BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huber KE, Waldor MK. Filamentous phage integration requires the host recombinases XerC and XerD. Nature. 2002;417:656-659. [PMID: 12050668 DOI: 10.1038/nature00782] [Cited by in Crossref: 138] [Cited by in F6Publishing: 121] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Farrokhi A, Liu H, Szatmari G. Characterization of the Chromosome Dimer Resolution Site in Caulobacter crescentus. J Bacteriol 2019;201:e00391-19. [PMID: 31548274 DOI: 10.1128/JB.00391-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
2 Hallet B, Vanhooff V, Cornet F. DNA Site-Specific Resolution Systems. In: Funnell BE, Phillips GJ, editors. Plasmid Biology. Washington: ASM Press; 2004. pp. 145-80. [DOI: 10.1128/9781555817732.ch7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
3 Hagemann M, Hasse D, Berg G. Detection of a Phage Genome Carrying a Zonula Occludens like Toxin Gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Arch Microbiol 2006;185:449-58. [DOI: 10.1007/s00203-006-0115-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
4 Hirst TR, D'souza JM. Vibrio cholerae and Escherichia coli thermolabile enterotoxin. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2006. pp. 270-90. [DOI: 10.1016/b978-012088445-2/50020-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
5 Petrova M, Shcherbatova N, Kurakov A, Mindlin S. Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia. Arch Virol 2014;159:1293-303. [DOI: 10.1007/s00705-013-1882-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
6 Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
7 Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004;68:560-602, table of contents. [PMID: 15353570 DOI: 10.1128/MMBR.68.3.560-602.2004] [Cited by in Crossref: 1023] [Cited by in F6Publishing: 572] [Article Influence: 56.8] [Reference Citation Analysis]
8 Hudson CM, Lau BY, Williams KP. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res 2015;43:D48-53. [PMID: 25378302 DOI: 10.1093/nar/gku1072] [Cited by in Crossref: 56] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
9 Bischerour J, Spangenberg C, Barre FX. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012;31:3757-67. [PMID: 22863778 DOI: 10.1038/emboj.2012.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
10 McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2004;54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
11 Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fujino Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8. Front Microbiol 2016;7:50. [PMID: 26941711 DOI: 10.3389/fmicb.2016.00050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
12 Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003;67:238-76, table of contents. [PMID: 12794192 DOI: 10.1128/MMBR.67.2.238-276.2003] [Cited by in Crossref: 477] [Cited by in F6Publishing: 246] [Article Influence: 25.1] [Reference Citation Analysis]
13 Villion M, Szatmari G. The XerC recombinase of Proteus mirabilis: characterization and interaction with other tyrosine recombinases. FEMS Microbiol Lett 2003;226:65-71. [PMID: 13129609 DOI: 10.1016/S0378-1097(03)00577-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
14 Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA. 2010;107:4377-4382. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
15 Krupovic M, Forterre P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS One 2011;6:e19893. [PMID: 21572966 DOI: 10.1371/journal.pone.0019893] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 6.5] [Reference Citation Analysis]
16 Kawai M, Uchiyama I, Kobayashi I. Genome comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase. DNA Res 2005;12:389-401. [PMID: 16769696 DOI: 10.1093/dnares/dsi021] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 3.1] [Reference Citation Analysis]
17 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
18 Pham TD, Nguyen TH, Iwashita H, Takemura T, Morita K, Yamashiro T. Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia. Microbiol Immunol 2018;62:635-50. [PMID: 30211956 DOI: 10.1111/1348-0421.12648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology 2010;156:99-107. [DOI: 10.1099/mic.0.032458-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
20 Ahmad AA, Askora A, Kawasaki T, Fujie M, Yamada T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 2014;5:321. [PMID: 25071734 DOI: 10.3389/fmicb.2014.00321] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
