1
|
Le Borgne J, Gomez L, Heikkinen S, Amin N, Ahmad S, Choi SH, Bis J, Grenier-Boley B, Rodriguez OG, Kleineidam L, Young J, Tripathi KP, Wang L, Varma A, Campos-Martin R, van der Lee S, Damotte V, de Rojas I, Palmal S, Lipton R, Reiman E, McKee A, De Jager P, Bush W, Small S, Levey A, Saykin A, Foroud T, Albert M, Hyman B, Petersen R, Younkin S, Sano M, Wisniewski T, Vassar R, Schneider J, Henderson V, Roberson E, DeCarli C, LaFerla F, Brewer J, Swerdlow R, Van Eldik L, Hamilton-Nelson K, Paulson H, Naj A, Lopez O, Chui H, Crane P, Grabowski T, Kukull W, Asthana S, Craft S, Strittmatter S, Cruchaga C, Leverenz J, Goate A, Kamboh MI, George-Hyslop PS, Valladares O, Kuzma A, Cantwell L, Riemenschneider M, Morris J, Slifer S, Dalmasso C, Castillo A, Küçükali F, Peters O, Schneider A, Dichgans M, Rujescu D, Scherbaum N, Deckert J, Riedel-Heller S, Hausner L, Molina-Porcel L, Düzel E, Grimmer T, Wiltfang J, Heilmann-Heimbach S, Moebus S, Tegos T, Scarmeas N, Dols-Icardo O, Moreno F, Pérez-Tur J, Bullido MJ, Pastor P, Sánchez-Valle R, Álvarez V, Boada M, García-González P, Puerta R, Mir P, Real LM, Piñol-Ripoll G, García-Alberca JM, Royo JL, Rodriguez-Rodriguez E, et alLe Borgne J, Gomez L, Heikkinen S, Amin N, Ahmad S, Choi SH, Bis J, Grenier-Boley B, Rodriguez OG, Kleineidam L, Young J, Tripathi KP, Wang L, Varma A, Campos-Martin R, van der Lee S, Damotte V, de Rojas I, Palmal S, Lipton R, Reiman E, McKee A, De Jager P, Bush W, Small S, Levey A, Saykin A, Foroud T, Albert M, Hyman B, Petersen R, Younkin S, Sano M, Wisniewski T, Vassar R, Schneider J, Henderson V, Roberson E, DeCarli C, LaFerla F, Brewer J, Swerdlow R, Van Eldik L, Hamilton-Nelson K, Paulson H, Naj A, Lopez O, Chui H, Crane P, Grabowski T, Kukull W, Asthana S, Craft S, Strittmatter S, Cruchaga C, Leverenz J, Goate A, Kamboh MI, George-Hyslop PS, Valladares O, Kuzma A, Cantwell L, Riemenschneider M, Morris J, Slifer S, Dalmasso C, Castillo A, Küçükali F, Peters O, Schneider A, Dichgans M, Rujescu D, Scherbaum N, Deckert J, Riedel-Heller S, Hausner L, Molina-Porcel L, Düzel E, Grimmer T, Wiltfang J, Heilmann-Heimbach S, Moebus S, Tegos T, Scarmeas N, Dols-Icardo O, Moreno F, Pérez-Tur J, Bullido MJ, Pastor P, Sánchez-Valle R, Álvarez V, Boada M, García-González P, Puerta R, Mir P, Real LM, Piñol-Ripoll G, García-Alberca JM, Royo JL, Rodriguez-Rodriguez E, Soininen H, de Mendonça A, Mehrabian S, Traykov L, Hort J, Vyhnalek M, Thomassen JQ, Pijnenburg YAL, Holstege H, van Swieten J, Ramakers I, Verhey F, Scheltens P, Graff C, Papenberg G, Giedraitis V, Boland A, Deleuze JF, Nicolas G, Dufouil C, Pasquier F, Hanon O, Debette S, Grünblatt E, Popp J, Ghidoni R, Galimberti D, Arosio B, Mecocci P, Solfrizzi V, Parnetti L, Squassina A, Tremolizzo L, Borroni B, Nacmias B, Spallazzi M, Seripa D, Rainero I, Daniele A, Bossù P, Masullo C, Rossi G, Jessen F, Fernandez V, Kehoe PG, Frikke-Schmidt R, Tsolaki M, Sánchez-Juan P, Sleegers K, Ingelsson M, Haines J, Farrer L, Mayeux R, Wang LS, Sims R, DeStefano A, Schellenberg GD, Seshadri S, Amouyel P, Williams J, van der Flier W, Ramirez A, Pericak-Vance M, Andreassen OA, Van Duijn C, Hiltunen M, Ruiz A, Dupuis J, Martin E, Lambert JC, Kunkle B, Bellenguez C. X-chromosome-wide association study for Alzheimer's disease. Mol Psychiatry 2025; 30:2335-2346. [PMID: 39633006 PMCID: PMC12092188 DOI: 10.1038/s41380-024-02838-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Due to methodological reasons, the X-chromosome has not been featured in the major genome-wide association studies on Alzheimer's Disease (AD). To address this and better characterize the genetic landscape of AD, we performed an in-depth X-Chromosome-Wide Association Study (XWAS) in 115,841 AD cases or AD proxy cases, including 52,214 clinically-diagnosed AD cases, and 613,671 controls. We considered three approaches to account for the different X-chromosome inactivation (XCI) states in females, i.e. random XCI, skewed XCI, and escape XCI. We did not detect any genome-wide significant signals (P ≤ 5 × 10-8) but identified seven X-chromosome-wide significant loci (P ≤ 1.6 × 10-6). The index variants were common for the Xp22.32, FRMPD4, DMD and Xq25 loci, and rare for the WNK3, PJA1, and DACH2 loci. Overall, this well-powered XWAS found no genetic risk factors for AD on the non-pseudoautosomal region of the X-chromosome, but it identified suggestive signals warranting further investigations.
Collapse
Affiliation(s)
- Julie Le Borgne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Lissette Gomez
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Najaf Amin
- Nuffield Department of Population Health Oxford University, Oxford, UK
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joshua Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Omar Garcia Rodriguez
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Luca Kleineidam
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juan Young
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kumar Parijat Tripathi
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Achintya Varma
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, The Netherlands
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sagnik Palmal
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Richard Lipton
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Eric Reiman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ, USA
| | - Ann McKee
- Department of Neurology, Boston University, Boston, MA, USA
- Department of Pathology, Boston University, Boston, MA, USA
| | - Philip De Jager
- Program in Translational Neuro-Psychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - William Bush
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Scott Small
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Andrew Saykin
- Department of Radiology, Indiana University, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Steven Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mary Sano
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, New York University, School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Robert Vassar
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julie Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA
| | - Victor Henderson
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Erik Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Frank LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - James Brewer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Russell Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Linda Van Eldik
- Sanders-Brown Center on Aging and University of Kentucky Alzheimer's Disease Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Kara Hamilton-Nelson
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Henry Paulson
- Michigan Alzheimer's Disease Center, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Adam Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oscar Lopez
- University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, PA, USA
| | - Helena Chui
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Paul Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas Grabowski
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Walter Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sanjay Asthana
- Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Suzanne Craft
- Gerontology and Geriatric Medicine Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University, New Haven, CT, USA
| | - Carlos Cruchaga
- Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, USA
| | - James Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA
| | - Alison Goate
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - M Ilyas Kamboh
- University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter St George-Hyslop
- Department of Medicine (Neurology), Tanz Centre for Research in Neurodegenerative Disease, Temerty Faculty of Medicine, University of Toronto, and University Health Network, Toronto, ON, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - John Morris
- Department of Neurology, Washington University, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Susan Slifer
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Estudios en Neurociencias y Sistemas Complejos (ENyS) CONICET-HEC-UNAJ, Buenos Aires, Argentina
| | - Atahualpa Castillo
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale), Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Essen, University of Duisburg-Essen, Germany, Medical Faculty, Duisburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Fundació Recerca Clinic Barcelona- Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), and University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank-Biobank, Hospital Clinic-FRCB-IDIBAPS, Barcelona, Spain
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Thomas Tegos
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Depatment of Neurology, Columbia University, New York, NY, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Oriol Dols-Icardo
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Institut de Recerca Sant Pau (IR Sant Pau), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Shima Mehrabian
- Clinic of Neurology, UH "Alexandrovska", Medical University-Sofia, Sofia, Bulgaria
| | - Latchezar Traykov
- Clinic of Neurology, UH "Alexandrovska", Medical University-Sofia, Sofia, Bulgaria
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Praha, Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Praha, Czech Republic
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Inez Ramakers
- Maastricht University, Department of Psychiatry & Neuropsychologie, Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Frans Verhey
- Maastricht University, Department of Psychiatry & Neuropsychologie, Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, 171 64, Stockholm, Sweden
| | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Gael Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, Pole Santé Publique, Bordeaux, France
| | - Florence Pasquier
- Univ. Lille, Inserm 1171, CHU Clinical and Research Memory Research Centre (CMRR) of Distalz, Lille, France
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris, France
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
- Institute for Regenerative Medicine, University of Zürich, Zurich, Switzerland
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, 25125, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari "A. Moro", Bari, Italy
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Lucio Tremolizzo
- Neurology Unit, "San Gerardo" Hospital, Monza and University of Milano-Bicocca, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Cognitive and Behavioural Neurology, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Victoria Fernandez
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Patrick Gavin Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Magda Tsolaki
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Pascual Sánchez-Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Haines
- Department of Population and Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Farrer
- Department of Neurology, Boston University, Boston, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA
- Department of Epidemiology, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
- Department of Ophthalmology, Boston University, Boston, MA, USA
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Anita DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alfredo Ramirez
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Margaret Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cornelia Van Duijn
- Nuffield Department of Population Health Oxford University, Oxford, UK
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Eden Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Brian Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.
| |
Collapse
|
2
|
Mashhour MA, Youssef I, Wahed MA, Mabrouk MS. The Intersection of Genetics and Neuroimaging: A Systematic Review of Imaging Genetics in Neurological Disease for Personalized Treatment. J Mol Neurosci 2025; 75:66. [PMID: 40360788 PMCID: PMC12075025 DOI: 10.1007/s12031-025-02350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Imaging genetics is one of the important keys to precision medicine that leads to personalized treatment based on a patient's genetics, phenotype, or psychosocial characteristics. It deepens the understanding of the mechanisms through which genetic variations contribute to neurological and psychiatric disorders. This systematic review overviews the methods and applications of imaging genetics in the context of neurological diseases, mentioning its potential role in personalized medicine. Following PRISMA guidelines, this review systematically analyzes 28 studies integrating genetic and neuroimaging data to explore disease mechanisms and their implications for precision medicine. Selected research included multiple neurological disorders, including frontotemporal dementia, Alzheimer's disease, bipolar disorder, schizophrenia, Parkinson's disease, and others. Voxel-based morphometry was the most common imaging technique, while frequently examined genetic variants included APOE, C9orf72, MAPT, GRN, COMT, and BDNF. Associations between these variants and regional gray matter loss (e.g., frontal, temporal, or subcortical regions) suggest that genetic risk factors play a key role in disease pathophysiology. Integrating genetic and neuroimaging analyses enhances our understanding of disease mechanisms and supports advancements in precision medicine.
Collapse
Affiliation(s)
- Mahinaz A Mashhour
- Biomedical Engineering Department, Misr University for Science and Technology, Giza, Egypt.
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| | - Manal Abdel Wahed
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| | - Mai S Mabrouk
- Center for Informatics Science (CIS), School of Information Technology and Computer Science, Nile University, Giza, Egypt
| |
Collapse
|
3
|
Han Y, Du Q, Dai Y, Gu S, Lei M, Liu W, Zhang W, Zhu M, Feng L, Si H, Liu J, Zan Y. EasyOmics: A graphical interface for population-scale omics data association, integration, and visualization. PLANT COMMUNICATIONS 2025; 6:101293. [PMID: 40017036 DOI: 10.1016/j.xplc.2025.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
The rapid growth of population-scale whole-genome resequencing, RNA sequencing, bisulfite sequencing, and metabolomic and proteomic profiling has led quantitative genetics into the era of big omics data. Association analyses of omics data, such as genome-, transcriptome-, proteome-, and methylome-wide association studies, along with integrative analyses of multiple omics datasets, require various bioinformatics tools, which rely on advanced programming skills and command-line interfaces and thus pose challenges for wet-lab biologists. Here, we present EasyOmics, a stand-alone R Shiny application with a user-friendly interface that enables wet-lab biologists to perform population-scale omics data association, integration, and visualization. The toolkit incorporates multiple functions designed to meet the increasing demand for population-scale omics data analyses, including data quality control, heritability estimation, genome-wide association analysis, conditional association analysis, omics quantitative trait locus mapping, omics-wide association analysis, omics data integration, and visualization. A wide range of publication-quality graphs can be prepared in EasyOmics by pointing and clicking. EasyOmics is a platform-independent software that can be run under all operating systems, with a docker container for quick installation. It is freely available to non-commercial users at Docker Hub https://hub.docker.com/r/yuhan2000/easyomics.
