1
|
Hesley DC, Spatafore D, Shingler J, McNeely JP, Thompson R, Troutman MC, Baron EKB, Sabia M, Lee CH, Ploeger K, Wagner JM. Rapid bioreactor process optimization and scale-up for production of a measles vector COVID-19 vaccine candidate. Biotechnol Prog 2025:e70004. [PMID: 39912497 DOI: 10.1002/btpr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The emergence of SARS-CoV-2 in late 2019 and subsequent worldwide spread and pandemic in 2020 spurred the rapid and agile development of a variety of vaccine candidates. With speed to patients in mind during development of measles-vectored vaccine candidate V591, process optimization efforts were made to expand options for raw material sourcing/treatment, enable flexible use of various types of processing equipment, and streamline the overall production process. To that end, both gamma irradiated and heat sterilized microcarriers were tested to expand the supply network for critical process development experiments and manufacturing at a time when worldwide supply chains were strained or disrupted. Single use bioreactors were also evaluated and implemented to reduce experimental turnaround time. Furthermore, to simplify the process and gain additional efficiencies in large scale media preparation, growth and infection media formulations were harmonized with a parallel vaccine development program. These rapid process option evaluations were conducted parallel to critical path scale up, and the combined efforts enabled the rapid demonstration of two full manufacturing scale 2000 L bioreactors less than 6 months after virus seed delivery, culminating in the first large scale measles production process capable of addressing the high dose demands of a pandemic response scenario. Despite subsequent clinical discontinuation of the V591 vaccine candidate, the findings described herein will be useful for enabling rapid and scalable production of other measles-vectored vaccine candidates, oncolytic measles strains, or cell and gene therapies.
Collapse
Affiliation(s)
- David C Hesley
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Daniel Spatafore
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Jillian Shingler
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Joshua P McNeely
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Rachel Thompson
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Matthew C Troutman
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Elise K B Baron
- Global Quality Large Molecule Analytical Sciences (GQLMAS), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Megan Sabia
- Global Quality Large Molecule Analytical Sciences (GQLMAS), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Christopher H Lee
- Bioprocess Drug Substance Commercialization (BDSC), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kristin Ploeger
- Bioprocess Drug Substance Commercialization (BDSC), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - James M Wagner
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
2
|
Su M, Ou Y, Fu J, Huang K, Lei J, Zhu L. Developing an orbitally shaken bioreactor featuring a square vessel wall with a large circular chamfer. J Biotechnol 2024; 392:69-77. [PMID: 38885907 DOI: 10.1016/j.jbiotec.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The impact of orbitally shaking bioreactors (OSRs) on the biopharmaceutical industry is becoming increasingly important. In the preliminary exploration of the orbitally shaking bioreactor performance, the vessel wall shape has a crucial influence on the mixing and mass transfer in the bioreactor. However, the shape of OSRs still maintains a cylindrical structure, significantly limiting the advantages of the orbital shaking mixing. Therefore, in order to further improve the mixing and mass transfer performance of OSRs, a novel wall shape is proposed in this paper. This novel wall shape consists of cylindrical and square parts and looks like a square tank with a large circular chamfer (STCC), which was found could effectively enhance the efficiency of material mixing and mass transfer theoretically. Based on the same specific volumetric power consumption, a comparative analysis was conducted on the mixing time and oxygen transfer efficiency of OSRs with different shape walls using simulation and experimental methods. The results showed that the OSR with STCC was expected to perform higher mixing and oxygen transfer efficiency than the OSR with cylindrical wall. These findings suggested a promising prospect for the future application of the OSRs with STCC.
Collapse
Affiliation(s)
- Mingwu Su
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yixian Ou
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jia Fu
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No.411 Gogol Street, Nangang District, Harbin, Heilongjiang 150000, China
| | - Kaibin Huang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jianguo Lei
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Likuan Zhu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
3
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol 2024; 44:837-859. [PMID: 37500186 DOI: 10.1080/07388551.2023.2233690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Brehove M, Rogers C, Menon R, Minor P, Allington J, Lam A, Vielmetter J, Menon N. Cell monitoring with optical coherence tomography. Cytotherapy 2023; 25:120-124. [PMID: 36274007 DOI: 10.1016/j.jcyt.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AIMS We evaluated a commercially available instrument, OCTiCell (chromologic.com/octicell), for monitoring cell growth in suspended agitated bioreactors based on optical coherence tomography. OCTiCell is an in-line, completely non-invasive instrument that can operate on any suspended-cell bioreactor with a window or transparent wall. In traditional optical coherence tomography, the imaging beam is rastered over the sample to form a three-dimensional image. OCTiCell, instead uses a fixed imaging beam and takes advantage of the motion of the media to move the cells across the interrogating optical beam. RESULTS We found strong correlations between the non-invasive, non-contact, reagent-free OCTiCell measurements of cell concentration and viability and those obtained from the automated cell counter, and the XTT viability assay, which is a colorimetric assay for quantifying metabolic activity. CONCLUSIONS This novel cell monitoring method can adapt to different bioreactor form factors and could reduce the labor cost and contamination risks associated with cell growth monitoring.
