1
|
Sapula SA, Wang Y, Hart BJ, Whittall JJ, Venter H. The continued evolution of the L2 cephalosporinase in Stenotrophomonas maltophilia: a key driver of beta-lactam resistance. Biochem J 2025; 482:BCJ20240478. [PMID: 39804574 DOI: 10.1042/bcj20240478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/02/2025]
Abstract
The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases that afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity. Variant L2 cephalosporinases have been detected, as has their distribution into two main clades (clades 1 and 2). Comprehensive analysis of six L2 variants, cloned into pET41a(+) and expressed in Escherichia coli BL21(DE3) cells, revealed that clade 1 variants exhibited higher ceftazidime resistance compared to clade 2. Notably, the Sm5341 L2 variant, carrying a Phe72Ile variation, displayed a significantly reduced resistance profile across all substrates tested, suggesting a key role of Phe72 in enzymatic activity. An Ile72Phe substitution in the pET41a(+) based Sm5341_L2 variant resulted in a gain-of-function for this protein, confirming the role of Phe72 in the activity of L2. Furthermore, residue interaction network analysis elucidated a pi-cation interaction between Tyr272 and Arg244, which may potentially be stabilizing the enzyme and its binding site. The presence of Tyr272 in clade 1 variants correlates with higher ceftazidime affinity, contrasting Asp272 in clade 2 variants. Displaying lower Km values and higher kcat/Km ratios, clade 1 L2 enzymes demonstrated a higher binding efficiency and greater catalytic efficiency for most of the substrates assessed. These results indicate that L2 enzymes are continuing to evolve and adapt to a selective environment fuelled by the overuse of beta-lactams. This adaptation may signal the beginning of an evolutionary process yielding variant L2 cephalosporinases with extended substrate profiles.
Collapse
Affiliation(s)
- Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Yu Wang
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Bradley J Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Jonathan J Whittall
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
O'Rorke J, Butler WG, Mason K. Complex Management of Respiratory Failure, Atrial Fibrillation, Ventricular Tachycardia, and Stenotrophomonas maltophilia in a Patient Following Osteomyelitis Amputation: A Case of Multisystem Complications Occurring Postoperatively. Cureus 2024; 16:e73505. [PMID: 39677254 PMCID: PMC11642728 DOI: 10.7759/cureus.73505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant gram-negative bacterium often affecting patients with significant comorbidities. This case report examines the hospital course of a 75-year-old male with a history of atrial fibrillation and heart failure with preserved ejection fraction (HFpEF), who presented with compromised respiratory status and recurrent infections, highlighting the complexities of clinical management in the setting of multidrug-resistant HFpEF organisms and postoperative complications. The patient was admitted following an episode of ventricular tachycardia and acute respiratory failure, requiring rapid airway management and intensive clinical intervention. His recent hospitalization for sepsis, pneumonia, and osteomyelitis complicated his clinical profile, particularly given his recurrent urinary tract infections (UTIs), which prevented the use of sodium-glucose cotransporter-2 inhibitor therapy for heart failure management. Respiratory cultures confirmed the presence of S. maltophilia, prompting treatment with minocycline and piperacillin-tazobactam. This case highlights the significant risks associated with postoperative arrhythmias in patients with underlying cardiac disease, particularly when superimposed with sepsis. Furthermore, the management of recurrent UTIs posed a barrier to optimizing heart failure therapy, further complicating the patient's clinical stability. The need for vigilant monitoring and tailored therapeutic strategies is essential to improve outcomes in this vulnerable patient population. The interplay between multidrug-resistant infections, arrhythmias, and comorbidities emphasizes the importance of comprehensive clinical management and the need for further research to develop targeted therapies and clinical plans for at-risk populations.
Collapse
Affiliation(s)
- Jesse O'Rorke
- Medicine, Lee Health, Fort Myers, USA
- Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | - W Greyson Butler
- Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | - Keri Mason
- Internal Medicine, Cape Coral Hospital, Fort Myers, USA
| |
Collapse
|
3
|
Zhu Y, Gu J, Zhao Z, Chan AWE, Mojica MF, Hujer AM, Bonomo RA, Haider S. Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning. J Chem Inf Model 2024; 64:3706-3717. [PMID: 38687957 PMCID: PMC11094718 DOI: 10.1021/acs.jcim.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
L2 β-lactamases, serine-based class A β-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 β-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 β-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the β-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A β-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.
Collapse
Affiliation(s)
- Yu Zhu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Jing Gu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Zhuoran Zhao
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - A. W. Edith Chan
- Division
of Medicine, UCL School of Pharmacy, London WC1E 6BT, U.K.
| | - Maria F. Mojica
- Department
of Molecular Biology and Microbiology, Case
Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
| | - Andrea M. Hujer
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Department
of Medicine, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106-5029, United States
| | - Robert A. Bonomo
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
- Clinician
Scientist Investigator, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Departments
of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Departments
of Molecular Biology and Microbiology, Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
| | - Shozeb Haider
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
- UCL
Centre for Advanced Research in Computing, University College London, London WC1H 9RL, U.K.
| |
Collapse
|
4
|
McCarley A, Espejo ML, Harmon DE, Ruiz C. Freshwater and Marine Environments in California Are a Reservoir of Carbapenem-Resistant Bacteria. Microorganisms 2024; 12:802. [PMID: 38674746 PMCID: PMC11052360 DOI: 10.3390/microorganisms12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Carbapenems are last-resort antibiotics used to treat multidrug-resistant bacterial infections. Resistance to carbapenems has been designated as an urgent threat and is increasing in healthcare settings. However, little is still known about the distribution and characteristics of carbapenem-resistant bacteria (CRB) outside of healthcare settings. Here, we surveyed the distribution of CRB in ten diverse freshwater and seawater environments in California, U.S., ranging from San Luis Obispo County to San Bernardino County, combining both direct isolation and enrichment approaches to increase the diversity of isolated CRB. From the locations surveyed, we selected 30 CRB for further characterization. These isolates were identified as members of the genera Aeromonas, Enterobacter, Enterococcus, Paenibacillus, Pseudomonas, Sphingobacterium, and Stenotrophomonas. These isolates were resistant to carbapenems, other β-lactams, and often to other antibiotics (tetracycline, gentamicin, or ciprofloxacin). We also found that nine isolates belonging to the genera Aeromonas, Enterobacter (blaIMI-2), and Stenotrophomonas (blaL1) produced carbapenemases. Overall, our findings indicate that sampling different types of aquatic environments and combining different isolation approaches increase the diversity of the environmental CRB obtained. Moreover, our study supports the increasingly recognized role of natural water systems as an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including bacteria carrying carbapenemase genes.
Collapse
Affiliation(s)
| | | | | | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
5
|
Curcic J, Dinic M, Novovic K, Vasiljevic Z, Kojic M, Jovcic B, Malesevic M. A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. Int J Biol Macromol 2024; 264:130421. [PMID: 38423425 DOI: 10.1016/j.ijbiomac.2024.130421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.
