1
|
López-Pérez M, Balasubramanian D, Campos-Lopez A, Crist C, Grant TA, Haro-Moreno JM, Zaragoza-Solas A, Almagro-Moreno S. Allelic variations and gene cluster modularity act as nonlinear bottlenecks for cholera emergence. Proc Natl Acad Sci U S A 2025; 122:e2417915122. [PMID: 40434643 DOI: 10.1073/pnas.2417915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within the Vibrio cholerae species, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840 V. cholerae genomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenic V. cholerae. Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a) tcpF or b) a sextuple allelic exchange mutant for genes tcpA, toxT, VC0176, VC1791, rfbT, and ompU, lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenic V. cholerae offering a tractable approach for investigating the emergence of pathogenic clones within an environmental population.
Collapse
Affiliation(s)
- Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Division of Molecular Microbiology, Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Alicia Campos-Lopez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Cole Crist
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
| | - Trudy-Ann Grant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
| | - Jose M Haro-Moreno
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Asier Zaragoza-Solas
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Division of Molecular Microbiology, Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
2
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. mBio 2025:e0104625. [PMID: 40391973 DOI: 10.1128/mbio.01046-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Multipartite bacterial genome organization can confer advantages, including coordinated gene regulation and faster genome replication, but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the C58 lab model, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria and identified two strains distinct from C58 with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed that both replication origins remained active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres were essential. Importantly, the site-specific recombinase XerCD is required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. IMPORTANCE Most bacterial genomes are monopartite with a single, circular chromosome. However, some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches, including pathogenesis or symbiosis. Multipartite genomes confer certain advantages; however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two geographically separated environmental isolates of A. tumefaciens containing fused chromosomes with integration junctions different from the C58 fusion chromosome, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings reveal how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
Affiliation(s)
- Ram Sanath-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ian P Reynolds
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Lauren Augusta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
4
|
Wang Q, Liu R, Niu Y, Wang Y, Qin J, Huang Y, Qian J, Zheng X, Wang M, Huang D, Liu Y. Regulatory mechanisms of two-component systems in Vibrio cholerae: Enhancing pathogenicity and environmental adaptation. Microbiol Res 2025; 298:128198. [PMID: 40318575 DOI: 10.1016/j.micres.2025.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cholera, which is caused by the bacterium Vibrio cholerae, is a highly dangerous disease characterized by severe symptoms such as watery diarrhea, dehydration, and even death. V. cholerae can both colonize the host intestine and survive in environmental reservoirs. Two-component systems (TCSs) are essential regulatory mechanisms that allow bacteria to adapt to changing environments. This review focuses on the regulatory mechanisms of TCS-mediated gene expression in V. cholerae. We first summarize the composition and classification of TCSs in V. cholerae N16961. We then discuss the roles of TCSs in facilitating adaptation to diverse environmental stimuli and increasing pathogenicity. Furthermore, we analyze the distribution of TCSs in pandemic and nonpandemic-V. cholerae strains, demonstrating their indispensable role in promoting virulence and facilitating the widespread dissemination of pandemic strains. Elucidation of these mechanisms is crucial for devising new strategies to combat cholera and prevent future outbreaks, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuanyuan Niu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuchen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingling Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jiamin Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300457, PR China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Nankai University, Tianjin 300457, PR China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Drebes Dörr NC, Lemopoulos A, Blokesch M. Exploring Mobile Genetic Elements in Vibrio cholerae. Genome Biol Evol 2025; 17:evaf079. [PMID: 40302206 PMCID: PMC12082036 DOI: 10.1093/gbe/evaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Members of the bacterial species Vibrio cholerae are known both as prominent constituents of marine environments and as the causative agents of cholera, a severe diarrheal disease. While strains responsible for cholera have been extensively studied over the past century, less is known about their environmental counterparts, despite their contributions to the species' pangenome. This study analyzed the genome compositions of 46 V. cholerae strains, including pandemic and nonpandemic, toxigenic, and environmental variants, to investigate the diversity of mobile genetic elements (MGEs), embedded bacterial defense systems, and phage-associated signatures. Our findings include both conserved and novel MGEs across strains, pointing to shared evolutionary pathways and ecological niches. The defensome analysis revealed a wide array of antiphage/antiplasmid mechanisms, extending well beyond the traditional CRISPR-Cas and restriction-modification systems. This underscores the dynamic arms race between V. cholerae and MGEs and suggests that nonpandemic strains may act as reservoirs for emerging defense strategies. Moreover, the study showed that MGEs are integrated into genomic hotspots, which may serve as critical platforms for the exchange of defense systems, thereby enhancing V. cholerae's adaptive capabilities against phage attacks and other invading MGEs. Overall, this research offers new insights into V. cholerae's genetic complexity and potential adaptive strategies, offering a better understanding of the differences between environmental strains and their pandemic counterparts, as well as the possible evolutionary pathways that led to the emergence of pandemic strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Grant NA, Donkor GY, Sontz J, Soto W, Waters CM. Deployment of a Vibrio cholerae ordered transposon mutant library in a quorum-competent genetic background. mBio 2025; 16:e0003625. [PMID: 39998204 PMCID: PMC11980543 DOI: 10.1128/mbio.00036-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has sparked seven pandemics in recent centuries, with the current one being the most prolonged. V. cholerae's pathogenesis hinges on its ability to switch between low- and high-cell-density gene regulatory states, enabling transmission between the host and the environment. Previously, a transposon mutant library for V. cholerae was created to support investigations aimed toward uncovering the genetic determinants of its pathogenesis. However, subsequent sequencing uncovered a mutation in the gene luxO of the parent strain, rendering mutants unable to exhibit high-cell-density behaviors. In this study, we used chitin-independent natural transformation to move transposon insertions from these low-cell-density mutants into a wild-type genomic background. Library transfer was aided by a novel gDNA extraction method we developed using thymol, which also showed high lysis specificity for Vibrio. The resulting Grant Library comprises 3,102 unique transposon mutants, covering 79.8% of V. cholerae's open reading frames. Whole-genome sequencing of randomly selected mutants demonstrates 100% precision in transposon transfer to cognate genomic positions of the recipient strain in every strain analyzed. Notably, in no instance did the luxO mutation transfer into the wild-type background. Our research uncovered density-dependent epistasis in growth on inosine, an immunomodulatory metabolite secreted by gut bacteria that is implicated in enhancing gut barrier functions. Additionally, Grant Library mutants retain the plasmid that enables rapid, scarless genomic editing. In summary, the Grant Library reintroduces organismal-relevant genetic contexts absent in the low-cell-density-locked library equivalent.Ordered transposon mutant libraries are essential tools for catalyzing research by providing access to null mutants of all non-essential genes. Such a library was previously generated for Vibrio cholerae, but whole-genome sequencing revealed that this library was made using a parent strain that is unable to exhibit cell-cell communication known as quorum sensing. Here, we utilize natural competence combined with a novel, high-throughput genomic DNA extraction method to regenerate the signaling incompetent V. cholerae ordered transposon mutant library in quorum-sensing-competent strain. Our library provides researchers with a powerful tool to understand V. cholerae biology within a genetic context that influences how it transitions from an environmentally benign organism to a disease-causing pathogen.