Collapse
Affiliation(s)
- Yu Han
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China; Department of Plant Physiology, Umeå Plant Science Center and Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Qiao Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Yifei Dai
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shaobo Gu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Mengyu Lei
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Wei Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Wenjia Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Huan Si
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Yanjun Zan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; Department of Plant Physiology, Umeå Plant Science Center and Integrated Science Lab, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Thomassen JQ, Hampton L, Ulms B, Grenier-Boley B, Heikkinen S, Garcia P, Castillo-Morales A, Kikuchi M, Gim J, Cao H, Küçükali F, Amin N, Yoon D, de Rojas I, Jerez PA, Alvarez V, Arosio B, Bellenguez C, Bergh S, Billingsley K, Blauwendraat C, Boada M, Borroni B, Bossù P, Bullido MJ, Daniele A, Carracedo Á, de Mendonça A, Cookson M, Deckert J, Dichgans M, Djurovic S, Dols-Icardo O, Dufouil C, Düzel E, Escott-Price V, Fladby T, Fratiglioni L, Fu AKY, Galimberti D, García-Alberca JM, Giedraitis V, Garcia-Ribas G, Graff C, Grimmer T, Grünblatt E, Hanon OI, Hausner L, Heilmann-Hemibach S, Hort J, Jessen F, Jensen K, Jonson C, Kim Y, Kuznetsov N, Leinonen V, Lipponen A, Luo J, Makarious M, Martiskainen H, Masullo C, Mecocci P, Mehrabian S, Mir P, Miyashita A, Moebus S, Mok KY, Porcel LM, Moreno F, Nacmias B, Parnetti L, Pastor P, Pérez-Tur J, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Rainero I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Rongve A, Rossi G, Royo JL, Rujescu D, Saltvedt I, Sáez ME, Sánchez-Valle R, Sanchez-Garcia F, Sandau N, Scarmeas N, Scheffler K, Scherbaum N, Schneider A, Selbæk G, Seripa D, Solfrizzi V, Spallazzi M, Squassina A, Stordal E, et alThomassen JQ, Hampton L, Ulms B, Grenier-Boley B, Heikkinen S, Garcia P, Castillo-Morales A, Kikuchi M, Gim J, Cao H, Küçükali F, Amin N, Yoon D, de Rojas I, Jerez PA, Alvarez V, Arosio B, Bellenguez C, Bergh S, Billingsley K, Blauwendraat C, Boada M, Borroni B, Bossù P, Bullido MJ, Daniele A, Carracedo Á, de Mendonça A, Cookson M, Deckert J, Dichgans M, Djurovic S, Dols-Icardo O, Dufouil C, Düzel E, Escott-Price V, Fladby T, Fratiglioni L, Fu AKY, Galimberti D, García-Alberca JM, Giedraitis V, Garcia-Ribas G, Graff C, Grimmer T, Grünblatt E, Hanon OI, Hausner L, Heilmann-Hemibach S, Hort J, Jessen F, Jensen K, Jonson C, Kim Y, Kuznetsov N, Leinonen V, Lipponen A, Luo J, Makarious M, Martiskainen H, Masullo C, Mecocci P, Mehrabian S, Mir P, Miyashita A, Moebus S, Mok KY, Porcel LM, Moreno F, Nacmias B, Parnetti L, Pastor P, Pérez-Tur J, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Rainero I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Rongve A, Rossi G, Royo JL, Rujescu D, Saltvedt I, Sáez ME, Sánchez-Valle R, Sanchez-Garcia F, Sandau N, Scarmeas N, Scheffler K, Scherbaum N, Schneider A, Selbæk G, Seripa D, Solfrizzi V, Spallazzi M, Squassina A, Stordal E, Tesi N, Tremolizzo L, Tripathi KP, van der Flier WM, Williams J, Wiltfang J, Aarsland D, Singleton AB, Amouyel P, Debette S, Nicolas G, van der Lee S, Holstege H, Fernandez MV, Kehoe PG, Sleegers K, Ingelsson M, Ghidoni R, Andreassen OA, Holmans PA, Sánchez-Juan P, Sims R, Ip NY, Lee KH, Ikeuchi T, Ramirez A, Ruiz A, Hiltunen M, Lambert JC, van Duijn C, Nalls M, Frikke-Schmidt R. APOE stratified genome-wide association studies provide novel insights into the genetic etiology of Alzheimers's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.07.25327065. [PMID: 40385391 PMCID: PMC12083631 DOI: 10.1101/2025.05.07.25327065] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Among the more than 90 identified genetic risk loci for late-onset Alzheimer's disease (AD) and related dementias, the apolipoprotein E gene ( APOE ) ɛ2/ɛ3/ɛ4 polymorphism remains the longstanding benchmark for genetic disease risk with a consistently large effect across studies 1-10 . Despite this massive signal, the exact mechanisms for how ɛ4 increases and for how ɛ2 decreases dementia risk is not well-understood. Importantly, recent trials of anti-amyloid therapies suggest less efficacy and higher risks of severe side effects in ε4 carriers 11-13 , hampering the treatment of those with the highest unmet need. To improve our understanding of the genetic architecture of AD in the context of its main genetic driver, we performed genome-wide association studies (GWASs) stratified by ε4 and ε2 carrier status. Such insights may help to understand and overcome side effects, to impact clinical trial enrolment strategies, and to create the scientific basis for targeted mechanism-driven therapies in neurodegenerative diseases.
Collapse
|
5
|
Connelly KE, Hullin K, Abdolalizadeh E, Zhong J, Eiser D, O'Brien A, Collins I, Das S, Duncan G, Chanock SJ, Stolzenberg-Solomon RZ, Klein AP, Wolpin BM, Hoskins JW, Andresson T, Smith JP, Amundadottir LT. Allelic effects on KLHL17 expression underlie a pancreatic cancer genome-wide association signal at chr1p36.33. Nat Commun 2025; 16:4055. [PMID: 40307206 PMCID: PMC12044007 DOI: 10.1038/s41467-025-59109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the U.S. Both rare and common germline variants contribute to PDAC risk. Here, we fine-map and functionally characterize a common PDAC risk signal at chr1p36.33 (tagged by rs13303010) identified through a genome wide association study (GWAS). One of the fine-mapped SNPs, rs13303160 (OR = 1.23 (95% CI 1.15-1.32), P-value = 2.74×10-9, LD r2 = 0.93 with rs13303010 in 1000 G EUR samples) demonstrated allele-preferential gene regulatory activity in vitro and binding of JunB and JunD in vitro and in vivo. Expression Quantitative Trait Locus (eQTL) analysis identified KLHL17 as a likely target gene underlying the signal. Proteomic analysis identified KLHL17 as a member of the Cullin-E3 ubiquitin ligase complex with vimentin and nestin as candidate substrates for degradation in PDAC-derived cells. In silico differential gene expression analysis of high and low KLHL17 expressing GTEx pancreas samples suggested an association between lower KLHL17 levels (risk associated) and pro-inflammatory pathways. We hypothesize that KLHL17 may mitigate cell injury and inflammation by recruiting nestin and vimentin for ubiquitination and degradation thereby influencing PDAC risk.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Katherine Hullin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ehssan Abdolalizadeh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Aidan O'Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Gerard Duncan
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Stephen J Chanock
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
6
|
Chang X, Li Z, Khac Thai PV, Minh Ha DT, Thuong Thuong NT, Wee D, Binte Mohamed Subhan AS, Silcocks M, Eng Chee CB, Quynh Nhu NT, Heng CK, Teo YY, Singal A, Oehlers SH, Yuan JM, Koh WP, Caws M, Khor CC, Dorajoo R, Dunstan SJ. Genome-wide association study reveals a novel tuberculosis susceptibility locus in multiple East Asian and European populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.14.24304327. [PMID: 40313261 PMCID: PMC12045432 DOI: 10.1101/2024.03.14.24304327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Tuberculosis (TB) continues to be a leading cause of morbidity and mortality worldwide. Past genome-wide association studies (GWAS) have explored TB susceptibility across various ethnic groups, yet a significant portion of TB heritability remains unexplained. Methods We conducted GWAS in the Singapore Chinese and Vietnamese, followed by a comprehensive meta-analysis incorporating 4 independent East Asian datasets, resulting in a total of 11,841 cases and 197,373 population controls. Findings We identified a novel susceptibility locus for pulmonary TB (PTB) at 22q12.2 in East Asians [rs6006426, OR (95%Cl) =1.097(1.066, 1.130), P meta =3.31×10 -10 ]. The association was further validated in Europeans [OR (95%Cl) =1.101(1.002, 1.211), P =0.046] and was strengthened in the combined meta-anlaysis including 12,736 PTB cases and 673,864 controls [OR (95%Cl) =1.098(1.068, 1.129), P meta =4.33×10 -11 ]. rs6006426 affected SF3A1 expression in various immune cells ( P from 0.003 to 6.17×10 -18 ) and OSM expression in monocytes post lipopolysaccharide stimulation ( P =5.57×10 -4 ). CRISPR-Cas9 edited zebrafish embryos with osm depletion resulted in decreased burden of Mycobacterium marinum ( M.marinum ) in infected embryos ( P =0.047). Interpretation Our findings offer novel insights into the genetic factors underlying TB and reveals new avenues for understanding its etiology.
Collapse
|
7
|
Herzig AF, Rubinacci S, Marenne G, Perdry H, Deleuze JF, Dina C, Barc J, Redon R, Delaneau O, Génin E. SURFBAT: a surrogate family based association test building on large imputation reference panels. G3 (BETHESDA, MD.) 2025; 15:jkae287. [PMID: 39657733 PMCID: PMC12005154 DOI: 10.1093/g3journal/jkae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Genotype-phenotype association tests are typically adjusted for population stratification using principal components that are estimated genome-wide. This lacks resolution when analyzing populations with fine structure and/or individuals with fine levels of admixture. This can affect power and precision, and is a particularly relevant consideration when control individuals are recruited using geographic selection criteria. Such is the case in France where we have recently created reference panels of individuals anchored to different geographic regions. To make correct comparisons against case groups, who would likely be gathered from large urban areas, new methods are needed. We present SURFBAT (a surrogate family based association test), which performs an approximation of the transmission-disequilibrium test. Our method hinges on the application of genotype imputation algorithms to match similar haplotypes between the case and control groups. This permits us to approximate local ancestry informed posterior probabilities of un-transmitted parental alleles of each case individual. This is achieved by assuming haplotypes from the imputation panel are well-matched for ancestry with the case individuals. When the first haplotype of an individual from the imputation panel matches that of a case individual, it is assumed that the second haplotype of the same reference individual can be used as a locally ancestry matched control haplotype and to approximately impute un-transmitted parental alleles. SURFBAT provides an association test that is inherently robust to fine-scale population stratification and opens up the possibility of efficiently using large imputation reference panels as control groups for association testing. In contrast to other methods for association testing that incorporate local-ancestry inference, SURFBAT does not require a set of ancestry groups to be defined, nor for local ancestry to be explicitly estimated. We demonstrate the interest of our tool on simulated datasets, as well as on a real-data example for a group of case individuals affected by Brugada syndrome.
Collapse
Affiliation(s)
- Anthony F Herzig
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
| | - Simone Rubinacci
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Gaëlle Marenne
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
| | - Hervé Perdry
- CESP Inserm U1018, Université Paris-Saclay, Villejuif F-94807, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry F-91000, France
- CEPH, Fondation Jean Dausset, Paris F-75010, France
| | - Christian Dina
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | - Julien Barc
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | | | - Emmanuelle Génin
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
- CHU Brest, Brest F-29200, France
| |
Collapse
|
8
|
Danaeifar M, Najafi A. Artificial Intelligence and Computational Biology in Gene Therapy: A Review. Biochem Genet 2025; 63:960-983. [PMID: 38635012 DOI: 10.1007/s10528-024-10799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
One of the trending fields in almost all areas of science and technology is artificial intelligence. Computational biology and artificial intelligence can help gene therapy in many steps including: gene identification, gene editing, vector design, development of new macromolecules and modeling of gene delivery. There are various tools used by computational biology and artificial intelligence in this field, such as genomics, transcriptomic and proteomics data analysis, machine learning algorithms and molecular interaction studies. These tools can introduce new gene targets, novel vectors, optimized experiment conditions, predict the outcomes and suggest the best solutions to avoid undesired immune responses following gene therapy treatment.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran.
| |
Collapse
|
9
|
Mora‐Márquez F, Nuño JC, Soto Á, López de Heredia U. Missing genotype imputation in non-model species using self-organizing maps. Mol Ecol Resour 2025; 25:e13992. [PMID: 38970328 PMCID: PMC11887599 DOI: 10.1111/1755-0998.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Current methodologies of genome-wide single-nucleotide polymorphism (SNP) genotyping produce large amounts of missing data that may affect statistical inference and bias the outcome of experiments. Genotype imputation is routinely used in well-studied species to buffer the impact in downstream analysis, and several algorithms are available to fill in missing genotypes. The lack of reference haplotype panels precludes the use of these methods in genomic studies on non-model organisms. As an alternative, machine learning algorithms are employed to explore the genotype data and to estimate the missing genotypes. Here, we propose an imputation method based on self-organizing maps (SOM), a widely used neural networks formed by spatially distributed neurons that cluster similar inputs into close neurons. The method explores genotype datasets to select SNP loci to build binary vectors from the genotypes, and initializes and trains neural networks for each query missing SNP genotype. The SOM-derived clustering is then used to impute the best genotype. To automate the imputation process, we have implemented gtImputation, an open-source application programmed in Python3 and with a user-friendly GUI to facilitate the whole process. The method performance was validated by comparing its accuracy, precision and sensitivity on several benchmark genotype datasets with other available imputation algorithms. Our approach produced highly accurate and precise genotype imputations even for SNPs with alleles at low frequency and outperformed other algorithms, especially for datasets from mixed populations with unrelated individuals.
Collapse
Affiliation(s)
- Fernando Mora‐Márquez
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Juan Carlos Nuño
- GI en Especies Leñosas (WooSp), Dpto. Matemática Aplicada, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Álvaro Soto
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| | - Unai López de Heredia
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
| |
Collapse
|
10
|
Neugent ML, Hulyalkar NV, Ghosh D, Saenz CN, Zimmern PE, Shulaev V, De Nisco NJ. Urinary biochemical ecology reveals microbiome-metabolite interactions and metabolic markers of recurrent urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.619727. [PMID: 39484483 PMCID: PMC11526914 DOI: 10.1101/2024.10.22.619727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recurrent urinary tract infections (rUTIs) are a major clinical challenge and their increasing prevalence underscores the need to define host-microbiome interactions underlying susceptibility. How the urinary microbiota engages with the biochemical environment of the urogenital tract is yet to be fully defined. Here, we leverage paired metagenomic and quantitative metabolomic data to establish a microbe-metabolite association network of the female urinary microbiome and define metabolic signatures of rUTI. We observe unique metabolic networks of uropathogens and uroprotective species, highlighting potential metabolite-driven ecological shifts influencing rUTI susceptibility. We find distinct metabolites are associated with urinary microbiome diversity and identify a lipid signature of active rUTI that accurately distinguishes cases from controls. Finally, we identify deoxycholic acid as a prognostic indicator for UTI recurrence. Together these findings provide insight into microbiome-metabolite interactions within the female urinary tract and highlight new biomarkers for the development of new diagnostic tools to improve patient outcomes.
Collapse
|
11
|
Gerstner N, Fröhlich AS, Matosin N, Gagliardi M, Cruceanu C, Ködel M, Rex-Haffner M, Tu X, Mostafavi S, Ziller MJ, Binder EB, Knauer-Arloth J. Contrasting genetic predisposition and diagnosis in psychiatric disorders: A multi-omic single-nucleus analysis of the human OFC. SCIENCE ADVANCES 2025; 11:eadq2290. [PMID: 40053590 PMCID: PMC11887846 DOI: 10.1126/sciadv.adq2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Psychiatric disorders like schizophrenia, bipolar disorder, and major depressive disorder exhibit substantial genetic and clinical overlap. However, their molecular architecture remains elusive due to their polygenic nature and complex brain cell interactions. We integrated clinical data with genetic susceptibility to investigate gene expression and chromatin accessibility in the orbitofrontal cortex of 92 postmortem human brain samples at the single-nucleus (sn) level. Using snRNA-seq and snATAC-seq, we analyzed ~800,000 and 400,000 nuclei, respectively. We observed cell-type-specific dysregulation related to clinical diagnosis and genetic risk. Dysregulation in gene expression and chromatin accessibility associated with diagnosis was pronounced in excitatory neurons. Conversely, genetic risk predominantly affected glial and endothelial cells. Notably, INO80E and HCN2 genes exhibited dysregulation in excitatory neurons' superficial layers 2/3 influenced by schizophrenia polygenic risk. This study unveils the complex genetic and epigenetic landscape of psychiatric disorders, emphasizing the importance of cell-type-specific analyses in understanding their pathogenesis and contrasting genetic predisposition with clinical diagnosis.