21 Quinones M, Kimsey HH, Ross W, Gourse RL, Waldor MK. LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem 2006;281:39407-12. [PMID: 17046810 DOI: 10.1074/jbc.M609694200] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
22 Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014;48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Wei W, Xiong L, Ye YN, Du MZ, Gao YZ, Zhang KY, Jin YT, Yang Z, Wong PC, Lau SKP, Kan B, Zhu J, Woo PCY, Guo FB. Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biol Evol 2018;10:2072-85. [PMID: 30060177 DOI: 10.1093/gbe/evy151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
25 Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. Infect Genet Evol 2014;23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
26 Makarova KS, Wolf YI, Forterre P, Prangishvili D, Krupovic M, Koonin EV. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 2014;18:877-93. [PMID: 25113822 DOI: 10.1007/s00792-014-0672-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
27 Ackermann H. Bacteriophage observations and evolution. Research in Microbiology 2003;154:245-51. [DOI: 10.1016/s0923-2508(03)00067-6] [Cited by in Crossref: 232] [Cited by in F6Publishing: 110] [Article Influence: 12.2] [Reference Citation Analysis]
28 Srivastava P, Fekete RA, Chattoraj DK. Segregation of the replication terminus of the two Vibrio cholerae chromosomes. J Bacteriol 2006;188:1060-70. [PMID: 16428410 DOI: 10.1128/JB.188.3.1060-1070.2006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
29 Marco ML, Legac J, Lindow SE. Conditional survival as a selection strategy to identify plant-inducible genes of Pseudomonas syringae. Appl Environ Microbiol 2003;69:5793-801. [PMID: 14532027 DOI: 10.1128/AEM.69.10.5793-5801.2003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
30 Askora A, Kawasaki T, Fujie M, Yamada T. Resolvase-like serine recombinase mediates integration/excision in the bacteriophage φRSM. J Biosci Bioeng 2011;111:109-16. [PMID: 21035394 DOI: 10.1016/j.jbiosc.2010.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
31 Campos J, Martínez E, Suzarte E, Rodríguez BL, Marrero K, Silva Y, Ledón T, del Sol R, Fando R. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 2003;185:5685-96. [PMID: 13129939 DOI: 10.1128/JB.185.19.5685-5696.2003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
32 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
33 Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
34 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
35 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
36 Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Res 2020;48:4052-65. [PMID: 32182341 DOI: 10.1093/nar/gkaa156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Fan F, Kan B. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae. Virol Sin 2015;30:19-25. [PMID: 25613689 DOI: 10.1007/s12250-014-3550-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
38 Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2019;111:495-513. [PMID: 30475408 DOI: 10.1111/mmi.14170] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
39 Canavessi AM, Harms J, Gatti NDL, Splitter GA. The role of integrase/recombinase xerD and monofunctional biosynthesis peptidoglycan transglycosylase genes in the pathogenicity of Brucella abortus infection in vitro and in vivo. Microbial Pathogenesis 2004;37:241-51. [DOI: 10.1016/j.micpath.2004.07.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
40 Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T. Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum. J Bacteriol 2007;189:5792-802. [PMID: 17557818 DOI: 10.1128/JB.00540-07] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
41 Hosomi K, Sakaguchi Y, Kohda T, Gotoh K, Motooka D, Nakamura S, Umeda K, Iida T, Kozaki S, Mukamoto M. Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridium botulinum type B strain 111 isolated from an infant patient in Japan. Mol Genet Genomics 2014;289:1267-74. [PMID: 25149145 DOI: 10.1007/s00438-014-0887-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
42 Murugaiah C. The burden of cholera. Critical Reviews in Microbiology 2011;37:337-48. [DOI: 10.3109/1040841x.2011.603288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
43 Blakely GW. Smarter than the average phage. Mol Microbiol 2004;54:851-4. [PMID: 15522071 DOI: 10.1111/j.1365-2958.2004.04330.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