Collapse
Affiliation(s)
- Nkrumah A. Grant
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Gracious Yoofi Donkor
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jordan Sontz
- MSU College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - William Soto
- Department of Biology, College of William and Mary, Williamsburg, Virginia, USA
| | - Christopher M. Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
- MSU College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Chawla M, Verma J, Kumari S, Matta T, Senapati T, Babele P, Kumar Y, Bhadra RK, Das B. (p)ppGpp and DksA play a crucial role in reducing the efficacy of β-lactam antibiotics by modulating bacterial membrane permeability. Microbiol Spectr 2025; 13:e0116924. [PMID: 39992161 PMCID: PMC11960062 DOI: 10.1128/spectrum.01169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
The key signaling molecules in the bacterial stress-sensing pathway, the alarmone (p)ppGpp and the transcription factor DksA, play a crucial role in bacterial survival during nutritional deprivation and exposure to xenobiotics by modulating cellular metabolic pathways. In Vibrio cholerae, (p)ppGpp metabolism is solely linked with the functions of three proteins: RelA, SpoT, and RelV. The effects of threshold or elevated concentrations of (p)ppGpp on cellular metabolites and proteins, both in the presence and absence of DksA, have not yet been comprehensively studied in V. cholerae or other bacteria. We engineered the genome of V. cholerae to develop DksA null mutants in the presence and absence of (p)ppGpp biosynthetic enzymes. We observed that the N16:ΔrelAΔrelVΔspoTΔdksA V. cholerae mutant, which lacks both (p)ppGpp and DksA, exhibits higher sensitivity to different ꞵ-lactam antibiotics compared with the wild-type (WT) strain. Our whole-cell metabolomic and proteome analysis revealed that the cell membrane and peptidoglycan biosynthesis pathways are significantly altered in the N16:ΔrelAΔrelVΔspoT, N16:ΔdksA, and N16:ΔrelAΔrelVΔspoTΔdksA V. cholerae strains. Furthermore, the mutant strains displayed enhanced inner and outer membrane permeabilities in comparison to the WT strains. These results correlate with V. cholerae's tolerance and survival against β-lactam antibiotics and may inform the development of adjuvants that inhibit stringent response modulators.IMPORTANCEThe (p)ppGpp biosynthetic pathway is widely conserved in bacteria. Intracellular levels of (p)ppGpp and the transcription factor DksA play crucial roles in bacterial multiplication and viability in the presence of antibiotics and/or other xenobiotics. The present findings have shown that (p)ppGpp and DksA significantly reduce the efficacy of ꞵ-lactam and other antibiotics by modulating the availability of peptidoglycan and cell membrane-associated metabolites by reducing membrane permeability. Nevertheless, the whole-cell proteome analysis of N16:ΔrelAΔrelVΔspoT, N16:ΔdksA, and N16:ΔrelAΔrelVΔspoTΔdksA strains identified the biosynthetic pathways and associated enzymes that are directly modulated by the stringent response effector molecules. Thus, the (p)ppGpp metabolic pathways and DksA could be a potential target for increasing the efficacy of antibiotics and developing antibiotic adjuvants.
Collapse
Affiliation(s)
- Meenal Chawla
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Tushar Matta
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Tarosi Senapati
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Prabhakar Babele
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rupak K. Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
8
|
Omori F, Tajima H, Asaoka S, Nishiyama SI, Sowa Y, Kawagishi I. Chemotaxis and Related Signaling Systems in Vibrio cholerae. Biomolecules 2025; 15:434. [PMID: 40149970 PMCID: PMC11940527 DOI: 10.3390/biom15030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The motility and chemotaxis of Vibrio cholerae, the bacterial pathogen responsible for cholera, play crucial roles in both environmental survival and infection. Understanding their molecular mechanisms is therefore essential not only for fundamental biology but also for infection control and therapeutic development. The bacterium's sheathed, polar flagellum-its motility organelle-is powered by a sodium-driven motor. This motor's rotation is regulated by the chemotaxis (Che) signaling system, with a histidine kinase, CheA, and a response regulator, CheY, serving as the central processing unit. However, V. cholerae possesses two additional, parallel Che signaling systems whose physiological functions remain unclear. Furthermore, the bacterium harbors over 40 receptors/transducers that interact with CheA homologs, forming a complex regulatory network likely adapted to diverse environmental cues. Despite significant progress, many aspects of these systems remain to be elucidated. Here, we summarize the current understanding to facilitate future research.
Collapse
Affiliation(s)
- Fuga Omori
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - Hirotaka Tajima
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Sotaro Asaoka
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - So-ichiro Nishiyama
- Faculty of Applied Life Science, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Niigata 956-8603, Japan;
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| |
Collapse
|
9
|
Getz LJ, Fairburn SR, Vivian Liu Y, Qian AL, Maxwell KL. Integrons are anti-phage defence libraries in Vibrio parahaemolyticus. Nat Microbiol 2025; 10:724-733. [PMID: 39870871 DOI: 10.1038/s41564-025-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sam R Fairburn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Y Vivian Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy L Qian
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Onohuean H, Nwodo UU. Global systematic mapping of Vibrio species pathogenicity: A PRISMA-guided cluster-based analysis. Medicine (Baltimore) 2025; 104:e41664. [PMID: 40020131 PMCID: PMC11875588 DOI: 10.1097/md.0000000000041664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND A systematic global map on toxigenesis and genomic virulence of Vibrio spp. was analyzed for research progress to identify the emerging research patterns for establishing a database for designing future interventions. METHOD The databases (Web of Science and Scopus) were analyzed with Voxviewer software to map the global scale of Vibrio spp. or virulence toxin/genes publications and standardized using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) strategies. RESULTS The results identified 1162 (Web of Science n = 620, Scopus n = 542), while 314 studies qualified for inclusion and were significantly analyzed on virulence toxin/genes. By co-citation analysis, 4-thematic clusters were developed from 6420 citations and a total reference of 9062. Cluster #1 (pathogenesis & virulence factors) and cluster #4 (host response factors) generated the utmost publications and citations (n = 40, 643) and the least (n = 7, 85) interest by the researcher. Whereas 8-thematic clusters were developed by bibliographic coupling technique analysis, cluster#1 and cluster#8 generated the utmost (n = 78, 1684) and least (n = 7, 81) publications and citations interest by the researcher. CONCLUSIONS Our findings suggest that Vibrio toxigenesis and virulence factors are a complex field requiring an interdisciplinary approach consisting of interconnected perspectives that have important consequences for academics and policymakers.