Collapse
Affiliation(s)
- Jovana Curcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Miroslav Dinic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Katarina Novovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Zorica Vasiljevic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Radoja Dakića 8, 11070 Belgrade, Serbia
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 448, 11042 Belgrade, Serbia
| | - Branko Jovcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Milka Malesevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| |
Collapse
|
6
|
Bhaumik R, Aungkur NZ, Anderson GG. A guide to Stenotrophomonas maltophilia virulence capabilities, as we currently understand them. Front Cell Infect Microbiol 2024; 13:1322853. [PMID: 38274738 PMCID: PMC10808757 DOI: 10.3389/fcimb.2023.1322853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
The Gram-negative pathogen Stenotrophomonas maltophilia causes a wide range of human infections. It causes particularly serious lung infections in individuals with cystic fibrosis, leading to high mortality rates. This pathogen is resistant to most known antibiotics and harbors a plethora of virulence factors, including lytic enzymes and serine proteases, that cause acute infection in host organisms. S. maltophilia also establishes chronic infections through biofilm formation. The biofilm environment protects the bacteria from external threats and harsh conditions and is therefore vital for the long-term pathogenesis of the microbe. While studies have identified several genes that mediate S. maltophilia's initial colonization and biofilm formation, the cascade of events initiated by these factors is poorly understood. Consequently, understanding these and other virulence factors can yield exciting new targets for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Gregory G. Anderson
- Department of Biology, Purdue School of Science, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
7
|
Dalazen G, Sellera FP, Fuentes-Castillo D, Sano E, Fontana H, Cardoso B, Esposito F, Silveira LF, Matushima ER, Lincopan N. Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia. Curr Microbiol 2023; 81:20. [PMID: 38008776 DOI: 10.1007/s00284-023-03532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum β-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.
Collapse
Affiliation(s)
- Gislaine Dalazen
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fábio Parra Sellera
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Luis Fábio Silveira
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Eliana Reiko Matushima
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Dai T, Xiao Z, Shan D, Moreno A, Li H, Prakash M, Banaei N, Rao J. Culture-Independent Multiplexed Detection of Drug-Resistant Bacteria Using Surface-Enhanced Raman Scattering. ACS Sens 2023; 8:3264-3271. [PMID: 37506677 DOI: 10.1021/acssensors.3c01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The rapid and accurate detection of bacteria resistance to β-lactam antibiotics is critical to inform optimal treatment and prevent overprescription of potent antibiotics. Here, we present a fast, culture-independent method for the detection of extended-spectrum β-lactamases (ESBLs) using surface-enhanced Raman scattering (SERS). The method uses Raman probes that release sulfur-based Raman active molecules in the presence of β-lactamases. The released thiol molecules can be captured by gold nanoparticles, leading to amplified Raman signals. A broad-spectrum cephalosporin probe R1G and an ESBL-specific probe R3G are designed to enable duplex detection of bacteria expressing broad-spectrum β-lactamases or ESBLs with a detection limit of 103 cfu/mL in 1 h incubation. Combined with a portable Raman microscope, our culturing-free SERS assay has reduced screening time to 1.5 h without compromising sensitivity and specificity.
Collapse
Affiliation(s)
- Tingting Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhen Xiao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Dingying Shan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California 94304, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
9
|
Su BA, Chen CC, Chen HJ, Lai HY, Tsai CH, Lai CC, Tang HJ, Chao CM. In vitro activities of antimicrobial combinations against planktonic and biofilm forms of Stenotrophomonas maltophilia. Front Microbiol 2023; 14:1186669. [PMID: 37408643 PMCID: PMC10319008 DOI: 10.3389/fmicb.2023.1186669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Objectives To investigate the in vitro activity of antibiotic combinations against Stenotrophomonas maltophilia isolates and their associated biofilms. Methods Thirty-two S. maltophilia clinical isolates with at least twenty-five different pulsotypes were tested. The antibacterial activity of various antibiotic combinations against seven randomly selected planktonic and biofilm-embedded S. maltophilia strains with strong biofilm formation was assessed using broth methods. Extraction of bacterial genomic DNA and PCR detection of antibiotic resistance and biofilm-related genes were also performed. Results The susceptibility rates of levofloxacin (LVX), fosfomycin (FOS), tigecycline (TGC) and sulfamethoxazole-trimethoprim (SXT) against 32 S. maltophilia isolates were 56.3, 71.9, 71.9 and 90.6%, respectively. Twenty-eight isolates were detected with strong biofilm formation. Antibiotic combinations, including aztreonam-clavulanic (ATM-CLA) with LVX, ceftazidime-avibactam (CZA) with LVX and SXT with TGC, exhibited potent inhibitory activity against these isolates with strong biofilm formation. The antibiotic resistance phenotype might not be fully caused by the common antibiotic-resistance or biofilm-formation gene. Conclusion S. maltophilia remained resistant to most antibiotics, including LVX and β-lactam/β-lactamases; however, TGC, FOS and SXT still exhibited potent activity. Although all tested S. maltophilia isolates exhibited moderate-to-strong biofilm formation, combination therapies, especially ATM-CLA with LVX, CZA with LVX and SXT with TGC, exhibited a higher inhibitory activity for these isolates.
Collapse
Affiliation(s)
- Bo-An Su
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Hung-Jui Chen
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Yu Lai
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Hung Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Taiwan
| |
Collapse
|
10
|
Hinchliffe P, Calvopiña K, Rabe P, Mojica MF, Schofield CJ, Dmitrienko GI, Bonomo RA, Vila AJ, Spencer J. Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: Crystallography supports stereoselective binding of cephem/carbapenem products. J Biol Chem 2023; 299:104606. [PMID: 36924941 PMCID: PMC10148155 DOI: 10.1016/j.jbc.2023.104606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Gary I Dmitrienko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert A Bonomo
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alejandro J Vila
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
11
|
Genotypic Diversity, Antibiotic Resistance, and Virulence Phenotypes of Stenotrophomonas maltophilia Clinical Isolates from a Thai University Hospital Setting. Antibiotics (Basel) 2023; 12:antibiotics12020410. [PMID: 36830320 PMCID: PMC9951947 DOI: 10.3390/antibiotics12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant organism that is emerging as an important opportunistic pathogen. Despite this, information on the epidemiology and characteristics of this bacterium, especially in Thailand, is rarely found. This study aimed to determine the demographic, genotypic, and phenotypic characteristics of S. maltophilia isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand. A total of 200 S. maltophilia isolates were collected from four types of clinical specimens from 2015 to 2016 and most of the isolates were from sputum. In terms of clinical characteristics, male and aged patients were more susceptible to an S. maltophilia infection. The majority of included patients had underlying diseases and were hospitalized with associated invasive procedures. The antimicrobial resistance profiles of S. maltophilia isolates showed the highest frequency of resistance to ceftazidime and the lower frequency of resistance to chloramphenicol, levofloxacin, trimethoprim/sulfamethoxazole (TMP/SMX), and no resistance to minocycline. The predominant antibiotic resistance genes among the 200 isolates were the smeF gene (91.5%), followed by blaL1 and blaL2 genes (43% and 10%), respectively. Other antibiotic resistance genes detected were floR (8.5%), intI1 (7%), sul1 (6%), mfsA (4%) and sul2 (2%). Most S. maltophilia isolates could produce biofilm and could swim in a semisolid medium, however, none of the isolates could swarm. All isolates were positive for hemolysin production, whereas 91.5% and 22.5% of isolates could release protease and lipase enzymes, respectively. In MLST analysis, a high degree of genetic diversity was observed among the 200 S. maltophilia isolates. One hundred and forty-one sequence types (STs), including 130 novel STs, were identified and categorized into six different clonal complex groups. The differences in drug resistance patterns and genetic profiles exhibited various phenotypes of biofilm formation, motility, toxin, and enzymes production which support this bacterium in its virulence and pathogenicity. This study reviewed the characteristics of genotypes and phenotypes of S. maltophilia from Thailand which is necessary for the control and prevention of S. maltophilia local spreading.
Collapse
|
12
|
Min J, Kim P, Yun S, Hong M, Park W. Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:710-726. [PMID: 35906519 DOI: 10.1007/s11356-022-22279-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 104-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, blaL1, blaIND-3, and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs.
