be involved. In addition to modulating eEF2 phosphorylation, eEF2K is involved in a number of other processes, including peptidyl-serine phosphorylation, the G2/M transition, and the MAPK cascade. The protein products of eEF2K are capable of localizing to the nucleus, cytoplasm, and cytosol, where they bind to a range of proteins, including ATP and calcium ions. These findings provide novel insights into the role of eEF2K in cancer biology and suggest that the targeting of eEF2K and eEF2 phosphorylation may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Nan Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 30071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Li-Lan Cen
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
- Guangxi Academy of Medical Sciences, Department of Infectious Disease, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhe Tian
- Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Miao-Miao An
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Qian Gu
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Xin-Hong Zhou
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yi-He Zhang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Lucas Liu
- Atkins Academic & Technology High School, Winston-Salem, NC, 27101, USA
| | - Jun Zhang
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China
| | - Di Yang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yong-Zhi Huang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China.
| | - Qian Yang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Kővári B, Carneiro F, Lauwers GY. Epithelial tumours of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:227-286. [DOI: 10.1002/9781119423195.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Koike Y, Osakabe M, Sugimoto R, Uesugi N, Matsumoto T, Suzuki H, Yanagawa N, Sugai T. A genome-wide study of gastric intramucosal neoplasia based on somatic copy number alterations, gene mutations, and mRNA expression patterns. J Pathol Clin Res 2024; 10:e12368. [PMID: 38454538 PMCID: PMC10920940 DOI: 10.1002/2056-4538.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
We performed comprehensive analyses of somatic copy number alterations (SCNAs) and gene expression profiles of gastric intramucosal neoplasia (IMN) using array-based methods in 97 intestinal-type IMNs, including 39 low-grade dysplasias (LGDs), 37 high-grade dysplasias (HGDs), and 26 intramucosal carcinomas (IMCs) with stromal invasion of the lamina propria to identify the molecular mechanism of IMN. In addition, we examined gene mutations using gene panel analyses. We used cluster analyses for exclusion of arbitrariness to identify SCNA patterns and expression profiles. IMNs were classified into two distinct subgroups (subgroups 1 and 2) based on SCNA patterns. Subgroup 1 showed a genomic stable pattern due to the low frequency of SCNAs, whereas subgroup 2 exhibited a chromosomal instability pattern due to the high frequencies of SCNAs and TP53 mutations. Interestingly, although the frequencies of LGD and HGD were significantly higher in subgroup 1 than in subgroup 2, IMC was commonly found in both types. Although the expression profiles of specific mRNAs could be used to categorise subgroups 1 and 2, no clinicopathological findings correlated with either subgroup. We examined signalling pathways specific to subgroups 1 and 2 to identify the association of each subgroup with signalling pathways based on gene ontology tree visualisation: subgroups 1 and 2 were associated with haem metabolism and chromosomal instability, respectively. These findings reveal a comprehensive genomic landscape that highlights the molecular complexity of IMNs and provide a road map to facilitate our understanding of gastric IMNs.
Collapse
Affiliation(s)
- Yoshihiko Koike
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
| | - Noriyuku Uesugi
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
- Diagnostic Pathology CenterSouthern Tohoku General HospitalKooriyamaJapan
| | - Takayuki Matsumoto
- Division of GastroenterologyDepartment of Internal MedicineShiwagun'yahabachouJapan
| | - Hiromu Suzuki
- Department of Molecular BiologySapporo Medical University, School of MedicineSapporoJapan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of MedicineIwate Medical UniversityShiwagun'yahabachouJapan
- Diagnostic Pathology CenterSouthern Tohoku General HospitalKooriyamaJapan
| |
Collapse
|
5
|
Jung YS, Tran MTX, Park B, Moon CM. Mutual association between family history of gastric and colorectal cancer and risk of gastric and colorectal cancer. J Gastroenterol Hepatol 2023; 38:1787-1793. [PMID: 37259229 DOI: 10.1111/jgh.16251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIM We evaluated the associations between gastric cancer (GC) family history (FH) and colorectal cancer (CRC) risk and between CRC FH and GC/gastric adenoma risk. METHODS We used data of participants who underwent national cancer screening between 2013 and 2014. Participants with GC or CRC FH in first-degree relatives (n = 1 172 750) and those without cancer FH (n = 3 518 250) were matched 1:3 by age and gender. RESULTS Of the 1 172 750 participants with a FH, 871 104, 264 040, and 37 606 had FHs of only GC, only CRC, and both GC and CRC, respectively. The median follow-up time was 4.8 years. GC and CRC FHs were associated with increased GC and CRC risks, respectively. GC FH was associated with CRC risk (adjusted hazard ratio 1.05; 95% confidence interval [CI] 1.01-1.10), whereas CRC FH was not associated with the risk of GC or gastric adenoma. However, gastric adenoma risk increased 1.62-fold (95% CI 1.40-1.87) in participants with FHs of both GC and CRC, demonstrating a significant difference with the 1.39-fold (95% CI 1.34-1.44) increase in participants with only GC FH. Furthermore, GC risk increased by 5.32 times (95% CI 1.74-16.24) in participants with FHs of both GC and CRC in both parents and siblings. CONCLUSIONS GC FH was significantly associated with a 5% increase in CRC risk. Although CRC FH did not increase GC risk, FH of both GC and CRC further increased the risk of gastric adenoma. FHs of GC and CRC may affect each other's neoplastic lesion risk.
Collapse
Affiliation(s)
- Yoon Suk Jung
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mai Thi Xuan Tran
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kim SJ, Lee J, Baek DY, Lee JH, Hong R. Early gastric neoplasms are significant risk factor for colorectal adenoma: A prospective case-control study. Medicine (Baltimore) 2022; 101:e29956. [PMID: 35960053 PMCID: PMC9371521 DOI: 10.1097/md.0000000000029956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although gastric cancer patients have a high incidence and risk of colorectal cancer, evidence is lacking regarding whether early gastric neoplasms (EGNs), such as gastric adenomas and early gastric cancer, are risk factors for colorectal adenoma. This study aimed to investigate the incidence of colorectal adenomas in patients with EGN. This prospective study was conducted between January 2015 and December 2016. Of the 307 patients who underwent gastric endoscopic submucosal dissection for EGN, 110 patients were enrolled in the EGN group, and 110 age- and sex-matched healthy persons from the screening population were included in the control group in a 1:1 ratio. Demographic factors and results of colonoscopy, including quality assessment, were collected, and analyzed. No significant differences in the quality of colonoscopy, including bowel preparation, cecal intubation rate, and withdrawal time between the 2 groups, were observed. The incidence of colorectal adenoma was significantly higher in the EGN group than in the control group (55.5% vs 26.4%, P = .001). Multivariate analysis confirmed that old age (odds ratio: 1.04, 95% confidence interval: 1.01-1.08, P = .005) and a history of EGN (odds ratio: 4.99, 95% confidence interval: 2.60-9.57, P = .001) were independent risk factors for colorectal adenoma. This is the first prospective study to reflect the quality indicator of colonoscopy and confirmed that old age and a history of EGN are significant risk factors for colorectal adenomas. Therefore, more stringent colonoscopy surveillance should be considered in elderly patients with EGN.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwang-ju, Republic of Koreaand
| | - Jun Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwang-ju, Republic of Koreaand
- * Correspondence: Jun Lee, MD, PhD, Department of Internal Medicine, College of Medicine, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea. e-mail:
| | - Dae Youb Baek
- Department of Internal Medicine, College of Medicine, Chosun University, Gwang-ju, Republic of Koreaand
| | - Jun Hyung Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwang-ju, Republic of Koreaand
| | - Ran Hong
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Niu P, Huang H, Zhao L, Wang T, Zhang X, Wang W, Zhang Y, Guo C, Zhao D, Chen Y. Clinicopathological characteristics, survival outcomes, and genetic alterations of younger patients with gastric cancer: Results from the China National Cancer Center and
cBioPortal
datasets. Cancer Med 2022; 11:3057-3073. [PMID: 35486034 PMCID: PMC9385592 DOI: 10.1002/cam4.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background The survival outcomes of younger patients with gastric cancer (GC) have remained controversial. This study explores the clinicopathological characteristics, survival outcomes, and genetic alterations of younger and older patients with GC. Methods Patients with GC were identified from the China National Cancer Center Gastric Cancer Database (NCCGCDB) during 1998–2018. Survival analysis was conducted using Kaplan–Meier estimates and Cox proportional hazards models. Sequencing datasets were enrolled from The Cancer Genome Atlas (TCGA) and Memorial Sloan–Kettering Cancer Center (MSKCC) databases. Results A total of 1146 younger (<40 years of age) and 16,988 older (≥40 years of age) cases were included in the study. Younger patients had more poorly differentiated lesions than older patients (53.7% vs. 33.8%, respectively; p < 0.0001), and were more often pTNM stage IV (19.5% vs. 11.8%, respectively; p < 0.001). The 5‐year overall survival (OS) of patients from the NCCGCDB increased from 1998 to 2018. Younger patients with pTNM stage III had a lower survival rate than older patients (p = 0.014), while no differences by age were observed at other stages. The mutation frequency of the LRP1B, GNAS, APC, and KMT2D genes was higher for older than younger patients (p < 0.05 for all genes). While not significantly different, younger patients from the TCGA and MSKCC databases were more likely to have CDH1, RHOA, and CTNNB1 gene mutations. Conclusions A stable proportion and improved survival of younger patients were reported using NCCGCDB data. Younger patients with pTNM stage III had lower rates of survival than older patients. Distinct molecular characteristics were identified in younger GC patients which may partly explain the histopathology and prognosis specific to this subpopulation.
