1
|
Yasmin S, Ansari MY. A detailed examination of coronavirus disease 2019 (COVID-19): Covering past and future perspectives. Microb Pathog 2025; 203:107398. [PMID: 39986548 DOI: 10.1016/j.micpath.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The COVID-19 disease has spread rapidly across the world within just six months, affecting 169 million people and causing 3.5 million deaths globally (2021). The most affected countries include the USA, Brazil, India, and several European countries such as the UK and Russia. Healthcare professionals face new challenges in finding better ways to manage patients and save lives. In this regard, more comprehensive research is needed, including genomic and proteomic studies, personalized medicines and the design of suitable treatments. However, finding novel molecular entities (NME) using a standard or de novo strategy to drug development is a time-consuming and costly process. Another alternate strategy is discovering new therapeutic uses for old/existing/available medications, known as drug repurposing. There are a variety of computational repurposing methodologies, and some of them have been used to counter the coronavirus disease pandemic of 2019 (COVID-19). This review article compiles recently published data on the origin, transmission, pathogenesis, diagnosis, and management of the coronavirus by drug repurposing and vaccine development approach. We have attempted to screen probable drugs in clinical trials by using literature survey. This systematic review aims to create priorities for future research of drugs repurposed and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi, Uttar Pradesh (U.P.) 241124, India.
| |
Collapse
|
2
|
Luk TY, Yim LY, Zhou R, Mo Y, Huang H, Zhao M, Dai J, Lau TTK, Huang X, Lui GCY, Yuen KY, Chan JFW, Cheng ASL, Chen Z, Chu H. BRD9 functions as an HIV-1 latency regulatory factor. Proc Natl Acad Sci U S A 2025; 122:e2418467122. [PMID: 40402245 DOI: 10.1073/pnas.2418467122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/15/2025] [Indexed: 05/23/2025] Open
Abstract
A major challenge for HIV type 1 (HIV-1) cure is the presence of viral latent reservoirs. The "Shock & Kill" strategy involves the combined use of latency reversal agents (LRA) and antiretroviral treatment (ART) to reactivate HIV-1 latent reservoirs, followed by elimination of infected cells. However, current LRAs are insufficient in fully reactivating the latent reservoirs. Therefore, investigation on novel HIV-1 latency regulators will be crucial to the success of HIV-1 cure research. Here, we identify bromodomain-containing protein 9 (BRD9) as an HIV-1 latency regulator. BRD9 inhibition induces HIV-1 latency reactivation in T cell lines, human resting memory CD4+ T cells, and PBMCs derived from people living with HIV-1 (PWH) on ART. BRD9 inhibition, gene depletion, and protein degradation consistently reactivate HIV-1 latency. Moreover, BRD9 inhibition synergizes with BRD4 inhibition in inducing HIV-1 production. Mechanistically, BRD9 binds to HIV-1 LTR promoter and competes with HIV-1 Tat protein for binding to the HIV-1 genome. Additionally, our integrated CUT&RUN DNA sequencing, transcriptomics, and pharmacological analysis revealed downstream host targets of BRD9, including ATAD2 and MTHFD2, that modulate HIV-1 latency.
Collapse
Affiliation(s)
- Tsz-Yat Luk
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lok-Yan Yim
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Huarong Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Meiqing Zhao
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jie Dai
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Institute for AIDS/STD Control and Prevention, Yunnan Centre for Disease Control and Prevention, Kunming, Yunnan 650500, China
| | - Thomas Tsz-Kan Lau
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xiner Huang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region of China
| | - Grace Chung-Yan Lui
- Division of Infectious Diseases, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, People's Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, People's Republic of China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, People's Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, People's Republic of China
- Materials Innovation Institute for Life Sciences and Energy, The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518048, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Cheng Y, Wang S, Liu D, Gao Y, Li J, Jiang Y, Cui W, Qiao X, Li Y, Wang L. Unraveling the cross-talk between a highly virulent PEDV strain and the host via single-cell transcriptomic analysis. J Virol 2025:e0055525. [PMID: 40396761 DOI: 10.1128/jvi.00555-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe intestinal damage and high mortality in neonatal piglets. The continuous emergence of new strains has brought new challenges to prevention and control. In this study, we isolated and characterized a prevalent PEDV virulent strain and analyzed 19,612 jejunal cells from PEDV-infected and control piglets using single-cell sequencing, revealing significant changes in cellular composition, gene expression, and intercellular communication. In response to PEDV infection, epithelial repair was enhanced through increased proliferation and differentiation of stem cells, transit-amplifying (TA) cells, and intestinal progenitor cells into enterocytes. Additionally, PEDV disrupted intercellular communication, compromising epithelial functionality while triggering immune responses, with IFN-γ and IL-10 signaling activation acting as critical regulators of immune balance and tissue homeostasis. Beyond enterocytes, viral genes were detected in various other cell types. Further experiments confirmed that PEDV could initiate replication in B and T lymphocytes but was unable to produce infectious progeny, with T cells additionally undergoing virus-induced apoptosis. These findings provide new insights into PEDV tropism, immune evasion, and epithelial repair, revealing complex host-pathogen interactions that shape disease progression and tissue regeneration, thereby contributing to a better understanding of enteric coronavirus pathogenesis.IMPORTANCEThe persistent circulation of porcine epidemic diarrhea virus (PEDV) poses a major threat to the swine industry, with emerging strains complicating prevention and control efforts. Currently, no effective measures completely prevent virus transmission, highlighting the need to understand PEDV-host interactions. In this study, we isolated a prevalent virulent strain and used single-cell sequencing to identify new PEDV-infected cell types and explore the complex interplay between the host and PEDV. These findings provide essential insights into viral pathogenesis and facilitate the design of targeted antiviral interventions.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