Collapse
Affiliation(s)
- Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Western Campus, Ishaka-Bushenyi, Uganda
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, South Africa
| | - Uchechukwu U. Nwodo
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, South Africa
| |
Collapse
|
11
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639760. [PMID: 40060587 PMCID: PMC11888308 DOI: 10.1101/2025.02.23.639760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Multipartite bacterial genome organization can confer advantages including coordinated gene regulation and faster genome replication but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the lab model strain C58, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria (CFBP) and identified two strains with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed both replication origins remain active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres are essential. Importantly, the site-specific recombinases XerCD are required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. Importance Most bacterial genomes are monopartite with a single, circular chromosome. But some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches including pathogenesis or symbiosis. Multipartite genomes confer certain advantages, however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two environmental isolates of A. tumefaciens containing fused chromosomes derived from a different route, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings help us better understand how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
|
12
|
Gherlan GS, Lazar DS, Florescu SA, Dirtu RM, Codreanu DR, Lupascu S, Nica M. Non-toxigenic Vibrio cholerae - just another cause of vibriosis or a potential new pandemic? Arch Clin Cases 2025; 12:5-16. [PMID: 39925986 PMCID: PMC11801190 DOI: 10.22551/2025.46.1201.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Although nontoxigenic Vibrio cholerae usually stands in the shadow of the two serogroups (O1 and O139) that cause pandemic cholera, its role in human pathology is increasingly recognized and described in the literature. The habitat of these pathogens is brackish seawater or even freshwater, and the infections caused by them include contact with these waters or consumption of seafood originating in this habitat, which is constantly expanding because of global warming. This habitat extension is a typical example of climate change's impact on infectious diseases. Although nontoxigenic Vibrio cholerae strains are rarely capable of producing the classical cholera toxin, they possess many other virulence factors, can secrete various other toxins, and thus produce illnesses that are sometimes even severe or life-threatening, more frequently in immunocompromised patients. Vibriosis may manifest as gastrointestinal illnesses, wounds, skin or subcutaneous tissue infections, or septicemia. To establish the correct etiological diagnosis for these infections, a high index of suspicion must be maintained, as the diagnostic techniques require targeted investigations and specific collection and transportation of the samples. Empiric treatment recommendations are available, but owing to the increasing resistance of this pathogen, susceptibility testing is needed for every diagnosed case. We intend to raise awareness regarding these infections, as they tend to be more frequent than they were in the past and to appear in areas where they had not been recognized before.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Dragos Stefan Lazar
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Raluca Mihaela Dirtu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Daniel Romeo Codreanu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Stefan Lupascu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Maria Nica
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
13
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
14
|
Zhang H, Zhang J, Fan S, Lu J, Zhang W, Ding W. Synthetic biofilm community for efficient phosphorus removal from high-salinity wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131902. [PMID: 39615759 DOI: 10.1016/j.biortech.2024.131902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025]
Abstract
Substantial amounts of phosphorus are discharged into water bodies, leading to an urgent need to develop methods for phosphorus removal. Here, 12 novel polyphosphate-accumulating organisms were identified from marine biofilms through genomic screening and incorporated into a stable community for phosphorus removal from high-salinity water. The synthetic biofilm community achieved an 82% removal efficiency in a marine broth medium. Electron microscopy showed storage of polyphosphate particles in the bacterial cells. Metatranscriptomic analysis indicated expression changes of genes for phosphate transport, as well as relevant metabolic pathways. In particular, pst genes encoding transporters with high phosphate affinity were downregulated at high-phosphorus concentration, whereas pit genes encoding transporters with low phosphate affinity were constitutively expressed. Furthermore, the synthetic biofilm community exhibited remarkable efficiency in removing over 92% of phosphorus from fish farming facility wastewater. Taken together, synthetic community using marine biofilm bacteria is a new strategy of phosphorus removal.
Collapse
Affiliation(s)
- Heng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jie Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
15
|
Niault T, Talavera A, Le Cam E, Baconnais S, Skovgaard O, Fournes F, Wagner L, Tamman H, Thompson A, Echemendia-Blanco D, Guzzi N, Garcia-Pino A, Mazel D, Val ME. Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae. Nat Commun 2025; 16:485. [PMID: 39779702 PMCID: PMC11711613 DOI: 10.1038/s41467-024-55598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V. cholerae genome across various cell cycle stages. We find that RctB primarily binds to sites inhibiting replication initiation at the Chr2 origin (ori2). This inhibitory effect is counteracted when crtS is replicated on Chr1, causing a shift in RctB binding to sites that activate replication at ori2. Structural analyzes indicate the formation of diverse oligomeric states of RctB, coupled to the allosteric effect of DNA, which determine ori2 accessibility. We propose a synchronization model where, upon replication, crtS locally destabilizes the RctB inhibition complex, releasing the Chr2 replication origin.
Collapse
Affiliation(s)
- Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Ole Skovgaard
- Department of Science and Environment, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Florian Fournes
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Léa Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Andrew Thompson
- SOLEIL Synchrotron, Saint-Aubin - BP48, Gif sur Yvette, France
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Noa Guzzi
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WEL Research Institute, Wavre, Belgium.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| |
Collapse
|
16
|
van Kessel JC, Camilli A. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. J Bacteriol 2024; 206:e0024824. [PMID: 39405459 PMCID: PMC11580405 DOI: 10.1128/jb.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Species of the Vibrio genus occupy diverse aquatic environments ranging from brackish water to warm equatorial seas to salty coastal regions. More than 80 species of Vibrio have been identified, many of them as pathogens of marine organisms, including fish, shellfish, and corals, causing disease and wreaking havoc on aquacultures and coral reefs. Moreover, many Vibrio species associate with and thrive on chitinous organisms abundant in the ocean. Among the many diverse Vibrio species, the most well-known and studied is Vibrio cholerae, discovered in the 19th century to cause cholera in humans when ingested. The V. cholerae field blossomed in the late 20th century, with studies broadly examining V. cholerae evolution as a human pathogen, natural competence, biofilm formation, and virulence mechanisms, including toxin biology and virulence gene regulation. This review discusses some of the historic discoveries of V. cholerae biology and ecology as one of the fundamental model systems of bacterial genetics and pathogenesis.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Tufts University, School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Qin C, Lypaczewski P, Sayeed A, Cuénod AC, Brinkley L, Creasy-Marrazzo A, Cato ET, Islam K, Khabir IU, Bhuiyan TR, Begum Y, Qadri F, Khan AI, Nelson EJ, Shapiro BJ. Vibrio cholerae lineage and pangenome diversity varies geographically across Bangladesh over one year. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623281. [PMID: 39605465 PMCID: PMC11601304 DOI: 10.1101/2024.11.12.623281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cholera is a diarrhoeal disease caused by Vibrio cholerae. It remains a major public health challenge in the endemic region around the Bay of Bengal. Over decadal time scales, one lineage typically dominates the others and spreads in global pandemic waves. However, it remains unclear to what extent diverse lineages co-circulate during a single outbreak season. Defining the pool of diversity during finer time scales is important because the selective pressures that impact V. cholerae - namely antibiotics and phages - are dynamic on these time scales. To study the nationwide diversity of V. cholerae, we long-read sequenced 273 V. cholerae genomes from seven hospitals over one year (2018) in Bangladesh. Four major V. cholerae lineages were identified: known lineages BD-1, BD-2a, and BD-2b, and a novel lineage that we call BD-3. In 2022, BD-1 caused a large cholera outbreak in Dhaka, apparently outcompeting BD-2 lineages. We show that, in 2018, BD-1 was already dominant in the five northern regions, including Dhaka, consistent with an origin from India in the north. By contrast, we observed a higher diversity of lineages in the two southern regions near the coast. The four lineages differed in pangenome content, including integrative and conjugative elements (ICEs) and genes involved in resistance to bacteriophages and antibiotics. Notably, BD-2a lacked an ICE and is predicted to be more sensitive to phages and antibiotics, but nevertheless persisted throughout the year-long sampling period. Genes associated with antibiotic resistance in V. cholerae from Bangladesh in 2006 were entirely absent from all lineages in 2018-19, suggesting shifting costs and benefits of encoding these genes. Together, our results highlight the dynamic nature of the V. cholerae pangenome and the geographic structure of its lineage diversity.