Collapse
Affiliation(s)
- Penghui Niu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lulu Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Tongbo Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiaojie Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Wanqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Chunguang Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Dongbing Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yingtai Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
8
|
Santos J, Pallarès I, Iglesias V, Ventura S. Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Comput Struct Biotechnol J 2021; 19:4192-4206. [PMID: 34527192 PMCID: PMC8349759 DOI: 10.1016/j.csbj.2021.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein–protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.
Collapse
Key Words
- APR, Aggregation-prone region
- Aggregation
- Amyloid
- CARs, Cryptic amyloidogenic regions
- CD, Circular dichroism
- CR, Congo red
- Evolution
- FTIR, Fourier transform infrared
- IDPs, Intrinsically disordered proteins
- IDRs, Intrinsically disordered regions
- Intrinsically disordered proteins
- PBS, Phosphate buffer saline
- PPI, Protein-protein interactions
- Protein disorder
- Protein–protein interactions
- Rb, Retinoblastoma associated proteins
- RbC, Core region of Rb
- TEM, Transmission electron microscopy
- Th-T, Thioflavin-T
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Wang J, Shao X, Liu Y, Shi R, Yang B, Xiao J, Liu Y, Qu X, Li Z. Mutations of key driver genes in gastric cancer metastasis risk: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:963-972. [PMID: 34196586 DOI: 10.1080/14737159.2021.1946394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Associations between gene mutations and metastasis in gastric cancer (GC) remain contradictory, resulting in the inaccurate estimation of the magnitude of the risk associated with specific genotypes.Methods: In this study, we first screened out four key driver genes (TP53, PIK3CA, APC and ARID1A) by jointly analyzing the mutation levels and searching the literature for genes associated with GC metastasis. We then performed a meta-analysis to demonstrate the relationship between these key driver gene mutations and GC metastasis, including lymphatic and distance metastasis.Results: We found out four key driver genes (TP53, PIK3CA, APC and ARID1A), associated with risk of GC metastasis. The results showed that TP53 (OR 1.39, 95% CI 1.12-1.72) and APC mutations (OR 0.58, 95% CI 0.38-0.89) were associated with lymph node metastasis and distant metastasis in GC. And TP53 mutations (OR 1.65, 95% CI 1.25-2.18) were significantly related to GC metastasis in the Asian population. APC mutations (OR 0.54, 95% CI 0.29-1.00) were also related to GC metastasis in the European and American populations. There was no significant association with GC metastasis in PIK3CA or ARID1A mutations.Expert opinion:Mutations of TP53 and APC play important roles in lymph node metastasis and distant metastasis of GC and may be potential important biomarkers of progression and therapeutic targets. These observations should be further prospectively verified.
Collapse
Affiliation(s)
- Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xinye Shao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruichuan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
11
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
12
|
Ng TH, Sham KWY, Xie CM, Ng SSM, To KF, Tong JHM, Liu WYZ, Zhang L, Chan MTV, Wu WKK, Cheng CHK. Eukaryotic elongation factor-2 kinase expression is an independent prognostic factor in colorectal cancer. BMC Cancer 2019; 19:649. [PMID: 31266475 PMCID: PMC6607603 DOI: 10.1186/s12885-019-5873-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/24/2019] [Indexed: 12/05/2022] Open
Abstract
Background Prognostication of patients with colorectal cancer (CRC) currently relies on tumor-node-metastasis (TNM) staging but clinical outcomes of patients of the same histoclinical stage are heterogeneous. It is therefore imperative to devise novel molecular tests to stratify CRC patients. Our previous work demonstrated that eukaryotic elongation factor-2 kinase (EEF2K) is a tumor suppressor in CRC. Herein, we investigated EEF2K expression in CRC and determined its relationship with clinicopathological parameters. Methods Quantitative RT-PCR and Westerns blots were used to examine EEF2K expression in primary tumor and the adjacent non-tumor tissues of CRC patients (n = 20). Kaplan-Meier curves and Cox regression analysis were used to assess the association between clinical outcomes of CRC patients and EEF2K protein expression determined by immunohistochemistry on tissue microarray (n = 151). Results EEF2K was significantly downregulated at both mRNA and protein levels in tumors of CRC patients. Univariate Cox regression analysis revealed that CRC patients with high tumor grade, advanced TNM staging and low EEF2K expression were associated with worse overall survival. Multivariate analysis further demonstrated that low EEF2K expression was an independent factor for predicting poorer overall survival in CRC patients (p = 0.014; Hazard ratio = 2.951; 95% confidence interval: 1.240–7.024). The 5-year survival rate was 82.8% in the EEF2K-high-expression group versus 63.9% in the EEF2K-low-expression group (p = 0.0118). The association of overall survival with EEF2K expression in CRC patients was verified in The Cancer Genome Atlas (TCGA) cohort. Conclusions EEF2K is downregulated in CRC and its expression can be employed as a prognostic marker for CRC patients independent of TNM staging. Electronic supplementary material The online version of this article (10.1186/s12885-019-5873-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tung H Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy W Y Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan M Xie
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Simon S M Ng
- State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka F To
- State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna H M Tong
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Y Z Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China. .,CUHK Shenzhen Research Institute, Shenzhen, China.