Collapse
Affiliation(s)
| | | | | | - Paul Minor
- ChromoLogic LLC, Monrovia, California, USA
| | | | - Annie Lam
- Protein Expression Center, California Institute of Technology, Pasadena, California, USA
| | - Jost Vielmetter
- Protein Expression Center, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
6
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor systems for micropropagation of plants: present scenario and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1159588. [PMID: 37152119 PMCID: PMC10154609 DOI: 10.3389/fpls.2023.1159588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Plant micropropagation has been adapted in the fields of agriculture, horticulture, forestry, and other related fields for large-scale production of elite plants. The use of liquid media and adoption of bioreactors have escalated the production of healthy plants. Several liquid-phase, gas-phase, temporary immersion, and other modified bioreactors have been used for plant propagation. The design, principle, operational mode, merits, and demerits of various bioreactors used for the regeneration of propagules, such as bulblets, cormlets, rhizomes, microtubers, shoots (subsequent rooting), and somatic embryos, are discussed here. In addition, various parameters that affect plant regeneration are discussed with suitable examples.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
- *Correspondence: Hosakatte Niranjana Murthy, ; So Young Park,
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
- *Correspondence: Hosakatte Niranjana Murthy, ; So Young Park,
| |
Collapse
|
7
|
Kritharis A, Tamer IM, Yadav VG. Vaccine production and supply need a paradigm change. CAN J CHEM ENG 2022; 100:1670-1675. [PMID: 35572455 PMCID: PMC9086989 DOI: 10.1002/cjce.24399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
We discuss the impact of COVID-19, the journey towards developing vaccines against the disease, and how biomanufacturing should evolve in order to meet similar challenges in the future.
Collapse
Affiliation(s)
- Athanasios Kritharis
- Department of Chemical and Biological EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Vikramaditya G. Yadav
- Department of Chemical and Biological EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
- School of Biomedical EngineeringThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
8
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
9
|
Kreitmayer D, Gopireddy SR, Matsuura T, Aki Y, Katayama Y, Nakano T, Eguchi T, Kakihara H, Nonaka K, Profitlich T, Urbanetz NA, Gutheil E. CFD-Based and Experimental Hydrodynamic Characterization of the Single-Use Bioreactor Xcellerex TM XDR-10. Bioengineering (Basel) 2022; 9:22. [PMID: 35049731 PMCID: PMC8773232 DOI: 10.3390/bioengineering9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the hydrodynamic conditions in bioreactors is of utmost importance for the selection of operating conditions during cell culture process development. In the present study, the two-phase flow in the lab-scale single-use bioreactor XcellerexTM XDR-10 is characterized for working volumes from 4.5 L to 10 L, impeller speeds from 40 rpm to 360 rpm, and sparging with two different microporous spargers at rates from 0.02 L min-1 to 0.5 L min-1. The numerical simulations are performed with the one-way coupled Euler-Lagrange and the Euler-Euler models. The results of the agitated liquid height, the mixing time, and the volumetric oxygen mass transfer coefficient are compared to experiments. For the unbaffled XDR-10, strong surface vortex formation is found for the maximum impeller speed. To support the selection of suitable impeller speeds for cell cultivation, the surface vortex formation, the average turbulence energy dissipation rate, the hydrodynamic stress, and the mixing time are analyzed and discussed. Surface vortex formation is observed for the maximum impeller speed. Mixing times are below 30 s across all conditions, and volumetric oxygen mass transfer coefficients of up to 22.1 h-1 are found. The XDR-10 provides hydrodynamic conditions which are well suited for the cultivation of animal cells, despite the unusual design of a single bottom-mounted impeller and an unbaffled cultivation bioreactor.
Collapse
Affiliation(s)
- Diana Kreitmayer
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany;
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen, Germany; (S.R.G.); (T.P.); (N.A.U.)
| | - Srikanth R. Gopireddy
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen, Germany; (S.R.G.); (T.P.); (N.A.U.)
| | - Tomomi Matsuura
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Yuichi Aki
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Yuta Katayama
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Takuya Nakano
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Takuma Eguchi
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Biologics Division, Daiichi-Sankyo Co., Ltd., Fukushima 971-8183, Japan; (T.M.); (Y.A.); (Y.K.); (T.N.); (T.E.); (H.K.); (K.N.)
| | - Thomas Profitlich
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen, Germany; (S.R.G.); (T.P.); (N.A.U.)
| | - Nora A. Urbanetz
- Pharmaceutical Development, Daiichi-Sankyo Europe GmbH, 85276 Pfaffenhofen, Germany; (S.R.G.); (T.P.); (N.A.U.)
| | - Eva Gutheil
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
10
|
Kreitmayer D, Gopireddy SR, Matsuura T, Aki Y, Katayama Y, Kakihara H, Nonaka K, Profitlich T, Urbanetz NA, Gutheil E. Numerical and experimental characterization of the single-use bioreactor Xcellerex™ XDR-200. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Sharma R, Harrison STL, Tai SL. Advances in Bioreactor Systems for the Production of Biologicals in Mammalian Cells. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajesh Sharma
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Siew Leng Tai
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
12
|
Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ. Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes Manuf 2021; 5:43-63. [PMID: 35223131 PMCID: PMC8870603 DOI: 10.1007/s42242-021-00154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore, maintain or improve tissue function following disease or injury. To maximize the biological function of a tissue-engineered clinical product, specific conditions must be maintained within a bioreactor to allow the maturation of the product in preparation for implantation. Specifically, the bioreactor should be designed to mimic the mechanical, electrochemical and biochemical environment that the product will be exposed to in vivo. Real-time monitoring of the functional capacity of tissue-engineered products during manufacturing is a critical component of the quality management process. The present review provides a brief overview of bioreactor engineering considerations. In addition, strategies for bioreactor automation, in-line product monitoring and quality assurance are discussed.