Collapse
Affiliation(s)
- Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sohyeon Yun
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Blanchard AC, Waters VJ. Opportunistic Pathogens in Cystic Fibrosis: Epidemiology and Pathogenesis of Lung Infection. J Pediatric Infect Dis Soc 2022; 11:S3-S12. [PMID: 36069904 DOI: 10.1093/jpids/piac052] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-shortening genetic diseases in Caucasians. Due to abnormal accumulation of mucus, respiratory failure caused by chronic infections is the leading cause of mortality in this patient population. The microbiology of these respiratory infections includes a distinct set of opportunistic pathogens, including Pseudomonas aeruginosa, Burkholderia spp., Achromobacter spp., Stenotrophomonas maltophilia, anaerobes, nontuberculous mycobacteria, and fungi. In recent years, culture-independent methods have shown the polymicrobial nature of lung infections, and the dynamics of microbial communities. The unique environment of the CF airway predisposes to infections caused by opportunistic pathogens. In this review, we will highlight how the epidemiology and role in disease of these pathogens in CF differ from that in individuals with other medical conditions. Infectious diseases (ID) physicians should be aware of these differences and the specific characteristics of infections associated with CF.
Collapse
Affiliation(s)
- Ana C Blanchard
- Department of Pediatrics, Division of Infectious Diseases, CHU Sainte-Justine, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada
| | - Valerie J Waters
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|
14
|
Yamada K, Yoshizumi A, Nagasawa T, Aoki K, Sasaki M, Murakami H, Morita T, Ishii Y, Tateda K. Molecular and biochemical characterization of novel PAM-like MBL variants, PAM-2 and PAM-3, from clinical isolates of Pseudomonas tohonis. J Antimicrob Chemother 2022; 77:2414-2418. [PMID: 35786775 DOI: 10.1093/jac/dkac210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is no comprehensive study on PAM-like MBLs. OBJECTIVES Our aim was to characterize novel B3 MBL variants, PAM-2 and PAM-3, from Pseudomonas tohonis clinical isolates. METHODS We evaluated the antimicrobial susceptibility and the MBL gene composition of three novel P. tohonis clinical isolates identified at a Japanese hospital, using the broth microdilution method and WGS, respectively. We characterized the PAM-2 and PAM-3 proteins using recombinant protein expression and biochemical evaluations. RESULTS Low carbapenem MICs (meropenem MIC = 0.125-1 mg/L) were observed for all three P. tohonis isolates; however, the isolates produced MBLs. We identified blaPAM-2 and blaPAM-3 as potential genes, belonging to a novel subclass of B3 MBLs. Their genomic sequence was similar to that of blaPAM-1 from Pseudomonas alcaligenes. PAM-2 and PAM-3 comprised 287 amino acids and exhibited 90% amino acid identity with PAM-1, 73% identity with POM-1 from Pseudomonas otitidis and 61% identity with L1 from Stenotrophomonas maltophilia. Biochemical evaluations of recombinant PAM-2 and PAM-3 revealed similar kcat/Km ratios and demonstrated catalytic activity against all the tested β-lactams, except for aztreonam. In addition, the kcat/Km ratio for imipenem was 40-fold lower than that for meropenem. CONCLUSIONS P. tohonis harbours a species-specific PAM-family MBL gene. This enzyme has higher hydrolytic activity against meropenem compared with that against imipenem.
Collapse
Affiliation(s)
- Kageto Yamada
- Department of Clinical Laboratory, Toho University Omori Medical Centre, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan.,Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ayumi Yoshizumi
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratory, Toho University Omori Medical Centre, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan.,Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Hinako Murakami
- Department of Clinical Laboratory, Toho University Omori Medical Centre, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University School of Medicine, 5-21-6 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
15
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Richard D, Roumagnac P, Pruvost O, Lefeuvre P. A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Mol Ecol 2022; 32:2660-2673. [PMID: 35593155 DOI: 10.1111/mec.16536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid mediated adaptation was reported. We searched for homologues of plasmid gene sequences from this family in all the diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the Lysobacteraceae family, taxonomy strongly defined the boundaries of these exchanges, that only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically close taxon. We detected multiple plasmid-chromosome gene transfers, among which the otherwise known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped sub-structures of isolates colonizing specific ecological niches and harboring specific types of resistance genes. Genes associated to pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding on how this reservoir fuels the emergence and the spread of genes amongst this family and its potential impact on plant, animal and human health.
Collapse
Affiliation(s)
- D Richard
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France.,ANSES, Plant Health Laboratory, F-97410 St Pierre, Réunion, France.,Université de La Réunion, La Réunion, France
| | - P Roumagnac
- Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - O Pruvost
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| | - P Lefeuvre
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| |
Collapse
|
17
|
Fluit AC, Bayjanov JR, Aguilar MD, Cantón R, Elborn S, Tunney MM, Scharringa J, Benaissa-Trouw BJ, Ekkelenkamp MB. Taxonomic position, antibiotic resistance and virulence factor production by Stenotrophomonas isolates from patients with cystic fibrosis and other chronic respiratory infections. BMC Microbiol 2022; 22:129. [PMID: 35549675 PMCID: PMC9097388 DOI: 10.1186/s12866-022-02466-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential pathogenic role of Stenotrophomonas maltophilia in lung disease and in particular in cystic fibrosis is unclear. To develop further understanding of the biology of this taxa, the taxonomic position, antibiotic resistance and virulence factors of S. maltophilia isolates from patients with chronic lung disease were studied. RESULTS A total of 111 isolates recovered between 2003 and 2016 from respiratory samples from patients in five different countries were included. Based on a cut-off of 95%, analysis of average nucleotide identity by BLAST (ANIb) showed that the 111 isolates identified as S. maltophilia by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) belonged to S. maltophilia (n = 65), S. pavanii (n = 6) and 13 putative novel species (n = 40), which each included 1-5 isolates; these groupings coincided with the results of the 16S rDNA analysis, and the L1 and L2 ß-lactamase Neighbor-Joining phylogeny. Chromosomally encoded aminoglycoside resistance was identified in all S. maltophilia and S. pavani isolates, while acquired antibiotic resistance genes were present in only a few isolates. Nevertheless, phenotypic resistance levels against commonly used antibiotics, determined by standard broth microbroth dilution, were high. Although putative virulence genes were present in all isolates, the percentage of positive isolates varied. The Xps II secretion system responsible for the secretion of the StmPr1-3 proteases was mainly limited to isolates identified as S. maltophilia based on ANIb, but no correlation with phenotypic expression of protease activity was found. The RPF two-component quorum sensing system involved in virulence and antibiotic resistance expression has two main variants with one variant lacking 190 amino acids in the sensing region. CONCLUSIONS The putative novel Stenotrophomonas species recovered from patient samples and identified by MALDI-TOF/MS as S. maltophilia, differed from S. maltophilia in resistance and virulence genes, and therefore possibly in pathogenicity. Revision of the Stenotrophomonas taxonomy is needed in order to reliably identify strains within the genus and elucidate the role of the different species in disease.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands.