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China. .,CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
13
|
Fukamachi H, Kim SK, Koh J, Lee HS, Sasaki Y, Yamashita K, Nishikawaji T, Shimada S, Akiyama Y, Byeon SJ, Bae DH, Okuno K, Nakagawa M, Tanioka T, Inokuchi M, Kawachi H, Tsuchiya K, Kojima K, Tokino T, Eishi Y, Kim YS, Kim WH, Yuasa Y, Tanaka S. A subset of diffuse-type gastric cancer is susceptible to mTOR inhibitors and checkpoint inhibitors. J Exp Clin Cancer Res 2019; 38:127. [PMID: 30866995 PMCID: PMC6416873 DOI: 10.1186/s13046-019-1121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mechanistic target of rapamycin (mTOR) pathway is essential for the growth of gastric cancer (GC), but mTOR inhibitor everolimus was not effective for the treatment of GCs. The Cancer Genome Atlas (TCGA) researchers reported that most diffuse-type GCs were genomically stable (GS). Pathological analysis suggested that some diffuse-type GCs developed from intestinal-type GCs. METHODS We established patient-derived xenograft (PDX) lines from diffuse-type GCs, and searched for drugs that suppressed their growth. Diffuse-type GCs were classified into subtypes by their gene expression profiles. RESULTS mTOR inhibitor temsirolimus strongly suppressed the growth of PDX-derived diffuse-type GC-initiating cells, which was regulated via Wnt-mTOR axis. These cells were microsatellite unstable (MSI) or chromosomally unstable (CIN), inconsistent with TCGA report. Diffuse-type GCs in TCGA cohort could be classified into two clusters, and GS subtype was major in cluster I while CIN and MSI subtypes were predominant in cluster II where PDX-derived diffuse-type GC cells were included. We estimated that about 9 and 55% of the diffuse-type GCs in cluster II were responders to mTOR inhibitors and checkpoint inhibitors, respectively, by identifying PIK3CA mutations and MSI condition in TCGA cohort. These ratios were far greater than those of diffuse-type GCs in cluster I or intestinal-type GCs. Further analysis suggested that diffuse-type GCs in cluster II developed from intestinal-type GCs while those in cluster I from normal gastric epithelial cells. CONCLUSION mTOR inhibitors and checkpoint inhibitors might be useful for the treatment of a subset of diffuse-type GCs which may develop from intestinal-type GCs.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Yasushi Sasaki
- Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Yamashita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Present Address: Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Miyagi, 981-1293 Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sun-ju Byeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Keisuke Okuno
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Nakagawa
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Tanioka
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikito Inokuchi
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kawachi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Present Address: Department of Pathology, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, 135-8550 Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Center of Minimally Invasive Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Tokino
- Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Kim O, Yoon JH, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. Differentially expressed genes between intestinal- and diffuse-type gastric cancers. Mol Cell Toxicol 2018; 14:303-313. [DOI: 10.1007/s13273-018-0033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/05/2017] [Indexed: 10/28/2022]
|
15
|
Sun R, Hu Z, Curtis C. Big Bang Tumor Growth and Clonal Evolution. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028381. [PMID: 28710260 DOI: 10.1101/cshperspect.a028381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos.
Collapse
Affiliation(s)
- Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
16
|
Youssef O, Sarhadi V, Ehsan H, Böhling T, Carpelan-Holmström M, Koskensalo S, Puolakkainen P, Kokkola A, Knuutila S. Gene mutations in stool from gastric and colorectal neoplasia patients by next-generation sequencing. World J Gastroenterol 2017; 23:8291-8299. [PMID: 29307989 PMCID: PMC5743500 DOI: 10.3748/wjg.v23.i47.8291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study cancer hotspot mutations by next-generation sequencing (NGS) in stool DNA from patients with different gastrointestinal tract (GIT) neoplasms.
METHODS Stool samples were collected from 87 Finnish patients diagnosed with various gastric and colorectal neoplasms, including benign tumors, and from 14 healthy controls. DNA was isolated from stools by using the PSP® Spin Stool DNA Plus Kit. For each sample, 20 ng of DNA was used to construct sequencing libraries using the Ion AmpliSeq Cancer Hotspot Panel v2 or Ion AmpliSeq Colon and Lung Cancer panel v2. Sequencing was performed on Ion PGM. Torrent Suite Software v.5.2.2 was used for variant calling and data analysis.
RESULTS NGS was successful in assaying 72 GIT samples and 13 healthy controls, with success rates of the assay being 78% for stomach neoplasia and 87% for colorectal tumors. In stool specimens from patients with gastric neoplasia, five hotspot mutations were found in APC, CDKN2A and EGFR genes, in addition to seven novel mutations. From colorectal patients, 20 mutations were detected in AKT1, APC, ERBB2, FBXW7, KIT, KRAS, NRAS, SMARCB1, SMO, STK11 and TP53. Healthy controls did not exhibit any hotspot mutations, except for two novel ones. APC and TP53 were the most frequently mutated genes in colorectal neoplasms, with five mutations, followed by KRAS with two mutations. APC was the most commonly mutated gene in stools of patients with premalignant/benign GIT lesions.
CONCLUSION Our results show that in addition to colorectal neoplasms, mutations can also be assayed from stool specimens of patients with gastric neoplasms.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Virinder Sarhadi
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Homa Ehsan
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Tom Böhling
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki 00014, Finland
| | | | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Pauli Puolakkainen
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Arto Kokkola
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
17
|
Synthetic polyphenol compounds inhibit β-catenin/Tcf signaling: Structure-activity relationship. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Family history of gastric cancer is associated with the risk of colorectal neoplasia in Korean population. Dig Liver Dis 2017; 49:1155-1161. [PMID: 28801179 DOI: 10.1016/j.dld.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Family history of cancers at different sites except for colorectum has not been evaluated as a risk factor for colorectal neoplasia (CRN). AIMS To investigate CRN risk according to family history of cancers at 12 different sites, including stomach and colorectum. METHODS A cross-sectional study was performed on 139,497 asymptomatic Koreans who underwent colonoscopy as part of a health check-up. RESULTS The mean age of the study population was 41.6 and the prevalence of CRN was 16.3%. Multivariate analyses revealed that family histories of CRC (adjusted odds ratio; confidence interval, 1.26; 1.17-1.35) and gastric cancer (1.07; 1.01-1.13) were independent risk factors for CRN. Notably, the risk of CRN increased even more for participants with family histories of both CRC and gastric cancer (1.38; 1.12-1.70). Family history of CRC was associated with risk of CRN in participants aged both <50 and ≥50 years, whereas family history of gastric cancer was associated with risk of CRN in participants aged <50 years (1.22; 1.14-1.30), but not in participants aged ≥50 years (1.08; 0.99-1.18). CONCLUSIONS Family history of gastric cancer was an independent risk factor for CRN, especially in those aged <50years. Persons with family histories of gastric cancer and CRC, especially those with family histories of both, may need to begin colonoscopy earlier.
Collapse
|
19
|
Kim NH, Park JH, Park DI, Sohn CI, Jung YS. Is Colonoscopic Screening Necessary for Patients Younger than 50 Years with Gastric Adenoma or Cancer? J Korean Med Sci 2017; 32:1281-1287. [PMID: 28665064 PMCID: PMC5494327 DOI: 10.3346/jkms.2017.32.8.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/20/2017] [Indexed: 11/20/2022] Open
Abstract
Patients, aged ≥ 50 years, with gastric neoplasm are reported to be at increased risk for colorectal neoplasia (CRN), while data regarding the risk of CRN in young patients, aged < 50 years with gastric neoplasm are limited. We aimed to investigate the risk of CRN according to the presence of gastric neoplasm in patients, aged < 50 years, and conducted a cross-sectional study on 131,888 asymptomatic examinees who underwent both esophagogastroduodenoscopy (EGD) and colonoscopy as part of a health screening program between 2010 and 2014. The prevalence of overall CRN (8.6% vs. 13.2%, P = 0.251) and advanced colorectal neoplasia (ACRN) (0.0% vs. 1.3%, P = 0.345) did not significantly differ according to the presence of gastric neoplasm in subjects, aged < 50 years. However, among subjects aged ≥ 50 years, patients with gastric neoplasm had a significantly higher proportion of overall CRN (48.2% vs. 31.7%, P < 0.001) and ACRN (12.5% vs. 4.5%, P < 0.001) compared with those without gastric neoplasm. Particularly, gastric neoplasm was an independent risk factor for ACRN after controlling for confounding factors among subjects, aged ≥ 50 years. In conclusion, gastric neoplasm was a risk factor for CRN in patients, aged ≥ 50 years, but not in patients, aged < 50 years. Young patients, aged < 50 years with gastric neoplasm do not need to undergo colonoscopy, whereas patients, aged ≥ 50 years with gastric neoplasm, should be considered a higher priority for colonoscopy.
