1
|
Lu Y, Yang J, Zhu J, Shu Y, Zou X, Ruan Q, Luo S, Wang Y, Wen J. Advances in the Histone Acetylation Modification in the Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4616682. [PMID: 39282225 PMCID: PMC11401686 DOI: 10.1155/2023/4616682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/29/2022] [Indexed: 09/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the common malignant tumors in the head and neck, characterized by high malignancy, rapid growth and metastasis, high invasive ability, and high mortality. In recent years, surgery combined with chemotherapy or radiotherapy remains the preferred clinical treatment for OSCC, despite considerable advances in diagnostic and therapeutic techniques. Hence, new targeted therapy is urgently needed. Histone modification affects the function of massive cells through histone acetyltransferase and histone deacetylase. Accompanied by the progress of some diseases, especially tumors, these proteins often show abnormal functions, and by reversing these abnormalities with drugs or gene therapy, the cancer phenotype can even be restored to normal. As a result, they are potential drug targets. This article reviewed the role of the histone dynamic process of acetylation modifications and their associated active modifying enzymes in the pathogenesis and progress of OSCC. Moreover, we explored the value of histone acetylation modification as a potential therapeutic target and the new progress of related drugs in clinical treatment.
Collapse
Affiliation(s)
- Ying Lu
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Jinjin Yang
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Junwen Zhu
- Harbin Medical University Cancer Hospital, Harbin, Helongjiang 150081, China
| | - Yao Shu
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Xuan Zou
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Qiao Ruan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuyuan Luo
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Yong Wang
- Department of Stomatology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Jun Wen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
2
|
Mali SB. Epigenetics: Promising journey so far but ways to go in head neck cancer. Oral Oncol 2022; 135:106194. [PMID: 36252432 DOI: 10.1016/j.oraloncology.2022.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
During the past decade, there has been a significant increase in knowledge regarding the molecular biology and epigenetics of head and neck carcer. Despite much effort to identify biomarkers for the early detection and development of new therapies for head and neck carcer, the overall survival and prognosis remain poor. Many studies show that epigenetic events play an important role in head and neck carcer development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of head and neck carcer and extend overall survival.
Collapse
Affiliation(s)
- Shrikant Balasaheb Mali
- MDS oral and maxillofacial surgery, Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College and Hospita, Nashik, India.
| |
Collapse
|
3
|
Sivolella S, Scanu A, Xie Z, Vianello S, Stellini E. Biobanking in dentistry: A review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:31-40. [PMID: 35024075 PMCID: PMC8728430 DOI: 10.1016/j.jdsr.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023] Open
Abstract
Biobanks are not-for-profit services for the collection, processing, storage and distribution of biological samples and data for research and diagnostic purposes. In dentistry, biological materials and data obtained from questionnaires investigating oral conditions can be stored and used for large-scale studies on oral and systemic diseases. To give some examples: gene expression microarrays obtained on biobanked specimens were used in the identification of genetic alterations in oral cancer; efforts to identify genetic mechanisms behind dental caries have been based on an integrative analysis of transcriptome-wide associations and messenger RNA expression. One of the largest studies on facial pain was conducted using Biobank data. Cryopreservation of dental pulp stem cells is a common practice in tooth biobanks. With the exception of teeth and pulp, also leftover oral soft and hard tissues may represent a source of healthy samples that has rarely been exploited as yet. While biobanks are increasingly attracting the attention of the scientific community and becoming economically sustainable, a systematic approach to this resource in dentistry seems to be lacking. This review illustrates the applications of biobanking in dentistry, describing biobanked pathological and healthy samples and data, and discussing future developments.
Collapse
Affiliation(s)
- Stefano Sivolella
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anna Scanu
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Zijing Xie
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Sara Vianello
- Department of Neuroscience, Neuromuscular Center, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Edoardo Stellini
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
4
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
5
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
6
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
7
|
Su B, Lim D, Tian Z, Liu G, Ding C, Cai Z, Chen C, Zhang F, Feng Z. Valproic Acid Regulates HR and Cell Cycle Through MUS81-pRPA2 Pathway in Response to Hydroxyurea. Front Oncol 2021; 11:681278. [PMID: 34513672 PMCID: PMC8429838 DOI: 10.3389/fonc.2021.681278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the primary problem threatening women’s health. The combined application of valproic acid (VPA) and hydroxyurea (HU) has a synergistic effect on killing breast cancer cells, but the molecular mechanism remains elusive. Replication protein A2 phosphorylation (pRPA2), is essential for homologous recombination (HR) repair and cell cycle. Here we showed that in response to HU, the VPA significantly decreased the tumor cells survival, and promoted S-phase slippage, which was associated with the decrease of pCHK1 and WEE1/pCDK1-mediated checkpoint kinases phosphorylation pathway and inhibited pRPA2/Rad51-mediated HR repair pathway; the mutation of pRPA2 significantly diminished the above effect, indicating that VPA-caused HU sensitization was pRPA2 dependent. It was further found that VPA and HU combination treatment also resulted in the decrease of endonuclease MUS81. After MUS81 elimination, not only the level of pRPA2 was abolished in response to HU treatment, but also VPA-caused HU sensitization was significantly down-regulated through pRPA2-mediated checkpoint kinases phosphorylation and HR repair pathways. In addition, the VPA altered the tumor microenvironment and reduced tumor burden by recruiting macrophages to tumor sites; the Kaplan-Meier analysis showed that patients with high pRPA2 expression had significantly worse survival. Overall, our findings demonstrated that VPA influences HR repair and cell cycle through down-regulating MUS81-pRPA2 pathway in response to HU treatment.