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - María Díez Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain.,Present Address: Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Stuart Elborn
- Queen's University Belfast, School of Pharmacy, Belfast, UK
| | | | - Jelle Scharringa
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| |
Collapse
|
18
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
19
|
Nair AP, Sasi S, Al Maslamani M, Al-khal A, Chacko K, Deshmukh A, Abukhattab M. Clinical and Epidemiological Characteristics of Stenotrophomonas maltophilia Associated Lower Respiratory Tract Infections in Qatar: A Retrospective Study. Cureus 2022; 14:e23263. [PMID: 35449666 PMCID: PMC9013242 DOI: 10.7759/cureus.23263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Stenotrophomonas maltophilia is a rapidly emerging nosocomial pathogen with intrinsic or acquired resistance mechanisms to several antibiotic classes. It can cause life-threatening opportunistic pneumonia, particularly among hospitalized patients. Incidence of infections by S. maltophilia has been reported as 0.07-0.4% of hospital discharges, but its mortality is 20 -60%. This is the first study from Qatar indexing the clinical and epidemiological characteristics and antibiotic susceptibility of S. maltophilia. Materials and methods This retrospective descriptive epidemiological study was conducted in 6 tertiary care hospitals under Hamad Medical Corporation in Doha, Qatar, analyzing inpatient respiratory isolates of S. maltophilia during 2016-17. Out-patients, children below 14 years, and non-respiratory samples except blood cultures in patients with pneumonia were excluded. Clinical records were reviewed to identify possible risk factors. Infection and colonization were identified using the Centers for Disease Control and Prevention (CDC) algorithm for clinically defined pneumonia and statistically analyzed using the chi-square test and Pearson's correlation. Results S. maltophilia was isolated from 2.07% (317/15312) of all respiratory samples received in the microbiology lab during our study period. Three hundred seventeen patients studied had a mean age of 60 ± 20 years, and 68% were men. Most of the isolates were from sputum (179), followed by tracheal aspirate (82) and bronchoscopy (42). Fourteen blood culture samples from patients diagnosed with pneumonia were also included. 67% were hospitalized for more than two weeks, 39.1% were on mechanical ventilators, and 88% had received a broad-spectrum antibiotic before the event. 29.1% were deemed to have an infection and 70.9% colonization. Incidence of infection in those with Charlson’s Co-morbidity Index (CCI) ≥ 3 was 36.5% compared to 24.2% in those with CCI < 3 (Relative Risk (RR)=1.52; 95% CI: 1.04,2.18; p=0.01). Patients with recent chemotherapy, immunosuppressant, or steroid use had a significantly higher infection risk than those without (69.2% v/s 23.3% RR=2.96; 95% CI:2.2,3.9; p<0.005). The most common symptoms in patients with infection were fever (96%) and expectoration (61.9%). The most common radiological finding was lobar consolidation (71.6%). Mean CRP and procalcitonin were 106.5±15.5 mg/l and 12.3 ± 14 ng/ml. Overall mortality was 16.3%. Patients on mechanical ventilator with IBMP-10 score ≥ 2 had 22.8% mortality compared to 5.7% in those with score < 2 (RR=3.9;95%CI:0.9,16.6; p<0.015). As per The US Clinical and Laboratory Standards Institute (CSLI) breakpoint values, Trimethoprim-Sulfamethoxazole (TMP-SMX) showed the highest sensitivity (97.8%), followed by levofloxacin (71.6%). 0.3% of samples were pan-drug resistant. Conclusions S. maltophilia is a frequent nosocomial colonizer, but it can cause nosocomial pneumonia in almost one-third of cases, specifically in immunocompromised and patients with CCI ≥ 3 with a high risk of mortality due to ventilator-associated pneumonia (VAP) in those with IBMP-10 ≥ 2. Prolonged hospital stay is a risk factor for colonization by S. maltophilia, while recent chemotherapy, immunosuppressant, or steroid use are risk factors for hospital-acquired pneumonia due to S. maltophilia. TMP-SMX and levofloxacin are the only reliable agents for monotherapy of respiratory infections due to S. maltophilia in Qatar.
Collapse
|
20
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
21
|
Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Diagnostics (Basel) 2021; 11:diagnostics11122287. [PMID: 34943524 PMCID: PMC8700525 DOI: 10.3390/diagnostics11122287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.
Collapse
|
22
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
23
|
Dong X, Xue P, Ma X, Bai Y, Shi P, Bian L. Recognition and binding of FEZ-1 from Legionella with penicillin V and cefoxitin by fluorescence spectra in combination with molecular dynamics simulation. Enzyme Microb Technol 2021; 149:109819. [PMID: 34311875 DOI: 10.1016/j.enzmictec.2021.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The recognition and interaction of FEZ-1 from Legionella (FEZ-1) with penicillin V(PV) and cefoxitin(CFX) were investigated using fluorescence spectra in combination with molecular dynamics simulation (MD). The results revealed that the CFX bind with FEZ-1 in stronger interaction and induced larger conformational change than PV, despite all being forced by the electrostatic interaction and along with the changing in an environment of amino acid residues as well as the polypeptide skeleton inside the FEZ-1. Moreover, only the loop1, loop2, and N-terminal were observed locating near the binding pocket of FEZ-1, consisting of a flexible "gate-like" zone with better adaptability that controlled the entrance of antibiotic into the pocket by allowing the newly introduced antibiotic to match the pocket better through the conformational changes of these three substructures in the binding procedure. The current study may provide some valuable information on the antibiotic hydrolytic process by metallo-beta-lactamase and thus the references for the development of new antibiotics for super bacteria.
Collapse
Affiliation(s)
- Xiaoting Dong
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xian Ma
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yifan Bai
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Penghui Shi
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
24
|
Behera B. Stenotrophomonas maltophilia, an emerging pathogen in newborns: Three case reports and a review of the literature. World J Clin Infect Dis 2021; 11:11-18. [DOI: 10.5495/wjcid.v11.i1.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia (S. maltophilia) is a rare cause of neonatal sepsis with significant morbidity and mortality and has extensive resistance to several antibiotics leaving few options for antimicrobial therapy. Only a few cases have been reported in neonates from developing countries. We report three cases of critically ill, extramural babies with neonatal S. maltophilia sepsis. All three babies recovered and were discharged.
CASE SUMMARY All three cases were term extramural babies, who were critically ill at the time of presentation at our neonatal intensive care unit. They had features of multiorgan dysfunction at admission. Blood culture was positive for S. maltophilia in two babies and one had a positive tracheal aspirate culture. The babies were treated according to the antibiogram available. They recovered and were subsequently discharged.
CONCLUSION Although various authors have reported S. maltophilia in pediatric and adult populations, only a few cases have been reported in the newborn period and this infection is even rarer in developing countries. Although S. maltophilia infection has a grave outcome, our three babies were successfully treated and subsequently discharged.