Collapse
Affiliation(s)
- Nam Hee Kim
- Preventive Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Ho Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chong Il Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Suk Jung
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Flanagan DJ, Vincan E, Phesse TJ. Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. Br J Pharmacol 2017; 174:4666-4683. [PMID: 28568899 DOI: 10.1111/bph.13890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer persists as a frequent and deadly disease that claims over 700 000 lives annually. Gastric cancer is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal cancers, making it therapeutically challenging. As such, and largely attributed to late-stage diagnosis, gastric cancer patients show only partial response to standard chemo and targeted molecular therapies, highlighting an urgent need to develop new targeted therapies for this disease. Wnt signalling has a well-documented history in the genesis of many cancers and is, therefore, an attractive therapeutic target. As such, drug discovery has focused on developing inhibitors that target multiple nodes of the Wnt signalling cascade, some of which have progressed to clinical trials. The collective efforts of patient genomic profiling has uncovered genetic lesions to multiple components of the Wnt pathway in gastric cancer patients, which strongly suggest that Wnt-targeted therapies could offer therapeutic benefits for gastric cancer patients. These data have been supported by studies in mouse models of gastric cancer, which identify Wnt signalling as a driver of gastric tumourigenesis. Here, we review the current literature regarding Wnt signalling in gastric cancer and highlight the suitability of each class of Wnt inhibitor as a potential treatment for gastric cancer patients, in relation to the type of Wnt deregulation observed. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Toby J Phesse
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,Cell Signalling and Cancer Laboratory, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Ghatak S, Chakraborty P, Sarkar SR, Chowdhury B, Bhaumik A, Kumar NS. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer. BMC MEDICAL GENETICS 2017; 18:61. [PMID: 28576136 PMCID: PMC5457612 DOI: 10.1186/s12881-017-0427-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. METHODS We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. RESULTS APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. CONCLUSION The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC gene alter the protein expression and cell cycle regulation in diffuse type gastric adenocarcinoma.
Collapse
Affiliation(s)
- Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, 796004 Mizoram India
| | - Payel Chakraborty
- Department of Biotechnology, Mizoram University, Aizawl, 796004 Mizoram India
| | - Sandeep Roy Sarkar
- Department of Pathology, Agartala Government Medical College, Tripura, India
| | - Biswajit Chowdhury
- Department of Pathology, Agartala Government Medical College, Tripura, India
| | - Arup Bhaumik
- Department of Pathology, Agartala Government Medical College, Tripura, India
| | | |
Collapse
|
22
|
Tekcham DS, Poojary SS, Bhunia S, Barbhuiya MA, Gupta S, Shrivastav BR, Tiwari PK. Epigenetic regulation of APC in the molecular pathogenesis of gallbladder cancer. Indian J Med Res 2017; 143:S82-S90. [PMID: 27748282 PMCID: PMC5080933 DOI: 10.4103/0971-5916.191792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background & objectives: Loss of function of adenomatous polyposis coli (APC) has been reported in cancer. The two promoters of APC, 1A and 1B also have roles in cancer. But, the epigenetic role of APC promoters is not yet clear in gallbladder cancer (GBC) and gallstone diseases (GSD). We undertook this study to determine the epigenetic role of APC in GBC and GSD. Methods: Methylation-specific (MS)-PCR was used to analyze the methylation of APC gene. The expression of APC gene was studied by semi-quantitative PCR, real-time PCR and immunohistochemistry (IHC) in GBC, GSD and adjacent normal tissues. Results: Of the two promoters, APC 1A promoter was found methylated in 96 per cent GBC (P=0.0155) and 80 per cent GSD (P=0.015). Exon 1 was downregulated in grade II (P=0.002) and grade III (P=0.0001) of GBC, while exon 2 was normally expressed. Scoring analysis of IHC revealed 0 or negativity in 34.48 per cent (P=0.057) and 1+ in 24.14 per cent (P=0.005) GBC cases suggesting loss of APC expression. Interpretation & conclusions: The present findings indicate epigenetic silencing of APC in advanced GBC. The methylation pattern, followed by expression analysis of APC may be suggested for diagnostic, prognostic and therapeutic purposes in GBC in future.
Collapse
Affiliation(s)
- Dinesh Singh Tekcham
- Centre for Genomics; School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Satish S Poojary
- Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Shushruta Bhunia
- Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | - Sanjeev Gupta
- Department of Pathology, Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, India
| | - Braj Raj Shrivastav
- Department of Surgical Oncology, Cancer Hospital and Research Institute; Department of Surgery, Gajra Raja Medical College, Gwalior, Madhya Pradesh, India
| | - Pramod Kumar Tiwari
- Centre for Genomics; School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
23
|
Hu Z, Sun R, Curtis C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim Biophys Acta Rev Cancer 2017; 1867:109-126. [PMID: 28274726 DOI: 10.1016/j.bbcan.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Chang TS, Wei KL, Lu CK, Chen YH, Cheng YT, Tung SY, Wu CS, Chiang MK. Inhibition of CCAR1, a Coactivator of β-Catenin, Suppresses the Proliferation and Migration of Gastric Cancer Cells. Int J Mol Sci 2017; 18:ijms18020460. [PMID: 28230774 PMCID: PMC5343993 DOI: 10.3390/ijms18020460] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 01/03/2023] Open
Abstract
The aberrant activation of Wnt signaling has been implicated in a variety of human cancers, including gastric cancer. Given the current hypothesis that cancer arises from cancer stem cells (CSCs), targeting the critical signaling pathways that support CSC self-renewal appears to be a useful approach for cancer therapy. Cell cycle and apoptosis regulator 1 (CCAR1) is a transcriptional coactivator which has been shown to be a component of Wnt/β-catenin signaling, and which plays an important role in transcriptional regulation by β-catenin. However, the function and clinical significance of CCAR1 in gastric cancer have not been elucidated. Here, we show that elevated CCAR1 nuclear expression correlates with the occurrence of gastric cancer. In addition, RNAi-mediated CCAR1 reduction not only suppressed the cell growth and increased apoptosis in AGS and MKN28 cells, but also reduced the migration and invasion ability of these cells. Furthermore, an in vivo xenograft assay revealed that the expression level of CCAR1 was critical for tumorigenesis. Our data demonstrates that CCAR1 contributes to carcinogenesis in gastric cancer and is required for the survival of gastric cancer cells. Moreover, CCAR1 may serve as a diagnostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuo-Liang Wei
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chung-Kuang Lu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
| | - Yi-Hsing Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ying-Tung Cheng
- Department of Life Science, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Shui-Yi Tung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Cheng-Shyong Wu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ming-Ko Chiang
- Department of Life Science, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
25
|
Prevalence and Risk Factors of Gastric Adenoma and Gastric Cancer in Colorectal Cancer Patients. Gastroenterol Res Pract 2016; 2016:2469521. [PMID: 28105047 PMCID: PMC5220511 DOI: 10.1155/2016/2469521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background/Aims. To evaluate the incidence of gastric adenoma and gastric cancer in colorectal cancer patients, as well as the clinicopathological features that affect their incidence. Methods. Among patients who underwent surgery after being diagnosed with colorectal cancer between January 2004 and December 2013 at Chungnam National University Hospital, 142 patients who underwent follow-up upper gastrointestinal endoscopy were assigned to the patient group. The control group included 426 subjects randomly selected. The patient group was subdivided into two: one that developed gastric adenoma or cancer and one that did not. Clinicopathological characteristics were compared between these groups. Results. In total, 35 (24.6%) colorectal cancer patients developed a gastric adenoma or gastric cancer, which was higher than the number in the control group (20 [4.7%] patients; p < 0.001). Age, alcohol history, and differentiation of colorectal cancer were associated with higher risks of gastric adenoma or gastric cancer, with odds ratios of 1.062, 6.506, and 5.901, respectively. Conclusions. In colorectal cancer patients, screening with upper gastrointestinal endoscopy is important, even if no lesions are noted in the upper gastrointestinal tract at colorectal cancer diagnosis. Endoscopic screening is particularly important with increasing age, history of alcohol consumption, and poor cancer differentiation.