Collapse
Affiliation(s)
- Benyu Su
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zhujun Tian
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guochao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxia Ding
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zuchao Cai
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihui Feng
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Gama RR, Arantes LMRB, Sorroche BP, De Marchi P, Melendez ME, Carvalho RS, de Lima MA, Vettore AL, Carvalho AL. Evaluation of acetylation and methylation in oral rinse of patients with head and neck cancer history exposed to valproic acid. Sci Rep 2021; 11:16415. [PMID: 34385507 PMCID: PMC8361187 DOI: 10.1038/s41598-021-95845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Evaluate the biological action of valproic acid in the acetylation of histones and in the methylation of tumor suppressor genes via oral rinse in patients with a previous history of head and neck squamous cell carcinoma (HNSCC). Forty-two active or former smokers were included in this randomized, double-blind, placebo-controlled trial. Oral rinse samples were collected prior to treatment with valproic acid or placebo and after 90 days of treatment. The methylation status of five tumor suppressor genes and histone acetylation were evaluated by pyrosequencing and ELISA techniques, respectively. Differences between the 90-day and baseline oral rinse acetylation and methylation results were analyzed by comparing groups. Thirty-four patients were considered for analysis. The mean percentage adherence in the valproic and placebo groups was 93.4 and 93.0, respectively (p = 0.718). There was no statistically significant difference between groups when comparing the medians of the histone acetylation ratio and the methylation ratio for most of the studied genes. A significant reduction in the DCC methylation pattern was observed in the valproic group (p = 0.023). The use of valproic acid was safe and accompanied by good therapeutic adherence. DCC methylation was lower in the valproic acid group than in the placebo group.
Collapse
Affiliation(s)
- Ricardo Ribeiro Gama
- Head and Neck Surgery Department, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Bairro Dr. Paulo Prata, Barretos, SP, 14784-400, Brazil.
- Postgraduation Program, São Paulo Federal University, São Paulo, SP, Brazil.
| | | | | | - Pedro De Marchi
- Clinical Oncology Department, Barretos Cancer Hospital, Barretos, SP, Brazil
- Oncoclínicas, Rio de Janeiro, RJ, Brazil
| | | | - Raiany Santos Carvalho
- Researcher Support Center, Teaching and Research Institute, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Marcos Alves de Lima
- Biostatistics Center, Teaching and Research Institute, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - André Luiz Vettore
- Cancer Molecular Biology Laboratory, São Paulo Federal University, Diadema, SP, Brazil
| | - André Lopes Carvalho
- Head and Neck Surgery Department, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Bairro Dr. Paulo Prata, Barretos, SP, 14784-400, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
- Senior Researcher, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
9
|
McCarthy C, Sacco J, Fedele S, Ho M, Porter S, Liloglou T, Greenhalf B, Robinson M, Young B, Cicconi S, Chauhan S, Tesfaye B, Jackson R, Sherratt F, Shaw R. SAVER: sodium valproate for the epigenetic reprogramming of high-risk oral epithelial dysplasia-a phase II randomised control trial study protocol. Trials 2021; 22:428. [PMID: 34225765 PMCID: PMC8256209 DOI: 10.1186/s13063-021-05373-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background Sodium valproate (VPA) has been associated with a reduced risk of head and neck cancer development. The potential protective mechanism of action is believed to be via inhibition of histone deacetylase and subsequent epigenetic reprogramming. SAVER is a phase IIb open-label, randomised control trial of VPA as a chemopreventive agent in patients with high-risk oral epithelial dysplasia (OED). The aim of the trial is to gather preliminary evidence of the clinical and biological effects of VPA upon OED and assess the feasibility and acceptability of such a trial, with a view to inform a future definitive phase III study. Methods One hundred and ten patients with high-risk OED will be recruited from up to 10 secondary care sites in the UK and randomised into either VPA or observation only for 4 months. Women of childbearing potential will be excluded due to the teratogenic properties of VPA. Tissue and blood samples will be collected prior to randomisation and on the last day of the intervention/observation-only period (end of 4 months). Clinical measurement and additional safety bloods will be taken at multiple time points during the trial. The primary outcome will be a composite, surrogate endpoint of change in lesion size, change in grade of dysplasia and change in LOH profile at 8 key microsatellite regions. Feasibility outcomes will include recruitment targets, compliance with the study protocol and adverse effects. A qualitative sub-study will explore patient experience and perception of the trial. Discussion The current management options for patients with high-risk OED are limited and mostly include surgical resection and clinical surveillance. However, there remains little evidence whether surgery can effectively lead to a notable reduction in the risk of oral cancer development. Similarly, surveillance is associated with concerns regarding delayed diagnosis of OED progressing to malignancy. The SAVER trial provides an opportunity to investigate the effects of a repurposed, inexpensive and well-tolerated medication as a potential chemopreventive strategy for patients with high-risk OED. The clinical and biological findings of SAVER will inform the appropriateness, design and feasibility of a definitive phase III trial. Trial registration The trial is registered with the European Clinical Trials Database (Eudra-CT 2018-000197-30). (http://www.isrctn.com/ISRCTN12448611). The trial was prospectively registered on 24/04/2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05373-8.