Collapse
Affiliation(s)
- Diana Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric S. Renteria
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Drake S. Sime
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas D. Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Frank C. Marini
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Metin N. Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Joshua Hunsberger
- RegenMed Development Organization (ReMDO), Winston Salem, NC 27106, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
13
|
Lu Z, Li C, Huang L, Zhong F, Fei L, Zhang H, Pan Y. Numerical Simulation of the Influence of Bottom Structures on the Flow Field Characteristic in Shaking Bioreactors. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiming Lu
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Chengtuo Li
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Liuyi Huang
- Zhejiang Academy of Special Equipment Science
| | | | - Liangqi Fei
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Hongliang Zhang
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Yuhui Pan
- College of Mechanical Engineering, Zhejiang University of Technology
| |
Collapse
|
14
|
The impact of clearance on mixing time for interface-added substrate. Bioprocess Biosyst Eng 2020; 44:701-711. [PMID: 33230713 DOI: 10.1007/s00449-020-02479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022]
Abstract
This study was carried out to find the optimum clearance (impeller to bottom distance) for Rushton and pitch-blade turbine impellers in a stirred tank bioreactor for improved substrate mixing time added at interface, taking advantage of computational fluid dynamics. In this regard, the time needed for a thin layer of liquid, resembling substrate-rich or poor part, getting homogenously dispersed within the tank was calculated. The mixing time calculated in this way is called the surface aeration related mixing time (SARMT). SARMT was calculated using two approaches and was compared with each other. For the pitch-blade turbine impeller, a criterion which guarantees accurate mixing time by simulation was not satisfied, so the SARMT profile against clearance was not achieved. For the Rushton impeller, a general descending order of SARMT against impeller-bottom clearance was observed.
Collapse
|
15
|
Matthes S, Thomas B, Ohde D, Hoffmann M, Bubenheim P, Liese A, Tanaka S, Terasaka K, Schlueter M. Hydrodynamic and Mass Transfer Correlation in a Microbubble Aerated Stirred Tank Reactor. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon Matthes
- Institute of Multiphase Flows, Hamburg University of Technology
| | - Benjamin Thomas
- Institute of Technical Biocatalysis, Hamburg University of Technology
| | - Daniel Ohde
- Institute of Technical Biocatalysis, Hamburg University of Technology
| | - Marko Hoffmann
- Institute of Multiphase Flows, Hamburg University of Technology
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Hamburg University of Technology
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology
| | | | | | | |
Collapse
|
16
|
García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J. Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lederle M, Tric M, Packi C, Werner T, Wiedemann P. An Optical Biosensor for Continuous Glucose Monitoring in Animal Cell Cultures. Methods Mol Biol 2020; 2095:319-333. [PMID: 31858477 DOI: 10.1007/978-1-0716-0191-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for culture monitoring is an integral part of animal cell cultivation. For several culture parameters, in situ sensors exist; others are predominantly monitored off-line. One important cell culture parameter is glucose concentration. Despite many efforts, there is still a lack of in situ sensors for continuous glucose monitoring. Such biosensors could provide a valuable tool for optimizing culture conditions in biotechnological applications. In this contribution, the manufacture of a long-term stable optical glucose sensor is described which is used to demonstrate glucose level monitoring during cell culture in disposable bioreactors. The in situ sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase and a hydrophilic perforated diffusion membrane. Glucose was measured in shake flasks and wave bags with only minor drifts of the sensor sensitivity during batch and fed-batch fermentations.
Collapse
Affiliation(s)
- Mario Lederle
- Rentschler Biopharma SE, Laupheim, Germany.,Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | - Claudio Packi
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tobias Werner
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Philipp Wiedemann
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany.
| |
Collapse
|
18
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
19
|
Bai Y, Moo-Young M, Anderson WA. Characterization of power input and its impact on mass transfer in a rocking disposable bioreactor. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Gómez-Ríos D, Junne S, Neubauer P, Ochoa S, Ríos-Estepa R, Ramírez-Malule H. Characterization of the Metabolic Response of Streptomyces clavuligerus to Shear Stress in Stirred Tanks and Single-Use 2D Rocking Motion Bioreactors for Clavulanic Acid Production. Antibiotics (Basel) 2019; 8:antibiotics8040168. [PMID: 31569725 PMCID: PMC6963652 DOI: 10.3390/antibiotics8040168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Streptomyces clavuligerus is a gram-positive filamentous bacterium notable for producing clavulanic acid (CA), an inhibitor of β-lactamase enzymes, which confers resistance to bacteria against several antibiotics. Here we present a comparative analysis of the morphological and metabolic response of S. clavuligerus linked to the CA production under low and high shear stress conditions in a 2D rocking-motion single-use bioreactor (CELL-tainer ®) and stirred tank bioreactor (STR), respectively. The CELL-tainer® guarantees high turbulence and enhanced volumetric mass transfer at low shear stress, which (in contrast to bubble columns) allows the investigation of the impact of shear stress without oxygen limitation. The results indicate that high shear forces do not compromise the viability of S. clavuligerus cells; even higher specific growth rate, biomass, and specific CA production rate were observed in the STR. Under low shear forces in the CELL-tainer® the mycelial diameter increased considerably (average diameter 2.27 in CELL-tainer® vs. 1.44 µm in STR). This suggests that CA production may be affected by a lower surface-to-volume ratio which would lead to lower diffusion and transport of nutrients, oxygen, and product. The present study shows that there is a strong correlation between macromorphology and CA production, which should be an important aspect to consider in industrial production of CA.
Collapse
Affiliation(s)
- David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Stefan Junne
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany.