Collapse
|
26
|
Sano M, Driscoll DR, DeJesus-Monge WE, Quattrochi B, Appleman VA, Ou J, Zhu LJ, Yoshida N, Yamazaki S, Takayama T, Sugitani M, Nemoto N, Klimstra DS, Lewis BC. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia 2016; 18:785-794. [PMID: 27889647 PMCID: PMC5126137 DOI: 10.1016/j.neo.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based RCAS-TVA pancreatic cancer model with the established LSL-KrasG12D, Ptf1a-cre model. Delivery of RCAS viruses encoding β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to RCAS-GFP-injected controls (P < .05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61 expression were predominantly detected in moderately to poorly differentiated murine and human PDAC. Indeed, nuclear β-catenin- and CYR61-positive PDAC patients demonstrated poor prognosis (P < .01). Knockdown of CYR61 in a β-catenin-activated pancreatic cancer cell line reduced soft agar, migration and invasion activity. Together, these data suggest that the WNT/β-catenin signaling pathway enhances pancreatic cancer development and malignancy in part via up-regulation of CYR61.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan.
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Wilfredo E DeJesus-Monge
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Victoria A Appleman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Nao Yoshida
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shintaro Yamazaki
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masahiko Sugitani
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - Norimichi Nemoto
- Division of Pathology, Department of Pathology and Microbiology, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605; Cancer Center, University of Massachusetts Medical School, Worcester, MA, 01605.
| |
Collapse
|
27
|
Okuda T, Taki T, Nishida K, Chinen Y, Nagoshi H, Sakakura C, Taniwaki M. Molecular heterogeneity in the novel fusion gene APIP-FGFR2: Diversity of genomic breakpoints in gastric cancer with high-level amplifications at 11p13 and 10q26. Oncol Lett 2016; 13:215-221. [PMID: 28123544 PMCID: PMC5244987 DOI: 10.3892/ol.2016.5386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/28/2016] [Indexed: 01/14/2023] Open
Abstract
Several novel fusion transcripts were identified by next-generation sequencing in gastric cancer; however, the breakpoint junctions have yet to be characterized. The present study characterized a plethora of APIP-FGFR2 genomic breakpoints in the SNU-16 gastric cancer cell line, which harbored homogeneously staining regions (hsrs) and double minute chromosomes. Oligonucleotide microarrays revealed high-level amplifications at chromosomes 8q24.1 (0.8 Mb region), 10q26 (1.1 Mb) and 11p13 (1.1 Mb). These amplicons contained MYC and PVT1 at chromosome 8q24.1, BRWD2, FGFR2 and ATE1 at chromosome 10q26, and 24 genes, including APIP, CD44, RAG1 and RAG2, at chromosome 11p13. Based on these findings, reverse transcription-polymerase chain reaction (PCR) was performed using various candidate gene primers to detect possible fusion transcripts, and several products using primer sets for the APIP and FGFR2 genes were detected. Eventually, three in-frame and two out-of-frame fusion transcripts were detected. Notably, PCR analysis of the entire genomic DNA detected three distinct genomic junctions. The breakpoints were within intron 5 of APIP, which contained three distinct breakpoints, and introns 5, 7 and 9 of FGFR2. Fluorescence in situ hybridization showed several fusion signals within hsrs using two short probes (~10-kb segments of a bacterial artificial chromosome clone) containing exons 2–5 of APIP or exons 11–13 of FGFR2. Although, for any given fusion, a multiplicity of transcripts is thought to be created by alternative splicing of one rearranged allele, the results of the present study suggested that genomic fusions of APIP and FGFR2 are generated in hsrs with a diversity of breakpoints that are then faithfully transcribed.
Collapse
Affiliation(s)
- Takashi Okuda
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan; Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Kazuhiro Nishida
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Yoshiaki Chinen
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hisao Nagoshi
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Chouhei Sakakura
- Department of Digestive Surgery, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Masafumi Taniwaki
- Department of Hematology and Oncology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
28
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
29
|
Ahmad SA, Xia BT, Bailey CE, Abbott DE, Helmink BA, Daly MC, Thota R, Schlegal C, Winer LK, Ahmad SA, Al Humaidi AH, Parikh AA. An update on gastric cancer. Curr Probl Surg 2016; 53:449-90. [PMID: 27671911 DOI: 10.1067/j.cpsurg.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Syed A Ahmad
- Division of Surgical Oncology, University of Cincinnati Cancer Institute, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Brent T Xia
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH
| | - Christina E Bailey
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel E Abbott
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Beth A Helmink
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Meghan C Daly
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH
| | - Ramya Thota
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Cameron Schlegal
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Leah K Winer
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH
| | | | - Ali H Al Humaidi
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH
| | - Alexander A Parikh
- Division of Hepatobiliary, Pancreas and Gastrointestinal Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
30
|
Clinicopathologic features of gastric cancer with synchronous and metachronous colorectal cancer in Korea: are microsatellite instability and p53 overexpression useful markers for predicting colorectal cancer in gastric cancer patients? Gastric Cancer 2016; 19:798-807. [PMID: 26445944 DOI: 10.1007/s10120-015-0552-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND A large-scale study was performed to identify the risk factors for developing synchronous and metachronous colorectal cancer (CRC) in gastric cancer (GC) patients, including microsatellite instability (MSI) and p53 overexpression. METHODS A total of 1041 GC patients who underwent endoscopic resection or surgery and underwent colonoscopy simultaneously or during surveillance for GC were consecutively enrolled. Clinicopathologic characteristics, MSI, and p53 overexpression were compared between the GC patients with and those without synchronous and metachronous CRC. RESULTS Of the 1041 patients, CRCs were detected in 67 (6.4 %) patients with GC. Forty-six (4.4 %) had synchronous CRC and 21 (2.0 %) had metachronous CRC. Univariate analysis indicated that age ≥63 years (P < 0.001), male sex (P = 0.005), and p53 overexpression (P = 0.040) were significantly associated with a higher incidence of CRC. However, body mass index, smoking, tumor location, tumor multiplicity, tumor histology, TNM stage, and MSI were not significantly associated with the incidence of CRC. Age ≥63 years (OR: 5.881; 95 % CI: 3.083-11.221; P < 0.001) and male sex (OR: 2.933; 95 % CI: 1.307-6.584; P = 0.009) were risk factors for CRC in GC patients according to multivariate analysis. CONCLUSIONS GC patients who are male and/or ≥63 years old are recommended to receive colonoscopy to detect CRC. MSI and p53 overexpression were not useful molecular markers for predicting CRC in GC.