Collapse
Affiliation(s)
- Nathalie Gerstner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna S. Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Cristiana Cruceanu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xinming Tu
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Janine Knauer-Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
12
|
Zheng SL, Jurgens SJ, McGurk KA, Xu X, Grace C, Theotokis PI, Buchan RJ, Francis C, de Marvao A, Curran L, Bai W, Pua CJ, Tang HC, Jorda P, van Slegtenhorst MA, Verhagen JMA, Harper AR, Ormondroyd E, Chin CWL, Pantazis A, Baksi J, Halliday BP, Matthews P, Pinto YM, Walsh R, Amin AS, Wilde AAM, Cook SA, Prasad SK, Barton PJR, O'Regan DP, Lumbers RT, Goel A, Tadros R, Michels M, Watkins H, Bezzina CR, Ware JS. Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings. Nat Genet 2025; 57:563-571. [PMID: 39966645 PMCID: PMC11906360 DOI: 10.1038/s41588-025-02094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality, with pathogenic variants found in about a third of cases. Large-scale genome-wide association studies (GWAS) demonstrate that common genetic variation contributes to HCM risk. Here we derive polygenic scores (PGS) from HCM GWAS and genetically correlated traits and test their performance in the UK Biobank, 100,000 Genomes Project, and clinical cohorts. We show that higher PGS significantly increases the risk of HCM in the general population, particularly among pathogenic variant carriers, where HCM penetrance differs 10-fold between those in the highest and lowest PGS quintiles. Among relatives of HCM probands, PGS stratifies risks of developing HCM and adverse outcomes. Finally, among HCM cases, PGS strongly predicts the risk of adverse outcomes and death. These findings support the broad utility of PGS across clinical settings, enabling tailored screening and surveillance and stratification of risk of adverse outcomes.
Collapse
Affiliation(s)
- Sean L Zheng
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sean J Jurgens
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn A McGurk
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Xiao Xu
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Chris Grace
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pantazis I Theotokis
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Catherine Francis
- National Heart Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Antonio de Marvao
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Department of Women and Children's Health, King's College London, London, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Lara Curran
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Wenjia Bai
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore
| | - Hak Chiaw Tang
- Department of Cardiology, National Heart Centre, Singapore, Singapore
| | - Paloma Jorda
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew R Harper
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elizabeth Ormondroyd
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre, Singapore, Singapore
| | - Antonis Pantazis
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - John Baksi
- National Heart Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Brian P Halliday
- National Heart Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Matthews
- Department of Brain Sciences, Imperial College London, London, UK
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Paris, France
| | - Roddy Walsh
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Paris, France
| | - Arthur A M Wilde
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Paris, France
| | - Stuart A Cook
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Department of Cardiology, National Heart Centre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sanjay K Prasad
- National Heart Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul J R Barton
- National Heart Lung Institute, Imperial College London, London, UK
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - R T Lumbers
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK London, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Anuj Goel
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rafik Tadros
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michelle Michels
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Paris, France
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Paris, France
| | - James S Ware
- National Heart Lung Institute, Imperial College London, London, UK.
- Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Imperial College Healthcare NHS Trust, London, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Pouget JG, Giratallah H, Langlois AWR, El-Boraie A, Lerman C, Knight J, Cox LS, Nollen NL, Ahluwalia JS, Benner C, Chenoweth MJ, Tyndale RF. Fine-mapping the CYP2A6 regional association with nicotine metabolism among African American smokers. Mol Psychiatry 2025; 30:943-953. [PMID: 39217253 DOI: 10.1038/s41380-024-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine) is a stable biomarker for CYP2A6 enzyme activity and nicotine clearance, with demonstrated clinical utility in personalizing smoking cessation treatment. Common genetic variation in the CYP2A6 region is strongly associated with NMR in smokers. Here, we investigated this regional association in more detail. We evaluated the association of CYP2A6 single-nucleotide polymorphisms (SNPs) and * alleles with NMR among African American smokers (N = 953) from two clinical trials of smoking cessation. Stepwise conditional analysis and Bayesian fine-mapping were undertaken. Putative causal variants were incorporated into an existing African ancestry-specific genetic risk score (GRS) for NMR, and the performance of the updated GRS was evaluated in both African American (n = 953) and European ancestry smokers (n = 933) from these clinical trials. Five independent associations with NMR in the CYP2A6 region were identified using stepwise conditional analysis, including the deletion variant CYP2A6*4 (beta = -0.90, p = 1.55 × 10-11). Six putative causal variants were identified using Bayesian fine-mapping (posterior probability, PP = 0.67), with the top causal configuration including CYP2A6*4, rs116670633, CYP2A6*9, rs28399451, rs8192720, and rs10853742 (PP = 0.09). Incorporating these putative causal variants into an existing ancestry-specific GRS resulted in comparable prediction of NMR within African American smokers, and improved trans-ancestry portability of the GRS to European smokers. Our findings suggest that both * alleles and SNPs underlie the association of the CYP2A6 region with NMR among African American smokers, identify a shortlist of variants that may causally influence nicotine clearance, and suggest that portability of GRSs across populations can be improved through inclusion of putative causal variants.
Collapse
Affiliation(s)
- Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Haidy Giratallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alec W R Langlois
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Boraie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, RI, USA
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Liu H, Abedini A, Ha E, Ma Z, Sheng X, Dumoulin B, Qiu C, Aranyi T, Li S, Dittrich N, Chen HC, Tao R, Tarng DC, Hsieh FJ, Chen SA, Yang SF, Lee MY, Kwok PY, Wu JY, Chen CH, Khan A, Limdi NA, Wei WQ, Walunas TL, Karlson EW, Kenny EE, Luo Y, Kottyan L, Connolly JJ, Jarvik GP, Weng C, Shang N, Cole JB, Mercader JM, Mandla R, Majarian TD, Florez JC, Haas ME, Lotta LA, Regeneron Genetics Center, GHS-RGC DiscovEHR Collaboration, Drivas TG, Penn Medicine BioBank, Vy HMT, Nadkarni GN, Wiley LK, Wilson MP, Gignoux CR, Rasheed H, Thomas LF, Åsvold BO, Brumpton BM, Hallan SI, Hveem K, Zheng J, Hellwege JN, Zawistowski M, Zöllner S, Franceschini N, Hu H, Zhou J, Kiryluk K, Ritchie MD, Palmer M, Edwards TL, Voight BF, Hung AM, Susztak K. Kidney multiome-based genetic scorecard reveals convergent coding and regulatory variants. Science 2025; 387:eadp4753. [PMID: 39913582 PMCID: PMC12013656 DOI: 10.1126/science.adp4753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/20/2024] [Indexed: 02/17/2025]
Abstract
Kidney dysfunction is a major cause of mortality, but its genetic architecture remains elusive. In this study, we conducted a multiancestry genome-wide association study in 2.2 million individuals and identified 1026 (97 previously unknown) independent loci. Ancestry-specific analysis indicated an attenuation of newly identified signals on common variants in European ancestry populations and the power of population diversity for further discoveries. We defined genotype effects on allele-specific gene expression and regulatory circuitries in more than 700 human kidneys and 237,000 cells. We found 1363 coding variants disrupting 782 genes, with 601 genes also targeted by regulatory variants and convergence in 161 genes. Integrating 32 types of genetic information, we present the "Kidney Disease Genetic Scorecard" for prioritizing potentially causal genes, cell types, and druggable targets for kidney disease.
Collapse
Affiliation(s)
- Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Amin Abedini
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunji Ha
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ziyuan Ma
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, Zhejiang, China
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Bernhard Dumoulin
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamas Aranyi
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Molecular Life Sciences, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Shen Li
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Dittrich
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Feng-Jen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Shih-Ann Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- National Chung Hsing University, Taichung, Taiwan, ROC
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan, ROC
| | - Pui-Yan Kwok
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Nita A. Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Theresa L. Walunas
- Department of Medicine, Division of General Internal Medicine and Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah Kottyan
- The Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John J. Connolly
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gail P. Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Shang
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Joanne B. Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Josep M. Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ravi Mandla
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine and Cardiovascular Research Institute, Cardiology Division, University of California, San Francisco, CA, USA
- Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy D. Majarian
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Jose C. Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mary E. Haas
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Luca A. Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | - Theodore G. Drivas
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ha My T. Vy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N. Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute of Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura K. Wiley
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melissa P. Wilson
- Department of Biomedical Informatics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher R. Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Humaira Rasheed
- KGJebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laurent F. Thomas
- KGJebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Olav Åsvold
- KGJebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ben M. Brumpton
- KGJebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Clinic of Thoracic and Occupational Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stein I. Hallan
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- KGJebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jacklyn N. Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianfu Zhou
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Palmer
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Todd L. Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin F. Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, TN, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
16
|
Giraud EL, Krens SD, Böhringer S, Desar IME, Vermeulen SH, Kiemeney LA, Huitema ADR, Steeghs N, van Erp NP, Swen JJ. Exploring the contribution of genetic variants to high sunitinib exposure in patients with cancer. Br J Clin Pharmacol 2025; 91:297-305. [PMID: 39107874 PMCID: PMC11773116 DOI: 10.1111/bcp.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 01/29/2025] Open
Abstract
AIMS Sunitinib exhibits considerable interindividual variability in exposure. While the target total plasma concentration of sunitinib and its active metabolite is 50-87.5 ng/mL for the intermittent dosing schedule, ~10-21% of patients experience higher exposures (>87.5 ng/mL), correlated with an increased risk for toxicity. Previous research identified single nucleotide variants (SNVs) in genes from the sunitinib pharmacokinetic pathway to be associated with efficacy and toxicity. However, significant interindividual variability in exposure remains unexplained. Our aim was to identify genetic variants associated with supratherapeutic exposure of sunitinib. METHODS This was a genome-wide association study. Cases were identified during routine therapeutic drug monitoring and consisted of patients with dose-normalized sunitinib plasma concentrations >87.5 ng/mL (intermittent dosing) or >75 ng/mL (continuous dosing). Controls were sampled from the historical cohort EuroTARGET who tolerated the standard dose of 50 mg in an intermittent schedule. SNVs were tested for an association with sunitinib exposure. A P-value ≤5 × 10-8 was considered significant and a P-value between 5 × 10-8 and 5 × 10-6 was considered suggestive. RESULTS Sixty-nine cases and 345 controls were included for association analysis. One SNV (rs6923761), located on the gene glucagon-like peptide 1 receptor, was significantly associated with increased sunitinib exposure (P = 7.86 × 10-19). Twelve SNVs were suggestive for an association with sunitinib exposure (P ≤ 5 × 10-6). CONCLUSIONS While rs6923761 is associated with high sunitinib exposure, the underlying mechanism is not yet clarified and warrants further investigation. [Corrections made on 23 September 2024, after first online publication: In the preceding sentence, identifier rs6923671 has been changed to rs6923761 in this version.] We could not confirm the earlier found associations between SNVs in candidate genes involved in the pharmacokinetic pathway of sunitinib and its efficacy and toxicity.
Collapse
Affiliation(s)
- Eline L. Giraud
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
| | - Stefanie D. Krens
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Stefan Böhringer
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Department of Biomedical Data SciencesLeiden University Medical Centre (LUMC)LeidenThe Netherlands
| | - Ingrid M. E. Desar
- Department of Medical OncologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Sita H. Vermeulen
- Department for Health EvidenceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lambertus A. Kiemeney
- Department for Health EvidenceRadboud University Medical CentreNijmegenThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrinces Máxima Centre for Pediatric OncologyUtrechtThe Netherlands
- University Medical Centre Utrecht, Department of Clinical PharmacyUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology and Department of Medical OncologyThe Netherlands Cancer InstituteAmsterdamCXThe Netherlands
| | - Nielka P. van Erp
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
| |
Collapse
|
17
|
Ford LM, Petersen-Jones SM. Modifiers and their impact on inherited retinal diseases: a review. Ophthalmic Genet 2025; 46:1-14. [PMID: 39780424 DOI: 10.1080/13816810.2024.2445221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The phenotypic variability of inherited conditions can be due to several factors including environmental, epigenetic, and genetic. One of those genetic factors is the presence of modifying loci which alter the phenotypic expression of a primary disease or phenotype-causing variant. Modifiers are known to affect penetrance, dominance, expressivity, and pleiotropy of disease. METHODS We review the literature to highlight the impact of modifiers on inherited retinal diseases. RESULTS Modifiers have been identified or associated with phenotypic variation in many inherited retinal diseases including retinitis pigmentosa and Stargardt disease. Despite being notoriously difficult to identify, proposed candidate modifiers have been identified using multiple methods including GWAS, family and population studies, and variant calling methods. CONCLUSIONS Overall, modifiers present themselves as an interesting target for further understanding of underlying disease pathways that could ultimately lead to therapeutic targets.
Collapse
Affiliation(s)
- Laura M Ford
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Power GM, Warne N, Bould H, Casanova F, Jones SE, Richardson TG, Tyrrell J, Davey Smith G, Heron J. The role of body image dissatisfaction in the relationship between body size and disordered eating and self-harm: complimentary Mendelian randomization and mediation analyses. Mol Psychiatry 2025; 30:521-531. [PMID: 39138355 PMCID: PMC11746148 DOI: 10.1038/s41380-024-02676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Disordered eating and self-harm commonly co-occur in young people suggesting potential for shared underlying causes. Body image dissatisfaction (BID) has been recognised as a psychological correlate of body size, associated with both disordered eating and self-harm. However, the investigation into etiological pathways early in the lifecourse to provide detail on how body size and BID may foster disordered eating and self-harm remains largely unexplored. Employing data from two large population-based cohorts, the UK Biobank and the Avon Longitudinal Study of Parents And Children (ALSPAC), we conducted bidirectional Mendelian randomization (MR) to determine the causal direction of effect between genetically predicted prepubertal body size and two measures of BID indicating (i) desire to be smaller, and (ii) desire to be larger. We then used multivariable regression followed by counterfactual mediation analyses. Bidirectional MR indicated robust evidence that increased genetically predicted prepubertal body size increased desire to be smaller and decreased desire to be larger. Evidence for the reverse causal direction was negligible. These findings remained very similar across sensitivity analyses. In females and males, multivariable regression analyses demonstrated that being overweight increased the risk of disordered eating (risk ratio (RR), 95% confidence interval (CI): 1.19, 1.01 to 1.40 and 1.98, 1.28 to 3.05, respectively) and self-harm (RR, 95% CI: 1.35, 1.04 to 1.77 and 1.55, 0.86 to 2.81, respectively), while being underweight was protective against disordered eating (RR, 95% CI: 0.57, 0.40 to 0.81 and 0.81, 0.38 to 1.73, respectively). There was weak evidence of an increase in the risk of self-harm among underweight individuals. Mediation analyses indicated that the relationship between being overweight and subsequent disordered eating was largely mediated by the desire to be smaller. Our research carries important public health implications, suggesting distinct risk profiles for self-harm and disordered eating in relation to weight and body image. In addition, a better understanding of genetically predicted prepubertal BID may be valuable in the prevention and treatment of disordered eating and self-harm in adolescence.