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | | |
Collapse
|
21
|
Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors. Bioprocess Biosyst Eng 2019; 43:193-205. [PMID: 31549309 PMCID: PMC6960217 DOI: 10.1007/s00449-019-02216-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performance indicator (KPI) during mammalian cell cultivation processes. Commonly, this is measured offline. In this work, we demonstrated the comparability and scalability of linear regression models derived from online capacitance measurements. The linear regressions were used to predict the VCC and other familiar offline biomass indicators, like the viable cell volume (VCV) and the wet cell weight (WCW), in two different industrially relevant CHO cell culture processes (Process A and Process B). Therefore, different single-use bioreactor scales (50–2000 L) were used to prove feasibility and scalability of the in-line sensor integration. Coefficient of determinations of 0.79 for Process A and 0.99 for Process B for the WCW were achieved. The VCV was described with high coefficients of determination of 0.96 (Process A) and 0.98 (Process B), respectively. In agreement with other work from the literature, the VCC was only described within the exponential growth phase, but resulting in excellent coefficients of determination of 0.99 (Process A) and 0.96 (Process B), respectively. Monitoring these KPIs online using linear regression models appeared to be scale-independent, enabled deeper process understanding (e.g. here demonstrated in monitoring, the feeding profile) and showed the potential of this method for process control.
Collapse
|
22
|
Janani G, Kumar S, Mandal BB. Fiber-Reinforced Silk Composite for Enhanced Urokinase Production Using High-Density Perfusion Culture and Bioactive Molecule Supplementation. ACS Biomater Sci Eng 2019; 5:6137-6151. [DOI: 10.1021/acsbiomaterials.9b01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G. Janani
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Shivanshi Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
23
|
Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. AMB Express 2019; 9:70. [PMID: 31127400 PMCID: PMC6534633 DOI: 10.1186/s13568-019-0794-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Gene therapy and viral vaccine are becoming attractive therapeutic options for the treatment of different malignant diseases. Viral vector productions are often using static culture vessels and small volume stainless steel bioreactors (SSB). However, the yield of each vessel can be relatively low and multiple vessels often need to be operated simultaneously. This significantly increases labor intensity, production costs, contamination risks, and limits its ability to be scaled up, thus, creating challenges to meet the quantities required once the gene therapy or viral vaccine medicine goes into clinical phases or to market. Single-use bioreactor combining with microcarrier provides a good option for viral vector and vaccine production. The goal of the present studies was to develop the microcarrier bead-to-bead expansion and transfer process for HEK293T cells and Vero cells and scale-up the cultures to 50–200 l single-use bioreactors. Following microcarrier bead-to-bead transfer, the peak cell concentration of HEK293T cells reached 1.5 × 106 cells/ml in XDR-50 bioreactor, whereas Vero cells reached 3.1 × 106 cells/ml and 3.3 × 106 cells/ml in XDR-50 bioreactor and XDR-200 bioreactor, respectively. The average growth rates reached 0.61–0.68/day. The successful microcarrier-based scaleup of these two cell lines in single-use bioreactors demonstrates potential large-scale production capabilities of viral vaccine and vector for current and future vaccines and gene therapy.
Collapse
|
24
|
Bai Y, Moo-Young M, Anderson WA. A mechanistic model for gas-liquid mass transfer prediction in a rocking disposable bioreactor. Biotechnol Bioeng 2019; 116:1986-1998. [PMID: 31038204 DOI: 10.1002/bit.27000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023]
Abstract
Rocking disposable bioreactors are a newer approach to smaller-scale cell growth that use a cyclic rocking motion to induce mixing and oxygen transfer from the headspace gas into the liquid. Compared with traditional stirred-tank and pneumatic bioreactors, rocking bioreactors operate in a very different physical mode and in this study the oxygen transfer pathways are reassessed to develop a fundamental mass transfer (kL a) model that is compared with experimental data. The model combines two mechanisms, namely surface aeration and oxygenation via a breaking wave with air entrainment, borrowing concepts from ocean wave models. Experimental data for k L a across the range of possible operating conditions (rocking speed, angle, and liquid volume) confirms the validity of the modeling approach, with most predictions falling within ±20% of the experimental values. At low speeds (up to 20 rpm) the surface aeration mechanism is shown to be dominant with a k L a of around 3.5 hr-1 , while at high speeds (40 rpm) and angles the breaking wave mechanism contributes up to 91% of the overall k L a (65 hr-1 ). This model provides an improved fundamental basis for understanding gas-liquid mass transfer for the operation, scale-up, and potential design improvements for rocking bioreactors.
Collapse
Affiliation(s)
- Yun Bai
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - William A Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Kshirsagar R, Ryll T. Innovation in Cell Banking, Expansion, and Production Culture. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:51-74. [PMID: 29637222 DOI: 10.1007/10_2016_56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell culture-based production processes enable the development and commercial supply of recombinant protein products. Such processes consist of the following elements: thaw and initiation of culture, seed expansion, and production culture. A robust cell source storage system in the form of a cell bank is developed and cells are thawed to initiate the cell culture process. Seed culture expansion generates sufficient cell mass to initiate the production culture. The production culture provides an environment where the cells can synthesize the product and is optimized to deliver the highest possible product concentration with acceptable product quality. This chapter describes the significant innovations made in these process elements and the resulting improvements in the overall efficiency, robustness, and safety of the processes and products.