Collapse
|
31
|
KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis 2016; 7:e2255. [PMID: 27277677 PMCID: PMC5143387 DOI: 10.1038/cddis.2016.158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
Gastric cancer is one of the most common types of cancer in the world, particularly in underdeveloped countries. The mechanism of gastric cancer is less understood compared with other types of gastrointestinal (GI) cancers. Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor and is a potential tumor suppressor in GI cancers. In this study, we have generated two mouse models, Rosa-Cre;Klf4fl/fl and Lgr5-Cre;Klf4fl/fl. KLF4 was deleted by Rosa-Cre in the gastric epithelia cells or by Lgr5-Cre in the antral stem cells in the adult mice. KLF4 deletion resulted in increased proliferating cells and decreased pit mucous cells. Surprisingly, the intestinal goblet cell marker, MUC2, which is not expressed in normal gastric tissues, was strongly induced at the base of the KLF4-deleted antral glands. To understand the clinical relevance of these findings, we analyzed the expression of KLF4 and MUC2 in human gastric cancer. In a subset of human gastric cancer, the expression of KLF4 is negatively associated with MUC2 expression. In conclusion, KLF4 is essential for normal homeostasis of antral stem cells; loss of KLF4 and expression of MUC2 could be important markers for gastric cancer diagnosis.
Collapse
|
32
|
Men HT, Gou HF, Liu JY, Li Q, Luo DEY, Bi F, Qiu M. Prognostic factors of intraperitoneal chemotherapy for peritoneal carcinomatosis of gastric cancer: A retrospective study from a single center. Oncol Lett 2016; 11:3501-3507. [PMID: 27123142 DOI: 10.3892/ol.2016.4403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/20/2015] [Indexed: 02/05/2023] Open
Abstract
Peritoneal carcinomatosis (PC) of gastric origin is currently recognized as a terminal disease with a poor prognosis. Advancements in novel therapeutic approaches, including intraperitoneal chemotherapy (IPC), have recently been made and it is believed that this may have contributed to the improved survival observed in patients with PC. The present study aimed to investigate overall survival (OS) and the associated prognostic factors in patients with PC of gastric origin who underwent IPC. A total of 57 patients were studied, with a median age of 51 years. The median follow-up time was 12.4 months. PC was diagnosed in all patients with gastric cancer. The median survival time of all patients was 10.1 months, whilst the OS rate at 1, 2 and 3 years was observed to be 46, 19 and 12%, respectively. Symptomatic ascites and a signet ring cell (SRC) histopathological type were demonstrated to signify a poor prognosis. Complete resection of all gross disease (CCR-0) and an increased number of cycles of systemic chemotherapy were independent factors that were observed to correlate with increased OS. The most common morbidities of grade 3/4 adverse effects were bone marrow suppression, nausea or vomiting, and diarrhea. In conclusion, IPC is an important treatment option for patients with PC that has originated from gastric cancer. Symptomatic ascites and SRC adenocarcinoma serve as negative clinicopathological prognostic factors, whilst CCR-0 and increased systemic chemotherapy cycles (≥4 cycles) may prove to be an important therapeutic option for PC patients.
Collapse
Affiliation(s)
- Hai-Tao Men
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong 400016, P.R. China
| | - Hong-Feng Gou
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ji-Yan Liu
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu Li
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - DE-Yun Luo
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Bi
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Qiu
- Division of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
33
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
34
|
Yuen ST, Leung SY. Genomics Study of Gastric Cancer and Its Molecular Subtypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:419-39. [PMID: 27573784 DOI: 10.1007/978-3-319-41388-4_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a heterogeneous disease encompassing diverse morphological (intestinal versus diffuse) and molecular subtypes (MSI, EBV, TP53 mutation). Recent advances in genomic technology have led to an improved understanding of the driver gene mutational profile, gene expression, and epigenetic alterations that underlie each of the subgroups, with therapeutic implications in some of these alterations. There have been attempts to classify gastric cancers based on these genomic features, with an aim to improve prognostication and predict responsiveness to specific drug therapy. The eventual aims of these genomic studies are to develop deep biological insights into the carcinogenic pathway in each of these subtypes. Future large-scale drug screening strategies may then be able to link these genomic features to drug responsiveness, eventually leading to genome-guided personalized medicine with improved cure rates.
Collapse
Affiliation(s)
- Siu Tsan Yuen
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Suet Yi Leung
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
35
|
Wang L, Tan C, Qiao F, Wang W, Jiang X, Lian P, Chang B, Sheng W. Upregulated expression of DIXDC1 in intestinal-type gastric carcinoma: co-localization with β-catenin and correlation with poor prognosis. Cancer Cell Int 2015; 15:120. [PMID: 26689843 PMCID: PMC4683926 DOI: 10.1186/s12935-015-0273-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Background DIXDC1 (Dishevelled-Axin domain containing 1) is a positive regulator of the Wnt pathway. In the field of cancer research, the role of DIXDC1 is unclear. Our previous in vitro study showed that DIXDC1 enhances β-catenin nuclear accumulation in gastric cancer cell lines. The aim of this study was to detect the expression of DIXDC1 in different histological subtypes of gastric carcinoma and to evaluate the correlation between the expression of DIXDC1 and β-catenin localization and clinicopathological parameters, including patients’ survival. Methods Immunohistochemical staining was performed to characterize the expression of DIXDC1 and β-catenin in archived materials from 259 cases of gastric carcinoma. The χ2 test and the Fisher’s test were used to analyze correlations between DIXDC1 expression, β-catenin localization, and clinicopathological parameters. Univariate analyses were performed using the Kaplan–Meier method, and the survival difference between groups was assessed by the log-rank test. Multivariate analysis was performed using the Cox proportional hazards regression model. Results Positive DIXDC1 staining was detected in tumor cells in 123 of 259 (47.5 %) cases. DIXDC1 expression in gastric carcinoma was significantly correlated with the histological intestinal-type (P < 0.001), the depth of tumor invasion (P < 0.001) and the lymph node metastasis (P = 0.006). In the intestinal-type, DIXDC1 was correlated with the nuclear and cytoplasmic β-catenin expression (P = 0.002). Kaplan–Meier analysis indicated that patients with high DIXDC1 expression had poor disease-specific survival (P < 0.001), especially in the intestinal-type. Moreover, multivariate regression analysis showed that positive expression of DIXDC1 was an independent prognostic predictor of intestinal-type gastric carcinoma. Conclusion Our study indicated that DIXDC1 is a significant independent prognostic indicator in intestinal-type gastric carcinoma that plays an important role in carcinogenesis and progression of gastric carcinoma through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Fan Qiao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Weige Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xiangnan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
36
|
Park S. Polyphenol Compound as a Transcription Factor Inhibitor. Nutrients 2015; 7:8987-9004. [PMID: 26529010 PMCID: PMC4663573 DOI: 10.3390/nu7115445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Korea.
| |
Collapse
|
37
|
Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta 2015; 448:124-32. [PMID: 26148722 DOI: 10.1016/j.cca.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Although gastric cancer (GC) is highly prevalent in China and is a leading cause of cancer-related death, major advances in early diagnostic and effective therapeutic strategies have not been made. GC patients are usually diagnosed at an advanced stage and the prognosis is still poor. Over the years, many efforts have been done on exploring the pathology of GC. In particular, genome-wide analysis tools have been widely used in the detection of genetic and epigenetic alterations in GC. For example, many tumor suppressor genes have been found to be aberrantly hypermethylated in GCs, and some even in gastric precancerous lesions, suggesting a role of this molecular event in early gastric tumorigenesis. In addition, accumulating evidences have demonstrated that some hypermethylated genes can be used as potential biomarkers for detection and diagnosis of GC in biopsy specimens and non-invasive body fluids. These exciting advances provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for GC. Here, we reviewed recent findings on the promoter hypermethylation of tumor suppressor genes in GC and aimed to provide better understanding of the contribution of this epigenetic event to gastric tumorigenesis.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junrong Liang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
38
|
Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression. Mod Pathol 2015; 28:428-36. [PMID: 25258105 DOI: 10.1038/modpathol.2014.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/20/2014] [Accepted: 07/20/2014] [Indexed: 12/31/2022]
Abstract
The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.