Collapse
Affiliation(s)
- Grace M Power
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Naomi Warne
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Helen Bould
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Gloucestershire Health and Care NHS Foundation Trust, Gloucester, UK
| | - Francesco Casanova
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Samuel E Jones
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre Bristol, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Mahmud AKMF, Mansour Aly DG, Zhao Y, Benson M, Smelik M, Sysoev O, Wang H, Li X. Proteogenomic analysis reveals Arp 2/3 complex as a common molecular mechanism in high risk pancreatic cysts and pancreatic cancer. Sci Rep 2025; 15:3902. [PMID: 39890846 PMCID: PMC11785783 DOI: 10.1038/s41598-025-87872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cysts, particularly intraductal papillary mucinous neoplasms (IPMNs), pose a potential risk for progressing to pancreatic cancer (PC). This study investigates the genetic architecture of benign pancreatic cysts and its potential connection to PC using genome-wide association studies (GWAS). The discovery GWAS identified significant genetic variants associated with benign cysts, specifically the rs142409042 variant near the OPCML gene. A pairwise GWAS comparing PC to benign cysts revealed the rs7190458 variant near the BCAR1 and CTRB1 genes. Further analysis with identified GWAS genes highlighted the Actin Related Protein (Arp) 2/3 complex as a potentially important molecular mechanism connecting benign cysts and PC. The Arp2/3 complex-associated genes were significantly upregulated in PC, suggesting their role in the malignant transformation of pancreatic cysts. Differential expression of these genes was observed across various cell types in PC, indicating their involvement in the tumor microenvironment. These findings suggest that the Arp2/3 complex-associated genes can serve as potential biomarkers for predicting the malignant transformation of pancreatic cysts, opening new avenues for targeted therapies and early detection strategies.
Collapse
Affiliation(s)
- A K M Firoj Mahmud
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Dina Gamaleldin Mansour Aly
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Yelin Zhao
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Mikael Benson
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Martin Smelik
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Hui Wang
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xinxiu Li
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
20
|
Sampatakakis SN, Mourtzi N, Hatzimanolis A, Koutsis G, Charisis S, Gkelmpesi I, Mamalaki E, Ntanasi E, Ramirez A, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Scarmeas N. Genetic Prοpensity for Different Aspects of Dementia Pathology and Cognitive Decline in a Community Elderly Population. Int J Mol Sci 2025; 26:910. [PMID: 39940679 PMCID: PMC11817854 DOI: 10.3390/ijms26030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
In the present study, we investigated the association of genetic predisposition with specific dimensions of dementia pathophysiology for global and domain-specific cognitive decline in older adults. The sample was drawn from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD) study, comprising 512 cognitively normal individuals over 64 years of age, with a mean follow-up of 2.9 years. Cognitive function was evaluated through a neuropsychological test battery, while genetic predisposition was assessed based on two distinct Polygenic Risk Scores (PRS) for amyloid-beta 42 (Aβ42) and white matter hyperintensities (WMH). The association of each PRS with the cognitive decline rate was examined using generalized estimating equation models. In the whole sample, higher PRSs Aβ42 (β = -0.042) and WMH (β =-0.029) were associated with a higher rate of global cognitive decline per year, an association which remained significant in age, sex, and education subgroups. Moreover, higher PRSs Aβ42 and WMH were related to significant memory decline only in females, older, and highly educated participants. Thus, while the association of both PRSs with global cognitive decline over time was independent of age, sex, or education, the relationship of the specific PRSs with the memory decline rate appeared to vary depending on these factors.
Collapse
Affiliation(s)
- Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
| | - Alex Hatzimanolis
- Department of Psychiatry, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece;
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece;
| | - Sokratis Charisis
- Department of Neurology, UT Health San Antonio, San Antonio, TX 78229, USA;
| | - Iliana Gkelmpesi
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), 53127 Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece;
| | - Mary H. Kosmidis
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer’s Disease and Related Disorders, 11636 Marousi, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, Athens Medical School, National and Kapodistrian University, 11528 Athens, Greece; (S.N.S.); (N.M.); (I.G.); (E.M.); (E.N.)
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Liampas I, Siokas V, Mourtzi N, Charisis S, Sampatakakis SN, Foukarakis I, Hatzimanolis A, Ramirez A, Lambert JC, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, Rouskas K, Scarmeas N. Genetic Predisposition to Hippocampal Atrophy and Risk of Amnestic Mild Cognitive Impairment and Alzheimer's Dementia. Geriatrics (Basel) 2025; 10:14. [PMID: 39846584 PMCID: PMC11755629 DOI: 10.3390/geriatrics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) as well as the rates of cognitive decline. METHODS Participants were drawn from the population-based HELIAD cohort. Comprehensive neuropsychological assessments were performed at baseline and at follow-up. PRShp was derived from the summary statistics of a large genome-wide association study for hippocampal volume. Cox proportional hazards models as well as generalized estimating equations (GEEs) were used to evaluate the association of PRShp with the combined incidence of aMCI/AD and cognitive changes over time, respectively. All models were adjusted for age, sex, education, and apolipoprotein E (APOE) genotype. RESULTS Our analysis included 618 older adults, among whom 73 developed aMCI/AD after an average follow-up of 2.96 ± 0.8 years. Each additional SD of PRShp elevated the relative hazard for incident aMCI/AD by 46%. Participants at the top quartile of PRShp had an almost three times higher risk of converting to aMCI/AD compared to the lowest quartile group. Higher PRShp scores were also linked to steeper global cognitive and memory decline. The impact of PRShp was greater among women and younger adults. CONCLUSIONS Our findings support the association of PRShp with aMCI/AD incidence and with global cognitive and memory decline over time. The PRS association was sex- and age-dependent, suggesting that these factors should be considered in genetic modelling for AD.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Sokratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
- Department of Neurology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Ioannis Foukarakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
| | - Alex Hatzimanolis
- Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece;
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), 53175 Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jean-Charles Lambert
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liés au Vieillissement, CHU Lille, Inserm, Institut Pasteur de Lille, Université de Lille, 59000 Lille, France;
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Mary H. Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (V.S.); (E.D.)
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer’s Disease and Related Disorders, 11636 Maroussi, Greece;
| | - Konstantinos Rouskas
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 54124 Thessaloniki, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (N.M.); (S.C.); (S.N.S.); (I.F.)
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Rahmouni M, Clerc SL, Spadoni JL, Labib T, Tison M, Medina-Santos R, Bensussan A, Tamouza R, Deleuze JF, Zagury JF. Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS. BMC Immunol 2025; 26:1. [PMID: 39762745 PMCID: PMC11702083 DOI: 10.1186/s12865-024-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC). METHODS A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR. RESULTS Two thousand six hundred twenty-six SNPs were associated with EC (p<5.10-8), all located within the Major Histocompatibility Complex (MHC) region. Stepwise regression analysis narrowed this list to 17 SNPs. In parallel, 22 HLA class I and II alleles were associated with EC. Through meticulous mapping of the LD between all identified signals and employing reciprocal covariate analyses, we delineated a final set of 6 independent SNPs and 3 HLA class I gene alleles that accounted for most of the associations observed with EC. Our study revealed the presence of cumulative haploblock effects (SNP rs9264942 contributing to the HLA-B*57:01 effect) and that several HLA allele associations were in fact caused by SNPs in linkage disequilibrium (LD). Upon investigating SNPs in LD with the selected 6 SNPs and 3 HLA class I alleles for their impact on protein function (either damaging or differential expression), we identified several compelling mechanisms potentially explaining EC among which: a multi-action mechanism of HLA-B*57:01 involving MICA mutations and MICB differential expression overcoming the HIV-1 blockade of NK cell response, and overexpression of ZBTB12 with a possible anti-HIV-1 effect through HERV-K interference; a deleterious mutation in PPP1R18 favoring viral budding associated with rs1233396. CONCLUSION Our results show that MHC influence on EC likely extends beyond traditional HLA class I or class II allele associations, encompassing other MHC SNPs with various biological impacts. They point to the key role of NK cells in preventing HIV-1 infection. Our analysis shows that HLA-B*57:01 is indeed associated with partially functional MICA/MICB proteins which could also explain this marker's involvement in other diseases such as psoriasis. More broadly, our findings suggest that within any HLA class I and II association in diseases, there may exist distinct causal SNPs within this crucial, gene-rich, and LD-rich MHC region.
Collapse
Affiliation(s)
- Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Maxime Tison
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | | | - Ryad Tamouza
- Laboratoire Neuro-Psychiatrie translationnelle, Université Paris Est Créteil, INSERM U955, IMRB, Créteil, F-94010, France
| | | | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
| |
Collapse
|
23
|
Cerezo M, Sollis E, Ji Y, Lewis E, Abid A, Bircan K, Hall P, Hayhurst J, John S, Mosaku A, Ramachandran S, Foreman A, Ibrahim A, McLaughlin J, Pendlington Z, Stefancsik R, Lambert SA, McMahon A, Morales J, Keane T, Inouye M, Parkinson H, Harris LW. The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity. Nucleic Acids Res 2025; 53:D998-D1005. [PMID: 39530240 PMCID: PMC11701593 DOI: 10.1093/nar/gkae1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The NHGRI-EBI GWAS Catalog serves as a vital resource for the genetic research community, providing access to the most comprehensive database of human GWAS results. Currently, it contains close to 7 000 publications for >15 000 traits, from which more than 625 000 lead associations have been curated. Additionally, 85 000 full genome-wide summary statistics datasets-containing association data for all variants in the analysis-are available for downstream analyses such as meta-analysis, fine-mapping, Mendelian randomisation or development of polygenic risk scores. As a centralised repository for GWAS results, the GWAS Catalog sets and implements standards for data submission and harmonisation, and encourages the use of consistent descriptors for traits, samples and methodologies. We share processes and vocabulary with the PGS Catalog, improving interoperability for a growing user group. Here, we describe the latest changes in data content, improvements in our user interface, and the implementation of the GWAS-SSF standard format for summary statistics. We address the challenges of handling the rapid increase in large-scale molecular quantitative trait GWAS and the need for sensitivity in the use of population and cohort descriptors while maintaining data interoperability and reusability.
Collapse
Affiliation(s)
- Maria Cerezo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elliot Sollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yue Ji
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elizabeth Lewis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ala Abid
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Karatuğ Ozan Bircan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peggy Hall
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Hayhurst
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sajo John
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abayomi Mosaku
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Santhi Ramachandran
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Amy Foreman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Arwa Ibrahim
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James McLaughlin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zoë Pendlington
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ray Stefancsik
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Samuel A Lambert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Aoife McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joannella Morales
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, 3004 Victoria, Australia
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura W Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
24
|
Jia Z, Mukhopadhyay N, Yang Z, Butali A, Sun J, You Y, Yao M, Zhen Q, Ma J, He M, Pan Y, Alade A, Wang Y, Olujitan M, Qi M, Adeyemo WL, Buxó CJ, Gowans LJJ, Eshete M, Huang Y, Li C, Leslie EJ, Wang L, Bian Z, Carlson JC, Shi B, Weinberg SM, Murray JC, Sun L, Marazita ML, Freathy RM, Beaumont RN. Multi-ancestry Genome Wide Association Study Meta-analysis of Non-syndromic Orofacial Clefts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318522. [PMID: 39711721 PMCID: PMC11661332 DOI: 10.1101/2024.12.06.24318522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC. Further, differences in genetic susceptibility among the sub-phenotypes are poorly characterized. We performed a multi-ancestry GWAS meta-analysis on 44,094 individuals (9,381 cases, 28,510 controls, 2042 case-parent trios and 18 multiplex pedigrees) of East Asian, European, Latin and South American, and African ancestry for both NSOC and subtypes. We identified 50 loci, including 11 novel loci: four loci ( CALD1 , SHH , NRG1 and LINC00320 ) associated with both NSOC and NSCL/P, two loci ( NTRK1 and RUNX1 ) only associated with NSOC, four loci ( HMGCR , PRICKLE1 , SOX9 and MYH9 ) only associated with NSCL/P and one locus ( ALX1 ) specifically associated with NSCLO. Five of the novel loci are located in regions containing genes associated with syndromic orofacial clefts ( SHH , NTRK1, CALD1, ALX1 and SOX9 ); seven of the novel loci are located in regions containing genes-implicated in craniofacial development ( HMGCR, SHH, PRICKLE1, ALX1, SOX9, RUNX1, MYH9 ). Genetic correlation and colocalization analyses revealed an overlap between signals associated with NSCLO, NSCPO and NSCLP, but there were also notable differences, emphasizing the complexity of common and distinct genetic processes affecting lip and palate development.
Collapse
|
25
|
Jamnik J, Mahdavi S, El-Sohemy A. Genetic variants in the PKD1L2/BCO1 region are associated with β-carotene, lutein, and zeaxanthin: A genome-wide association study of plasma carotenoids. Nutr Res 2024; 132:164-179. [PMID: 39603182 DOI: 10.1016/j.nutres.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Carotenoid consumption has been associated with a reduced risk of several chronic diseases. Inter-individual genetic variation may explain some of the observed differences in plasma carotenoid concentrations between individuals. Identifying genetic variants associated with circulating carotenoids in young adults may help identify individuals at increased risk for developing conditions associated with low carotenoids later in life. We hypothesize that common genetic variants are associated with circulating carotenoid concentrations in a population of young adults. A genome-wide association study (GWAS) on plasma carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, and zeaxanthin) was conducted in Caucasians (n = 393) from the Toronto Nutrigenomics and Health Study. Replication cohorts included individuals of Caucasian (n = 193), East Asian (n = 436) and South Asian (n = 135) ethnicity. Linear regression adjusted for age, sex, BMI, total serum cholesterol, dietary carotenoid intake and population structure were used to identify associations between genetic variants and plasma carotenoids. Associations that met the threshold for genome-wide significance (p < 5 × 10-8) in unadjusted and partially adjusted models were not observed in the replication cohorts. No variants achieved genome-wide significance in fully adjusted models. Previously identified associations between variation in the PKD1L2/BCO1 region and β-carotene, lutein and zeaxanthin were replicated in the GWAS cohort (p < .05). Established variation in the PKD1L2/BCO1 region is associated with plasma carotenoids. These variants may help to identify individuals who require greater amounts of these antioxidants and to provide precision nutrition recommendations for optimal intake of various carotenoids.
Collapse
Affiliation(s)
- Joseph Jamnik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Mahdavi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Cerezo M, Sollis E, Ji Y, Lewis E, Abid A, Bircan KO, Hall P, Hayhurst J, John S, Mosaku A, Ramachandran S, Foreman A, Ibrahim A, McLaughlin J, Pendlington Z, Stefancsik R, Lambert SA, McMahon A, Morales J, Keane T, Inouye M, Parkinson H, Harris LW. The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619767. [PMID: 39484403 PMCID: PMC11526975 DOI: 10.1101/2024.10.23.619767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The NHGRI-EBI GWAS Catalog serves as a vital resource for the genetic research community, providing access to the most comprehensive database of human GWAS results. Currently, it contains close to 7,000 publications for more than 15,000 traits, from which more than 625,000 lead associations have been curated. Additionally, 85,000 full genome-wide summary statistics datasets - containing association data for all variants in the analysis - are available for downstream analyses such as meta-analysis, fine-mapping, Mendelian randomisation or development of polygenic risk scores. As a centralised repository for GWAS results, the GWAS Catalog sets and implements standards for data submission and harmonisation, and encourages the use of consistent descriptors for traits, samples and methodologies. We share processes and vocabulary with the PGS Catalog, improving interoperability for a growing user group. Here, we describe the latest changes in data content, improvements in our user interface, and the implementation of the GWAS-SSF standard format for summary statistics. We address the challenges of handling the rapid increase in large-scale molecular quantitative trait GWAS and the need for sensitivity in the use of population and cohort descriptors while maintaining data interoperability and reusability.