Collapse
Affiliation(s)
- Bijaylaxmi Behera
- Department of Pediatrics & Neonatology, Chaitanya Hospital, Chandigarh 160044, India
| |
Collapse
|
25
|
Cooper AL, Carter C, McLeod H, Wright M, Sritharan P, Tamber S, Wong A, Carrillo CD, Blais BW. Detection of carbapenem-resistance genes in bacteria isolated from wastewater in Ontario. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial carbapenem resistance is a major public health concern since these antimicrobials are often the last resort to treat serious human infections. To evaluate methodologies for detection of carbapenem resistance, carbapenem-tolerant bacteria were isolated from wastewater treatment plants in Toronto, Ottawa, and Arnprior, Ontario. A total of 135 carbapenem-tolerant bacteria were recovered. Polymerase chain reaction (PCR) indicated the presence of carbapenem hydrolysing enzymes KPC ( n = 10), GES ( n = 5), VIM ( n = 7), and IMP ( n = 1), and β-lactamases TEM ( n = 7), PER ( n = 1), and OXA-variants ( n = 16). A subset of 46 isolates were sequenced and analysed using ResFinder and CARD-RGI. Both programs detected carbapenem resistance genes in 35 sequenced isolates and antimicrobial resistance genes (ARGs) conferring resistance to multiple class of other antibiotics. Where β-lactamase resistance genes were not initially identified, lowering the thresholds for ARG detection enabled identification of closely related β-lactamases. However, no known carbapenem resistance genes were found in seven sequenced Pseudomonas spp. isolates. Also of note was a multi-drug-resistant Klebsiella pneumoniae isolate from Ottawa, which harboured resistance to seven antimicrobial classes including β-lactams. These results highlight the diversity of genes encoding carbapenem resistance in Ontario and the utility of whole genome sequencing over PCR for ARG detection where resistance may result from an assortment of genes.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Cassandra Carter
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Hana McLeod
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Marie Wright
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Prithika Sritharan
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Catherine D. Carrillo
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
| | - Burton W. Blais
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
26
|
Activity of Aztreonam in Combination with Avibactam, Clavulanate, Relebactam, and Vaborbactam against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2020; 64:AAC.00297-20. [PMID: 32928733 DOI: 10.1128/aac.00297-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
The intrinsic L1 metallo- and L2 serine-β-lactamases in Stenotrophomonas maltophilia make it naturally multidrug resistant and difficult to treat. There is a need to identify novel treatment strategies for this pathogen, especially against isolates resistant to first-line agents. Aztreonam in combination with avibactam has demonstrated potential, although data on other aztreonam-β-lactamase inhibitor (BLI) combinations are lacking. Additionally, molecular mechanisms for reduced susceptibility to these combinations have not been explored. The objectives of this study were to evaluate and compare the in vitro activities and to understand the mechanisms of resistance to aztreonam in combination with avibactam, clavulanate, relebactam, and vaborbactam against S. maltophilia A panel of 47 clinical S. maltophilia strains nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole were tested against each aztreonam-BLI combination via broth microdilution, and 6 isolates were then evaluated in time-kill analyses. Three isolates with various aztreonam-BLI MICs were subjected to whole-genome sequencing and quantitative reverse transcriptase PCR. Avibactam restored aztreonam susceptibility in 98% of aztreonam-resistant isolates, compared to 61, 71, and 15% with clavulanate, relebactam, and vaborbactam, respectively. The addition of avibactam to aztreonam resulted in a ≥2-log10-CFU/ml decrease at 24 h versus aztreonam alone against 5/6 isolates compared to 1/6 with clavulanate, 4/6 with relebactam, and 2/6 with vaborbactam. Molecular analyses revealed that decreased susceptibility to aztreonam-avibactam was associated with increased expression of genes encoding L1 and L2, as well as the efflux pump (smeABC). Aztreonam-avibactam is the most promising BLI-combination against multidrug-resistant S. maltophilia Decreased susceptibility may be due to the combination of overexpressed β-lactamases and efflux pumps. Further studies evaluating this combination against S. maltophilia are warranted.
Collapse
|
27
|
Peters DL, McCutcheon JG, Dennis JJ. Characterization of Novel Broad-Host-Range Bacteriophage DLP3 Specific to Stenotrophomonas maltophilia as a Potential Therapeutic Agent. Front Microbiol 2020; 11:1358. [PMID: 32670234 PMCID: PMC7326821 DOI: 10.3389/fmicb.2020.01358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
A novel Siphoviridae phage specific to the bacterial species Stenotrophomonas maltophilia was isolated from a pristine soil sample and characterized as a second member of the newly established Delepquintavirus genus. Phage DLP3 possesses one of the broadest host ranges of any S. maltophilia phage yet characterized, infecting 22 of 29 S. maltophilia strains. DLP3 has a genome size of 96,852 bp and a G+C content of 58.4%, which is significantly lower than S. maltophilia host strain D1571 (G+C content of 66.9%). The DLP3 genome encodes 153 coding domain sequences covering 95% of the genome, including five tRNA genes with different specificities. The DLP3 lysogen exhibits a growth rate increase during the exponential phase of growth as compared to the wild type strain. DLP3 also encodes a functional erythromycin resistance protein, causing lysogenic conversion of the host D1571 strain. Although a temperate phage, DLP3 demonstrates excellent therapeutic potential because it exhibits a broad host range, infects host cells through the S. maltophilia type IV pilus, and exhibits lytic activity in vivo. Undesirable traits, such as its temperate lifecycle, can be eliminated using genetic techniques to produce a modified phage useful in the treatment of S. maltophilia bacterial infections.
Collapse
Affiliation(s)
- Danielle L Peters
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jaclyn G McCutcheon
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Comparative Whole-Genome Phylogeny of Animal, Environmental, and Human Strains Confirms the Genogroup Organization and Diversity of the Stenotrophomonas maltophilia Complex. Appl Environ Microbiol 2020; 86:AEM.02919-19. [PMID: 32198168 DOI: 10.1128/aem.02919-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans.IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored.
Collapse
|
29
|
Wang L, Zhou W, Cao Y, Yang C, Liu H, Chen T, Chen L. Characteristics of Stenotrophomonas maltophilia infection in children in Sichuan, China, from 2010 to 2017. Medicine (Baltimore) 2020; 99:e19250. [PMID: 32080131 PMCID: PMC7034668 DOI: 10.1097/md.0000000000019250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is an important nosocomial bacterial pathogen. However, the clinical features of children with S. maltophilia infection, the predisposing factors, and the antibiotic susceptibility of the bacteria have not been fully evaluated.In this study, the data of children with S. maltophilia infection from the West China Second University Hospital of Sichuan University (Chengdu, China) between July 2010 and October 2017 were collected and analyzed. The clinical features of enrolled children, the predisposing factors, and the antibiotic susceptibility were reported.In total, infection of S. maltophilia was identified in 128 patients. Most of these patients were under 1 year old (67.2%) and were mainly diagnosed as pneumonia (69%). A large proportion had underlying diseases (45.3%), received immunosuppressive therapy (53.1%), had undergone invasive operations (41.4%), had a history of carbapenem antibiotics use within 7 days before culture acquisition (54.7%), history of intensive care unit (ICU) hospitalization within previous 30 days (34.4%), and other risk factors. In particular, invasive operation (95% confidence interval [CI]: 1.125-14.324, P = .032), especially mechanical ventilation (95% CI: 1.277-20.469, P = .021), and ICU admission (95% CI: 1.743-22.956, P = .005) were independent risk factors for the children to develop severe S. maltophilia infection. As for antibiotic susceptibility, trimethoprim sulfamethoxazole (TMP-SMX), piperacillin tazobactam, ticarcillin clavulanate, and ceftazidime exhibited strong antibacterial activities against S. maltophilia, the susceptibility rates were 97.5%, 86.7%, 92.9%, and 81.5%, respectively.We report the clinical features of children with S. maltophilia infection, the predisposing factors and the antibiotic susceptibility. TMP-SMX can continue to be the first choice for the treatment of S. maltophilia infection. Piperacillin tazobactam, ticarcillin clavulanate, and the third generation cephalosporins can be used as alternative drugs.