Collapse
Affiliation(s)
- Caroline McCarthy
- Department of Oral Medicine, Liverpool University Dental Hospital, Pembroke Place, Liverpool, L3 5PS, UK.
| | - Joseph Sacco
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Stefano Fedele
- University College London, UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre, 21 University Street, London, WC1E 6DE, UK
| | - Michael Ho
- Leeds Teaching Hospitals NHS Trust, Oral and Maxillofacial Surgery, Leeds Dental Institute, Clarendon Way, Leeds, LS2 9LU, UK
| | - Stephen Porter
- University College London, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Bill Greenhalf
- GCP Laboratory Facility, Molecular and Clinical Cancer Medicine, University of Liverpool, 3rd Floor UCD Block, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Max Robinson
- Dept of Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Bridget Young
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Whelan Building, Brownlow Hill, Liverpool, L69 3GB, UK
| | - Silvia Cicconi
- Liverpool Clinical Trials Centre, Block C, Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL, UK
| | - Seema Chauhan
- Liverpool Health Partners SPARK, 1st Floor IC3, Liverpool Science Park, 131 Mount Pleasant, Liverpool, L3 5TF, UK
| | - Binyam Tesfaye
- Liverpool Clinical Trials Centre, University of Liverpool, 1st Floor, Mersey Bio, Liverpool, L69 7ZB, UK
| | - Richard Jackson
- Liverpool Clinical Trials Centre, Block C, Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL, UK
| | - Frances Sherratt
- Department of Public Health, Policy and Systems, University of Liverpool, B209, 2nd Floor Block B, Waterhouse Building, 1-5 Dover Street, Liverpool, L3 5DA, UK
| | - Richard Shaw
- Liverpool Head and Neck Centre; Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| |
Collapse
|
10
|
Ozgun G, Senturk S, Erkek-Ozhan S. Retinoic acid signaling and bladder cancer: Epigenetic deregulation, therapy and beyond. Int J Cancer 2021; 148:2364-2374. [PMID: 33128775 DOI: 10.1002/ijc.33374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) signaling is a crucial developmental pathway involved in urothelium development, differentiation and regeneration. Deregulation of the RA signaling is highly implicated in several cancers, including bladder cancer, underlying the need to unravel the complete regulatory aspects of the retinoids in bladder tumorigenesis. Given the fact that RA receptors are transcription factors functioning at the chromatin level and act in close cooperation with chromatin modifiers, it is known that retinoids show their efficacy by changing the epigenome. Bladder cancer can be defined as a "disease of chromatin" with mutations identified in the genes involved in chromatin regulation in 80% of the patients. Therefore, a careful examination of the epigenetic backgrounds and the breakdown of the emerging and highly underexplored field of RA dependent regulation of the epigenome is essential to fully understand the retinoid-dependent effects on bladder cancer. With this motivation, in this review, we evaluate the role of RA signaling in bladder cancer with a focus on the regulatory and mutational aspects, emphasizing the deregulatory characteristics in bladder cancer and highlighting the potential treatment opportunities with the RA and derivatives alone or in combination with epigenetic drugs.
Collapse
Affiliation(s)
- Gizem Ozgun
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | | |
Collapse
|
11
|
Mak MP, Pasini FS, Diao L, Garcia FOT, Takahashi TK, Nakazato D, Martins RE, Almeida CM, Kulcsar MAV, Lamounier VA, Nunes EM, de Souza IC, Garcia MRT, Amadio AV, Siqueira SAC, Snitcovsky IML, Sichero L, Wang J, de Castro G. Valproic acid combined with cisplatin-based chemoradiation in locally advanced head and neck squamous cell carcinoma patients and associated biomarkers. Ecancermedicalscience 2020; 14:1155. [PMID: 33574900 PMCID: PMC7864693 DOI: 10.3332/ecancer.2020.1155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cisplatin-based chemoradiation (CCRT) offers locally advanced head and neck squamous cell carcinoma (LAHNSCC) patients high local control rate, however, relapses are frequent. Our goal was to evaluate if association of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, with CCRT improved response rate (RR) and associated biomarkers. Methods This phase II trial included patients with unresectable locally advanced (LA) oropharynx (OP) squamous cell carcinoma. CCRT began after 2 weeks of VPA (P1). Primary goal was RR at 8 weeks after chemoradiation (CRT)+VPA (P2). Biomarkers included microRNA (miR) polymerase chain reaction (PCR)-array profiling in plasma compared to healthy controls by two-sample t-test. Distribution of p-values was analysed by beta-uniform mixture. Findings were validated by real-time PCR quantitative polymerase chain reaction (qPCR) for selected miRs in plasma and saliva. p16, HDAC2 and RAD23 Homolog B, Nucleotide Excision Repair Protein (HR23B) tumour immunohistochemistry were evaluated. Results Given significant toxicities, accrual was interrupted after inclusion of ten LA p16 negative OP patients. All were male, smokers/ex-smokers, aged 41–65 and with previous moderate/high alcohol intake. Nine evaluable patients yielded a RR of 88%. At false discovery rate of 5%, 169 miRs were differentially expressed between patients and controls, including lower expression of tumour suppressors (TSs) such as miR-31, -222, -let-7a/b/e and -145. miR-let-7a/e expression was validated by qPCR using saliva. A HDAC2 H-score above 170 was 90% accurate in predicting 6-month disease-free survival. Conclusions VPA and CRT offered high RR; however, with prohibitive toxicities, which led to early trial termination. Patients and controls had a distinct pattern of miR expression, mainly with low levels of TS miRs targeting Tumor protein P53 (TP53). miR-let-7a/e levels were lower in patients compared to controls, which reinforces the aggressive nature of such tumours (NCT01695122).