Collapse
|
39
|
Zhao Y, Feng F, Zhou YN. Stem cells in gastric cancer. World J Gastroenterol 2015; 21:112-123. [PMID: 25574084 PMCID: PMC4284326 DOI: 10.3748/wjg.v21.i1.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/19/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. Cancer stem cells (CSCs), which were first identified in acute myeloid leukemia and subsequently in a large array of solid tumors, play important roles in cancer initiation, dissemination and recurrence. CSCs are often transformed tissue-specific stem cells or de-differentiated transit amplifying progenitor cells. Several populations of multipotent gastric stem cells (GSCs) that reside in the stomach have been determined to regulate physiological tissue renewal and injury repair. These populations include the Villin+ and Lgr5+ GSCs in the antrum, the Troy+ chief cells in the corpus, and the Sox2+ GSCs that are found in both the antrum and the corpus. The disruption of tumor suppressors in Villin+ or Lgr5+ GSCs leads to GC in mouse models. In addition to residing GSCs, bone marrow-derived cells can initiate GC in a mouse model of chronic Helicobacter infection. Furthermore, expression of the cell surface markers CD133 or CD44 defines gastric CSCs in mouse models and in human primary GC tissues and cell lines. Targeted elimination of CSCs effectively reduces tumor size and grade in mouse models. In summary, the recent identification of normal GSCs and gastric CSCs has greatly improved our understanding of the molecular and cellular etiology of GC and will aid in the development of effective therapies to treat patients.
Collapse
|
40
|
Li YL, Liu L, Xiao Y, Zeng T, Zeng C. 14-3-3σ is an independent prognostic biomarker for gastric cancer and is associated with apoptosis and proliferation in gastric cancer. Oncol Lett 2014; 9:290-294. [PMID: 25435977 PMCID: PMC4246703 DOI: 10.3892/ol.2014.2676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
14-3-3 proteins participate in various cellular processes, including apoptosis, proliferation and malignant transformation. 14-3-3σ, a member of the 14-3-3 protein family, is important in several types of cancer; however, little is known about the clinical significance and biological roles of 14-3-3σ in gastric cancer. The present study analyzed the expression pattern of 14-3-3σ in gastric cancer and investigated its correlation with the prognosis of gastric cancer patients. Furthermore, the association of 14-3-3σ with Ki-67, Bcl-2 and Bax was evaluated. 14-3-3σ was expressed at higher level in gastric cancer tissue compared with healthy gastric tissue, and 14-3-3σ expression was significantly correlated with tumor size and tumor node metastasis stage (P<0.05). To the best of our knowledge, the present study data are the first to suggest that 14-3-3σ expression has been significantly associated with poor prognosis in gastric cancer. Additionally, 14-3-3σ overexpression was positively correlated with Ki-67 and Bcl-2 expression levels. Thus, 14-3-3σ is a potential prognostic marker for gastric cancer patients, and may be involved in regulating the apoptosis and proliferation of gastric cancer cells.
Collapse
Affiliation(s)
- Yi-Liang Li
- Department of Neurology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi, Hunan 417000, P.R. China
| | - Lihua Liu
- Department of Respiratory Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yang Xiao
- Department of Orthopaedics, The Central Hospital of Loudi Affiliated to the University of South China, Loudi, Hunan 417000, P.R. China
| | - Tao Zeng
- School of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
41
|
Cho M, Eze O, Xu R. Molecular genetics of gastric adenocarcinoma in clinical practice. World J Med Genet 2014; 4:58-68. [DOI: 10.5496/wjmg.v4.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The molecular genetics of gastric carcinoma (GC) dictates their biology and clinical behavior. The two morphologically distinct types of gastric carcinoma by Lauren classification, i.e., intestinal and diffuse cell types, have a significant difference in clinical outcome. These two types of GC have different molecular pathogenetic pathways with unique genetic alterations. In addition to environmental and other etiologies, intestinal type GC is associated with Helicobacter pylori (H. pylori) infection and involves a multistep molecular pathway driving the normal epithelium to intestinal metaplasia, dysplasia, and malignant transformation by chromosomal and/or microsatellite instability (MSI), mutation of tumor suppressor genes, and loss of heterozygosity among others. Diffuse type shows no clear causal relationship with H. pylori infection, but is commonly associated with deficiency of cell-cell adhesion due to mutation of the E-cadherin gene (CDH1), and a manifestation of the hereditary gastric cancer syndrome. Thus, detection of CDH1 mutation or loss of expression of E-cadherin may aid in early diagnosis or screening of diffuse type GC. Detection of certain genetic markers, for example, MSI and matrix metalloproteinases, may provide prognostic information, particularly for intestinal type. The common genetic alterations may offer therapeutic targets for treatment of GC. Polymorphisms in Thymidylate synthase to metabolize 5-fluorouracil, glutathione S-transferase for degradation of Cisplatin, and amplification/overexpression of human epidermal growth factor receptor 2 targeted by monoclonal antibody Trastuzumab, are a few examples. P13K/Akt/mTOR pathway, c-Met pathways, epidermal growth factor receptor, insulin-like growth factor receptor, vascular endothelial growth factor receptor fibroblast growth factor receptor, and micro RNAs are several potential therapeutic biomarkers for GC under investigation.
Collapse
|
42
|
Bok HJ, Lee JH, Shin JK, Jeon SM, Park JJ, Moon CM, Hong SP, Cheon JH, Kim TI, Kim WH. [Clinicopathologic features of colorectal cancer combined with synchronous and metachronous gastric cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2014; 62:27-32. [PMID: 23954957 DOI: 10.4166/kjg.2013.62.1.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS The purpose of this study was to investigate the clinicopathologic features of double primary cancers of the stomach and colorectum, compared to colorectal cancer alone. METHODS A retrospective analysis was made of 5,288 patients who underwent colorectal cancer surgery between January 2000 and December 2009 at Severance Hospital of Yonsei University. The clinicopathologic features were analyzed between 63 patients of double primary cancers and case-matched 126 patients of colorectal cancer alone. We classified double primary cancers into subgroups as premetachronous, synchronous and postmetachronous gastric cancer to identify differences between the three subgroups also. RESULTS Double primary cancers group showed 4.3 year-older age, lower BMI, and higher percentage of peritoneal metastasis, compared to colorectal cancer alone group. Overall and colorectal cancer specific survival did not have any significant difference between two groups. In histologic type of gastric cancer, a high percentage of undifferentiated adenocarcinoma (55.6%) and signet ring cell carcinoma (30.2%) were noted. CONCLUSIONS Double primary cancers of the stomach and colorectum had older-age onset, lower BMI and higher metastasis to peritoneum than colorectal cancer alone. Combined gastric cancer consisted of high percentage of undifferentiated and signet ring cell carcinomas.
Collapse
Affiliation(s)
- Hyun Jung Bok
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim SY, Jung SW, Hyun JJ, Koo JS, Choung RS, Yim HJ, Lee SW, Choi JH. Is colonoscopic screening necessary for patients with gastric adenoma or cancer? Dig Dis Sci 2013; 58:3263-9. [PMID: 23955386 DOI: 10.1007/s10620-013-2824-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since colorectal adenoma or cancer is commonly associated with gastric adenoma or cancer, early colorectal adenoma detection can affect the survival of gastric adenoma or cancer patients. AIMS The purpose here was to investigate the colorectal adenoma or cancer prevalence and evaluate the necessity for screening colonoscopy in gastric adenoma or cancer patients. PATIENTS AND METHODS From September 2005 through August 2010, 857 patients younger than 70 years who had gastric adenoma or cancer were enrolled. Healthy age- and sex-matched controls were selected from the general screening population. The prevalence and risk of colorectal adenoma or cancer were compared between the participants and the controls. RESULTS Data from 416 patients in the gastric neoplasm group (123 with gastric adenoma and 293 with gastric cancer) and 416 healthy control group participants were included in the statistical analysis. The presence of gastric adenoma or cancer was an independent risk factor for colorectal neoplasm (OR = 1.348, 95 % CI = 1.001-1.815). Patients with diffuse type gastric cancer had a lower prevalence of colorectal adenoma or cancer than those with gastric adenoma or intestinal type cancer. In gastric cancer patients younger than 50 years, intestinal type histology was significantly associated with colorectal adenoma or cancer (OR = 3.838, 95 % CI = 1.077-13.677). CONCLUSIONS The colorectal adenoma or cancer risk was significantly increased in patients with gastric adenoma or cancer. Therefore, screening colonoscopy should be considered for gastric adenoma or cancer patients including young patients, in the case of intestinal type gastric cancer.