Collapse
Affiliation(s)
- Maria Cerezo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elliot Sollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yue Ji
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elizabeth Lewis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ala Abid
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Karatuğ Ozan Bircan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peggy Hall
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Hayhurst
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sajo John
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abayomi Mosaku
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Santhi Ramachandran
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Amy Foreman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Arwa Ibrahim
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James McLaughlin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zoë Pendlington
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ray Stefancsik
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Samuel A. Lambert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Aoife McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joannella Morales
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura W. Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
27
|
Seo JH, Lee Y, Choi HJ. Associations between Disc Hemorrhage and Primary Open-Angle Glaucoma Based on Genome-Wide Association and Mendelian Randomization Analyses. Biomedicines 2024; 12:2253. [PMID: 39457566 PMCID: PMC11504051 DOI: 10.3390/biomedicines12102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: We aimed to investigate the genetic loci related to disc hemorrhage (DH) and the relationship of causation between DH and primary open-angle glaucoma (POAG) using a genome-wide association study (GWAS) in East Asian individuals. Methods: The GWAS included 8488 Koreans who underwent ocular examination including fundus photography to determine the presence of DH and POAG. We performed a GWAS to identify significant single-nucleotide polymorphisms (SNPs) associated with DH and analyzed the heritability of DH and genetic correlation between DH and POAG. The identified SNPs were utilized as instrumental variables (IVs) for two-sample Mendelian randomization (MR) analysis. The POAG outcome dataset was adopted from Biobank Japan data (n = 179,351). Results: We found that the rs62463744 (TMEM270;ELN), rs11658281 (CCDC42), and rs77127203 (PDE10A;LINC00473) SNPs were associated with DH. The SNP heritability of DH was estimated to be 6.7%, with an absence of a genetic correlation with POAG. MR analysis did not reveal a causal association between DH and POAG for East Asian individuals. Conclusions: The novel loci underlying DH in the Korean cohort revealed SNPs in the ELN, CCDC41, and LINC00473 genes. The absence of a causal association between DH and POAG implies that DH is a shared risk factor, rather than an independent culprit factor, and warrants further investigation.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Ophthalmology, Seoul National University, Hospital Healthcare System Gangnam Center, Seoul 06236, Republic of Korea
| |
Collapse
|
28
|
Carnes MU, Quach BC, Zhou L, Han S, Tao R, Mandal M, Deep-Soboslay A, Marks JA, Page GP, Maher BS, Jaffe AE, Won H, Bierut LJ, Hyde TM, Kleinman JE, Johnson EO, Hancock DB. Smoking-informed methylation and expression QTLs in human brain and colocalization with smoking-associated genetic loci. Neuropsychopharmacology 2024; 49:1749-1757. [PMID: 38830989 PMCID: PMC11399277 DOI: 10.1038/s41386-024-01885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bryan C Quach
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Linran Zhou
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Shizhong Han
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Ran Tao
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Meisha Mandal
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | | | - Jesse A Marks
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Grier P Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Brion S Maher
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Eric O Johnson
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Dana B Hancock
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
29
|
Fröhlich AS, Gerstner N, Gagliardi M, Ködel M, Yusupov N, Matosin N, Czamara D, Sauer S, Roeh S, Murek V, Chatzinakos C, Daskalakis NP, Knauer-Arloth J, Ziller MJ, Binder EB. Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease. Nat Neurosci 2024; 27:2021-2032. [PMID: 39227716 PMCID: PMC11452345 DOI: 10.1038/s41593-024-01742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types, with LAMP5+LHX6+ interneurons, a cell-type abundant in primates, by far the most affected. Disrupted synaptic transmission emerged as a convergently affected pathway in aged tissue. Age-related transcriptomic changes overlapped with changes observed in Alzheimer's disease across multiple cell types. We find evidence for accelerated transcriptomic aging in individuals with psychiatric disorders and demonstrate a converging signature of aging and psychopathology across multiple cell types. Our findings shed light on cell-type-specific effects and biological pathways underlying age-related changes and their convergence with effects driven by psychiatric diagnosis.
Collapse
Affiliation(s)
- Anna S Fröhlich
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | - Nathalie Gerstner
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maik Ködel
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natan Yusupov
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Darina Czamara
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Chris Chatzinakos
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Janine Knauer-Arloth
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth B Binder
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
30
|
Clocchiatti-Tuozzo S, Szejko N, Rivier C, Renedo DB, Huo S, Sheth KN, Gill TM, Falcone GJ. APOE epsilon variants and composite risk of dementia, disability, and death in the health and retirement study. J Am Geriatr Soc 2024; 72:2989-2999. [PMID: 38946154 PMCID: PMC11461103 DOI: 10.1111/jgs.19043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Clinical trials in older adults are increasingly focused on functional outcomes, and the composite outcome of dementia, disability, and death is gaining pivotal importance. Genetic variation, particularly the APOE epsilon(ε) variants, may modify responses to new treatments. Although APOE ε4 is known to influence these outcomes separately, the magnitude of its effect on this composite outcome remains unknown. We tested the hypothesis that APOE ε4 increases, whereas APOE ε2 decreases, the risk of a composite outcome of dementia, disability, and death. METHODS We evaluated clinical and genomic data from the Health and Retirement Study collected from 1992 to 2020. We used variants rs429358 and rs7412 to determine APOE genotypes, modeled dominantly (carriers/noncarriers). We conducted survival analysis, using multivariable Cox proportional hazards models with a composite endpoint of dementia, disability, and death. Our primary analysis evaluated participants with genetic data and no previous dementia or disability. In secondary analyses, we focused on persons aged > = 75 years without heart disease or stroke, a subpopulation increasingly important in clinical trials of older adults. RESULTS We included 14,527 participants in the primary analysis. Over a median of 18 (Interquartile Range [IQR] 12-24) years, 6711 (46%) participants developed the composite outcome. In Cox analyses, APOE ε4 associated with higher risk (HR:1.15, 95%CI:1.09-1.22) of the composite outcome, whereas APOE ε2 associated with lower risk (HR:0.92, 95%CI:0.86-0.99). In the secondary analysis, we included 3174 participants. Over a median of 7 (IQR 4-11) years, 1326 participants (42%) developed the composite outcome. In Cox analyses, APOE ε4 associated with higher risk (HR:1.25, 95%CI:1.10-1.41) of the composite outcome, whereas APOE ε2 associated with lower risk (HR:0.84, 95%CI:0.71-0.98). CONCLUSIONS APOE ε variants are linked to the risk of dementia, disability, and death in older adults. By examining these variants in clinical trials, we can better elucidate how they might alter the effectiveness of tested interventions. Importantly, this genetic information could help identify participants who may have greater absolute benefit from such interventions.
Collapse
Affiliation(s)
- Santiago Clocchiatti-Tuozzo
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
- Division of Geriatric Medicine, Yale School of Medicine, New Haven, CT, Unites States
| | - Natalia Szejko
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
- Department of Neurosciences, University of Calgary, Canada
| | - Cyprien Rivier
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| | - Daniela B. Renedo
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Shufan Huo
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| | - Kevin N. Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| | - Thomas M. Gill
- Division of Geriatric Medicine, Yale School of Medicine, New Haven, CT, Unites States
| | - Guido J. Falcone
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Connelly KE, Hullin K, Abdolalizadeh E, Zhong J, Eiser D, O’Brien A, Collins I, Sudipto Das, Duncan G, Pancreatic Cancer Cohort Consortium, Pancreatic Cancer Case-Control Consortium, Chanock SJ, Stolzenberg-Solomon RZ, Klein AP, Wolpin BM, Hoskins JW, Andresson T, Smith JP, Amundadottir LT. Allelic effects on KLHL17 expression likely mediated by JunB/D underlie a PDAC GWAS signal at chr1p36.33. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313748. [PMID: 39371158 PMCID: PMC11451706 DOI: 10.1101/2024.09.16.24313748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the U.S. Both rare and common germline variants contribute to PDAC risk. Here, we fine-map and functionally characterize a common PDAC risk signal at 1p36.33 (tagged by rs13303010) identified through a genome wide association study (GWAS). One of the fine-mapped SNPs, rs13303160 (r2=0.93 in 1000G EUR samples, OR=1.23, P value=2.74x10-9) demonstrated allele-preferential gene regulatory activity in vitro and allele-preferential binding of JunB and JunD in vitro and in vivo. Expression Quantitative Trait Locus (eQTL) analysis identified KLHL17 as a likely target gene underlying the signal. Proteomic analysis identified KLHL17 as a member of the Cullin-E3 ubiquitin ligase complex in PDAC-derived cells. In silico differential gene expression analysis of the GTExv8 pancreas data suggested an association between lower KLHL17 (risk associated) and pro-inflammatory pathways. We hypothesize that KLHL17 may mitigate inflammation by recruiting pro-inflammatory proteins for ubiquitination and degradation thereby influencing PDAC risk.
Collapse
Affiliation(s)
- Katelyn E. Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine Hullin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ehssan Abdolalizadeh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Aidan O’Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Gerard Duncan
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | | - Stephen J. Chanock
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rachael Z. Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alison P. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jill P. Smith
- Department of Medicine, Georgetown University, Washington, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
32
|
Farrell K, Humphrey J, Chang T, Zhao Y, Leung YY, Kuksa PP, Patil V, Lee WP, Kuzma AB, Valladares O, Cantwell LB, Wang H, Ravi A, De Sanctis C, Han N, Christie TD, Afzal R, Kandoi S, Whitney K, Krassner MM, Ressler H, Kim S, Dangoor D, Iida MA, Casella A, Walker RH, Nirenberg MJ, Renton AE, Babrowicz B, Coppola G, Raj T, Höglinger GU, Müller U, Golbe LI, Morris HR, Hardy J, Revesz T, Warner TT, Jaunmuktane Z, Mok KY, Rademakers R, Dickson DW, Ross OA, Wang LS, Goate A, Schellenberg G, Geschwind DH, Crary JF, Naj A. Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes. Nat Commun 2024; 15:7880. [PMID: 39251599 PMCID: PMC11385559 DOI: 10.1038/s41467-024-52025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10-8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yi Zhao
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura B Cantwell
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashvin Ravi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia De Sanctis
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas D Christie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robina Afzal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishtee Kandoi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret M Krassner
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Ressler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Dangoor
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia Casella
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa J Nirenberg
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bergan Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Günter U Höglinger
- Department of Neurology, Ludwig-Maximilians-Universität Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- CurePSP, Inc., New York, NY, USA
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - John Hardy
- Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Institute, University College London, London, UK
| | - Tamas Revesz
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Tom T Warner
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Kin Y Mok
- Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Institute, University College London, London, UK
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Adam Naj
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Young WJ, van der Most PJ, Bartz TM, Bos MM, Biino G, Duong T, Foco L, Lominchar JT, Müller‐Nurasyid M, Nardone GG, Pecori A, Ramirez J, Repetto L, Schramm K, Shen X, van Duijvenboden S, van Heemst D, Weiss S, Yao J, Benjamins J, Alonso A, Spedicati B, Biggs ML, Brody JA, Dörr M, Fuchsberger C, Gögele M, Guo X, Ikram MA, Jukema JW, Kääb S, Kanters JK, Lifelines Cohort Study, Lin HJ, Linneberg A, Nauck M, Nolte IM, Pianigiani G, Santin A, Soliman EZ, Tesolin P, Vaccargiu S, Waldenberger M, van der Harst P, Verweij N, Arking DE, Concas MP, De Grandi A, Girotto G, Grarup N, Kavousi M, Mook‐Kanamori DO, Navarro P, Orini M, Padmanabhan S, Pattaro C, Peters A, Pirastu M, Pramstaller PP, Heckbert SR, Sinner M, Snieder H, Völker U, Wilson JF, Gauderman WJ, Lambiase PD, Sotoodehnia N, Tinker A, Warren HR, Noordam R, Munroe PB. Genome-Wide Interaction Analyses of Serum Calcium on Ventricular Repolarization Time in 125 393 Participants. J Am Heart Assoc 2024; 13:e034760. [PMID: 39206732 PMCID: PMC11646519 DOI: 10.1161/jaha.123.034760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability. METHODS AND RESULTS We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analysis (genome-wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single-stage genome-wide meta-analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2-degrees of freedom joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98 independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction P value <5×10-8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6). CONCLUSIONS We have found limited support for an interaction effect of serum calcium on QT and JT variant associations despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to be considered.
Collapse
Affiliation(s)
- William J. Young
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
| | - Peter J. van der Most
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics and MedicineUniversity of WashingtonSeattleWAUSA
| | - Maxime M. Bos
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of ItalyPaviaItaly
| | - ThuyVy Duong
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Luisa Foco
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Jesus T. Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Martina Müller‐Nurasyid
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | | | - Alessandro Pecori
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Julia Ramirez
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Aragon Institute of Engineering Research, University of ZaragozaSpain
- Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y NanomedicinaZaragozaSpain
| | - Linda Repetto
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
| | - Katharina Schramm
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg UniversityMainzGermany
| | - Xia Shen
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan UniversityGuangzhouChina
| | - Stefan van Duijvenboden
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
- Nuffield Department of Population HealthUniversity of OxfordUnited Kingdom
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Stefan Weiss
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jie Yao
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Jan‐Walter Benjamins
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGAUSA
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Mary L. Biggs
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Department of Internal Medicine B—Cardiology, Pneumology, Infectious Diseases, Intensive Care MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Christian Fuchsberger
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
- Center for Statistical GeneticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Martin Gögele
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Stefan Kääb
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | | | - Henry J. Lin
- Department of PediatricsThe Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Pediatrics/Harbor‐UCLA Medical CenterTorranceCAUSA
| | - Allan Linneberg
- Center for Clinical Research and PreventionBispebjerg and Frederiksberg Hospital, The Capital RegionCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine GreifswaldGreifswaldGermany
| | - Ilja M. Nolte
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Giulia Pianigiani
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Aurora Santin
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE)Wake Forest School of MedicineWinston SalemUSA
| | - Paola Tesolin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Simona Vaccargiu
- Institute for Genetic and Biomedical Research, National Research Council of ItalyCagliariItaly
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
- Research Unit Molecular EpidemiologyInstitute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
| | - Pim van der Harst
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cardiology, Heart and Lung DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niek Verweij
- Department of CardiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Dan E. Arking
- Department of Genetic MedicineMcKusick‐Nathans Institute, Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Alessandro De Grandi
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteItaly
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
| | - Dennis O. Mook‐Kanamori
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Public Health and Primary CareLeiden University Medical CenterLeidenThe Netherlands
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - Michele Orini
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | | | - Cristian Pattaro
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
| | - Annette Peters
- German Research Center for Environmental HealthInstitute of Genetic Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
- IBE, Faculty of Medicine, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Mario Pirastu
- Institute for Genetic and Biomedical Research, Sassari Unit, National Research Council of ItalySassariItaly
| | - Peter P. Pramstaller
- Eurac ResearchInstitute for Biomedicine (Affiliated with the University of Lübeck)BolzanoItaly
- Department of NeurologyUniversity of LübeckGermany
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Mortiz Sinner
- Department of CardiologyUniversity Hospital, LMU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart AllianceMunichGermany
| | - Harold Snieder
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - James F. Wilson
- Centre for Global Health ResearchUsher Institute, University of EdinburghScotland
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghScotland
| | - W. James Gauderman
- Department of population and public health sciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Pier D. Lambiase
- Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUnited Kingdom
- Institute of Cardiovascular Sciences, University of College LondonLondonUnited Kingdom
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Andrew Tinker
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Helen R. Warren
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| | - Patricia B. Munroe
- Clinical Pharmacology and Precision MedicineWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- NIHR Barts Biomedical Research CentreBarts and The London Faculty of Medicine and Dentistry, Queen Mary University of LondonUnited Kingdom
| |
Collapse
|
34
|
Amaya Romero JE, Chenal C, Ben Chehida Y, Miles A, Clarkson CS, Pedergnana V, Wertheim B, Fontaine MC. Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides. Genome Biol Evol 2024; 16:evae172. [PMID: 39226386 PMCID: PMC11370803 DOI: 10.1093/gbe/evae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.