Collapse
Affiliation(s)
- Milena Perez Mak
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Fatima Solange Pasini
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, 1400 Pressler St. Floor 4, FCT4.6000, Houston, Texas, USA
| | - Fabyane O Teixeira Garcia
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Tiago Kenji Takahashi
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Denyei Nakazato
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Renata Eiras Martins
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Cristiane Maria Almeida
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Marco Aurelio Vamondes Kulcsar
- Head and Neck Surgery Department, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Valdelania Aparecida Lamounier
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Emily Montosa Nunes
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Isabela Cristina de Souza
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Marcio Ricardo Taveira Garcia
- Department of Radiology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Alex Vieira Amadio
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Sheila Aparecida C Siqueira
- Department of Pathology, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Eneas de Carvalho Aguiar, 255, CEP 05403-000, Sao Paulo, SP, Brazil
| | - Igor Moysés Longo Snitcovsky
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Laura Sichero
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Jing Wang
- Head and Neck Surgery Department, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Gilberto de Castro
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
13
|
Zhao M, Ding L, Yang Y, Chen S, Zhu N, Fu Y, Ni Y, Wang Z. Aberrant Expression Of PDCD4/eIF4A1 Signal Predicts Postoperative Recurrence For Early-Stage Oral Squamous Cell Carcinoma. Cancer Manag Res 2019; 11:9553-9562. [PMID: 31807078 PMCID: PMC6857661 DOI: 10.2147/cmar.s223273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background Programmed cell death 4 (PDCD4) as a tumor suppressor gene inhibits growth and metastasis of cancer cells, which involved with eIF4A1, the inhibitor of translation initiation. Although the prognosis of early-stage oral squamous cell carcinoma (OSCC) is generally better, but many patients occur recurrence after surgery. Understanding the clinical expression pattern of PDCD4/eIF4A1 signal would provide diagnostic biomarker and target therapy premise for early-stage OSCC patients. Methods Immunohistochemical analysis was performed on 69 early-stage (T1/2N0M0) OSCC samples to evaluate temporal expression and prognostic value of eIF4A1 and PDCD4 in early-stage OSCC according to cell types and microlocalization. The correlations between PDCD4/eIF4A1 signal and Ki-67, postoperative recurrence and metastasis were determined. Results We found that PDCD4 was presented in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) but absent in fibroblast-like cells (FLCs). eIF4A1 was only presented in TCs. PDCD4TCs was negative associated with eIF4A1TCs in tumor center, and patients with low PDCD4TCs or high eIF4A1TCs had poorer differentiation. Moreover, aberrant PDCD4/eIF4A1 signal led to higher Ki-67 level. Interestingly, patients with low expressed PDCD4TILs had better prognosis, indicating the function heterogeneity of PDCD4 in different cell types. Furthermore, low PDCD4 TCs and high eIF4A1TCs predicted higher postoperative recurrence rate and are significant independent risk factors for early-stage OSCC. Conclusion Patients with low PDCD4TCs and high eIF4A1TCs have higher recurrence rate and poor clinical outcome. Of note, PDCD4TILs exerts contradictory function. Thus, PDCD4/eIF4A1 targeting therapeutics should consider the function heterogeneity of PDCD4.
Collapse
Affiliation(s)
- Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Yan Yang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Sheng Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| |
Collapse
|
14
|
Gan CP, Sam KK, Yee PS, Zainal NS, Lee BKB, Abdul Rahman ZA, Patel V, Tan AC, Zain RB, Cheong SC. IFITM3 knockdown reduces the expression of CCND1 and CDK4 and suppresses the growth of oral squamous cell carcinoma cells. Cell Oncol (Dordr) 2019; 42:477-490. [PMID: 30949979 PMCID: PMC7771307 DOI: 10.1007/s13402-019-00437-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is a challenging disease to treat. Up to 50% of OSCC patients with advanced disease develop recurrences. Elucidation of key molecular mechanisms underlying OSCC development may provide opportunities to target specific genes and, thus, to improve patient survival. In this study, we examined the expression and functional role of interferon transmembrane protein 3 (IFITM3) in OSCC development. METHODS The expression of IFITM3 in OSCC and normal oral mucosal tissues was assessed by qRT-PCR and immunohistochemistry. The role of IFITM3 in driving OSCC cell proliferation and survival was examined using siRNA-mediated gene knockdown, and the role of IFITM3 in driving cell cycle regulators was examined using Western blotting. RESULTS We found that IFITM3 is overexpressed in more than 79% of primary OSCCs. We also found that IFITM3 knockdown led to impaired OSCC cell growth through inhibition of cell proliferation, induction of cell cycle arrest, senescence and apoptosis. In addition, we found that IFITM3 knockdown led to reduced expressions of CCND1 and CDK4 and reduced RB phosphorylation, leading to inhibition of OSCC cell growth. This information may be instrumental for the design of novel targeted therapeutic strategies. CONCLUSIONS From our data we conclude that IFITM3 is overexpressed in OSCC and may regulate the CCND1-CDK4/6-pRB axis to mediate OSCC cell growth.
Collapse
Affiliation(s)
- Chai Phei Gan
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Kin Kit Sam
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Pei San Yee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Nur Syafinaz Zainal
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Bernard Kok Bang Lee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vyomesh Patel
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia.