Collapse
Affiliation(s)
- Chuhan Qin
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Patrick Lypaczewski
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Aline C Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kamrul Islam
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Begum
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Canada
| |
Collapse
|
18
|
Keller MR, Soni V, Brown M, Rosch KM, Saleh A, Rhee K, Doerr T. Sugar phosphate-mediated inhibition of peptidoglycan precursor synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623475. [PMID: 39605520 PMCID: PMC11601392 DOI: 10.1101/2024.11.13.623475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic tolerance, the widespread ability of diverse pathogenic bacteria to sustain viability in the presence of typically bactericidal antibiotics for extended time periods, is an understudied steppingstone towards antibiotic resistance. The Gram-negative pathogen Vibrio cholerae, the causative agent of cholera, is highly tolerant to β-lactam antibiotics. We previously found that the disruption of glycolysis, via deletion of pgi (vc0374, glucose-6-phosphate isomerase), resulted in significant cell wall damage and increased sensitivity towards β-lactam antibiotics. Here, we uncover the mechanism of this resulting damage. We find that glucose causes growth inhibition, partial lysis, and a damaged cell envelope in Δpgi. Supplementation with N-acetylglucosamine, but not other carbon sources (either from upper glycolysis, TCA cycle intermediates, or cell wall precursors) restored growth, re-established antibiotic resistance towards β-lactams, and recovered cellular morphology of a pgi mutant exposed to glucose. Targeted metabolomics revealed the cell wall precursor synthetase enzyme GlmU (vc2762, coding for the bifunctional enzyme that converts glucosamine-1P to UDP-GlcNAc) as a critical bottleneck and mediator of glucose toxicity in Δpgi. In vitro assays of GlmU revealed that sugar phosphates (primarily glucose-1-phosphate) inhibit the acetyltransferase activity of GlmU (likely competitively), resulting in compromised PG and LPS biosynthesis. These findings identify GlmU as a critical branchpoint enzyme between central metabolism and cell envelope integrity and reveal the molecular mechanism of Δpgi glucose toxicity in Vibrio cholerae.
Collapse
Affiliation(s)
- Megan R. Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA
| | - Vijay Soni
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021
| | - Megan Brown
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021
| | - Kelly M. Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA
| | - Anas Saleh
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021
| | - Kyu Rhee
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021
| | - Tobias Doerr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
19
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
20
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
21
|
Lien YW, Amendola D, Lee KS, Bartlau N, Xu J, Furusawa G, Polz MF, Stocker R, Weiss GL, Pilhofer M. Mechanism of bacterial predation via ixotrophy. Science 2024; 386:eadp0614. [PMID: 39418385 DOI: 10.1126/science.adp0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
Ixotrophy is a contact-dependent predatory strategy of filamentous bacteria in aquatic environments for which the molecular mechanism remains unknown. We show that predator-prey contact can be established by gliding motility or extracellular assemblages we call "grappling hooks." Cryo-electron microscopy identified the grappling hooks as heptamers of a type IX secretion system substrate. After close predator-prey contact is established, cryo-electron tomography and functional assays showed that puncturing by a type VI secretion system mediated killing. Single-cell analyses with stable isotope-labeled prey revealed that prey components are taken up by the attacker. Depending on nutrient availability, insertion sequence elements toggle the activity of ixotrophy. A marine metagenomic time series shows coupled dynamics of ixotrophic bacteria and prey. We found that the mechanism of ixotrophy involves multiple cellular machineries, is conserved, and may shape microbial populations in the environment.
Collapse
Affiliation(s)
- Yun-Wei Lien
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Davide Amendola
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Kang Soo Lee
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nina Bartlau
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Gregor L Weiss
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Basu Mallick S, Das S, Venkatasubramanian A, Kundu S, Datta PP. Comprehensive in silico analyses of fifty-one uncharacterized proteins from Vibrio cholerae. PLoS One 2024; 19:e0311301. [PMID: 39365770 PMCID: PMC11452002 DOI: 10.1371/journal.pone.0311301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Due to the rise of multidrug-resistant strains of Vibrio cholerae and the recent cholera outbreaks in African and Asian nations, it is imperative to identify novel therapeutic targets and possible vaccine candidates. In this regard, this work primarily aims to identify and characterize new antigenic molecules using comparative RNA sequencing data and label-free proteomics data, carried out with essential GTPase cgtA knockdown and wild-type strain of V. cholerae. We identified hitherto 51 characterized proteins from high-throughput RNA-sequencing and proteomics data. This work involved the assessment of their physicochemical characteristics, subcellular localization, solubility, structures, and functional annotations. In addition, the immunoinformatic and reverse vaccinology technique was used to find new vaccine targets with high antigenicity, low allergenicity, and low toxicity profiles. Among the 51 proteins, 24 were selected based on their immunogenic profiles to identify B/T-cell epitopes. In addition, 20 prospective therapeutic targets were identified using virulence predictions and related investigations. Furthermore, two proteins, UniProt ID- Q9KRD2 and Q9KU58, with molecular weight of 92kDa and 12kDa, respectively, were chosen for cloning and expression towards in vitro biochemical characterization based on their range of expression patterns, high antigenic, low allergenic, and low toxicity properties. In conclusion, we believe that this study will reveal new facets and avenues for drug discovery and put us a step forward toward novel therapeutic interventions against the deadly disease of cholera.