44 Campos J, Martínez E, Izquierdo Y, Fando R. VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology (Reading) 2010;156:108-15. [PMID: 19833774 DOI: 10.1099/mic.0.032235-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.2] [Reference Citation Analysis]
45 Chouikha I, Charrier L, Filali S, Derbise A, Carniel E. Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 2010;407:43-52. [PMID: 20728914 DOI: 10.1016/j.virol.2010.07.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
46 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Val ME, Kennedy SP, El Karoui M, Bonné L, Chevalier F, Barre FX. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 2008;4:e1000201. [PMID: 18818731 DOI: 10.1371/journal.pgen.1000201] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 4.2] [Reference Citation Analysis]
48 Lobry JR, Louarn J. Polarisation of prokaryotic chromosomes. Current Opinion in Microbiology 2003;6:101-8. [DOI: 10.1016/s1369-5274(03)00024-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
49 Balding C, Bromley SA, Pickup RW, Saunders JR. Diversity of phage integrases in Enterobacteriaceae: development of markers for environmental analysis of temperate phages. Environ Microbiol 2005;7:1558-67. [PMID: 16156729 DOI: 10.1111/j.1462-2920.2005.00845.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
50 Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2004;23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
51 Piekarowicz A, Kłyż A, Majchrzak M, Szczêsna E, Piechucki M, Kwiatek A, Maugel TK, Stein DC. Neisseria gonorrhoeae filamentous phage NgoΦ6 is capable of infecting a variety of Gram-negative bacteria. J Virol 2014;88:1002-10. [PMID: 24198404 DOI: 10.1128/JVI.02707-13] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
52 Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013;21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
53 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
54 Okada K, Na-Ubol M, Natakuathung W, Roobthaisong A, Maruyama F, Nakagawa I, Chantaroj S, Hamada S. Comparative genomic characterization of a Thailand-Myanmar isolate, MS6, of Vibrio cholerae O1 El Tor, which is phylogenetically related to a "US Gulf Coast" clone. PLoS One 2014;9:e98120. [PMID: 24887199 DOI: 10.1371/journal.pone.0098120] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
55 Jia H, Dong W, Yuan L, Ma J, Bai Q, Pan Z, Lu C, Yao H. Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage JS01. Virus Genes 2015;50:345-8. [PMID: 25687122 DOI: 10.1007/s11262-015-1168-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
56 Piligrimova EG, Kazantseva OA, Kazantsev AN, Nikulin NA, Skorynina AV, Koposova ON, Shadrin AM. Putative plasmid prophages of Bacillus cereus sensu lato may hold the key to undiscovered phage diversity. Sci Rep 2021;11:7611. [PMID: 33828147 DOI: 10.1038/s41598-021-87111-3] [Reference Citation Analysis]
57 Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann HW, Washburn M, Mushegian A, Severinov K. Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J Mol Biol 2008;378:468-80. [PMID: 18355836 DOI: 10.1016/j.jmb.2008.02.018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
58 Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019;116:18391-6. [PMID: 31420511 DOI: 10.1073/pnas.1902905116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
59 Boyd EF. Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010;107:3951-2. [PMID: 20197438 DOI: 10.1073/pnas.1000310107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
60 Midonet C, Das B, Paly E, Barre FX. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014;111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
61 Xue H, Xu Y, Boucher Y, Polz MF. High frequency of a novel filamentous phage, VCY φ, within an environmental Vibrio cholerae population. Appl Environ Microbiol 2012;78:28-33. [PMID: 22020507 DOI: 10.1128/AEM.06297-11] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
62 Robinson L, Liaw J, Omole Z, Xia D, van Vliet AHM, Corcionivoschi N, Hachani A, Gundogdu O. Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction. Front Microbiol 2021;12:694824. [PMID: 34276628 DOI: 10.3389/fmicb.2021.694824] [Reference Citation Analysis]
63 Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017;8:453. [PMID: 28373867 DOI: 10.3389/fmicb.2017.00453] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