Collapse
Affiliation(s)
- Jorge E Amaya Romero
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clothilde Chenal
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Institut des Science de l’Évolution de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
35
|
Mackenzie SC, Rahmioglu N, Romaniuk L, Collins F, Coxon L, Whalley HC, Vincent K, Zondervan KT, Horne AW, Whitaker LH. Genome-wide association reveals a locus in neuregulin 3 associated with gabapentin efficacy in women with chronic pelvic pain. iScience 2024; 27:110370. [PMID: 39258169 PMCID: PMC11384074 DOI: 10.1016/j.isci.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Accepted: 06/21/2024] [Indexed: 09/12/2024] Open
Abstract
Chronic pelvic pain (CPP) in women with no obvious pelvic pathology has few evidence-based treatment options. Our recent multicenter randomized controlled trial (GaPP2) in women with CPP and no obvious pelvic pathology showed that gabapentin did not relieve pain overall and was associated with more side effects than placebo. We conducted an exploratory genome-wide association study using eligible GaPP2 participants aiming to identify genetic variants associated with gabapentin response. One genome-wide significant association with gabapentin analgesic response was identified, rs4442490, an intron variant located in Neuregulin 3 (NRG3) (p = 2·11×10-8; OR = 18·82 (95% CI 4·86-72·83). Analysis of a large sample of UK Biobank participants demonstrated phenome-wide significant brain imaging features of rs4442490, particularly implicating the orbitofrontal cortex. NRG3 is expressed predominantly in central nervous system tissues and plays a critical role in nervous system development, maintenance, and repair, suggesting a neurobiologically plausible role in gabapentin efficacy and potential for personalized analgesic treatment.
Collapse
Affiliation(s)
- Scott C. Mackenzie
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lydia Coxon
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy Vincent
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew W. Horne
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lucy H.R. Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
36
|
Jang MJ, Tan LJ, Park MY, Shin S, Kim JM. Identification of interactions between genetic risk scores and dietary patterns for personalized prevention of kidney dysfunction in a population-based cohort. Nutr Diabetes 2024; 14:62. [PMID: 39143076 PMCID: PMC11325018 DOI: 10.1038/s41387-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND & AIM Chronic kidney disease (CKD) is a heterogeneous disorder that affects the kidney structure and function. This study investigated the effect of the interaction between genetic factors and dietary pattern on kidney dysfunction in Korean adults. METHODS Baseline data were obtained from the Ansan and Ansung Study of the Korean Genome and Epidemiology Study involving 8230 participants aged 40-69 years. Kidney dysfunction was defined as an estimated glomerular filtration rate < 90 mL/minute/1.73 m2. Genomic DNAs genotyped on the Affymetrix® Genome-Wide Human SNP array 5.0 were isolated from peripheral blood. A genome-wide association study using a generalized linear model was performed on 1,590,162 single-nucleotide polymorphisms (SNPs). To select significant SNPs, the threshold criterion was set at P-value < 5 × 10-8. Linkage disequilibrium clumping was performed based on the R2 value, and 94 SNPs had a significant effect. Participants were divided into two groups based on their generic risk score (GRS): the low-GR group had GRS > 0, while the high-GR group had GRS ≤ 0. RESULTS Three distinct dietary patterns were extracted, namely, the "prudent pattern," "flour-based and animal food pattern," and "white rice pattern," to analyze the effect of dietary pattern on kidney function. In the "flour-based and animal food pattern," higher pattern scores were associated with a higher prevalence of kidney dysfunction in both the low and high GR groups (P for trend < 0.0001 in the low-, high-GR groups of model 1; 0.0050 and 0.0065 in the low-, high-GR groups of model 2, respectively). CONCLUSIONS The results highlight a significant association between the 'flour-based and animal food pattern' and higher kidney dysfunction prevalence in individuals with both low and high GR. These findings suggest that personalized nutritional interventions based on GR profiles may become the basis for presenting GR-based individual dietary patterns for kidney dysfunction.
Collapse
Affiliation(s)
- Min-Jae Jang
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Korea
| | - Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Korea
| | - Min Young Park
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Korea.
| |
Collapse
|
37
|
Cho HW, Jin HS, Kim SS, Eom YB. Forensic height estimation using polygenic score in Korean population. Mol Genet Genomics 2024; 299:78. [PMID: 39120737 DOI: 10.1007/s00438-024-02172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Height is known to be a classically heritable trait controlled by complex polygenic factors. Numerous height-associated genetic variants across the genome have been identified so far. It is also a representative of externally visible characteristics (EVC) for predicting appearance in forensic science. When biological evidence at a crime scene is deficient in identifying an individual, the examination of forensic DNA phenotyping using some genetic variants could be considered. In this study, we aimed to predict 'height', a representative forensic phenotype, by using a small number of genetic variants when short tandem repeat (STR) analysis is hard with insufficient biological samples. Our results not only replicated previous genetic signals but also indicated an upward trend in polygenic score (PGS) with increasing height in the validation and replication stages for both genders. These results demonstrate that the established SNP sets in this study could be used for height estimation in the Korean population. Specifically, since the PGS model constructed in this study targets only a small number of SNPs, it contributes to enabling forensic DNA phenotyping even at crime scenes with a minimal amount of biological evidence. To the best of our knowledge, this was the first study to evaluate a PGS model for height estimation in the Korean population using GWAS signals. Our study offers insight into the polygenic effect of height in East Asians, incorporating genetic variants from non-Asian populations.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, 31538, Chungnam, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Republic of Korea
| | - Sung-Soo Kim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, 31538, Chungnam, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Sinchang-myeon, Asan-si, 31538, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
38
|
Went M, Duran-Lozano L, Halldorsson GH, Gunnell A, Ugidos-Damboriena N, Law P, Ekdahl L, Sud A, Thorleifsson G, Thodberg M, Olafsdottir T, Lamarca-Arrizabalaga A, Cafaro C, Niroula A, Ajore R, Lopez de Lapuente Portilla A, Ali Z, Pertesi M, Goldschmidt H, Stefansdottir L, Kristinsson SY, Stacey SN, Love TJ, Rognvaldsson S, Hajek R, Vodicka P, Pettersson-Kymmer U, Späth F, Schinke C, Van Rhee F, Sulem P, Ferkingstad E, Hjorleifsson Eldjarn G, Mellqvist UH, Jonsdottir I, Morgan G, Sonneveld P, Waage A, Weinhold N, Thomsen H, Försti A, Hansson M, Juul-Vangsted A, Thorsteinsdottir U, Hemminki K, Kaiser M, Rafnar T, Stefansson K, Houlston R, Nilsson B. Deciphering the genetics and mechanisms of predisposition to multiple myeloma. Nat Commun 2024; 15:6644. [PMID: 39103364 PMCID: PMC11300596 DOI: 10.1038/s41467-024-50932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells. Epidemiological studies indicate a substantial heritable component, but the underlying mechanisms remain unclear. Here, in a genome-wide association study totaling 10,906 cases and 366,221 controls, we identify 35 MM risk loci, 12 of which are novel. Through functional fine-mapping and Mendelian randomization, we uncover two causal mechanisms for inherited MM risk: longer telomeres; and elevated levels of B-cell maturation antigen (BCMA) and interleukin-5 receptor alpha (IL5RA) in plasma. The largest increase in BCMA and IL5RA levels is mediated by the risk variant rs34562254-A at TNFRSF13B. While individuals with loss-of-function variants in TNFRSF13B develop B-cell immunodeficiency, rs34562254-A exerts a gain-of-function effect, increasing MM risk through amplified B-cell responses. Our results represent an analysis of genetic MM predisposition, highlighting causal mechanisms contributing to MM development.
Collapse
Affiliation(s)
- Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Laura Duran-Lozano
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | | | - Andrea Gunnell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Nerea Ugidos-Damboriena
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ludvig Ekdahl
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Malte Thodberg
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | | | - Antton Lamarca-Arrizabalaga
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Caterina Cafaro
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Abhishek Niroula
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Ram Ajore
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Aitzkoa Lopez de Lapuente Portilla
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Zain Ali
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Maroulio Pertesi
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
| | | | - Sigurdur Y Kristinsson
- Landspitali, National University Hospital of Iceland, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Simon N Stacey
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
| | - Thorvardur J Love
- Landspitali, National University Hospital of Iceland, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Saemundur Rognvaldsson
- Landspitali, National University Hospital of Iceland, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Roman Hajek
- University Hospital Ostrava and University of Ostrava, Ostrava, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Florentin Späth
- Department of Radiation Sciences, Umeå University, SE-901 87, Umeå, Sweden
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frits Van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patrick Sulem
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
| | | | | | | | | | - Gareth Morgan
- Perlmutter Cancer Center, Langone Health, New York University, New York, NY, USA
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Box 8905, N-7491, Trondheim, Norway
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | | | - Asta Försti
- German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
- Hopp Children's Cancer Center, Heidelberg, Germany
| | - Markus Hansson
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Section of Hematology, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden
- Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Annette Juul-Vangsted
- Department of Haematology, University Hospital of Copenhagen at Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
- Faculty of Medicine in Pilsen, Charles University, 30605, Pilsen, Czech Republic
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
| | - Björn Nilsson
- Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden.
- Lund Stem Cell Center, Lund University, SE-221 84, Lund, Sweden.
- Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
39
|
Siew ED, Hellwege JN, Hung AM, Birkelo BC, Vincz AJ, Parr SK, Denton J, Greevy RA, Robinson-Cohen C, Liu H, Susztak K, Matheny ME, Velez Edwards DR. Genome-wide association study of hospitalized patients and acute kidney injury. Kidney Int 2024; 106:291-301. [PMID: 38797326 PMCID: PMC11260539 DOI: 10.1016/j.kint.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is a common and devastating complication of hospitalization. Here, we identified genetic loci associated with AKI in patients hospitalized between 2002-2019 in the Million Veteran Program and data from Vanderbilt University Medical Center's BioVU. AKI was defined as meeting a modified KDIGO Stage 1 or more for two or more consecutive days or kidney replacement therapy. Control individuals were required to have one or more qualifying hospitalizations without AKI and no evidence of AKI during any other observed hospitalizations. Genome-wide association studies (GWAS), stratified by race, adjusting for sex, age, baseline estimated glomerular filtration rate (eGFR), and the top ten principal components of ancestry were conducted. Results were meta-analyzed using fixed effects models. In total, there were 54,488 patients with AKI and 138,051 non-AKI individuals included in the study. Two novel loci reached genome-wide significance in the meta-analysis: rs11642015 near the FTO locus on chromosome 16 (obesity traits) (odds ratio 1.07 (95% confidence interval, 1.05-1.09)) and rs4859682 near the SHROOM3 locus on chromosome 4 (glomerular filtration barrier integrity) (odds ratio 0.95 (95% confidence interval, 0.93-0.96)). These loci colocalized with previous studies of kidney function, and genetic correlation indicated significant shared genetic architecture between AKI and eGFR. Notably, the association at the FTO locus was attenuated after adjustment for BMI and diabetes, suggesting that this association may be partially driven by obesity. Both FTO and the SHROOM3 loci showed nominal evidence of replication from diagnostic-code-based summary statistics from UK Biobank, FinnGen, and Biobank Japan. Thus, our large GWA meta-analysis found two loci significantly associated with AKI suggesting genetics may explain some risk for AKI.
Collapse
Affiliation(s)
- Edward D Siew
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA.
| | - Jacklyn N Hellwege
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adriana M Hung
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Bethany C Birkelo
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Andrew J Vincz
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Sharidan K Parr
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Jason Denton
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Hongbo Liu
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael E Matheny
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Ray NR, Kunkle BW, Hamilton‐Nelson K, Kurup JT, Rajabli F, Qiao M, Vardarajan BN, Cosacak MI, Kizil C, Jean‐Francois M, Cuccaro M, Reyes‐Dumeyer D, Cantwell L, Kuzma A, Vance JM, Gao S, Hendrie HC, Baiyewu O, Ogunniyi A, Akinyemi RO, Alzheimer's Disease Genetics Consortium, Lee W, Martin ER, Wang L, Beecham GW, Bush WS, Xu W, Jin F, Wang L, Farrer LA, Haines JL, Byrd GS, Schellenberg GD, Mayeux R, Pericak‐Vance MA, Reitz C. Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry. Alzheimers Dement 2024; 20:5247-5261. [PMID: 38958117 PMCID: PMC11350055 DOI: 10.1002/alz.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.
Collapse
Grants
- P30 AG013854 NIA NIH HHS
- International Parkinson Fonds
- P50 MH060451 NIMH NIH HHS
- P30 AG066444 NIA NIH HHS
- R01 AG28786-01A1 North Carolina A&T University
- U01AG46161 NIA NIH HHS
- AG05128 Duke University
- Medical Research Council
- U01AG057659 NIH HHS
- R01 DK131437 NIDDK NIH HHS
- R01 AG022374 NIA NIH HHS
- U19 AG074865 NIA NIH HHS
- P50 AG023501 NIA NIH HHS
- U01 AG046152 NIA NIH HHS
- P30 AG010124 NIA NIH HHS
- U01 HG006375 NHGRI NIH HHS
- Biogen
- U01 AG058654 NIA NIH HHS
- NIMH MH60451 NINDS NIH HHS
- U54 AG052427 NIA NIH HHS
- P30 AG066518 NIA NIH HHS
- UO1 HG004610 Group Health Research Institute
- RC2 AG036528 NIA NIH HHS
- P30 AG028377 NIA NIH HHS
- R01AG048927 NIH HHS
- UO1 HG006375 Group Health Research Institute
- R01 AG22018 Rush University
- U01AG46152 NIA NIH HHS
- P50 AG008671 NIA NIH HHS
- P30 AG10133 Indiana University
- P50 AG005142 NIA NIH HHS
- U01 AG10483 Boston University
- Higher Education Funding Council for England
- R01 AG035137 NIA NIH HHS
- R01 AG009029 NIA NIH HHS
- P50 AG005131 NIA NIH HHS
- P50 AG005128 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- U24 AG021886 NIA NIH HHS
- R01 AG031581 NIA NIH HHS
- 5R01AG012101 New York University
- R01 AG009956 NIA NIH HHS
- P50 AG016574 NIA NIH HHS
- P50 AG005146 NIA NIH HHS
- U01AG058654 NIH HHS
- AG025688 Emory University
- P30AG10161 NIA NIH HHS
- Alzheimer's Drug Discovery Foundation
- U01 AG061356 NIA NIH HHS
- RC2 AG036650 NIA NIH HHS
- Servier
- Janssen Alzheimer Immunotherapy Research & Development, LLC.