Collapse
Affiliation(s)
- Rashmi Kshirsagar
- Technical Development, Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Thomas Ryll
- Technical Operations, ImmunoGen, Inc., 830 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
26
|
Kelly PS, Dorival‐García N, Paré S, Carillo S, Ta C, Alarcon Miguez A, Coleman O, Harper E, Shannon M, Henry M, Connolly L, Clynes M, Meleady P, Bones J, Barron N. Improvements in single‐use bioreactor film material composition leads to robust and reliable Chinese hamster ovary cell performance. Biotechnol Prog 2019; 35:e2824. [DOI: 10.1002/btpr.2824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Paul S. Kelly
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Noemi Dorival‐García
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Samantha Paré
- National Institute for Cellular BiotechnologyDublin City University Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Christine Ta
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | | | - Orla Coleman
- National Institute for Cellular BiotechnologyDublin City University Dublin Ireland
| | - Emma Harper
- Institute for Global Food SecuritySchool of Biological Sciences, Queen's University Belfast Northern Ireland UK
| | - Maeve Shannon
- Institute for Global Food SecuritySchool of Biological Sciences, Queen's University Belfast Northern Ireland UK
| | - Michael Henry
- National Institute for Cellular BiotechnologyDublin City University Dublin Ireland
| | - Lisa Connolly
- Institute for Global Food SecuritySchool of Biological Sciences, Queen's University Belfast Northern Ireland UK
| | - Martin Clynes
- National Institute for Cellular BiotechnologyDublin City University Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Paula Meleady
- National Institute for Cellular BiotechnologyDublin City University Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin Ireland
- School of Chemical and Bioprocess EngineeringUniversity College Dublin Dublin Ireland
- Synthesis and Solid State Pharmaceutical CentreUniversity of Limerick Limerick Ireland
| |
Collapse
|
27
|
Comprehensive study on Wave bioreactor system to scale up the cultivation of and recombinant protein expression in baculovirus-infected insect cells. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Egertsdotter U, Ahmad I, Clapham D. Automation and Scale Up of Somatic Embryogenesis for Commercial Plant Production, With Emphasis on Conifers. FRONTIERS IN PLANT SCIENCE 2019; 10:109. [PMID: 30833951 PMCID: PMC6388443 DOI: 10.3389/fpls.2019.00109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/23/2019] [Indexed: 05/19/2023]
Abstract
For large scale production of clonal plants, somatic embryogenesis (SE) has many advantages over other clonal propagation methods such as the rooting of cuttings. In particular, the SE process is more suited to scale up and automation, thereby reducing labor costs and increasing the reliability of the production process. Furthermore, the plants resulting from SE closely resemble those from seeds, as somatic embryos, like zygotic (seed) embryos, develop with good connection between root and shoot, and without the plagiotropism often associated with propagation by cuttings. For practical purposes in breeding programs and for deployment of elite clones, it is valuable that a virtually unlimited number of SE plants can be generated from one original seed embryo; and SE cultures (clones) can be cryostored for at least 20 years, allowing long-term testing of clones. To date, there has however been limited use of SE for large-scale plant production mainly because without automation it is labor-intensive. Development of automation is particularly attractive in countries with high labor costs, where conifer forestry is often of great economic importance. Various approaches for automating SE processes are under investigation and the progress is reviewed here, with emphasis on conifers. These approaches include simplification of culture routines with preference for liquid rather than solid cultures, use of robotics and automation for the harvest of selected individual mature embryos, followed by automated handling of germination and subsequent planting. Different approaches to handle the processes of somatic embryogenesis in conifers are outlined below, followed by an update on efforts to automate the different steps, which are nearing an operational stage.
Collapse
Affiliation(s)
- Ulrika Egertsdotter
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- *Correspondence: Ulrika Egertsdotter
| | - Iftikhar Ahmad
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Clapham
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
He C, Ye P, Wang H, Liu X, Li F. A systematic mass-transfer modeling approach for mammalian cell culture bioreactor scale-up. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Hecht A, Filliben J, Munro SA, Salit M. A minimum information standard for reproducing bench-scale bacterial cell growth and productivity. Commun Biol 2018; 1:219. [PMID: 30534611 PMCID: PMC6283831 DOI: 10.1038/s42003-018-0220-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 11/09/2022] Open
Abstract
Reproducing, exchanging, comparing, and building on each other's work is foundational to technological advances. Advancing biotechnology calls for reliable reuse of engineered organisms. Reliable reuse of engineered organisms requires reproducible growth and productivity. Here, we identify the experimental factors that have the greatest effect on the growth and productivity of our engineered organisms in order to demonstrate reproducibility for biotechnology. We present a draft of a Minimum Information Standard for Engineered Organism Experiments (MIEO) based on this method. We evaluate the effect of 22 factors on Escherichia coli engineered to produce the small molecule lycopene, and 18 factors on E. coli engineered to produce red fluorescent protein. Container geometry and shaking have the greatest effect on product titer and yield. We reproduce our results under two different conditions of reproducibility: conditions of use (different fractional factorial experiments), and time (48 biological replicates performed on 12 different days over 4 months).