64 Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019;9:5865. [PMID: 30971707 DOI: 10.1038/s41598-019-41883-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
65 Das B, Kumari R, Pant A, Sen Gupta S, Saxena S, Mehta O, Nair GB. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies. J Bacteriol 2014;196:4071-80. [PMID: 25225263 DOI: 10.1128/JB.01966-14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
66 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
67 Martínez E, Campos-Gómez J, Barre FX. CTXϕ: Exploring new alternatives in host factor-mediated filamentous phage replications. Bacteriophage 2016;6:e1128512. [PMID: 27607139 DOI: 10.1080/21597081.2015.1128512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
68 Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet 2013;9:e1003987. [PMID: 24348267 DOI: 10.1371/journal.pgen.1003987] [Cited by in Crossref: 181] [Cited by in F6Publishing: 145] [Article Influence: 20.1] [Reference Citation Analysis]
69 Callaghan MM, Heilers JH, van der Does C, Dillard JP. Secretion of Chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System. Curr Top Microbiol Immunol 2017;413:323-45. [PMID: 29536365 DOI: 10.1007/978-3-319-75241-9_13] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
70 Davis BM, Kimsey HH, Kane AV, Waldor MK. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002;21:4240-4249. [PMID: 12169626 DOI: 10.1093/emboj/cdf427] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 4.6] [Reference Citation Analysis]
71 Derbise A, Chenal‐francisque V, Pouillot F, Fayolle C, Prévost M, Médigue C, Hinnebusch BJ, Carniel E. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Molecular Microbiology 2007;63:1145-57. [DOI: 10.1111/j.1365-2958.2006.05570.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
72 Yeh TY. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae. Arch Virol 2017;162:567-72. [PMID: 27743252 DOI: 10.1007/s00705-016-3105-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
73 Lood R, Collin M. Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics 2011;12:198. [PMID: 21504575 DOI: 10.1186/1471-2164-12-198] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
74 Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev 2004;68:403-31, table of contents. [PMID: 15353563 DOI: 10.1128/MMBR.68.3.403-431.2004] [Cited by in Crossref: 749] [Cited by in F6Publishing: 253] [Article Influence: 41.6] [Reference Citation Analysis]
75 Domínguez NM, Hackett KT, Dillard JP. XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island. J Bacteriol 2011;193:377-88. [PMID: 21075927 DOI: 10.1128/JB.00948-10] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
76 Safa A, Jime JS, Shahel F. Cholera toxin phage: structural and functional diversity between Vibrio cholerae biotypes. AIMS Microbiol 2020;6:144-51. [PMID: 32617446 DOI: 10.3934/microbiol.2020009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Heggelund JE, Bjørnestad VA, Krengel U. Vibrio cholerae and Escherichia coli heat-labile enterotoxins and beyond. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2015. pp. 195-229. [DOI: 10.1016/b978-0-12-800188-2.00007-0] [Cited by in Crossref: 15] [Article Influence: 2.1] [Reference Citation Analysis]
78 Skorynina AV, Piligrimova EG, Kazantseva OA, Kulyabin VA, Baicher SD, Ryabova NA, Shadrin AM. Bacillus-infecting bacteriophage Izhevsk harbors thermostable endolysin with broad range specificity. PLoS One 2020;15:e0242657. [PMID: 33232350 DOI: 10.1371/journal.pone.0242657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell. 2005;19:559-566. [PMID: 16109379 DOI: 10.1016/j.molcel.2005.07.002] [Cited by in Crossref: 124] [Cited by in F6Publishing: 101] [Article Influence: 7.3] [Reference Citation Analysis]
80 Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 2006;188:2812-20. [PMID: 16585742 DOI: 10.1128/JB.188.8.2812-2820.2006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
81 Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021;11:210188. [PMID: 34520699 DOI: 10.1098/rsob.210188] [Reference Citation Analysis]
82 Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021;17:e9880. [PMID: 34018328 DOI: 10.15252/msb.20209880] [Reference Citation Analysis]
83 Krupovic M, Bamford DH. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria. BMC Genomics 2007;8:236. [PMID: 17634101 DOI: 10.1186/1471-2164-8-236] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 3.6] [Reference Citation Analysis]