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
He Y, Tai S, Deng M, Fan Z, Ping F, He L, Zhang C, Huang Y, Cheng B, Xia J. Metformin and 4SC-202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma. Cancer Med 2019; 8:3479-3490. [PMID: 31025540 PMCID: PMC6601594 DOI: 10.1002/cam4.2206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and aggressive epithelial tumor in the head and neck region with a rising incidence. Despite the advances in basic science and clinical research, the overall survival rate of OSCC remains low. Thus finding novel effective therapeutic agents for OSCC is necessary. In this study, we investigated the effects and mechanisms of combined metformin and 4SC-202 in OSCC. Our results showed that metformin and 4SC-202 synergistically suppressed the proliferation and promoted the intrinsic apoptosis of OSCC cells in vitro and in vivo. Importantly, the proteasome inhibitor MG132 impeded the ΔNp63-decreasing effects after metformin and 4SC-202 treatment, indicating that metformin and 4SC-202 could promote the degradation of ΔNp63 protein. Moreover, ubiquitination level of ΔNp63 increased after metformin or/and 4SC-202 administration. Furthermore, we revealed that ΔNp63 mediated anticancer effects of metformin and 4SC-202, as overexpression or suppression of ΔNp63 could attenuate or facilitate the apoptosis rate of OSCC under metformin or/and 4SC-202 treatment. Collectively, metformin and 4SC-202 synergistically promote intrinsic apoptosis through accelerating ubiquitin-mediated degradation of ΔNp63 in OSCC, and this co-treatment can serve as a potential therapeutic scheme for OSCC.
Collapse
Affiliation(s)
- Yuan He
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Shanshan Tai
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Miao Deng
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Zhaona Fan
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Fan Ping
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Lihong He
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Chi Zhang
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Yulei Huang
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Bin Cheng
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Juan Xia
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| |
Collapse
|
16
|
Hashemi-Sheikhshabani S, Amini-Farsani Z, Shamsara M, Sajadpoor Z, Sangtarash MH, Teimori H. Effect of valproic acid on cisplatin-resistant ovarian cancer cell lines. ACTA ACUST UNITED AC 2019. [DOI: 10.34172/jsums.2019.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background and aims: Platinum resistance has been one of the most important problems in the management of ovarian cancer. The effects of various chemotherapeutic agents are limited in patients with platinum resistance. Therefore, developing new anticancer drugs that can improve the effect of currently used cytostatics is critical. The current study investigated the effects of valproic acid (VPA) alone and in combination with cisplatin on ovarian cancer cells. Methods: In this experimental study, the human ovarian cancer cell lines (A2780-S and A2780-CP) were grown in RPMI-1640 medium in appropriate culture conditions. The cells were treated with various concentrations of cisplatin (0.15-400 µg/mL) or VPA (10-2000 µg/mL) and were incubated for 24, 48, and 72 hours. Moreover, A2780 cells were co-treated with different concentrations of cisplatin and VPA for 48 hours. Afterward, cell viability was investigated using MTT assay. GraphPad Prism statistical software was used for the data analysis and ANOVA and Duncan’s test were conducted. Results: A dose- and time-dependent reduction was observed in cell viability following the treatment with cisplatin or VPA. Moreover, cotreatment of the A2780 cells with cisplatin and VPA resulted in a significantly greater inhibition of cell viability compared to the treatment with either agent alone. Conclusion: Overall, it can be argued that VPA does not only cause inhibition of proliferation and induction of apoptosis in ovarian cancer cells but also helps to enhance the antiproliferative effects of cisplatin and results in the increased susceptibility to cisplatin in resistant cells. VPA may therefore be used to treat cancer in the future.
Collapse
Affiliation(s)
- Somayeh Hashemi-Sheikhshabani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zeinab Amini-Farsani
- Young Researchers and Elites Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Sajadpoor
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Abdelaleem M, Ezzat H, Osama M, Megahed A, Alaa W, Gaber A, Shafei A, Refaat A. Prospects for repurposing CNS drugs for cancer treatment. Oncol Rev 2019; 13:411. [PMID: 31044029 PMCID: PMC6478007 DOI: 10.4081/oncol.2019.411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023] Open
Abstract
Drug repurposing is the idea of using an already approved drug for another disease or disorder away from its initial use. This new approach ensures the reduction in high cost required for developing a new drug in addition to the time consumed, especially in the tumor disorders that show an unceasing rising rate with an unmet success rate of new anticancer drugs. In our review, we will review the anti-cancer effect of some CNS drugs, including both therapeutic and preventive, by searching the literature for preclinical or clinical evidence for anticancer potential of central nervous system drugs over the last 8 years period (2010-2018) and including only evidence from Q1 journals as indicated by Scimago website (www.scimagojr.com). We concluded that Some Central Nervous system drugs show a great potential as anti-cancer in vitro, in vivo and clinical trials through different mechanisms and pathways in different types of cancer that reveal a promising evidence for the repurposing of CNS drugs for new indications.
Collapse
Affiliation(s)
| | - Hossam Ezzat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Adel Megahed
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Waleed Alaa
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ahmed Gaber
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ayman Shafei
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Alaa Refaat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt.,Research Center, Misr International University (MIU), Cairo, Egypt.,Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Islam S, Abiko Y, Uehara O, Chiba I. Sirtuin 1 and oral cancer. Oncol Lett 2018; 17:729-738. [PMID: 30655824 DOI: 10.3892/ol.2018.9722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
The sirtuins (SIRTs) are a family of highly conserved histone deacetylases (HDACs) consisting of seven members (SIRT1-SIRT7). Over the past few decades, SIRT1 has been the most extensively studied and garnered tremendous attention in the scientific community due to its emerging role in cancer biology. However, its biological role in the regulation of oral cancer is not yet fully understood. Owing to contradictory findings regarding the role of SIRT1 in oral cancer, debate about it continues. The present study discusses the biological roles and potential therapeutic implications of SIRT1 in precancerous oral lesions and oral cancer.