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
| | - James Filliben
- Statistical Engineering Division, 100 Bureau Drive, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| | - Sarah A. Munro
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
- Present Address: Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, 55455 USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| |
Collapse
|
31
|
Growth Behavior of Human Adipose Tissue-Derived Stromal/Stem Cells at Small Scale: Numerical and Experimental Investigations. Bioengineering (Basel) 2018; 5:bioengineering5040106. [PMID: 30518117 PMCID: PMC6315405 DOI: 10.3390/bioengineering5040106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
Human adipose tissue-derived stromal/stem cells (hASCs) are a valuable source of cells for clinical applications, especially in the field of regenerative medicine. Therefore, it comes as no surprise that the interest in hASCs has greatly increased over the last decade. However, in order to use hASCs in clinically relevant numbers, in vitro expansion is required. Single-use stirred bioreactors in combination with microcarriers (MCs) have shown themselves to be suitable systems for this task. However, hASCs tend to be less robust, and thus, more shear sensitive than conventional production cell lines for therapeutic antibodies and vaccines (e.g., Chinese Hamster Ovary cells CHO, Baby Hamster Kidney cells BHK), for which these bioreactors were originally designed. Hence, the goal of this study was to investigate the influence of different shear stress levels on the growth of humane telomerase reversed transcriptase immortalized hASCs (hTERT-ASC) and aggregate formation in stirred single-use systems at the mL scale: the 125 mL (= SP100) and the 500 mL (= SP300) disposable Corning® spinner flask. Computational fluid dynamics (CFD) simulations based on an Euler⁻Euler and Euler⁻Lagrange approach were performed to predict the hydrodynamic stresses (0.06⁻0.87 Pa), the residence times (0.4⁻7.3 s), and the circulation times (1.6⁻16.6 s) of the MCs in different shear zones for different impeller speeds and the suspension criteria (Ns1u, Ns1). The numerical findings were linked to experimental data from cultivations studies to develop, for the first time, an unstructured, segregated mathematical growth model for hTERT-ASCs. While the 125 mL spinner flask with 100 mL working volume (SP100) provided up to 1.68.10⁵ hTERT-ASC/cm² (= 0.63 × 10⁶ living hTERT-ASCs/mL, EF 56) within eight days, the peak living cell density of the 500 mL spinner flask with 300 mL working volume (SP300) was 2.46 × 10⁵ hTERT-ASC/cm² (= 0.88 × 10⁶ hTERT-ASCs/mL, EF 81) and was achieved on day eight. Optimal cultivation conditions were found for Ns1u < N < Ns1, which corresponded to specific power inputs of 0.3⁻1.1 W/m³. The established growth model delivered reliable predictions for cell growth on the MCs with an accuracy of 76⁻96% for both investigated spinner flask types.
Collapse
|
32
|
Zhu L, Song B, Wang Z. Analyzing the suitability of a baffled orbitally shaken bioreactor for cells cultivation using the computational fluid dynamics approach. Biotechnol Prog 2018; 35:e2746. [PMID: 30421865 DOI: 10.1002/btpr.2746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/30/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Orbitally shaken bioreactors (OSRs) is one of important bioreactors for mammalian cells cultivation in suspension, especially for the screening of valuable microorganisms and in basic bioprocess development experiments. However, the suitability of OSRs for cells culture in large scale is still under development. In this article, a new kind of OSRs with baffle structure was proposed and a three-dimensional CFD model was established to analyze the influence of baffle structure on the flow field. Lower installation height of baffles was found suitable for improving the mixing efficiency. Compared to the unbaffled OSR, the baffled OSR could enhance the level of oxygen transfer largely but the oxygen transfer rate was independent on the baffle installation height. Moreover, as the baffle installation height increased, the energy transferred for liquid motion was decreased. Finally, the shear stress of the baffled OSRs proposed was gentle for mammalian cells growth. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2746, 2019.
Collapse
Affiliation(s)
- Likuan Zhu
- School of Mechatronics Engineering, Harbin Inst. of Technology, Harbin, Heilongjiang, 150001, China.,School of Mechatronics Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Boyan Song
- School of Mechatronics Engineering, Harbin Inst. of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhenlong Wang
- School of Mechatronics Engineering, Harbin Inst. of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
33
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:20-34. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
34
|
Maltby R, Tian S, Chew YJ. Computational studies of a novel magnetically driven single-use-technology bioreactor: A comparison of mass transfer models. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Rocking Aspergillus: morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites. Microb Cell Fact 2018; 17:128. [PMID: 30129427 PMCID: PMC6102829 DOI: 10.1186/s12934-018-0975-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Background Filamentous fungi including Aspergillus niger are cell factories for the production of organic acids, proteins and bioactive compounds. Traditionally, stirred-tank reactors (STRs) are used to cultivate them under highly reproducible conditions ensuring optimum oxygen uptake and high growth rates. However, agitation via mechanical stirring causes high shear forces, thus affecting fungal physiology and macromorphologies. Two-dimensional rocking-motion wave-mixed bioreactor cultivations could offer a viable alternative to fungal cultivations in STRs, as comparable gas mass transfer is generally achievable while deploying lower friction and shear forces. The aim of this study was thus to investigate for the first time the consequences of wave-mixed cultivations on the growth, macromorphology and product formation of A. niger. Results We investigated the impact of hydrodynamic conditions on A. niger cultivated at a 5 L scale in a disposable two-dimensional rocking motion bioreactor (CELL-tainer®) and a BioFlo STR (New Brunswick®), respectively. Two different A. niger strains were analysed, which produce heterologously the commercial drug enniatin B. Both strains expressed the esyn1 gene that encodes a non-ribosomal peptide synthetase ESYN under control of the inducible Tet-on system, but differed in their dependence on feeding with the precursors d-2-hydroxyvaleric acid and l-valine. Cultivations of A. niger in the CELL-tainer resulted in the formation of large pellets, which were heterogeneous in size (diameter 300–800 μm) and not observed during STR cultivations. When talcum microparticles were added, it was possible to obtain a reduced pellet size and to control pellet heterogeneity (diameter 50–150 μm). No foam formation was observed under wave-mixed cultivation conditions, which made the addition of antifoam agents needless. Overall, enniatin B titres of about 1.5–2.3 g L−1 were achieved in the CELL-tainer® system, which is about 30–50% of the titres achieved under STR conditions. Conclusions This is the first report studying the potential use of single-use wave-mixed reactor systems for the cultivation of A. niger. Although final enniatin yields are not competitive yet with titres achieved under STR conditions, wave-mixed cultivations open up new avenues for the cultivation of shear-sensitive mutant strains as well as high cell-density cultivations.