84 Carnoy C, Roten CA. The dif/Xer recombination systems in proteobacteria. PLoS One. 2009;4:e6531. [PMID: 19727445 DOI: 10.1371/journal.pone.0006531] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
85 Wang H, Pang B, Xiong L, Wang D, Wang X, Zhang L, Kan B. The Hybrid Pre-CTXΦ-RS1 Prophage Genome and Its Regulatory Function in Environmental Vibrio cholerae O1 Strains. Appl Environ Microbiol 2015;81:7171-7. [PMID: 26253680 DOI: 10.1128/AEM.01742-15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
86 Cehovin A, Lewis SB. Mobile genetic elements in Neisseria gonorrhoeae: movement for change. Pathog Dis 2017;75. [PMID: 28645177 DOI: 10.1093/femspd/ftx071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
87 Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018;9:2686. [PMID: 30473684 DOI: 10.3389/fmicb.2018.02686] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
88 Askora A, Abdel-haliem MEF, Yamada T. Site-specific recombination systems in filamentous phages. Mol Genet Genomics 2012;287:525-30. [DOI: 10.1007/s00438-012-0700-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
89 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
90 Louarn J, Kuempel P, Cornet F. The Terminus Region of the Escherichia coli Chromosome, or, All's Well That Ends Well. In: Higgins NP, editor. The Bacterial Chromosome. Washington: ASM Press; 2004. pp. 251-73. [DOI: 10.1128/9781555817640.ch13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
91 Murugaiyan S, Bae JY, Wu J, Lee SD, Um HY, Choi HK, Chung E, Lee JH, Lee SW. Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J Appl Microbiol 2011;110:296-303. [PMID: 21054700 DOI: 10.1111/j.1365-2672.2010.04882.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
92 Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V, Akbari B. Evolution of phage display technology: from discovery to application. Journal of Drug Targeting 2017;25:216-24. [DOI: 10.1080/1061186x.2016.1258570] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
93 Fischer W, Windhager L, Rohrer S, Zeiller M, Karnholz A, Hoffmann R, Zimmer R, Haas R. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 2010;38:6089-101. [PMID: 20478826 DOI: 10.1093/nar/gkq378] [Cited by in Crossref: 125] [Cited by in F6Publishing: 128] [Article Influence: 10.4] [Reference Citation Analysis]
94 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
95 Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, Chisholm SW. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'. Environ Microbiol 2009;11:2935-51. [PMID: 19840100 DOI: 10.1111/j.1462-2920.2009.02081.x] [Cited by in Crossref: 94] [Cited by in F6Publishing: 88] [Article Influence: 7.2] [Reference Citation Analysis]
96 Derbise A, Carniel E. YpfΦ: a filamentous phage acquired by Yersinia pestis. Front Microbiol 2014;5:701. [PMID: 25566217 DOI: 10.3389/fmicb.2014.00701] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
97 Segall AM, Craig NL. New Wrinkles and Folds in Site-Specific Recombination. Molecular Cell 2005;19:433-5. [DOI: 10.1016/j.molcel.2005.08.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
98 Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019;9:2263-304. [PMID: 30847110 DOI: 10.1002/ece3.4743] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
99 Karlyshev AV, Wren BW. Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 2005;71:4004-13. [PMID: 16000815 DOI: 10.1128/AEM.71.7.4004-4013.2005] [Cited by in Crossref: 78] [Cited by in F6Publishing: 52] [Article Influence: 4.6] [Reference Citation Analysis]
100 Das B, Halder K, Pal P, Bhadra RK. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007;188:677-83. [PMID: 17618421 DOI: 10.1007/s00203-007-0275-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
101 Yamada T. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria. Front Microbiol 2013;4:325. [PMID: 24204365 DOI: 10.3389/fmicb.2013.00325] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
102 Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
103 Liu G, Yan M, Liang W, Qi G, Liu Y, Gao S, Kan B. Resistance of the cholera vaccine candidate IEM108 against CTXΦ infection. Vaccine 2006;24:1749-55. [DOI: 10.1016/j.vaccine.2005.09.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
104 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
105 Bobay LM, Rocha EP, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol 2013;30:737-51. [PMID: 23243039 DOI: 10.1093/molbev/mss279] [Cited by in Crossref: 110] [Cited by in F6Publishing: 91] [Article Influence: 11.0] [Reference Citation Analysis]