Collapse
Affiliation(s)
- Seung Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 516 Gojan-dong, Danwon-gu, Ansan, Gyeonggi-do, 425-707, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bottarelli L, Azzoni C, Pizzi S, D'Adda T, Silini EM, Bordi C, Rindi G. Adenomatous polyposis coli gene involvement in ileal enterochromaffin cell neuroendocrine neoplasms. Hum Pathol 2013; 44:2736-42. [PMID: 24139208 DOI: 10.1016/j.humpath.2013.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 02/09/2023]
Abstract
The adenomatous polyposis coli gene is a key tumor suppressor gene. Alterations in this gene have been found in most sporadic colon cancers; associated with familial adenomatous polyposis; and found in neoplasms of other organs, such as the liver, stomach, lung, breast, and cerebellar medulloblastoma. In the heterogeneous group of neuroendocrine neoplasms of the gastrointestinal tract, the involvement of adenomatous polyposis coli is debated, and only occasional reports found adenomatous polyposis coli alterations in foregut and midgut neuroendocrine neoplasms, with adenomatous polyposis coli mutations only in the latter. To elucidate the penetrance of adenomatous polyposis coli alterations in ileal neuroendocrine neoplasms, we performed DNA fragment analysis (loss of heterozygosity for 5q22-23 and 5q23) and sequencing on the mutation cluster region of the adenomatous polyposis coli gene on 30 ileal enterochromaffin cell neuroendocrine neoplasms. Adenomatous polyposis coli gene mutations were detected in 23% of cases (7/30); in particular, 57% were missense and 14%, nonsense/frameshift, all novel and different from those reported in colorectal or other cancers. Loss of heterozygosity analysis demonstrated a deletion frequency of 15% (4/27). No association was found with features of tumor progression. Our observations support the involvement of somatic adenomatous polyposis coli alterations in tumorigenesis of ileal enterochromaffin cell neuroendocrine neoplasms; the mechanisms of adenomatous polyposis coli gene inactivation appear to be different from those reported in other tumor types.
Collapse
Affiliation(s)
- Lorena Bottarelli
- Centre for Molecular and Translational Oncology (COMT), Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathological Anatomy University and University Hospital of Parma, 43126 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Lu H, Sun J, Wang F, Feng L, Ma Y, Shen Q, Jiang Z, Sun X, Wang X, Jin H. Enhancer of zeste homolog 2 activates wnt signaling through downregulating CXXC finger protein 4. Cell Death Dis 2013; 4:e776. [PMID: 23949225 PMCID: PMC3763454 DOI: 10.1038/cddis.2013.293] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Through silencing tumor suppressor genes, epigenetic changes can activate signaling pathways important to cancer development. In this report, we found an epigenetic contribution to the aberrant activation of wnt signaling in human gastric cancer. CXXC4 (CXXC finger protein 4) was identified as a novel target of EZH2 (enhancer of zeste homolog 2), and EZH2 promotes the activation of wnt singaling by downregulating CXXC4 expression. CXXC4 inhibits the growth of gastric cancer cells both in vitro and in vivo through inactivating wnt signaling. In contrast, depletion of CXXC4 activates wnt signaling and promotes the anchorage-independent growth of nontumor gastric epithelial cells. CXXC4 is downregulated in gastric carcinoma tissues and its downregulation is associated with poor outcome of gastric cancer patients (hazard ratio: 5.053, P<0.05). Through its binding to dishevelled (Dvl), CXXC4 stabilizes the destruction complex of β-catenin to inhibit wnt signaling. Two critical amino acid residues in CXXC4, K161 and T162 were found to be important to its binding to Dvl and the growth inhibitory effect of CXXC4. In summary, EZH2 promotes the activation of wnt signaling in gastric carcinogenesis through the downregulation of CXXC4 expression. CXXC4 is a novel potential tumor suppressor directly regulated by EZH2, and its expression is a significant prognosis factor for patients with early stages of gastric cancer.
Collapse
Affiliation(s)
- H Lu
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Carneiro F, Lauwers GY. Epithelial Tumours of the Stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2013:180-222. [DOI: 10.1002/9781118399668.ch13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 2012; 4:156-69. [PMID: 22844547 PMCID: PMC3406280 DOI: 10.4251/wjgo.v4.i7.156] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023] Open
Abstract
Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological and clinicopathological features. The etiology of gastric cancer is multifactorial and includes both dietary and nondietary factors. The major diet-related risk factors implicated in stomach cancer development include high content of nitrates and high salt intake. Accumulating evidence has implicated the role of Helicobacter pylori (H. pylori) infection in the pathogenesis of gastric cancer. The development of gastric cancer is a complex, multistep process involving multiple genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell cycle regulators, and signaling molecules. A plausible program for gastric cancer prevention involves intake of a balanced diet containing fruits and vegetables, improved sanitation and hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions. The fact that diet plays an important role in the etiology of gastric cancer offers scope for nutritional chemoprevention. Animal models have been extensively used to analyze the stepwise evolution of gastric carcinogenesis and to test dietary chemopreventive agents. Development of multitargeted preventive and therapeutic strategies for gastric cancer is a major challenge for the future.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Siddavaram Nagini, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| |
Collapse
|
48
|
Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 2012; 4:a007989. [PMID: 22474007 DOI: 10.1101/cshperspect.a007989] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway was originally uncovered as one of the prototype developmental signaling cascades in invertebrates as well as in vertebrates. The first indication that Wnt signaling also plays a role in the adult animal came from the study of the intestine of Tcf-4 (Tcf7L2) knockout mice. The gastrointestinal epithelium continuously self-renews over the lifetime of an organism and is, in fact, the most rapidly self-renewing tissue of the mammalian body. Recent studies indicate that Wnt signaling plays a central role in the biology of gastrointestinal stem cells. Furthermore, mutational activation of the Wnt cascade is the principle cause of colon cancer.
Collapse
Affiliation(s)
- Arnout Schepers
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, 3584CT Utrecht, The Netherlands
| | | |
Collapse
|
49
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
50
|
Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011; 43:1219-23. [PMID: 22037554 DOI: 10.1038/ng.982] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023]
Abstract
Gastric cancer is a heterogeneous disease with multiple environmental etiologies and alternative pathways of carcinogenesis. Beyond mutations in TP53, alterations in other genes or pathways account for only small subsets of the disease. We performed exome sequencing of 22 gastric cancer samples and identified previously unreported mutated genes and pathway alterations; in particular, we found genes involved in chromatin modification to be commonly mutated. A downstream validation study confirmed frequent inactivating mutations or protein deficiency of ARID1A, which encodes a member of the SWI-SNF chromatin remodeling family, in 83% of gastric cancers with microsatellite instability (MSI), 73% of those with Epstein-Barr virus (EBV) infection and 11% of those that were not infected with EBV and microsatellite stable (MSS). The mutation spectrum for ARID1A differs between molecular subtypes of gastric cancer, and mutation prevalence is negatively associated with mutations in TP53. Clinically, ARID1A alterations were associated with better prognosis in a stage-independent manner. These results reveal the genomic landscape, and highlight the importance of chromatin remodeling, in the molecular taxonomy of gastric cancer.
Collapse
|