Collapse
Affiliation(s)
- Shajedul Islam
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan.,Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
19
|
Abstract
Oral potentially malignant disorders (OPMDs) refer to epithelial lesions and conditions with an increased risk for malignant transformation; oral leukoplakia is the most commonly encountered. Overall, OPMDs have a low risk for malignant transformation, yet the challenge is the difficulty to reliably identify and predict which patients with OPMDs are at the highest risk for malignant transformation. Future research is needed to elucidate the molecular aspects of OPMDs, to improve current diagnostic strategies, leading to personalized management.
Collapse
|
20
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
21
|
Choo DW, Goh SH, Cho YW, Baek HJ, Park EJ, Motoyama N, Kim TH, Kim JY, Kim SS. CHK2 is involved in the p53-independent radiosensitizing effects of valproic acid. Oncol Lett 2017; 13:2591-2598. [PMID: 28454438 PMCID: PMC5403276 DOI: 10.3892/ol.2017.5792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy is an effective treatment for the majority of types of localized solid cancer. However, the risk of side effects to the surrounding normal tissues limits radiotherapeutic approaches. Whilst the mechanism of action of valproic acid, an inhibitor of histone deacetylase, remains unknown, the inhibitor is a potential antineoplastic radiosensitizer. The present study demonstrated the in vitro radiosensitizing effects of valproic acid on the human breast cancer MCF7 cell line, and revealed that valproic acid increased the level of DNA breakage, apoptosis and senescence. In addition, western blot analyses revealed that valproic acid induced tumor suppressor protein (p)53 and p21 expression, and activated checkpoint kinase 2 (CHK2) in MCF7 cells and primary mouse embryonic fibroblasts. Notably, treatment with valproic acid also induced increases in the level of p21 protein levels and CHK2 activity in p53-null colon cancer HCT116 cells. Furthermore, the present study demonstrated that valproic acid-induced radiosensitization was largely dependent on the activity of CHK2. The results of the present study reveal that valproic acid may exhibit clinical utility with respect to increasing the anticancer efficacy of radiotherapy by affecting the level of p53.
Collapse
Affiliation(s)
- Dong Wan Choo
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sung Ho Goh
- Cancer Genomics Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young Woo Cho
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea.,Colgate University, Hamilton, NY 13346, USA
| | - Hye Jung Baek
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Noboru Motoyama
- Department of Cognitive Brain Science, National Centre for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan.,Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tae Hyun Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Joo Young Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| |
Collapse
|
22
|
Watanabe S, Kuwabara Y, Suehiro S, Yamashita D, Tanaka M, Tanaka A, Ohue S, Araki H. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma. Eur J Clin Pharmacol 2016; 73:357-363. [PMID: 27889835 DOI: 10.1007/s00228-016-2167-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is also used to manage seizures in glioblastoma patients. HDAC inhibitors can protect normal cells and tissues from the deleterious effects of radiotherapy, and VPA is reported to improve the survival of glioblastoma patients receiving chemoradiation therapy. VPA also promotes hair growth, and thus has the potential to reduce the radiotherapy side effect of hair loss while improving the survival of patients with glioblastoma. The purpose of this study was to determine whether VPA use during radiotherapy for high-grade glioma is associated with decreased side effects of radiotherapy and an improvement in overall survival (OS) and progression-free survival (PFS). METHODS Medical records of 112 patients with high-grade glioma were retrospectively reviewed. We grouped patients by VPA use or non-use during radiotherapy, and evaluated hair loss, OS, and PFS. RESULTS The radiation dose and fractionation at the onset of hair loss were 4 Gy and two fractions higher, respectively, in the VPA group compared with the VPA non-use group (P < 0.01). Median OS was 42.2 and 20.3 months in the VPA use and non-use groups, respectively (P < 0.01; hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.18-0.74). Median PFS was 22.7 and 11.0 months in the VPA use and non-use groups, respectively (P = 0.099; HR, 0.62; 95% CI, 0.36-1.09). CONCLUSIONS VPA use during radiotherapy for glioma is associated with delayed hair loss and improvement in survival. Hair loss prevention benefits patients suffering from the deleterious effects of radiation.
Collapse
Affiliation(s)
- Shinichi Watanabe
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yui Kuwabara
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akihiro Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefecture Central Hospital, 83 Kasuga-cho, Matsuyama, Ehime, 790-0024, Japan
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
23
|
Li JZH, Gao W, Ho WK, Lei WB, Wei WI, Chan JYW, Wong TS. The clinical association of programmed cell death protein 4 (PDCD4) with solid tumors and its prognostic significance: a meta-analysis. CHINESE JOURNAL OF CANCER 2016; 35:95. [PMID: 27852288 PMCID: PMC5112731 DOI: 10.1186/s40880-016-0158-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/15/2016] [Indexed: 12/26/2022]
Abstract
Background Programmed cell death protein 4 (PDCD4) is a novel tumor suppressor protein involved in programmed cell death. Its association with cancer progression has been observed in multiple tumor models, but evidence supporting its association with solid tumors in humans remains controversial. This study aimed to determine the clinical significance and prognostic value of PDCD4 in solid tumors. Methods A systematic literature review was performed to retrieve publications with available clinical information and survival data. The eligibility of the selected articles was based on the criteria of the Dutch Cochrane Centre proposed by the Meta-analysis Of Observational Studies in Epidemiology group. Pooled odds ratios (ORs), hazard ratios (HRs), and 95% confidence intervals (CIs) for survival analysis were calculated. Publication bias was examined by Begg’s and Egger’s tests. Results Clinical data of 2227 cancer patients with solid tumors from 23 studies were evaluated. PDCD4 expression was significantly associated with the differentiation status of head and neck cancer (OR 4.25, 95% CI 1.87–9.66) and digestive system cancer (OR 2.87, 95% CI 1.84–4.48). Down-regulation of PDCD4 was significantly associated with short overall survival of patients with head and neck (HR: 3.44, 95% CI 2.38–4.98), breast (HR: 1.86, 95% CI 1.36–2.54), digestive system (HR: 2.12, 95% CI 1.75–2.56), and urinary system cancers (HR: 3.16, 95% CI 1.06–9.41). Conclusions The current evidence suggests that PDCD4 down-regulation is involved in the progression of several types of solid tumor and is a potential marker for solid tumor prognoses. Its clinical usefulness should be confirmed by large-scale prospective studies.