Collapse
Affiliation(s)
- Lili Wang
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Wei Zhou
- Clinical Laboratory, West China Second University Hospital, Sichuan University
| | - Yang Cao
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University
| | - Chunsong Yang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Ting Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
30
|
Mojica MF, Rutter JD, Taracila M, Abriata LA, Fouts DE, Papp-Wallace KM, Walsh TJ, LiPuma JJ, Vila AJ, Bonomo RA. Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States. mBio 2019; 10:e00405-19. [PMID: 31266860 PMCID: PMC6606795 DOI: 10.1128/mbio.00405-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the "first-line" antibiotic to treat S. maltophilia Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen.IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D Rutter
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Magdalena Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Krisztina M Papp-Wallace
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Thomas J Walsh
- Transplantation Oncology Infectious Diseases Program, Weill Cornell Medical Center, New York, New York, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
31
|
Li J, Liu S, Fu J, Yin J, Zhao J, Zhong C, Cao G. Co-Occurrence of Colistin and Meropenem Resistance Determinants in a Stenotrophomonas Strain Isolated from Sewage Water. Microb Drug Resist 2019; 25:317-325. [DOI: 10.1089/mdr.2018.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuyan Liu
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
32
|
Harmon DE, Miranda OA, McCarley A, Eshaghian M, Carlson N, Ruiz C. Prevalence and characterization of carbapenem-resistant bacteria in water bodies in the Los Angeles-Southern California area. Microbiologyopen 2019; 8:e00692. [PMID: 29987921 PMCID: PMC6460273 DOI: 10.1002/mbo3.692] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/15/2023] Open
Abstract
Carbapenems are β-lactam antibiotics used in healthcare settings as last resort drugs to treat infections caused by antibiotic-resistant bacteria. Carbapenem-resistant bacteria are increasingly being isolated from healthcare facilities; however, little is known about their distribution or prevalence in the environment, especially in the United States, where their distribution in water environments from the West Coast has not been studied before. The aim of this study was to determine the prevalence of carbapenem-resistant bacteria and carbapenemase genes in water bodies from the Los Angeles area (California, USA). All samples that were analyzed contained carbapenem-resistant bacteria with a frequency of between 0.1 and 324 carbapenem-resistant cfu per 100 mls of water. We identified 76 carbapenem-resistant or -intermediate isolates, most of which were also resistant to noncarbapenem antibiotics, as different strains of Enterobacter asburiae, Aeromonas veronii, Cupriavidus gilardii, Pseudomonas, and Stenotrophomonas species. Of them, 52 isolates were carbapenemase-producers. Furthermore, PCR and sequence analysis to identify the carbapenemase gene of these carbapenemase-producing isolates revealed that all Enterobacter asburiae isolates had a blaIMI-2 gene 100% identical to the reference sequence, and all Stenotrophomonas maltophlia isolates had a blaL1 gene 83%-99% identical to the reference blaL1 . Our findings indicate that water environments in Southern California are an important reservoir of bacteria-resistant to carbapenems and other antibiotics, including bacteria carrying intrinsic and acquired carbapenemase genes.
Collapse
Affiliation(s)
- Dana E. Harmon
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| | - Osvaldo A. Miranda
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| | - Ashley McCarley
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| | - Michelle Eshaghian
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| | - Natasha Carlson
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| | - Cristian Ruiz
- Department of BiologyCalifornia State University NorthridgeNorthridgeCalifornia
| |
Collapse
|
33
|
Impacts of L1 Promoter Variation and L2 Clavulanate Susceptibility on Ticarcillin-Clavulanate Susceptibility of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2018; 62:AAC.01222-18. [PMID: 30150476 DOI: 10.1128/aac.01222-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Inducible expression of L1 and L2 β-lactamases is the principal mechanism responsible for β-lactam resistance in Stenotrophomonas maltophilia Ticarcillin-clavulanate (TIM) is one of the few effective β-lactams for S. maltophilia treatment. Clavulanate (CA) is a β-lactamase inhibitor that specifically targets class A, C, and D β-lactamases. In view of the presence of class B L1 β-lactamase, it is of interest to elucidate why TIM is valid for S. maltophilia treatment. The L1-L2 allelic variation and TIM susceptibilities of 22 clinical isolates were established. Based on L1 and L2 protein sequences and TIM susceptibility, three L1-based phylogenetic clusters (L1-A, L1-B, and L1-C) and three L2-based phylogenetic clusters (L2-A, L2-B1, and L2-B2) were classified. The contribution of each L1- and L2-based phylogenetic cluster to ticarcillin (TIC) and TIM susceptibility was investigated. All the L1s and L2s tested contributed to TIC resistance. The L1s tested were inert to CA; nevertheless, the sensitivities of L2s to CA were widely different. In addition, the genetic organizations upstream of the L1 gene varied greatly in these isolates. At least three different L1 promoter structures (K279a type, D457 type, and none) were found among the 22 isolates assayed. The differences in the L1 promoter structure had a great impact on TIC-induced L1 β-lactamase activities. Collectively, the L1 promoter activity in response to TIC challenge and L2 susceptibility to CA are critical factors determining TIM susceptibility in S. maltophilia.
Collapse
|
34
|
Singhal L, Kaur P, Gautam V. Stenotrophomonas maltophilia: From trivial to grievous. Indian J Med Microbiol 2018; 35:469-479. [PMID: 29405136 DOI: 10.4103/ijmm.ijmm_16_430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stenotrophomonas maltophilia, once regarded as an organism of low virulence, has evolved as a significant opportunistic pathogen causing severe human infections in both hospital and community settings, especially amongst highly debilitated patients. Globally, S. maltophilia ranks third amongst the four most common pathogenic non-fermenting Gram-negative bacilli (NFGNBs), others being Pseudomonas aeruginosa, Acinetobacter baumannii and Burkholderia cepacia complex (Bcc). The worth of accurate identification of S. maltophilia comes to the forefront as it needs to be differentiated from other NFGNBs such as Acinetobacter, P. aeruginosa and Bcc due to its inherently contrasting antibiotic susceptibility pattern. Consequently, its correct identification is essential as no single drug is amply effective against all NFGNBs, which hinders initiation of appropriate empirical treatment resulting in increased morbidity and mortality.
Collapse
Affiliation(s)
- Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Parvinder Kaur
- Department of Biotechnology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College, Bela, Ropar, Punjab, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
35
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
36
|
Wang Y, He T, Shen Z, Wu C. Antimicrobial Resistance in Stenotrophomonas spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0005-2017. [PMID: 29350131 PMCID: PMC11633551 DOI: 10.1128/microbiolspec.arba-0005-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria of the genus Stenotrophomonas are found throughout the environment, in close association with soil, sewage, and plants. Stenotrophomonas maltophilia, the first member of this genus, is the predominant species, observed in soil, water, plants, animals, and humans. It is also an opportunistic pathogen associated with the increased number of infections in both humans and animals in recent years. In this article, we summarize all Stenotrophomonas species (mainly S. maltophilia) isolated from animals and food products of animal origin and further distinguish all isolates based on antimicrobial susceptibility and resistance phenotypes. The various mechanisms of both intrinsic and acquired antimicrobial resistance, which were mainly identified in S. maltophilia isolates of nosocomial infections, have been classified as follows: multidrug efflux pumps; resistance to β-lactams, aminoglycosides, quinolones, trimethoprim-sulfamethoxazole, and phenicols; and alteration of lipopolysaccharide and two-component regulatory systems. The dissemination, coselection, and persistence of resistance determinants among S. maltophilia isolates have also been elaborated.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tao He
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
Markelova NN, Semenova EF. Sensitivity of nonfermentative gram-negative bacteria to essential oils of different origin. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717050150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Deredjian A, Alliot N, Blanchard L, Brothier E, Anane M, Cambier P, Jolivet C, Khelil MN, Nazaret S, Saby N, Thioulouse J, Favre-Bonté S. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res Microbiol 2016; 167:313-324. [PMID: 26774914 DOI: 10.1016/j.resmic.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/31/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022]
Abstract
The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples.