- U01 AG032984 NIA NIH HHS
- U01 HG008657 NHGRI NIH HHS
- Brain Net Europe
- R01 AG019085 NIA NIH HHS
- Lumosity
- R01 AG013616 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- R01 HG012384 NHGRI NIH HHS
- Translational Genomics Research Institute
- P50 AG008702 NIA NIH HHS
- Bristol-Myers Squibb Company
- R01 AG030146 NIA NIH HHS
- R01AG041797 NIA FBS (Columbia University)
- U01 AG072579 NIA NIH HHS
- Piramal Imaging
- DeNDRoN
- UL1 RR029893 NCRR NIH HHS
- Takeda Pharmaceutical Company
- 1R01AG035137 New York University
- R01 AG15819 Rush University
- R01AG30146 NIA NIH HHS
- R01AG15819 NIA NIH HHS
- P50 NS039764 NINDS NIH HHS
- P01 AG003991 NIA NIH HHS
- Office of Research and Development
- Genentech, Inc.
- U01 AG016976 NIA NIH HHS
- US Department of Veterans Affairs Administration
- P30 AG008051 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- P30 AG013846 NIA NIH HHS
- U24 AG056270 NIA NIH HHS
- RC2 AG036502 NIA NIH HHS
- P01 AG026276 NIA NIH HHS
- R01 AG017917 NIA NIH HHS
- Araclon Biotech
- U01 AG057659 NIA NIH HHS
- R01 MH080295 NIMH NIH HHS
- Hersenstichting Nederland Breinbrekend Werk
- R01 CA267872 NCI NIH HHS
- R01 AG026390 NIA NIH HHS
- R01 AG028786 NIA NIH HHS
- KL2 RR024151 NCRR NIH HHS
- Internationale Stiching Alzheimer Onderzoek
- P30AG066462 NIH HHS
- U24 AG026390 NIA FBS (Columbia University)
- Novartis Pharmaceuticals Corporation
- P50 AG005136 NIA NIH HHS
- Meso Scale Diagnostics, LLC.
- CereSpir, Inc.
- P30 AG012300 NIA NIH HHS
- P01 AG03991 University of Washington
- RF1AG059018 NIH HHS
- Canadian Institute of Health Research
- RF1 AG059018 NIA NIH HHS
- BioClinica, Inc.
- UG3 NS132061 NINDS NIH HHS
- U01 AG062943 NIA NIH HHS
- R01 AG012101 NIA NIH HHS
- GE Healthcare
- P50 AG016573 NIA NIH HHS
- U24 AG21886 National Cell Repository for Alzheimer's Disease (NCRAD)
- P50 AG016570 NIA NIH HHS
- P50 AG005134 NIA NIH HHS
- P30 AG066462 NIA NIH HHS
- Stichting MS Research
- P30 AG008017 NIA NIH HHS
- R01AG33193 Boston University
- Howard Hughes Medical Institute
- R01 AG042437 NIA NIH HHS
- U24 AG041689 NIA NIH HHS
- P01 AG019724 NIA NIH HHS
- R01AG36042 NIA NIH HHS
- RC2AG036547 NIA NIH HHS
- R01 AG036042 NIA NIH HHS
- P30 AG010161 NIA NIH HHS
- AG019757 University of Miami
- Kronos Science
- P30 AG08051 New York University
- IIRG-05-14147 Alzheimer's Association
- AG010491 University of Miami
- R01 AG033193 NIA NIH HHS
- P50 AG025688 NIA NIH HHS
- IIRG-08-89720 Alzheimer's Association
- AbbVie
- R37 AG015473 NIA NIH HHS
- U24 AG026395 NIA NIH HHS
- R01 AG032990 NIA NIH HHS
- North Bristol NHS Trust Research and Innovation Department
- AG021547 University of Miami
- R01 AG01101 Rush University
- Transition Therapeutics
- R01 AG072547 NIA NIH HHS
- AG027944 University of Miami
- AG041232 NIA NIH HHS
- A2111048 BrightFocus Foundation
- U01 AG052410 NIA NIH HHS
- Johnson & Johnson Pharmaceutical Research & Development LLC.
- R01 CA129769 NCI NIH HHS
- P50 AG005133 NIA NIH HHS
- U01 AG010483 NIA NIH HHS
- UO1 AG006781 Group Health Research Institute
- Merck & Co., Inc.
- U01AG32984 NIA NIH HHS
- U01 AG024904 NIH HHS
- RC2 AG036547 NIA NIH HHS
- P01 AG002219 NIA NIH HHS
- R01 AG17917 Rush University
- U01 AG006781 NIA NIH HHS
- R01 AG041797 NIA NIH HHS
- NIBIB NIH HHS
- P01 AG010491 NIA NIH HHS
- P50 AG005144 NIA NIH HHS
- U01AG062943 NIH HHS
- R01 AG064614 NIA NIH HHS
- Glaxo Smith Kline
- U01AG072579 NIH HHS
- Biomedical Laboratory Research Program
- U19AG074865 NIH HHS
- R01 AG048927 NIA NIH HHS
- RF1 AG057473 NIA NIH HHS
- R01 AG037212 NIA NIH HHS
- R01 AG022018 NIA NIH HHS
- U24AG056270 NIH HHS
- R01 AG021547 NIA NIH HHS
- R01 AG041232 NIA NIH HHS
- P50 AG005138 NIA NIH HHS
- RF1AG57473 NIA NIH HHS
- R01 AG019757 NIA NIH HHS
- R01 AG020688 NIA NIH HHS
- AG07562 University of Pittsburgh
- R01AG072547 NIH HHS
- Alzheimer's Research Trust
- Pfizer Inc.
- Illinois Department of Public Health
- Elan Pharmaceuticals, Inc.
- NHS trusts
- R01 AG030653 NIA NIH HHS
- R01 HG009658 NHGRI NIH HHS
- AG052410 NIA NIH HHS
- P20 MD000546 NIMHD NIH HHS
- R01 AG027944 NIA NIH HHS
- Eli Lilly and Company
- R01 AG017173 NIA NIH HHS
- R01 AG025259 NIA NIH HHS
- U01 HG004610 NHGRI NIH HHS
- U24-AG041689 University of Pennsylvania
- P30 AG010129 NIA NIH HHS
- U01 AG046161 NIA NIH HHS
- Wellcome Trust
- P30 AG019610 NIA NIH HHS
- IXICO Ltd.
- P50 AG016582 NIA NIH HHS
- R01 AG048015 NIA NIH HHS
- NeuroRx Research
- R01AG17917 NIA NIH HHS
- U01AG61356 NIA NIH HHS
- R01AG36836 NIA NIH HHS
- 5R01AG022374 New York University
- EuroImmun; F. Hoffmann-La Roche Ltd
- R01 AG041718 NIA NIH HHS
- 1RC2AG036502 New York University
- Newcastle University
- R01 AG072474 NIA NIH HHS
- AG041718 University of Pittsburgh
- P30 AG028383 NIA NIH HHS
- AG05144 University of Kentucky
- AG030653 University of Pittsburgh
- R01AG48015 NIA NIH HHS
- R01 AG026916 NIA NIH HHS
- P50 AG033514 NIA NIH HHS
- R01 NS059873 NINDS NIH HHS
- # NS39764 NINDS NIH HHS
- ADGC National Institutes of Health, National Institute on Aging (NIH-NIA)
- Neurotrack Technologies
- Fujirebio
- Lundbeck
- MP-V BrightFocus Foundation
- BRACE
- R01 AG015819 NIA NIH HHS
- R01 AG036836 NIA NIH HHS
- Eisai Inc.
- 5R01AG013616 New York University
- W81XWH-12-2-0012 Department of Defense
- R01AG064614 NIH HHS
- AG02365 University of Pittsburgh
- NIH
- University of Pennsylvania
- NACC
- Boston University
- Columbia University
- Duke University
- Emory University
- Indiana University
- Johns Hopkins University
- Massachusetts General Hospital
- Mayo Clinic
- New York University
- Northwestern University
- Oregon Health & Science University
- Rush University
- NIA
- University of Alabama at Birmingham
- University of Arizona
- University of California, Davis
- University of California, Irvine
- University of California, Los Angeles
- University of California, San Diego
- University of California, San Francisco
- University of Kentucky
- University of Michigan
- University of Pittsburgh
- University of Southern California
- University of Miami
- University of Washington
- Vanderbilt University
- NINDS
- Alzheimer's Association
- Office of Research and Development
- BrightFocus Foundation
- Wellcome Trust
- Howard Hughes Medical Institute
- Medical Research Council
- Newcastle University
- Higher Education Funding Council for England
- Alzheimer's Research Trust
- BRACE
- Stichting MS Research
- Department of Defense
- National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Bristol‐Myers Squibb Company
- Eli Lilly and Company
- Genentech, Inc.
- Fujirebio
- GE Healthcare
- Lundbeck
- Merck & Co., Inc.
- Novartis Pharmaceuticals Corporation
- Pfizer Inc.
- Servier
- Takeda Pharmaceutical Company
- Illinois Department of Public Health
- Translational Genomics Research Institute
Collapse
|
41
|
Hatmaker EA, Barber AE, Drott MT, Sauters TJC, Alastruey-Izquierdo A, Garcia-Hermoso D, Kurzai O, Rokas A. Pathogenicity is associated with population structure in a fungal pathogen of humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602241. [PMID: 39026826 PMCID: PMC11257439 DOI: 10.1101/2024.07.05.602241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Aspergillus flavus is a clinically and agriculturally important saprotrophic fungus responsible for severe human infections and extensive crop losses. We analyzed genomic data from 250 (95 clinical and 155 environmental) A. flavus isolates from 9 countries, including 70 newly sequenced clinical isolates, to examine population and pan-genome structure and their relationship to pathogenicity. We identified five A. flavus populations, including a new population, D, corresponding to distinct clades in the genome-wide phylogeny. Strikingly, > 75% of clinical isolates were from population D. Accessory genes, including genes within biosynthetic gene clusters, were significantly more common in some populations but rare in others. Population D was enriched for genes associated with zinc ion binding, lipid metabolism, and certain types of hydrolase activity. In contrast to the major human pathogen Aspergillus fumigatus, A. flavus pathogenicity in humans is strongly associated with population structure, making it a great system for investigating how population-specific genes contribute to pathogenicity.
Collapse
Affiliation(s)
- E. Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Amelia E. Barber
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Milton T. Drott
- Cereal Disease Laboratory, Agricultural Research Service, USDA, Saint Paul, MN, USA
| | - Thomas J. C. Sauters
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Carlos III Heath Institute, Madrid, Spain
| | - Dea Garcia-Hermoso
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knoell-Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg. Würzburg, Germany
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Sanchez-Spitman AB, Böhringer S, Dezentjé VO, Gelderblom H, Swen JJ, Guchelaar HJ. A Genome-Wide Association Study of Endoxifen Serum Concentrations and Adjuvant Tamoxifen Efficacy in Early-Stage Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:155-164. [PMID: 38501904 DOI: 10.1002/cpt.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Tamoxifen is part of the standard of care of endocrine therapy for adjuvant treatment of breast cancer. However, survival outcomes with tamoxifen are highly variable. The concentration of endoxifen, the 30-100 times more potent metabolite of tamoxifen and bioactivated by the CYP2D6 enzyme, has been described as the most relevant metabolite of tamoxifen metabolism. A genome-wide association study (GWAS) was performed with the objective to identify genetic polymorphisms associated with endoxifen serum concentration levels and clinical outcome in early-stage breast cancer patients receiving tamoxifen. A GWAS was conducted in 608 women of the CYPTAM study (NTR1509/PMID: 30120701). Germline DNA and clinical and survival characteristics were readily available. Genotyping was performed on Infinium Global Screening Array (686,082 markers) and single nucleotide polymorphism (SNP) imputation by using 1000 Genomes. Relapse-free survival during tamoxifen (RFSt) was defined the primary clinical outcome. Endoxifen serum concentration was analyzed as a continuous variable. Several genetic variants reached genome-wide significance (P value: ≤5 × 10-8). Endoxifen concentrations analysis identified 430 variants, located in TCF20 and WBP2NL genes (chromosome 22), which are in strong linkage disequilibrium with CYP2D6 variants. In the RFSt analysis, several SNP were identified (LPP gene: rs77693286, HR 18.3, 95% CI: 15.2-21.1; rs6790761, OR 18.2, 95% CI: 15.5-21.1). Endoxifen concentrations have a strong association with the chromosome 22, which contains the CYP2D6 gene.
Collapse
Affiliation(s)
| | - Stefan Böhringer
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Olaf Dezentjé
- Department of Medical Oncology, Antoni van Leeuwenhoek/Dutch Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse Joachim Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Mai TP, Luong BA, Ma PT, Tran TV, Dinh Ngo TT, Hoang CK, Van Tran L, Le BH, Vu HA, Le LHG, Le KT, Truong S, Tran NQ, Do MD. Genome-wide association and polygenic risk score estimation of type 2 diabetes mellitus in Kinh Vietnamese-A pilot study. J Cell Mol Med 2024; 28:e18526. [PMID: 38957036 PMCID: PMC11220366 DOI: 10.1111/jcmm.18526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
A genome-wide association study (GWAS) is a powerful tool in investigating genetic contribution, which is a crucial factor in the development of complex multifactorial diseases, such as type 2 diabetes mellitus. Type 2 diabetes mellitus is a major healthcare burden in the Western Pacific region; however, there is limited availability of genetic-associated data for type 2 diabetes in Southeast Asia, especially among the Kinh Vietnamese population. This lack of information exacerbates global healthcare disparities. In this study, 997 Kinh Vietnamese individuals (503 with type 2 diabetes and 494 controls) were prospectively recruited and their clinical and paraclinical information was recorded. DNA samples were collected and whole genome genotyping was performed. Standard quality control and genetic imputation using the 1000 Genomes database were executed. A polygenic risk score for type 2 diabetes was generated in different models using East Asian, European, and mix ancestry GWAS summary statistics as training datasets. After quality control and genetic imputation, 107 polymorphisms reached suggestive statistical significance for GWAS (≤5 × 10-6) and rs11079784 was one of the potential markers strongly associated with type 2 diabetes in the studied population. The best polygenic risk score model predicting type 2 diabetes mellitus had AUC = 0.70 (95% confidence interval = 0.62-0.77) based on a mix of ancestral GWAS summary statistics. These data show promising results for genetic association with a polygenic risk score estimation in the Kinh Vietnamese population; the results also highlight the essential role of population diversity in a GWAS of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thao Phuong Mai
- Department of Physiology‐Pathophysiology‐Immunology, Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Bac An Luong
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Phat Tung Ma
- Department of Endocrinology, Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Thang Viet Tran
- Department of Endocrinology, Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Tat Thang Dinh Ngo
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Chi Khanh Hoang
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Luong Van Tran
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Bao Hoang Le
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Hoang Anh Vu
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Linh Hoang Gia Le
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Khuong Thai Le
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Steven Truong
- MIT Department of Biological EngineeringCambridgeMassachusettsUSA
| | - Nam Quang Tran
- Department of Endocrinology, Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- Department of EndocrinologyUniversity Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Minh Duc Do
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| |
Collapse
|
44
|
Hassan MM, Li D, Han Y, Byun J, Hatia RI, Long E, Choi J, Kelley RK, Cleary SP, Lok AS, Bracci P, Permuth JB, Bucur R, Yuan JM, Singal AG, Jalal PK, Ghobrial RM, Santella RM, Kono Y, Shah DP, Nguyen MH, Liu G, Parikh ND, Kim R, Wu HC, El-Serag H, Chang P, Li Y, Chun YS, Lee SS, Gu J, Hawk E, Sun R, Huff C, Rashid A, Amin HM, Beretta L, Wolff RA, Antwi SO, Patt Y, Hwang LY, Klein AP, Zhang K, Schmidt MA, White DL, Goss JA, Khaderi SA, Marrero JA, Cigarroa FG, Shah PK, Kaseb AO, Roberts LR, Amos CI. Genome-wide association study identifies high-impact susceptibility loci for HCC in North America. Hepatology 2024; 80:87-101. [PMID: 38381705 PMCID: PMC11191046 DOI: 10.1097/hep.0000000000000800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Despite the substantial impact of environmental factors, individuals with a family history of liver cancer have an increased risk for HCC. However, genetic factors have not been studied systematically by genome-wide approaches in large numbers of individuals from European descent populations (EDP). APPROACH AND RESULTS We conducted a 2-stage genome-wide association study (GWAS) on HCC not affected by HBV infections. A total of 1872 HCC cases and 2907 controls were included in the discovery stage, and 1200 HCC cases and 1832 controls in the validation. We analyzed the discovery and validation samples separately and then conducted a meta-analysis. All analyses were conducted in the presence and absence of HCV. The liability-scale heritability was 24.4% for overall HCC. Five regions with significant ORs (95% CI) were identified for nonviral HCC: 3p22.1, MOBP , rs9842969, (0.51, [0.40-0.65]); 5p15.33, TERT , rs2242652, (0.70, (0.62-0.79]); 19q13.11, TM6SF2 , rs58542926, (1.49, [1.29-1.72]); 19p13.11 MAU2 , rs58489806, (1.53, (1.33-1.75]); and 22q13.31, PNPLA3 , rs738409, (1.66, [1.51-1.83]). One region was identified for HCV-induced HCC: 6p21.31, human leukocyte antigen DQ beta 1, rs9275224, (0.79, [0.74-0.84]). A combination of homozygous variants of PNPLA3 and TERT showing a 6.5-fold higher risk for nonviral-related HCC compared to individuals lacking these genotypes. This observation suggests that gene-gene interactions may identify individuals at elevated risk for developing HCC. CONCLUSIONS Our GWAS highlights novel genetic susceptibility of nonviral HCC among European descent populations from North America with substantial heritability. Selected genetic influences were observed for HCV-positive HCC. Our findings indicate the importance of genetic susceptibility to HCC development.