Collapse
Affiliation(s)
- John Zeng Hong Li
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wei Gao
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wai-Kuen Ho
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wen Bin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - William Ignace Wei
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China.
| |
Collapse
|
24
|
Sang Z, Sun Y, Ruan H, Cheng Y, Ding X, Yu Y. Anticancer effects of valproic acid on oral squamous cell carcinoma via SUMOylation in vivo and in vitro. Exp Ther Med 2016; 12:3979-3987. [PMID: 28101176 PMCID: PMC5228083 DOI: 10.3892/etm.2016.3907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/15/2016] [Indexed: 12/04/2022] Open
Abstract
Aberrant histone deacetylase (HDAC) has a key role in the neoplastic process associated with the epigenetic patterns of tumor-related genes. The present study was performed to investigate the effects and determine the mechanism of action of the HDAC inhibitor, valproic acid (VPA), on the CAL27 cell line derived from oral squamous cell carcinoma (OSCC). The effects of VPA on the viability of CAL27 cells were investigated using MTT assays. Alterations in the cell cycle and apoptosis were also examined using propidium iodide (PI) and Annexin V-PI assays, and were subequently analyzed by flow cytometry. Small ubiquitin-related modifier (SUMO)-related genes were evaluated by reverse transcription-quantitative polymerase chain reaction analysis. In addition, the effects of VPA were assessed using a xenograft model in vivo. The present results demonstrated significant dose-dependent inhibition of cell viability following VPA treatment. Treatment with VPA increased the distribution of CAL27 cells in the G1 phase and reduced cells in the S phase, and significantly increased the expression levels of SUMO1 and SUMO2 (P<0.01). Using a xenograft model, the mean tumor volume in VPA-treated animals was demonstrated to be significantly reduced, and the rate of apoptosis was significantly increased, as compared with the control animals. These results suggested that VPA may regulate SUMOylation, producing an anticancer effect in vivo. Further investigation into the role of VPA in tumorigenesis may identify novel therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Zhijian Sang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hong Ruan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yong Cheng
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Chiou HYC, Lai WK, Huang LC, Huang SM, Chueh SH, Ma HI, Hueng DY. Valproic acid promotes radiosensitization in meningioma stem-like cells. Oncotarget 2016; 6:9959-69. [PMID: 25895030 PMCID: PMC4496410 DOI: 10.18632/oncotarget.3692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/05/2015] [Indexed: 12/16/2022] Open
Abstract
Although meningioma stem-like cells have been isolated and characterized, their therapeutic targeting remains a challenge. Meningioma sphere cells (MgSCs) with cancer stem cells properties show chemo- and radioresistance in comparison with meningioma adherent cells (MgACs). We tested the effect of valproic acid (VPA), a commonly used anti-epileptic drug, which passes the blood brain barrier, on cultured MgSCs. VPA reduced the viability of MgSCs and MgACs. In MgSCs, treatment with VPA increased radio-sensitivity, expression of p-cdc2, p-H2AX and cleaved caspase-3 and PARP. Anchorage-independent growth (AIG) was reduced by VPA. AIG was further reduced by combined treatment with irradiation. Expression of a stem cell marker, Oct4, was reduced by VPA. Oct4 was further decreased by combined treatment with irradiation. These results suggest that VPA may be a potential treatment for meningioma through targeting meningioma stem-like cells.
Collapse
Affiliation(s)
- Hsin-Ying Clair Chiou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wen-Kuo Lai
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
26
|
Wawruszak A, Luszczki JJ, Grabarska A, Gumbarewicz E, Dmoszynska-Graniczka M, Polberg K, Stepulak A. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis. PLoS One 2015; 10:e0143013. [PMID: 26580554 PMCID: PMC4651465 DOI: 10.1371/journal.pone.0143013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- * E-mail:
| | - Jarogniew J. Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Department of Otolaryngology, MSW Hospital, Lublin, Poland
| |
Collapse
|
27
|
|
28
|
Lee SH, Nam HJ, Kang HJ, Samuels TL, Johnston N, Lim YC. Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncol Rep 2015; 34:2065-71. [PMID: 26239260 DOI: 10.3892/or.2015.4145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that cancer cells present profound epigenetic alterations in addition to featuring classic genetic mutations. Valproic acid (VPA), a histone deacetylase inhibitor, can potently inhibit tumor growth and induce differentiation. However, the effect and underlying mechanism of VPA on head and neck squamous cell carcinoma (HNSCC) cancer stem cells (CSCs) remain unclear. In the present study we investigated the effects of VPA on the characteristics of HNSCC CSCs in vitro and in vivo. As a result, VPA inhibited the self-renewal abilities of HNSCC CSCs during two serial passages and decreased the expression of stem cell markers, such as Oct4, Sox2 and CD44. VPA also potentiated the cytotoxic effect of cisplatin by suppressing the ABCC2 and ABCC6 transporters as well as by inducing caspase-mediated apoptosis. In addition, the combination of VPA and cisplatin attenuated tumor growth and induced apoptosis in a xenograft model. Our results suggest that VPA might be a potential therapeutic strategy in combination with conventional cisplatin for HNSCC patients by elimination of CSC traits.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Tasoulas J, Giaginis C, Patsouris E, Manolis E, Theocharis S. Histone deacetylase inhibitors in oral squamous cell carcinoma treatment. Expert Opin Investig Drugs 2014; 24:69-78. [PMID: 25216628 DOI: 10.1517/13543784.2014.952368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: The involvement of the histone deacetylases (HDACs) family in tumor development and progression is well demonstrated. HDAC inhibitors (HDACis) constitute a novel, heterogeneous family of highly selective anticancer agents that inhibit HDACs and present significant antitumor activity in several human malignancies, including oral squamous cell carcinoma (OSCC). Areas covered: This review summarizes the current research on the anticancer activity of HDACis against OSCC. The review also presents the molecular mechanisms of HDACis action and the existing studies evaluating their utilization in combined therapies of OSCC. Expert opinion: The currently available data support evidence that HDACis may provide new therapeutic options against OSCC, decreasing treatment side effects and allowing a more conservative therapeutic approach. Future research should be focused on in vivo and clinical evaluation of their utilization as combined therapies or monotherapies. Before HDACis can be brought into clinical practice as treatment options for OSCC, further evaluation is needed to determine their optimal dosage, the appropriate duration of treatment and whether they should be used in combination or as stand-alone therapeutics.