Collapse
Affiliation(s)
- Sritapa Basu Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Aravind Venkatasubramanian
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Sourabh Kundu
- Ramakrishna Mission and Vivekananda Educational and Research Institute, Narendrapur, Kolkata, WB, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| |
Collapse
|
23
|
Lee D, Joo J, Choi H, Son S, Bae J, Kim DW, Kim EJ. Variations in the Antivirulence Effects of Fatty Acids and Virstatin against Vibrio cholerae Strains. J Microbiol Biotechnol 2024; 34:1757-1768. [PMID: 39187456 PMCID: PMC11485679 DOI: 10.4014/jmb.2405.05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
The expression of two major virulence factors of Vibrio cholerae, cholera toxin (CT) and toxin co-regulated pilus (TCP), is induced by environmental stimuli through a cascade of interactions among regulatory proteins known as the ToxR regulon when the bacteria reach the human small intestine. ToxT is produced via the ToxR regulon and acts as the direct transcriptional activator of CT (ctxAB), TCP (tcp gene cluster), and other virulence genes. Unsaturated fatty acids (UFAs) and several small-molecule inhibitors of ToxT have been developed as antivirulence agents against V. cholerae. This study reports the inhibitory effects of fatty acids and virstatin (a small-molecule inhibitor of ToxT) on the transcriptional activation functions of ToxT in isogenic derivatives of V. cholerae strains containing various toxT alleles. The fatty acids and virstatin had discrete effects depending on the ToxT allele (different by 2 amino acids), V. cholerae strain, and culture conditions, indicating that V. cholerae strains could overcome the effects of UFAs and small-molecule inhibitors by acquiring point mutations in toxT. Our results suggest that small-molecule inhibitors should be examined thoroughly against various V. cholerae strains and toxT alleles during development.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
24
|
Li X, Han Y, Zhao W, Xiao Y, Huang S, Li Z, Fan F, Liang W, Kan B. Diversity and Complexity of CTXΦ and Pre-CTXΦ Families in Vibrio cholerae from Seventh Pandemic. Microorganisms 2024; 12:1935. [PMID: 39458246 PMCID: PMC11509585 DOI: 10.3390/microorganisms12101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
CTXΦ is a lysogenic filamentous phage that carries the genes encoding cholera toxin (ctxAB), the main virulence factor of Vibrio cholerae. The toxigenic conversion of environmental V. cholerae strains through CTXΦ lysogenic infection is crucial for the emergence of new pathogenic clones. A special allelic form of CTXΦ, called pre-CTXΦ, is a precursor of CTXΦ and without ctxAB. Different members of the pre-CTXΦ and CTXΦ families are distinguished by the sequence of the transcriptional repressor-coding gene rstR. Multiple rstR alleles can coexist within a single strain, demonstrating the diverse structure and complex genomic integration patterns of CTXΦ/pre-CTXΦ prophage on the chromosome. Exploration of the diversity and co-integration patterns of CTXΦ/pre-CTXΦ prophages in V. cholerae can help to understand the evolution of this phage family. In this study, 21 V. cholerae strains, which were shown to carry the CTXΦ/pre-CTXΦ prophages as opposed to typical CTXETΦ-RS1 structure, were selected from approximately 1000 strains with diverse genomes. We identified two CTXΦ members and six pre-CTXΦ members with distinct rstR alleles, revealing complex chromosomal DNA integration patterns and arrangements of different prophages in these strains. Promoter activity assays showed that the transcriptional repressor RstR protected against CTXΦ superinfection by preventing the replication and integration of CTXΦ/pre-CTXΦ phages containing the same rstR allele, supporting the co-integration of the diverse CTXΦ/pre-CTXΦ members observed. The numbers and types of prophages and their co-integration arrangements in serogroup O139 strains were more complex than those in serogroup O1 strains. Also, these CTXΦ/pre-CTXΦ members were shown to present the bloom period of the CTXΦ/pre-CTXΦ family during wave 2 of the seventh cholera pandemic. Together, these analyses deepen our comprehension of the genetic variation of CTXΦ and pre-CTXΦ and provide insights into the evolution of the CTXΦ/pre-CTXΦ family in the seventh cholera pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206, China; (X.L.); (Y.H.); (W.Z.); (Y.X.); (S.H.); (Z.L.); (F.F.)
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing 102206, China; (X.L.); (Y.H.); (W.Z.); (Y.X.); (S.H.); (Z.L.); (F.F.)
| |
Collapse
|
25
|
Vizzarro G, Lemopoulos A, Adams DW, Blokesch M. Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems. J Bacteriol 2024; 206:e0014524. [PMID: 39133004 PMCID: PMC11411939 DOI: 10.1128/jb.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.
Collapse
Affiliation(s)
- Grazia Vizzarro
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David William Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Lorentzen ØM, Bleis C, Abel S. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001502. [PMID: 39311857 PMCID: PMC11420891 DOI: 10.1099/mic.0.001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used Vibrio cholerae model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced V. cholerae isolate and a commonly used reference genome. Comparative genomic analysis between V. cholerae C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to V. cholerae pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, V. cholerae N16961 exhibited greater motility and reduced biofilm formation compared to V. cholerae C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in V. cholerae.
Collapse
Affiliation(s)
| | - Christina Bleis
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sören Abel
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
27
|
Ferraroni M. Bacterial β-carbonic anhydrases. Enzymes 2024; 55:65-91. [PMID: 39222999 DOI: 10.1016/bs.enz.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Firenze, Italia.
| |
Collapse
|
28
|
Andress Huacachino A, Joo J, Narayanan N, Tehim A, Himes BE, Penning TM. Aldo-keto reductase (AKR) superfamily website and database: An update. Chem Biol Interact 2024; 398:111111. [PMID: 38878851 PMCID: PMC11232437 DOI: 10.1016/j.cbi.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Nisha Narayanan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Anisha Tehim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA.
| |
Collapse
|
29
|
Naghash Hoseini HS, Ahmadi TS, Mousavi Gargari SL, Nazarian S. IgY-mediated protection against Vibrio cholerae infection: Efficacy of avian antibodies targeting a chimeric recombinant protein. BIOIMPACTS : BI 2024; 15:30292. [PMID: 40161939 PMCID: PMC11954746 DOI: 10.34172/bi.30292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/02/2025]
Abstract
Introduction Vibrio cholerae, the etiologic pathogen of diarrheal disease, prevails mainly in developing countries, transmitted through contaminated water or food. The unique genetic makeup and remarkable competency has prompted intensive research to unravel the bacterium virulence properties. Egg yolk immunoglobulins (IgY) have emerged as innovative biotherapeutics for both passive immunotherapy and prophylactic strategies. Methods In the present study, we generated avian antibodies against a chimeric recombinant protein comprising OmpW-TcpA-CtxB (OTC) antigens from V. cholerae, and examined its efficacy against bacterial toxins and infection. The chimeric protein was expressed in E. coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. Leghorn chickens were intramuscularly immunized with the recombinant protein and the purity of extracted IgYs was assessed through SDS-PAGE analysis. The immunoreactivity and specificity of anti-OTC-IgYs were evaluated through protein and whole-cell ELISA, and their ability to neutralize cholera toxin (CT) of V. cholerae was evaluated in Y1 cell line. Finally, the protective efficacy of orally administered anti-OTC-IgY was investigated in V. cholerae-infected infant mice. Results Anti-OTC-IgY successfully neutralized the cytotoxic effects of CT at a concentration of 250 µg/mL. Oral administration of two 100 µg doses of anti-OTC-IgY and resulted in 60% and 20% survival rates in suckling mice infected with LD and 10 LD of V. cholerae, respectively. Conclusion The anti-OTC-IgY antibodies exhibited significant immunoreactivity, toxin-neutralizing potency, and protective effects, establishing their potential as promising antimicrobials against the bacterial pathogenicity through passive immunotherapy.