Collapse
Affiliation(s)
- Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roxana Bucur
- Princess Margaret Cancer Center and Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit G Singal
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasun K Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - R Mark Ghobrial
- J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Yuko Kono
- Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | - Dimpy P Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Shin Chun
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Yehuda Patt
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environment Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Karen Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Mikayla A Schmidt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Donna L White
- Sections of Gastroenterology and Hepatology and Health Services Research, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey School of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Saira A Khaderi
- Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, USA
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francisco G Cigarroa
- Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pankil K Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
45
|
An G, Zhao C, Chen X, Wang W, Bi Y. Casual relationships between circulating metabolites and rheumatoid arthritis: A mendelian randomization study. Heliyon 2024; 10:e33085. [PMID: 38988517 PMCID: PMC11234099 DOI: 10.1016/j.heliyon.2024.e33085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Background Blood metabolites serve as pivotal indicators in identifying and predicting the course of rheumatoid arthritis (RA). However, empirical substantiation of a direct causal link between these serum biomarkers and the development of RA is still lacking comprehensive support. Method In pursuit of a thorough exploration of the causal links between circulating blood metabolites and RA, we deployed a two-sample Mendelian randomization (MR) approach during our initial investigative phase. This method was utilized to examine the potential connections between 249 distinct circulating metabolites and the prevalence of RA. In the validation phase, we conducted replication analyses with a new metabolic dataset consisting of 123 metabolites. Furthermore, we employed the Mendelian randomization based on Bayesian model averaging (MR-BMA) technique to pinpoint key metabolic characteristics that have significant causal implications. Results In our primary analysis, we found that acetate, acetoacetate and pyruvate exhibited a consistent protective causal association with rheumatoid arthritis, while lactate demonstrated a positive correlation with rheumatoid arthritis risk. It is also noteworthy that a substantial subset of traits related to both saturated and unsaturated fatty acids showed causal influences. Subsequent secondary analyses substantiated these observations, revealing that traits associated with the average number of methylene groups in a fatty acid chain exhibited protective effects. Ultimately, our MR-BMA analyses unveiled that the ratio of polyunsaturated fatty acids (PUFAs) to total fatty acids assumes a paramount role in increasing the susceptibility to rheumatoid arthritis. Conclusions By employing systemic MR analyses, our study has successfully generated an all-encompassing atlas elucidating the intricate connections between circulating metabolites and the susceptibility to rheumatoid arthritis. Our results indicate the high unsaturation degree is a dominant risk factors correlated with rheumatoid arthritis.
Collapse
Affiliation(s)
- Gaole An
- Information Department, Bethune International Peace Hospital, Shijiazhuang, 050082, Hebei Province, China
| | - Chenghui Zhao
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China
| | - Xiaoye Chen
- Information Department, Bethune International Peace Hospital, Shijiazhuang, 050082, Hebei Province, China
| | - Weidong Wang
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China
| | - Yuwang Bi
- Information Department, Bethune International Peace Hospital, Shijiazhuang, 050082, Hebei Province, China
| |
Collapse
|
46
|
Chopra S, Cocuzza CV, Lawhead C, Ricard JA, Labache L, Patrick LM, Kumar P, Rubenstein A, Moses J, Chen L, Blankenbaker C, Gillis B, Germine LT, Harpaz-Rote I, Yeo BTT, Baker JT, Holmes AJ. The Transdiagnostic Connectome Project: a richly phenotyped open dataset for advancing the study of brain-behavior relationships in psychiatry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309054. [PMID: 38946958 PMCID: PMC11213088 DOI: 10.1101/2024.06.18.24309054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An important aim in psychiatry is the establishment of valid and reliable associations linking profiles of brain functioning to clinically relevant symptoms and behaviors across patient populations. To advance progress in this area, we introduce an open dataset containing behavioral and neuroimaging data from 241 individuals aged 18 to 70, comprising 148 individuals meeting diagnostic criteria for a broad range of psychiatric illnesses and a healthy comparison group of 93 individuals. These data include high-resolution anatomical scans, multiple resting-state, and task-based functional MRI runs. Additionally, participants completed over 50 psychological and cognitive assessments. Here, we detail available behavioral data as well as raw and processed MRI derivatives. Associations between data processing and quality metrics, such as head motion, are reported. Processed data exhibit classic task activation effects and canonical functional network organization. Overall, we provide a comprehensive and analysis-ready transdiagnostic dataset, which we hope will accelerate the identification of illness-relevant features of brain functioning, enabling future discoveries in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Sidhant Chopra
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- 3. Orygen, Center for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Carrisa V. Cocuzza
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Connor Lawhead
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 4. Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jocelyn A. Ricard
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 5. Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Loïc Labache
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Lauren M. Patrick
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 6. Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- 7. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Poornima Kumar
- 8. Department of Psychiatry, Harvard Medical School, Boston, USA
- 9. Centre for Depression, Anxiety and Stress Research, McLean Hospital, Boston, USA
| | | | - Julia Moses
- 1. Department of Psychology, Yale University, New Haven, CT, USA
| | - Lia Chen
- 10. Department of Psychology, Cornell University, Ithaca, NY, USA
| | | | - Bryce Gillis
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Laura T. Germine
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Ilan Harpaz-Rote
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 13. Department of Psychiatry, Yale University, New Haven, USA
- 14. Wu Tsai Institute, Yale University, New Haven, USA
| | - BT Thomas Yeo
- 15. Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- 16. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- 17. N.1 Institute for Health National University of Singapore, Singapore, Singapore
- 18. Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- 19. Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- 20. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Justin T. Baker
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Avram J. Holmes
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
47
|
Pang T, Ding N, Zhao Y, Zhao J, Yang L, Chang S. Novel genetic loci of inhibitory control in ADHD and healthy children and genetic correlations with ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110988. [PMID: 38430954 DOI: 10.1016/j.pnpbp.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Cumulative evidence has showed the deficits of inhibitory control in patients with attention deficit hyperactivity disorder (ADHD), which is considered as an endophenotype of ADHD. Genetic study of inhibitory control could advance gene discovery and further facilitate the understanding of ADHD genetic basis, but the studies were limited in both the general population and ADHD patients. To reveal genetic risk variants of inhibitory control and its potential genetic relationship with ADHD, we conducted genome-wide association studies (GWAS) on inhibitory control using three datasets, which included 783 and 957 ADHD patients and 1350 healthy children. Subsequently, we employed polygenic risk scores (PRS) to explore the association of inhibitory control with ADHD and related psychiatric disorders. Firstly, we identified three significant loci for inhibitory control in the healthy dataset, two loci in the case dataset, and one locus in the meta-analysis of three datasets. Besides, we found more risk genes and variants by applying transcriptome-wide association study (TWAS) and conditional FDR method. Then, we constructed a network by connecting the genes identified in our study, leading to the identification of several vital genes. Lastly, we identified a potential relationship between inhibitory control and ADHD and autism by PRS analysis and found the direct and mediated contribution of the identified genetic loci on ADHD symptoms by mediation analysis. In conclusion, we revealed some genetic risk variants associated with inhibitory control and elucidated the benefit of inhibitory control as an endophenotype, providing valuable insights into the mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ning Ding
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China.
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
48
|
Shen S, Sobczyk MK, Paternoster L, Brown SJ. From GWASs toward Mechanistic Understanding with Case Studies in Dermatogenetics. J Invest Dermatol 2024; 144:1189-1199.e8. [PMID: 38782533 DOI: 10.1016/j.jid.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
Many human skin diseases result from the complex interplay of genetic and environmental mechanisms that are largely unknown. GWASs have yielded insight into the genetic aspect of complex disease by highlighting regions of the genome or specific genetic variants associated with disease. Leveraging this information to identify causal genes and cell types will provide insight into fundamental biology, inform diagnostics, and aid drug discovery. However, the etiological mechanisms from genetic variant to disease are still unestablished in most cases. There now exists an unprecedented wealth of data and computational methods for variant interpretation in a functional context. It can be challenging to decide where to start owing to a lack of consensus on the best way to identify causal genetic mechanisms. This article highlights 3 key aspects of genetic variant interpretation: prioritizing causal genes, cell types, and pathways. We provide a practical overview of the main methods and datasets, giving examples from recent atopic dermatitis studies to provide a blueprint for variant interpretation. A collection of resources, including brief description and links to the packages and web tools, is provided for researchers looking to start in silico follow-up genetic analysis of associated genetic variants.
Collapse
Affiliation(s)
- Silvia Shen
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Institute for Evolution and Ecology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Brouwer JMJL, Wardenaar KJ, Nolte IM, Liemburg EJ, Bet PM, Snieder H, Mulder H, Cath DC, Penninx BWJH. Association of CYP2D6 and CYP2C19 metabolizer status with switching and discontinuing antidepressant drugs: an exploratory study. BMC Psychiatry 2024; 24:394. [PMID: 38797832 PMCID: PMC11129450 DOI: 10.1186/s12888-024-05764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Tailoring antidepressant drugs (AD) to patients' genetic drug-metabolism profile is promising. However, literature regarding associations of ADs' treatment effect and/or side effects with drug metabolizing genes CYP2D6 and CYP2C19 has yielded inconsistent results. Therefore, our aim was to longitudinally investigate associations between CYP2D6 (poor, intermediate, and normal) and CYP2C19 (poor, intermediate, normal, and ultrarapid) metabolizer-status, and switching/discontinuing of ADs. Next, we investigated whether the number of perceived side effects differed between metabolizer statuses. METHODS Data came from the multi-site naturalistic longitudinal cohort Netherlands Study of Depression and Anxiety (NESDA). We selected depression- and/or anxiety patients, who used AD at some point in the course of the 9 years follow-up period (n = 928). Medication use was followed to assess patterns of AD switching/discontinuation over time. CYP2D6 and CYP2C19 alleles were derived using genome-wide data of the NESDA samples and haplotype data from the PharmGKB database. Logistic regression analyses were conducted to investigate the association of metabolizer status with switching/discontinuing ADs. Mann-Whitney U-tests were conducted to compare the number of patient-perceived side effects between metabolizer statuses. RESULTS No significant associations were observed of CYP metabolizer status with switching/discontinuing ADs, nor with the number of perceived side effects. CONCLUSIONS We found no evidence for associations between CYP metabolizer statuses and switching/discontinuing AD, nor with side effects of ADs, suggesting that metabolizer status only plays a limited role in switching/discontinuing ADs. Additional studies with larger numbers of PM and UM patients are needed to further determine the potential added value of pharmacogenetics to guide pharmacotherapy.
Collapse
Affiliation(s)
- Jurriaan M J L Brouwer
- Research School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- GGZ Drenthe Mental Health Center Drenthe, Assen, The Netherlands.
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.
- Department of Clinical Pharmacy, Martini Hospital Groningen, Van Swietenlaan 1, Groningen, 9728 NT, The Netherlands.
| | - Klaas J Wardenaar
- GGZ Drenthe Mental Health Center Drenthe, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
- Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edith J Liemburg
- GGZ Drenthe Mental Health Center Drenthe, Assen, The Netherlands
- Rob Giel Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pierre M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harold Snieder
- Rob Giel Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands
| | - Danielle C Cath
- Research School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GGZ Drenthe Mental Health Center Drenthe, Assen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Public Health, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Yan D, Hu B, Darst BF, Mukherjee S, Kunkle BW, Deming Y, Dumitrescu L, Wang Y, Naj A, Kuzma A, Zhao Y, Kang H, Johnson SC, Carlos C, Hohman TJ, Crane PK, Engelman CD, Alzheimer’s Disease Genetics Consortium (ADGC), Lu Q. Biobank-wide association scan identifies risk factors for late-onset Alzheimer's disease and endophenotypes. eLife 2024; 12:RP91360. [PMID: 38787369 PMCID: PMC11126309 DOI: 10.7554/elife.91360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.
Collapse
Affiliation(s)
- Donghui Yan
- University of Wisconsin-MadisonMadisonUnited States
| | - Bowen Hu
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
| | - Burcu F Darst
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Shubhabrata Mukherjee
- Division of General Internal Medicine, Department of Medicine, University of WashingtonSeattleUnited States
| | - Brian W Kunkle
- University of Miami Miller School of MedicineMiamiUnited States
| | - Yuetiva Deming
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yunling Wang
- University of Wisconsin-MadisonMadisonUnited States
| | - Adam Naj
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amanda Kuzma
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yi Zhao
- School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hyunseung Kang
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA HospitalMadisonUnited States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Cruchaga Carlos
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Paul K Crane
- Division of General Internal Medicine, Department of Medicine, University of WashingtonSeattleUnited States
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | | | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-MadisonMadisonUnited States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|