Collapse
Affiliation(s)
- Jason Tasoulas
- National and Kapodistrian University of Athens, Medical School, First Department of Pathology , Athens , Greece
| | | | | | | | | |
Collapse
|
30
|
The Beneficial Effects of Valproic Acid in Thyroid Cancer Are Mediated through Promoting Redifferentiation and Reducing Stemness Level: An In Vitro Study. J Thyroid Res 2014; 2014:218763. [PMID: 24963441 PMCID: PMC4052487 DOI: 10.1155/2014/218763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 12/15/2022] Open
Abstract
Valproic acid (VPA) has been identified as a histone deacetylase inhibitor, inducing differentiation in transformed cells. However, no study has shown the effect of VPA in the redifferentiation induction and stemness of anaplastic thyroid. The main objective of this study was to evaluate the efficacy of VPA as a differentiation therapy agent in human thyroid cancer based on its effect on stemness and differentiation process. Indications for differentiation of 8305C and B-CPAP cell lines following VPA treatment were obtained by analyzing cell proliferation rate, morphological changes, adherent-dependent colony formation, and Hoechst 33342 staining. The expressions of stemness, differentiation, and aggressiveness specific marker genes were measured by quantitative RT-PCR. VPA treatment effectively showed growth inhibition in both cell lines. The high nuclear-cytoplasmic (N : C) ratio of 8305C cells markedly decreased and treated cells became more epithelial-like. Treated cells showed stronger Hoechst 33342 fluorescence compared with control cells. The hTERT and OCT-4 reduction was paralleled with adherent-dependent colony formation decrement in both cell lines. VPA effectively induced NIS and TTF-1 in anaplastic cells, it whereas showed no clear pattern in papillary cell line. VPA treatment also resulted in the reduction of MMP-2 and MMP-9. These finding suggest that VPA could redifferentiate the anaplastic thyroid cancer cells.
Collapse
|
31
|
Abstract
Epigenetics is "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being" as defined by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentiation. More than seven decades later we know that these mechanisms include histone tail post-translational modifications, DNA methylation, ATP-dependent chromatin remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful drugs targets, and combined targeting of multiple pathways is expected to significantly advance cancer therapy.
Collapse
|
32
|
Sodium valproate induces cell senescence in human hepatocarcinoma cells. Molecules 2013; 18:14935-47. [PMID: 24304587 PMCID: PMC6270308 DOI: 10.3390/molecules181214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs). Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP), a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.
Collapse
|
33
|
Nguyen TK, Iyer NG. Genetic alterations in head and neck squamous cell carcinoma: The next-gen sequencing era. World J Med Genet 2013; 3:22-33. [DOI: 10.5496/wjmg.v3.i4.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately 650000 new cases diagnosed annually. Next-generation molecular techniques and results from phase 2 of the Cancer Genome Atlas becoming available have drastically improved our current knowledge on the genetics basis of head and neck squamous cell carcinoma. New insights and new perspectives on the mutational landscape implicated in head and neck squamous cell carcinoma provide improved tools for prognostication. More importantly, depend on the patient’s tumor subtypes and prognosis, deescalated or more aggressive therapy maybe chosen to achieve greater potency while minimizing the toxicity of therapy. This paper aims to review our current knowledge on the genetic mutations and altered molecular pathways in head and neck squamous cell carcinoma. Some of the most common mutations in head and neck squamous cell carcinoma reported by the cancer genome atlas including TP53, NOTCH1, Rb, CDKN2A, Ras, PIK3CA and EGFR are described here. Additionally, the emerging role of epigenetics and the role of human papilloma virus in head and neck squamous cell carcinoma are also discussed in this review. The molecular pathways, clinical applications, actionable molecular targets and potential therapeutic strategies are highlighted and discussed in details.
Collapse
|
34
|
Abstract
Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
35
|
An oral cancer biobank initiative: a platform for multidisciplinary research in a developing country. Cell Tissue Bank 2012; 14:45-52. [DOI: 10.1007/s10561-012-9298-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/15/2012] [Indexed: 01/01/2023]
|