Collapse
Affiliation(s)
| | - Tooba Sadat Ahmadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
30
|
Kim SG, Wang SX, Foley SL. Complete genome sequence of two chromosomes of Vibrio metoecus strain ZF102 isolated from the abdominal cavity of moribund laboratory zebrafish ( Danio rerio). Microbiol Resour Announc 2024; 13:e0021624. [PMID: 38712933 PMCID: PMC11237558 DOI: 10.1128/mra.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Vibrio metoecus was isolated from the abdominal cavity of moribund laboratory zebrafish. We report complete genomic sequences of V. metoecus strain ZF102 that has two circular chromosomes of 2,872,299 and 1,170,691 bp and two plasmids of 5,265 and 2,361 bp.
Collapse
Affiliation(s)
- Sung Guk Kim
- Surveillance/Diagnostic Laboratory, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Sharon X Wang
- Surveillance/Diagnostic Laboratory, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
31
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573916. [PMID: 38260425 PMCID: PMC10802270 DOI: 10.1101/2024.01.02.573916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared to a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M. Heinz
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission; St. Petersburg, FL 33701, United States
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Computer Science, Johns Hopkins University; Baltimore, MD 21218, United States
- Department of Biostatistics, Johns Hopkins University; Baltimore, MD 21205, United States
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami; Miami, FL 33149, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, United States
| |
Collapse
|
32
|
Septer AN, Visick KL. Lighting the way: how the Vibrio fischeri model microbe reveals the complexity of Earth's "simplest" life forms. J Bacteriol 2024; 206:e0003524. [PMID: 38695522 PMCID: PMC11112999 DOI: 10.1128/jb.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
33
|
Gao Y, Ma B, Xu Q, Peng Y, Gong H, Guan A, Hua K, Langford PR, Jin H, Luo R. Spatial proximity and gene function: a new dimension in prokaryotic gene association network analysis with 3D-GeneNet. Brief Bioinform 2024; 25:bbae320. [PMID: 38975892 PMCID: PMC11229033 DOI: 10.1093/bib/bbae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Kexin Hua
- Swine Genome and Breeding Team, Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
34
|
Ramming L, Stukenberg D, Sánchez Olmos MDC, Glatter T, Becker A, Schindler D. Rationally designed chromosome fusion does not prevent rapid growth of Vibrio natriegens. Commun Biol 2024; 7:519. [PMID: 38698198 PMCID: PMC11066055 DOI: 10.1038/s42003-024-06234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.
Collapse
Affiliation(s)
- Lea Ramming
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Stukenberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Becker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
35
|
Wölflingseder M, Fengler VH, Standhartinger V, Wagner GE, Reidl J. The regulatory network comprising ArcAB-RpoS-RssB influences motility in Vibrio cholerae. Mol Microbiol 2024; 121:850-864. [PMID: 38323722 DOI: 10.1111/mmi.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
The diarrheal disease cholera is caused by the versatile and responsive bacterium Vibrio cholerae, which is capable of adapting to environmental changes. Among others, the alternative sigma factor RpoS activates response pathways, including regulation of motility- and chemotaxis-related genes under nutrient-poor conditions in V. cholerae. Although RpoS has been well characterised, links between RpoS and other regulatory networks remain unclear. In this study, we identified the ArcAB two-component system to control rpoS transcription and RpoS protein stability in V. cholerae. In a manner similar to that seen in Escherichia coli, the ArcB kinase not only activates the response regulator ArcA but also RssB, the anti-sigma factor of RpoS. Our results demonstrated that, in V. cholerae, RssB is phosphorylated by ArcB, which subsequently activates RpoS proteolysis. Furthermore, ArcA acts as a repressor of rpoS transcription. Additionally, we determined that the cysteine residue at position 180 of ArcB is crucial for signal recognition and activity. Thus, our findings provide evidence linking RpoS response to the anoxic redox control system ArcAB in V. cholerae.
Collapse
Affiliation(s)
- Martina Wölflingseder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Vera H Fengler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Verena Standhartinger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Gabriel E Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| |
Collapse
|
36
|
Blanco P, Hipólito A, García-Pastor L, Trigo da Roza F, Toribio-Celestino L, Ortega A, Vergara E, San Millán Á, Escudero J. Identification of promoter activity in gene-less cassettes from Vibrionaceae superintegrons. Nucleic Acids Res 2024; 52:2961-2976. [PMID: 38214222 PMCID: PMC11014356 DOI: 10.1093/nar/gkad1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alba Cristina Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid 28222, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
37
|
Grant NA, Donkor GY, Sontz JT, Soto W, Waters CM. Deployment of a Vibrio cholerae ordered transposon mutant library in a quorum-competent genetic background. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564941. [PMID: 37961142 PMCID: PMC10634969 DOI: 10.1101/2023.10.31.564941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vibrio cholerae, the causative agent of cholera, has sparked seven pandemics in recent centuries, with the current one being the most prolonged. V. cholerae's pathogenesis hinges on its ability to switch between low and high cell density gene regulatory states, enabling transmission between host and the environment. Previously, a transposon mutant library for V. cholerae was created to support investigations aimed toward uncovering the genetic determinants of its pathogenesis. However, subsequent sequencing uncovered a mutation in the gene luxO of the parent strain, rendering mutants unable to exhibit high cell density behaviors. In this study, we used chitin-independent natural transformation to move transposon insertions from these low cell density mutants into a wildtype genomic background. Library transfer was aided by a novel gDNA extraction we developed using thymol, which also showed high lysis-specificity for Vibrio. The resulting Grant Library comprises 3,102 unique transposon mutants, covering 79.8% of V. cholerae's open reading frames. Whole genome sequencing of randomly selected mutants demonstrates 100% precision in transposon transfer to cognate genomic positions of the recipient strain. Notably, in no instance did the luxO mutation transfer into the wildtype background. Our research uncovered density-dependent epistasis in growth on inosine, an immunomodulatory metabolite secreted by gut bacteria that is implicated in enhancing gut barrier functions. Additionally, Grant Library mutants retain the plasmid that enables rapid, scarless genomic editing. In summary, the Grant Library reintroduces organismal relevant genetic contexts absent in the low cell density locked library equivalent.
Collapse
Affiliation(s)
- Nkrumah A. Grant
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
| | | | - Jordan T. Sontz
- MSU College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - William Soto
- Department of Biology, College of William and Mary, Williamsburg, VA
| | - Christopher M. Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
- MSU College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
38
|
de Carvalho CC, Murray IP, Nguyen H, Nguyen T, Cantu DC. Acyltransferase families that act on thioesters: Sequences, structures, and mechanisms. Proteins 2024; 92:157-169. [PMID: 37776148 DOI: 10.1002/prot.26599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester-containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester-active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester-containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.