Collapse
|
36
|
Kaiser SC, Werner S, Jossen V, Blaschczok K, Eibl D. Power Input Measurements in Stirred Bioreactors at Laboratory Scale. J Vis Exp 2018. [PMID: 29863665 PMCID: PMC6101222 DOI: 10.3791/56078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The power input in stirred bioreactors is an important scaling-up parameter and can be measured through the torque that acts on the impeller shaft during rotation. However, the experimental determination of the power input in small-scale vessels is still challenging due to relatively high friction losses inside typically used bushings, bearings and/or shaft seals and the accuracy of commercially available torque meters. Thus, only limited data for small-scale bioreactors, in particular single-use systems, is available in the literature, making comparisons among different single-use systems and their conventional counterparts difficult. This manuscript provides a protocol on how to measure power inputs in benchtop scale bioreactors over a wide range of turbulence conditions, which can be described by the dimensionless Reynolds number (Re). The aforementioned friction losses are effectively reduced by the use of an air bearing. The procedure on how to set up, conduct and evaluate a torque-based power input measurement, with special focus on cell culture typical agitation conditions with low to moderate turbulence (100 < Re < 2·104), is described in detail. The power input of several multi-use and single-use bioreactors is provided by the dimensionless power number (also called Newton number, P0), which is determined to be in the range of P0 ≈ 0.3 and P0 ≈ 4.5 for the maximum Reynolds numbers in the different bioreactors.
Collapse
Affiliation(s)
| | - Sören Werner
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, School of Life Sciences and Facility Management
| | - Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, School of Life Sciences and Facility Management
| | - Katharina Blaschczok
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, School of Life Sciences and Facility Management
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, School of Life Sciences and Facility Management
| |
Collapse
|
37
|
Weidner T, Druzinec D, Mühlmann M, Buchholz R, Czermak P. The components of shear stress affecting insect cells used with the baculovirus expression vector system. ACTA ACUST UNITED AC 2018; 72:429-439. [PMID: 28822988 DOI: 10.1515/znc-2017-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Insect-based expression platforms such as the baculovirus expression vector system (BEVS) are widely used for the laboratory- and industrial-scale production of recombinant proteins. Thereby, major drawbacks to gain high-quality proteins are the lytic infection cycle and the shear sensitivity of infected insect cells due to turbulence and aeration. Smaller bubbles were formerly assumed to be more harmful than larger ones, but we found that cell damage is also dependent on the concentration of protective agents such as Pluronic®. At the appropriate concentration, Pluronic forms a layer around air bubbles and hinders the attachment of cells, thus limiting the damage. In this context, we used microaeration to vary bubble sizes and confirmed that size is not the most important factor, but the total gas surface area in the reactor is. If the surface area exceeds a certain threshold, the concentration of Pluronic is no longer sufficient for cell protection. To investigate the significance of shear forces, a second study was carried out in which infected insect cells were cultivated in a hollow fiber module to protect them from shear forces. Both model studies revealed important aspects of the design and scale-up of BEVS processes for the production of recombinant proteins.
Collapse
|
38
|
Takahashi M, Aoyagi H. Practices of shake-flask culture and advances in monitoring CO 2 and O 2. Appl Microbiol Biotechnol 2018; 102:4279-4289. [PMID: 29582104 DOI: 10.1007/s00253-018-8922-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
About 85 years have passed since the shaking culture was devised. Since then, various monitoring devices have been developed to measure culture parameters. O2 consumed and CO2 produced by the respiration of cells in shaking cultures are of paramount importance due to their presence in both the culture broth and headspace of shake flask. Monitoring in situ conditions during shake-flask culture is useful for analysing the behaviour of O2 and CO2, which interact according to Henry's law, and is more convenient than conventional sampling that requires interruption of shaking. In situ monitoring devices for shake-flask cultures are classified as direct or the recently developed bypass type. It is important to understand the characteristics of each type along with their unintended effect on shake-flask cultures, in order to improve the existing devices and culture conditions. Technical developments in the bypass monitoring devices are strongly desired in the future. It is also necessary to understand the mechanism underlying conventional shake-flask culture. The existing shaking culture methodology can be expanded into next-generation shake-flask cultures constituting a novel culture environment through a judicious selection of monitoring devices depending on the intended purpose of shake-flask culture. Construction and sharing the databases compatible with the various types of the monitoring devices and measurement instruments adapted for shaking culture can provide a valuable resource for broadening the application of cells with shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
39
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
40
|
Villiger TK, Neunstoecklin B, Karst DJ, Lucas E, Stettler M, Broly H, Morbidelli M, Soos M. Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
42
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
43
|
de Vries I, Schreiber S, Boßmann D, Hellmann Z, Kopatz J, Neumann H, Beutel S. Single-use membrane adsorbers for endotoxin removal and purification of endogenous polysialic acid from Escherichia coli K1. ACTA ACUST UNITED AC 2018. [PMID: 29541604 PMCID: PMC5849784 DOI: 10.1016/j.btre.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Production process for highly pure polysialic acid is shown. Single-use elements are used during cultivation and downstream processing. Maturation process led to increased polysialic acid release from the cell surface. Polysialic acid (polySia) is a promising molecule for various medical applications (e.g., treatment of inflammatory neurodegenerative diseases). In this study a complete production process for human-identical α-(2,8)-linked polySia was developed using a disposable bioreactor for cultivation of Escherichia coli K1 and single-use membrane adsorbers for downstream processing (DSP). The cultivation process was optimized to minimize complex media components and a maturation process after cultivation was established. The maturation led to further product release from the cell surface into the supernatant. Afterwards DSP was established using sodium hydroxide treatment combined with anion exchange membrane adsorbers for endotoxin and DNA depletion. After downstream processing the final product had neither detectable protein nor DNA contamination. Endotoxin content was below 3 EU mg−1. Investigation of the maximal chain length showed no effect of the harsh sodium hydroxide treatment during DSP on the stability of the polySia. Maximal chain length was ∼98 degree of polymerization.