Collapse
Affiliation(s)
- Amélie Deredjian
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Nolwenn Alliot
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Laurine Blanchard
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Elisabeth Brothier
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Makram Anane
- Centre de Recherches et de Technologies des Eaux, Laboratoire Traitement et Recyclage des Eaux, LP 95, 2050, Hammam-Lif, Tunisia.
| | - Philippe Cambier
- INRA AgroParisTech, ECOSYS, 1 avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | - Claudy Jolivet
- INRA, Unité InfoSol, 2163 Avenue de la Pomme de Pin, 45075 Orléans, France.
| | | | - Sylvie Nazaret
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Nicolas Saby
- INRA, Unité InfoSol, 2163 Avenue de la Pomme de Pin, 45075 Orléans, France.
| | - Jean Thioulouse
- Université de Lyon, Université Lyon 1, CNRS UMR 5558 Biométrie et Biologie Evolutive, Villeurbanne cedex F-69622, France.
| | - Sabine Favre-Bonté
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| |
Collapse
|
39
|
Tacão M, Correia A, Henriques IS. Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms. Microb Drug Resist 2015; 21:497-506. [DOI: 10.1089/mdr.2015.0072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Marta Tacão
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
- Biology Department and iBiMED, University of Aveiro, Aveiro, Portugal
| | - António Correia
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
40
|
Ormerod KL, George NM, Fraser JA, Wainwright C, Hugenholtz P. Comparative genomics of non-pseudomonal bacterial species colonising paediatric cystic fibrosis patients. PeerJ 2015; 3:e1223. [PMID: 26401445 PMCID: PMC4579023 DOI: 10.7717/peerj.1223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
The genetic disorder cystic fibrosis is a life-limiting condition affecting ∼70,000 people worldwide. Targeted, early, treatment of the dominant infecting species, Pseudomonas aeruginosa, has improved patient outcomes; however, there is concern that other species are now stepping in to take its place. In addition, the necessarily long-term antibiotic therapy received by these patients may be providing a suitable environment for the emergence of antibiotic resistance. To investigate these issues, we employed whole-genome sequencing of 28 non-Pseudomonas bacterial strains isolated from three paediatric patients. We did not find any trend of increasing antibiotic resistance (either by mutation or lateral gene transfer) in these isolates in comparison with other examples of the same species. In addition, each isolate contained a virulence gene repertoire that was similar to other examples of the relevant species. These results support the impaired clearance of the CF lung not demanding extensive virulence for survival in this habitat. By analysing serial isolates of the same species we uncovered several examples of strain persistence. The same strain of Staphylococcus aureus persisted for nearly a year, despite administration of antibiotics to which it was shown to be sensitive. This is consistent with previous studies showing antibiotic therapy to be inadequate in cystic fibrosis patients, which may also explain the lack of increasing antibiotic resistance over time. Serial isolates of two naturally multi-drug resistant organisms, Achromobacter xylosoxidans and Stenotrophomonas maltophilia, revealed that while all S. maltophilia strains were unique, A. xylosoxidans persisted for nearly five years, making this a species of particular concern. The data generated by this study will assist in developing an understanding of the non-Pseudomonas species associated with cystic fibrosis.
Collapse
Affiliation(s)
- Kate L. Ormerod
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Narelle M. George
- Health Support Queensland, Department of Health, Queensland Government, Herston, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Claire Wainwright
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Respiratory and Sleep Medicine, Lady Cilento Children’s Hospital, South Brisbane, Queensland, Australia
- Queensland Children’s Medical Research Insitute, Herston, Queensland, Australia
| | - Philip Hugenholtz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Youenou B, Favre-Bonté S, Bodilis J, Brothier E, Dubost A, Muller D, Nazaret S. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol Evol 2015; 7:2484-505. [PMID: 26276674 PMCID: PMC4607518 DOI: 10.1093/gbe/evv161] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer.
Collapse
Affiliation(s)
- Benjamin Youenou
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sabine Favre-Bonté
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Josselin Bodilis
- EA4312 Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Mont-Saint-Aignan, France
| | - Elisabeth Brothier
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Daniel Muller
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sylvie Nazaret
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
42
|
Baier F, Chen J, Solomonson M, Strynadka NC, Tokuriki N. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes. ACS Chem Biol 2015; 10:1684-93. [PMID: 25856271 DOI: 10.1021/acschembio.5b00068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.
Collapse
Affiliation(s)
- Florian Baier
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Chen
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Solomonson
- Center
for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie C.J. Strynadka
- Center
for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nobuhiko Tokuriki
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 2015; 6:658. [PMID: 26175724 PMCID: PMC4485184 DOI: 10.3389/fmicb.2015.00658] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 12/31/2022] Open
Abstract
Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.
Collapse
Affiliation(s)
- María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
44
|
Yang Z, Liu W, Cui Q, Niu W, Li H, Zhao X, Wei X, Wang X, Huang S, Dong D, Lu S, Bai C, Li Y, Huang L, Yuan J. Prevalence and detection of Stenotrophomonas maltophilia carrying metallo-β-lactamase blaL1 in Beijing, China. Front Microbiol 2014; 5:692. [PMID: 25538701 PMCID: PMC4260517 DOI: 10.3389/fmicb.2014.00692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/22/2014] [Indexed: 11/13/2022] Open
Abstract
Intrinsic β-lactam resistance in Stenotrophomonas maltophilia is caused by bla L1 and/or bla L2, a kind of metallo-β-lactamase with a broad substrate spectrum including carbapenems. A rapid and sensitive molecular method for the detection of bla L1 in clinical samples is needed to guide therapeutic treatment. In present study, we first described a loop-mediated isothermal amplification (LAMP) method for the rapid detection of bla L1 in clinical samples by using two methods including a chromogenic method using calcein/Mn(2+) complex and the real-time turbidity monitoring to assess the reaction. Then dissemination of L1-producing S. maltophilia was investigated from ICU patients in three top hospital in Beijing, China. The results showed that both methods detected the target DNA within 60 min under isothermal conditions (65°C). The detection limit of LAMP was 3.79 pg/μl DNA, and its sensitivity 100-fold greater than that of conventional PCR. All 21 test strains except for S. maltophilia were negative for bla L1, indicative of the high-specificity of the primers for the bla L1. A total of 22 L1-positive isolates were identified for LAMP-based surveillance of bla L1 from 105 ICU patients with clinically suspected multi-resistant infections. The sequences of these bla L1 genes were conservative with only a few sites mutated, and the strains had highly resistant to β-lactam antibiotics. The MLST recovered that 22 strains belonged to seven different S. maltophilia sequence types (STs). Furthermore, co-occurrence of bla L1 and bla L2 genes were detected in all of isolates. Strikingly, S. maltophilia DCPS-01 was recovered to contain bla L1, bla L2, and bla NDM-1 genes, possessing an ability to hydrolyse all β-lactams antibiotics. Our data showed the diversity types of S. maltophilia carrying bla L1 and co-occurrence of many resistant genes in the clinical strains signal an ongoing and fast evolution of S. maltophilia resulting from their wide spread in the respiratory infections, and therefore will be difficult to control.
Collapse
Affiliation(s)
- Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Qian Cui
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China ; Department of Respiratory Diseases, Affiliated Hospital of Academy of Military Medical Sciences Beijing, China
| | - Wenkai Niu
- Department of Respiratory Diseases, Affiliated Hospital of Academy of Military Medical Sciences Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Sijing Lu
- Department of Respiration, The First Affiliated Hospital of Liaoning Medical University Jinzhou, China
| | - Changqing Bai
- Department of Respiratory Diseases, Affiliated Hospital of Academy of Military Medical Sciences Beijing, China
| | - Yan Li
- Department of Respiratory Diseases, Affiliated Hospital of Academy of Military Medical Sciences Beijing, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
45
|
Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis. J Clin Microbiol 2013; 52:425-37. [PMID: 24478471 DOI: 10.1128/jcm.02204-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As DNA sequencing becomes faster and cheaper, genomics-based approaches are being explored for their use in personalized diagnoses and treatments. Here, we provide a proof of principle for disease monitoring using personal metagenomic sequencing and traditional clinical microbiology by focusing on three adults with cystic fibrosis (CF). The CF lung is a dynamic environment that hosts a complex ecosystem composed of bacteria, viruses, and fungi that can vary in space and time. Not surprisingly, the microbiome data from the induced sputum samples we collected revealed a significant amount of species diversity not seen in routine clinical laboratory cultures. The relative abundances of several species changed as clinical treatment was altered, enabling the identification of the climax and attack communities that were proposed in an earlier work. All patient microbiomes encoded a diversity of mechanisms to resist antibiotics, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in CF patients. The metabolic potentials of these communities differed by the health status and recovery route of each patient. Thus, this pilot study provides an example of how metagenomic data might be used with clinical assessments for the development of treatments tailored to individual patients.