Collapse
Affiliation(s)
- Caio C de Carvalho
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Ian P Murray
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Hung Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - Tin Nguyen
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
39
|
Zumkeller C, Schindler D, Felder J, Waldminghaus T. Modular Assembly of Synthetic Secondary Chromosomes. Methods Mol Biol 2024; 2819:157-187. [PMID: 39028507 DOI: 10.1007/978-1-0716-3930-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.
Collapse
Affiliation(s)
- Celine Zumkeller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jennifer Felder
- Technische Universität Darmstadt, Faculty of Biology, Darmstadt, Germany
| | | |
Collapse
|
40
|
Schulze C, Hädrich M, Borger J, Rühmann B, Döring M, Sieber V, Thoma F, Blombach B. Investigation of exopolysaccharide formation and its impact on anaerobic succinate production with Vibrio natriegens. Microb Biotechnol 2024; 17:e14277. [PMID: 37256270 PMCID: PMC10832516 DOI: 10.1111/1751-7915.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Vibrio natriegens is an emerging host for biotechnology due to its high growth and substrate consumption rates. In industrial processes typically fed-batch processes are applied to obtain high space-time yields. In this study, we established an aerobic glucose-limited fed-batch fermentation with the wild type (wt) of V. natriegens which yielded biomass concentrations of up to 28.4 gX L-1 . However, we observed that the viscosity of the culture broth increased by a factor of 800 at the end of the cultivation due to the formation of 157 ± 20 mg exopolysaccharides (EPS) L-1 . Analysis of the genomic repertoire revealed several genes and gene clusters associated with EPS formation. Deletion of the transcriptional regulator cpsR in V. natriegens wt did not reduce EPS formation, however, it resulted in a constantly low viscosity of the culture broth and altered the carbohydrate content of the EPS. A mutant lacking the cps cluster secreted two-fold less EPS compared to the wt accompanied by an overall low viscosity and a changed EPS composition. When we cultivated the succinate producer V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) under anaerobic conditions on glucose, we also observed an increased viscosity at the end of the cultivation. Deletion of cpsR and the cps cluster in V. natriegens Succ1 reduced the viscosity five- to six-fold which remained at the same level observed at the start of the cultivation. V. natriegens Succ1 ΔcpsR and V. natriegens Succ1 Δcps achieved final succinate concentrations of 51 and 46 g L-1 with a volumetric productivity of 8.5 and 7.7 gSuc L-1 h-1 , respectively. Both strains showed a product yield of about 1.4 molSuc molGlc -1 , which is 27% higher compared with that of V. natriegens Succ1 and corresponds to 81% of the theoretical maximum.
Collapse
Affiliation(s)
- Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Jennifer Borger
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Broder Rühmann
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| |
Collapse
|
41
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
42
|
Gould AL, Henderson JB. Comparative genomics of symbiotic Photobacterium using highly contiguous genome assemblies from long read sequences. Microb Genom 2023; 9:001161. [PMID: 38112751 PMCID: PMC10763503 DOI: 10.1099/mgen.0.001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
This study presents the assembly and comparative genomic analysis of luminous Photobacterium strains isolated from the light organs of 12 fish species using Oxford Nanopore Technologies (ONT) sequencing. The majority of assemblies achieved chromosome-level continuity, consisting of one large (>3 Mbp) and one small (~1.5 Mbp) contig, with near complete BUSCO scores along with varying plasmid sequences. Leveraging this dataset, this study significantly expanded the available genomes for P. leiognathi and its subspecies P. 'mandapamensis', enabling a comparative genomic analysis between the two lineages. An analysis of the large and small chromosomes unveiled distinct patterns of core and accessory genes, with a larger fraction of the core genes residing on the large chromosome, supporting the hypothesis of secondary chromosome evolution from megaplasmids in Vibrionaceae. In addition, we discovered a proposed new species, Photobacterium acropomis sp. nov., isolated from an acropomatid host, with an average nucleotide identify (ANI) of 93 % compared to the P. leiognathi and P. 'mandapamensis' strains. A comparison of the P. leiognathi and P. 'mandapamensis' lineages revealed minimal differences in gene content, yet highlighted the former's larger genome size and potential for horizontal gene transfer. An investigation of the lux-rib operon, responsible for light production, indicated congruence between the presence of luxF and host family, challenging its role in differentiating P. 'mandapamensis' from P. leiognathi. Further insights were derived from the identification of metabolic differences, such as the presence of the NADH:quinone oxidoreductase respiratory complex I in P. leiognathi as well as variations in the type II secretion system (T2S) genes between the lineages, potentially impacting protein secretion and symbiosis. In summary, this study advances our understanding of Photobacterium genome evolution, highlighting subtle differences between closely related lineages, specifically P. leiognathi and P. 'mandapamensis'. These findings highlight the benefit of long read sequencing for bacterial genome assembly and pangenome analysis and provide a foundation for exploring early bacterial speciation processes of these facultative light organ symbionts.
Collapse
Affiliation(s)
- Alison L. Gould
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118, California, USA
| | - James B. Henderson
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118, California, USA
| |
Collapse
|
43
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
44
|
Hoque MM, Noorian P, Espinoza-Vergara G, Adhikary S, To J, Rice SA, McDougald D. Increased iron utilization and oxidative stress tolerance in a Vibrio cholerae flrA mutant confers resistance to amoeba predation. Appl Environ Microbiol 2023; 89:e0109523. [PMID: 37882527 PMCID: PMC10686080 DOI: 10.1128/aem.01095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Persistence of V. cholerae in the aquatic environment contributes to the fatal diarrheal disease cholera, which remains a global health burden. In the environment, bacteria face predation pressure by heterotrophic protists such as the free-living amoeba A. castellanii. This study explores how a mutant of V. cholerae adapts to acquire essential nutrients and survive predation. Here, we observed that up-regulation of iron acquisition genes and genes regulating resistance to oxidative stress enhances pathogen fitness. Our data show that V. cholerae can defend predation to overcome nutrient limitation and oxidative stress, resulting in an enhanced survival inside the protozoan hosts.
Collapse
Affiliation(s)
- M. Mozammel Hoque
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Gustavo Espinoza-Vergara
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Srijon Adhikary
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Joyce To
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Scott A. Rice
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
- CSIRO Animal, Food and Health Sciences, Westmead, NSW, Australia
| | - Diane McDougald
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Zhang Q, Alter T, Strauch E, Hammerl JA, Schwartz K, Borowiak M, Deneke C, Fleischmann S. Genetic and Phenotypic Virulence Potential of Non-O1/Non-O139 Vibrio cholerae Isolated from German Retail Seafood. Microorganisms 2023; 11:2751. [PMID: 38004762 PMCID: PMC10672755 DOI: 10.3390/microorganisms11112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and phenotypic levels. Although no strain encoded the cholera toxin (CTX) and the toxin-coregulated pilus (TCP), several virulence factors, including the HlyA hemolysin, the cholix toxin ChxA, the heat-stable enterotoxin Stn, and genes coding for the type 3 and type 6 secretion systems, were detected. All strains showed hemolytic activity against human and sheep erythrocytes: 90% (n = 57) formed a strong biofilm, 52% (n = 33) were highly motile at 37 °C, and only 8% (n = 5) and 14% (n = 9) could resist ≥60% and ≥40% human serum, respectively. Biofilm formation and toxin regulation genes were also detected. cgMLST analysis demonstrated that NOVC strains from seafood cluster with clinical NOVC strains. Antimicrobial susceptibility testing (AST) results in the identification of five strains that developed non-wildtype phenotypes (medium and resistant) against the substances of the classes of beta-lactams (including penicillin, carbapenem, and cephalosporin), polymyxins, and sulphonamides. The phenotypic resistance pattern could be partially attributed to the acquired resistance determinants identified via in silico analysis. Our results showed differences in the virulence potential of the analyzed NOVC isolated from retail seafood products, which may be considered for further pathogenicity evaluation and the risk assessment of NOVC isolates in future seafood monitoring.