Collapse
Affiliation(s)
- Ingo de Vries
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Sarah Schreiber
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Daniel Boßmann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Zawadi Hellmann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Jens Kopatz
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
44
|
Zhu L, Monteil DT, Wang Y, Song B, Hacker DL, Wurm MJ, Li X, Wang Z, Wurm FM. Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta 2018; 176:130-139. [DOI: 10.1016/j.talanta.2017.07.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/10/2023]
|
46
|
Werner S, Maschke RW, Eibl D, Eibl R. Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54600-1_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Cervera L, Kamen AA. Large-Scale Transient Transfection of Suspension Mammalian Cells for VLP Production. Methods Mol Biol 2018; 1674:117-127. [PMID: 28921433 DOI: 10.1007/978-1-4939-7312-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Large-scale transient transfection of mammalian cell suspension cultures enables the production of biological products in sufficient quantity and under stringent quality attributes to perform accelerated in vitro evaluations and has the potential to support preclinical or even clinical studies. Here we describe the methodology to produce VLPs in a 3L bioreactor, using suspension HEK 293 cells and PEIPro as a transfection reagent. Cells are grown in the bioreactor to 1 × 106 cells/mL and transfected with a plasmid DNA-PEI complex at a ratio of 1:2. Dissolved oxygen and pH are controlled and are online monitored during the production phase and cell growth and viability can be measured off line taking samples from the bioreactor. If the product is labeled with a fluorescent marker, transfection efficiency can be also assessed using flow cytometry analysis. Typically, the production phase lasts between 48 and 96 h until the product is harvested.
Collapse
Affiliation(s)
- Laura Cervera
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3
| | - Amine A Kamen
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
48
|
Nurhayati RW, Ojima Y, Dohda T, Kino-Oka M. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system. Biotechnol Prog 2017; 34:362-369. [PMID: 29226613 DOI: 10.1002/btpr.2595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kL a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h-1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 109 cells L-1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018.
Collapse
Affiliation(s)
- Retno Wahyu Nurhayati
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Stem Cell and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Central Jakarta, 10430, Indonesia
| | - Yoshihiro Ojima
- Dept. of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Takeaki Dohda
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
49
|
Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol 2017; 39:174-180. [PMID: 28778817 PMCID: PMC7102714 DOI: 10.1016/j.nbt.2017.07.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/23/2023]
Abstract
Virus-like particles (VLPs) are nanostructures that resemble the structures of viruses. They are composed of one or more structural proteins that can be arranged in several layers and can also contain a lipid outer envelope. VLPs trigger a high humoral and cellular immune response due to their repetitive structures. A key factor regarding VLP safety is the lack of viral genomic material, which enhances safety during both manufacture and administration. Contemporary VLP production may take advantage of several systems, including bacterial, yeast, insect and mammalian cells. The choice of production platform depends on several factors, including cost and the need for post-translational modifications (PTMs), which can be essential in generating an optimal immune response. Some VLP-based vaccines designed to prevent several infectious diseases are already approved and on the market, with many others at the clinical trial or research stage. Interest in this technology has recently increased due to its advantages over classical vaccines. This paper reviews the state-of-the-art of VLP production systems and the newest generation of VLP-based vaccines now available.
Collapse
Affiliation(s)
- J Fuenmayor
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - F Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - L Cervera
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, 817 Sherbrooke Street West, Room 270, Macdonald Engineering Building, McGill University, H3A 0C3, Montreal, QC, Canada
| |
Collapse
|
50
|
Busse C, Biechele P, de Vries I, Reardon KF, Solle D, Scheper T. Sensors for disposable bioreactors. Eng Life Sci 2017; 17:940-952. [PMID: 32624843 DOI: 10.1002/elsc.201700049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Modern bioprocess monitoring demands sensors that provide on-line information about the process state. In particular, sensors for monitoring bioprocesses carried out in single-use bioreactors are needed because disposable systems are becoming increasingly important for biotechnological applications. Requirements for the sensors used in these single-use bioreactors are different than those used in classical reusable bioreactors. For example, long lifetime or resistance to steam and cleaning procedures are less crucial factors, while a requirement of sensors for disposable bioreactors is a cost that is reasonable on a per-use basis. Here, we present an overview of current and emerging sensors for single-use bioreactors, organized by the type of interface of the sensor systems to the bioreactor. A major focus is on non-invasive, in-situ sensors that are based on electromagnetic, semiconducting, optical, or ultrasonic measurements. In addition, new technologies like radio-frequency identification sensors or free-floating sensor spheres are presented. Notably, at this time there is no standard interface between single-use bioreactors and the sensors discussed here. In the future, manufacturers should address this shortcoming to promote single-use bioprocess monitoring and control.
Collapse
Affiliation(s)
- Christoph Busse
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Philipp Biechele
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Ingo de Vries
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering Colorado State University USA
| | - Dörte Solle
- Institute of Technical Chemistry Leibniz University Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Leibniz University Hannover Germany
| |
Collapse
|