106 Faruque SM, Tam VC, Chowdhury N, Diraphat P, Dziejman M, Heidelberg JF, Clemens JD, Mekalanos JJ, Nair GB. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci U S A 2007;104:5151-6. [PMID: 17360342 DOI: 10.1073/pnas.0700365104] [Cited by in Crossref: 78] [Cited by in F6Publishing: 61] [Article Influence: 5.2] [Reference Citation Analysis]
107 Hasan NA, Grim CJ, Lipp EK, Rivera IN, Chun J, Haley BJ, Taviani E, Choi SY, Hoq M, Munk AC, Brettin TS, Bruce D, Challacombe JF, Detter JC, Han CS, Eisen JA, Huq A, Colwell RR. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species. Proc Natl Acad Sci U S A 2015;112:E2813-9. [PMID: 25964331 DOI: 10.1073/pnas.1503928112] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
108 Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Molecular Cell 2005;17:291-300. [DOI: 10.1016/j.molcel.2004.11.046] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 4.5] [Reference Citation Analysis]
109 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
110 Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P. The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 2007;3:e117. [PMID: 17630835 DOI: 10.1371/journal.pgen.0030117] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 3.6] [Reference Citation Analysis]
111 Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER. Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 2002;184:6050-5. [PMID: 12374839 DOI: 10.1128/JB.184.21.6050-6055.2002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
112 Collyn F, Fukushima H, Carnoy C, Simonet M, Vincent P. Linkage of the horizontally acquired ypm and pil genes in Yersinia pseudotuberculosis. Infect Immun 2005;73:2556-8. [PMID: 15784605 DOI: 10.1128/IAI.73.4.2556-2558.2005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
113 Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the 'core' and 'flexible' Pacific Ocean Virome. ISME J 2015;9:472-84. [PMID: 25093636 DOI: 10.1038/ismej.2014.143] [Cited by in Crossref: 116] [Cited by in F6Publishing: 98] [Article Influence: 14.5] [Reference Citation Analysis]
114 Kono N, Arakawa K, Tomita M. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 2011;12:19. [PMID: 21223577 DOI: 10.1186/1471-2164-12-19] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
115 Hamilton HL, Domínguez NM, Schwartz KJ, Hackett KT, Dillard JP. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 2005;55:1704-21. [PMID: 15752195 DOI: 10.1111/j.1365-2958.2005.04521.x] [Cited by in Crossref: 206] [Cited by in F6Publishing: 196] [Article Influence: 12.1] [Reference Citation Analysis]
116 Zeng Z, Liu X, Yao J, Guo Y, Li B, Li Y, Jiao N, Wang X. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J 2016;10:2787-800. [PMID: 27482926 DOI: 10.1038/ismej.2016.85] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
117 Espinosa-urgel M. Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 2004;52:139-50. [DOI: 10.1016/j.plasmid.2004.06.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
118 Ventura M, Lee JH, Canchaya C, Zink R, Leahy S, Moreno-Munoz JA, O'Connell-Motherway M, Higgins D, Fitzgerald GF, O'Sullivan DJ, van Sinderen D. Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl Environ Microbiol 2005;71:8692-705. [PMID: 16332864 DOI: 10.1128/AEM.71.12.8692-8705.2005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
119 Campos J, Martínez E, Marrero K, Silva Y, Rodríguez BL, Suzarte E, Ledón T, Fando R. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J Bacteriol 2003;185:7231-40. [PMID: 14645284 DOI: 10.1128/JB.185.24.7231-7240.2003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
120 Askora A, Kawasaki T, Usami S, Fujie M, Yamada T. Host recognition and integration of filamentous phage phiRSM in the phytopathogen, Ralstonia solanacearum. Virology 2009;384:69-76. [PMID: 19059619 DOI: 10.1016/j.virol.2008.11.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
121 Askora A, Yamada T. Two different evolutionary lines of filamentous phages in Ralstonia solanacearum: their effects on bacterial virulence. Front Genet 2015;6:217. [PMID: 26150828 DOI: 10.3389/fgene.2015.00217] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
122 Lesterlin C, Barre FX, Cornet F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 2004;54:1151-60. [PMID: 15554958 DOI: 10.1111/j.1365-2958.2004.04356.x] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 5.2] [Reference Citation Analysis]