Collapse
Affiliation(s)
- Quantao Zhang
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Eckhard Strauch
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Keike Schwartz
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| |
Collapse
|
46
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
47
|
Emmerich HJ, Schneider L, Essen LO. Structural and Functional Analysis of a Prokaryotic (6-4) Photolyase from the Aquatic Pathogen Vibrio Cholerae †. Photochem Photobiol 2023; 99:1248-1257. [PMID: 36692077 DOI: 10.1111/php.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Photolyases are flavoproteins, which are able to repair UV-induced DNA lesions in a light-dependent manner. According to their substrate, they can be distinguished as CPD- and (6-4) photolyases. While CPD-photolyases repair the predominantly occurring cyclobutane pyrimidine dimer lesion, (6-4) photolyases catalyze the repair of the less prominent (6-4) photoproduct. The subgroup of prokaryotic (6-4) photolyases/FeS-BCP is one of the most ancient types of flavoproteins in the ubiquitously occurring photolyase & cryptochrome superfamily (PCSf). In contrast to canonical photolyases, prokaryotic (6-4) photolyases possess a few particular characteristics, including a lumazine derivative as antenna chromophore besides the catalytically essential flavin adenine dinucleotide as well as an elongated linker region between the N-terminal α/β-domain and the C-terminal all-α-helical domain. Furthermore, they can harbor an additional short subdomain, located at the C-terminus, with a binding site for a [4Fe-4S] cluster. So far, two crystal structures of prokaryotic (6-4) photolyases have been reported. Within this study, we present the high-resolution structure of the prokaryotic (6-4) photolyase from Vibrio cholerae and its spectroscopic characterization in terms of in vitro photoreduction and DNA-repair activity.
Collapse
Affiliation(s)
- Hans-Joachim Emmerich
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Leonie Schneider
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
48
|
Lee D, Choi H, Son S, Bae J, Joo J, Kim DW, Kim EJ. Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins (Basel) 2023; 15:507. [PMID: 37624264 PMCID: PMC10467113 DOI: 10.3390/toxins15080507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of the two major virulence genes of Vibrio cholerae-tcpA (the major subunit of the toxin co-regulated pilus) and ctxAB (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in V. cholerae in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in toxT, which is produced by the ToxR regulon and activates the transcription of the virulence genes in V. cholerae, under laboratory culture conditions has been investigated. Each of the four toxT alleles assessed displayed different transcriptional activator functions in a given V. cholerae strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype V. cholerae strains cultured under standard laboratory conditions, the variant toxT alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
49
|
Irazoki O, Ter Beek J, Alvarez L, Mateus A, Colin R, Typas A, Savitski MM, Sourjik V, Berntsson RPA, Cava F. D-amino acids signal a stress-dependent run-away response in Vibrio cholerae. Nat Microbiol 2023; 8:1549-1560. [PMID: 37365341 PMCID: PMC10390336 DOI: 10.1038/s41564-023-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
To explore favourable niches while avoiding threats, many bacteria use a chemotaxis navigation system. Despite decades of studies on chemotaxis, most signals and sensory proteins are still unknown. Many bacterial species release D-amino acids to the environment; however, their function remains largely unrecognized. Here we reveal that D-arginine and D-lysine are chemotactic repellent signals for the cholera pathogen Vibrio cholerae. These D-amino acids are sensed by a single chemoreceptor MCPDRK co-transcribed with the racemase enzyme that synthesizes them under the control of the stress-response sigma factor RpoS. Structural characterization of this chemoreceptor bound to either D-arginine or D-lysine allowed us to pinpoint the residues defining its specificity. Interestingly, the specificity for these D-amino acids appears to be restricted to those MCPDRK orthologues transcriptionally linked to the racemase. Our results suggest that D-amino acids can shape the biodiversity and structure of complex microbial communities under adverse conditions.
Collapse
Affiliation(s)
- Oihane Irazoki
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology, and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
50
|
Qin ZX, Chen GZ, Yang QQ, Wu YJ, Sun CQ, Yang XM, Luo M, Yi CR, Zhu J, Chen WH, Liu Z. Cross-Platform Transcriptomic Data Integration, Profiling, and Mining in Vibrio cholerae. Microbiol Spectr 2023; 11:e0536922. [PMID: 37191528 PMCID: PMC10269641 DOI: 10.1128/spectrum.05369-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
A large number of transcriptome studies generate important data and information for the study of pathogenic mechanisms of pathogens, including Vibrio cholerae. V. cholerae transcriptome data include RNA-seq and microarray: microarray data mainly include clinical human and environmental samples, and RNA-seq data mainly focus on laboratory processing conditions, including different stresses and experimental animals in vivo. In this study, we integrated the data sets of both platforms using Rank-in and the Limma R package normalized Between Arrays function, achieving the first cross-platform transcriptome data integration of V. cholerae. By integrating the entire transcriptome data, we obtained the profiles of the most active or silent genes. By transferring the integrated expression profiles into the weighted correlation network analysis (WGCNA) pipeline, we identified the important functional modules of V. cholerae in vitro stress treatment, gene manipulation, and in vitro culture as DNA transposon, chemotaxis and signaling, signal transduction, and secondary metabolic pathways, respectively. The analysis of functional module hub genes revealed the uniqueness of clinical human samples; however, under specific expression patterning, the Δhns, ΔoxyR1 strains, and tobramycin treatment group showed high expression profile similarity with human samples. By constructing a protein-protein interaction (PPI) interaction network, we discovered several unreported novel protein interactions within transposon functional modules. IMPORTANCE We used two techniques to integrate RNA-seq data for laboratory studies with clinical microarray data for the first time. The interactions between V. cholerae genes were obtained from a global perspective, as well as comparing the similarity between clinical human samples and the current experimental conditions, and uncovering the functional modules that play a major role under different conditions. We believe that this data integration can provide us with some insight and basis for elucidating the pathogenesis and clinical control of V. cholerae.
Collapse
Affiliation(s)
- Zi-Xin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Zhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Qian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying-Jian Wu
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Chu-Qing Sun
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun-Rong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|