Collapse
|
46
|
Henriques IS, Araújo S, Azevedo JSN, Alves MS, Chouchani C, Pereira A, Correia A. Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. Microb Drug Resist 2012; 18:531-7. [PMID: 22663561 DOI: 10.1089/mdr.2012.0029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the prevalence and diversity of carbapenem-resistant bacteria (CRB) in untreated drinking water. Prevalence was estimated in plate count agar (PCA) and R2A media with or without antibiotics. Clonal relatedness of isolates was established by repetitive extragenic palindroitic (REP)-PCR. Phylogeny was based on the 16S rRNA gene. Antimicrobial susceptibility was assessed by disc diffusion methods. Genes encoding beta-lactamases and integrases were inspected by PCR. CRB ranged from 0.02% to 15.9% of cultivable bacteria, while ampicillin-resistant bacteria ranged from 1.5% to 31.4%. Carbapenem-resistant isolates affiliated with genera Stenotrophomonas, Pseudomonas, Janthinobacterium, Chryseobacterium, Sphingobacterium, Acidovorax, Caulobacter, Cupriavidus, and Sphingomonas. CRB were highly resistant to beta-lactams, but mostly susceptible to other classes. Transmissible beta-lactamase genes and integrase genes were not detected. The genus-specific bla(L1) was detected in 61% of the Stenotrophomonas isolates. Contrarily to what has been reported for extensively used antibiotics, low levels of carbapenem resistance were detected in untreated drinking water, often represented by intrinsically resistant genera. Production of chromosomal-encoded carbapenemases was the prevalent carbapenem resistance mechanism. Results suggest that the dissemination of anthropogenic-derived carbapenem resistance is at an early stage. This presents an opportunity to rationally develop monitoring strategies to identify dissemination routes and assess the impact of human actions in the environmental resistome.
Collapse
Affiliation(s)
- Isabel S Henriques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
47
|
Araoka H, Fujii T, Izutsu K, Kimura M, Nishida A, Ishiwata K, Nakano N, Tsuji M, Yamamoto H, Asano-Mori Y, Uchida N, Wake A, Taniguchi S, Yoneyama A. Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis 2012; 14:355-63. [PMID: 22283869 DOI: 10.1111/j.1399-3062.2011.00710.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/06/2011] [Accepted: 10/19/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pneumonia caused by Stenotrophomonas maltophilia is rare, but can be lethal in severely immunocompromised patients. However, its clinical course remains unclear. PATIENTS AND METHODS Patients with pneumonia caused by S. maltophilia in Toranomon Hospital (890 beds, Tokyo, Japan) were reviewed retrospectively between April 2006 and March 2010. RESULTS During the study period, 10 cases of S. maltophilia pneumonia were identified. Seven patients had acute myeloid leukemia, 2 had myelodysplastic syndrome, and 1 had malignant lymphoma. All patients developed symptoms after allogeneic hematopoietic stem cell transplantation (HSCT). Five patients received first cord blood transplantation (CBT), 4 patients received second CBT, and 1 patient received first peripheral blood stem cell transplantation (PBSCT). The overall incidence of S. maltophilia pneumonia among 508 patients who received HSCT during the period was 2.0%. The incidence was 0% (0/95) in patients after bone marrow transplantation, 0.8% (1/133) after PBSCT, and 3.2% (9/279) after CBT. Pneumonia developed a median of 13.5 days (range, 6-40) after transplantation. At onset, the median white blood cell count was 10/μL (range, 10-1900), and the median neutrophil count was 0/μL (range, 0-1720). In all patients, S. maltophilia bacteremia developed with bloody sputum or hemoptysis. The 28-day mortality rate was 100%; the median survival after onset of pneumonia was 2 days (range, 1-10). CONCLUSIONS Hemorrhagic S. maltophilia pneumonia rapidly progresses and is fatal in patients with hematologic malignancy. Attention should be particularly paid to the neutropenic phase early after HSCT or prolonged neutropenia due to engraftment failure. A prompt trimethoprim-sulfamethoxazole-based multidrug combination regimen should be considered to rescue suspected cases of S. maltophilia pneumonia in these severely immunosuppressed patients.
Collapse
Affiliation(s)
- H Araoka
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 2012; 3:18. [PMID: 22303296 PMCID: PMC3266646 DOI: 10.3389/fmicb.2012.00018] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
The environment, and especially freshwater, constitutes a reactor where the evolution and the rise of new resistances occur. In water bodies such as waste water effluents, lakes, and rivers or streams, bacteria from different sources, e.g., urban, industrial, and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: first, the contamination of water by antibiotics or other pollutants lead to the rise of resistances due to selection processes, for instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. We assume that further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to elucidate the link between environmental pollution by anthropogenic pressures and emergence of antibiotic resistances. Only an integrated vision of these two aspects can provide elements to assess the risk of spread of antibiotic resistances via water bodies and suggest, in this context, solutions for this urgent health issue.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute of Hydrobiology, Department of Hydrosciences, Technical University Dresden Dresden, Germany
| | | | | |
Collapse
|
49
|
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.
Collapse
Affiliation(s)
- Joanna S Brooke
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA.
| |
Collapse
|
50
|
Alouache S, Kada M, Messai Y, Estepa V, Torres C, Bakour R. Antibiotic resistance and extended-spectrum β-lactamases in isolated bacteria from seawater of Algiers beaches (Algeria). Microbes Environ 2011; 27:80-6. [PMID: 22095134 PMCID: PMC4036028 DOI: 10.1264/jsme2.me11266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The aim of the study was to evaluate bacterial antibiotic resistance in seawater from four beaches in Algiers. The most significant resistance rates were observed for amoxicillin and ticarcillin, whereas they were relatively low for ceftazidime, cefotaxime and imipenem. According to sampling sites, the highest resistance rates were recorded for 2 sites subjected to chemical and microbiological inputs (amoxicillin, 43% and 52%; ticarcillin, 19.6% and 47.7%), and for 2 sites relatively preserved from anthropogenic influence, resistance rates were lowest (amoxicillin, 1.5% and 16%; ticarcillin, 0.8% and 2.6%). Thirty-four bacteria resistant to imipenem (n=14) or cefotaxime (n=20) were identified as Pseudomonas aeruginosa (n=15), Pseudomonas fluorescens (7), Stenotrophomonas maltophilia (4), Burkholderia cepacia (2), Bordetella sp. (1), Pantoea sp. (1), Acinetobacter baumannii (1), Chryseomonas luteola (1), Ochrobactrum anthropi (1) and Escherichia coli (1). Screening for extended spectrum β-lactamase showed the presence of CTX-M-15 β-lactamase in the E. coli isolate, and the encoding gene was transferable in association with the IncI1 plasmid of about 50 kbp. Insertion sequence ISEcp1B was located upstream of the CTX-M-15 gene. This work showed a significant level of resistance to antibiotics, mainly among environmental saprophytic bacteria. Transmissible CTX-M-15 was detected in E. coli; this may mean that contamination of the environment by resistant bacteria may cause the spread of resistance genes.
Collapse
Affiliation(s)
- Souhila Alouache
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari-Boumédiène, Alger, Algeria
| | | | | | | | | | | |
Collapse
|