4
|
Zhang S, Cao Y, Huang Y, Zhang X, Mou C, Qin T, Chen Z, Bao W. Abortive PDCoV infection triggers Wnt/β-catenin pathway activation, enhancing intestinal stem cell self-renewal and promoting chicken resistance. J Virol 2025; 99:e0013725. [PMID: 40135895 PMCID: PMC11998530 DOI: 10.1128/jvi.00137-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus causing economic losses to swine industries worldwide. PDCoV can infect chickens under laboratory conditions, usually with no symptoms or mild symptoms, and may cause outbreaks in backyard poultry and wildfowl, posing a potential risk of significant economic loss to the commercial poultry industry. However, the reasons for such a subdued reaction after infection are not known. Here, using chicken intestinal organoid monolayers, we found that although PDCoV infects them nearly as well as porcine intestinal organoid monolayers, infection did not result in detectable amounts of progeny virus. In ex vivo and in vivo experiments using chickens, PDCoV infection failed to initiate interferon and inflammatory responses. Additionally, infection did not result in a disrupted intestinal barrier nor a reduced number of goblet cells and mucus secretion, as in pigs. In fact, the number of goblet cells increased as did the secreted mucus, thereby providing an enhanced protective barrier. Ex vivo PDCoV infection in chicken triggered activation of the Wnt/β-catenin pathway with the upregulation of Wnt/β-catenin pathway genes (Wnt3a, Lrp5, β-catenin, and TCF4) and Wnt target genes (Lgr5, cyclin D1, and C-myc). This activation stimulates the self-renewal of intestinal stem cells (ISCs), accelerating ISC-mediated epithelial regeneration by significant up-regulation of PCNA (transiently amplifying cells), BMI1 (ISCs), and Lyz (Paneth cells). Our data demonstrate that abortive infection of PDCoV in chicken cells activates the Wnt/β-catenin pathway, which facilitates the self-renewal and proliferation of ISCs, contributing to chickens' resistance to PDCoV infection.IMPORTANCEThe intestinal epithelium is the main target of PDCoV infection and serves as a physical barrier against pathogens. Additionally, ISCs are charged with tissue repair after injury, and promoting rapid self-renewal of intestinal epithelium will help to re-establish the physical barrier and maintain intestinal health. We found that PDCoV infection in chicken intestinal organoid monolayers resulted in abortive infection and failed to produce infectious virions, disrupt the intestinal barrier, reduce the number of goblet cells and mucus secretion, and induce innate immunity, but rather increased goblet cell numbers and mucus secretion. Abortive PDCoV infection activated the Wnt/β-catenin pathway, enhancing ISC renewal and accelerating the renewal and replenishment of shed PDCoV-infected intestinal epithelial cells, thereby enhancing chicken resistance to PDCoV infection. This study provides novel insights into the mechanisms underlying the mild or asymptomatic response to PDCoV infection in chickens, which is critical for understanding the virus's potential risks to the poultry industry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Alrasheed AR, Awadalla M, Alnajran H, Alammash MH, Almaqati AM, Qadri I, Alosaimi B. Harnessing immunotherapeutic molecules and diagnostic biomarkers as human-derived adjuvants for MERS-CoV vaccine development. Front Immunol 2025; 16:1538301. [PMID: 40181980 PMCID: PMC11965926 DOI: 10.3389/fimmu.2025.1538301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
The pandemic potential of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) highlights the critical need for effective vaccines due to its high fatality rate of around 36%. In this review, we identified a variety of immunotherapeutic molecules and diagnostic biomarkers that could be used in MERS vaccine development as human-derived adjuvants. We identified immune molecules that have been incorporated into standard clinical diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the complement proteins Ca3 and Ca5. Utilization of different human monoclonal antibodies in the treatment of MERS-CoV patients demonstrates promising outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H, 3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051, REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have shown significant improvements in immune responses, underscoring their potential to bolster both systemic and mucosal immunity. In conclusion, we believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer significant advantages over synthetic options in vaccine development, underscoring the need for clinical trials to validate their efficacy.
Collapse
Affiliation(s)
- Abdullah R. Alrasheed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Hadeel Alnajran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Adil M. Almaqati
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Khatun O, Kaur S, Tripathi S. Anti-interferon armamentarium of human coronaviruses. Cell Mol Life Sci 2025; 82:116. [PMID: 40074984 PMCID: PMC11904029 DOI: 10.1007/s00018-025-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Cellular innate immune pathways are formidable barriers against viral invasion, creating an environment unfavorable for virus replication. Interferons (IFNs) play a crucial role in driving and regulating these cell-intrinsic innate antiviral mechanisms through the action of interferon-stimulated genes (ISGs). The host IFN response obstructs viral replication at every stage, prompting viruses to evolve various strategies to counteract or evade this response. Understanding the interplay between viral proteins and cell-intrinsic IFN-mediated immune mechanisms is essential for developing antiviral and anti-inflammatory strategies. Human coronaviruses (HCoVs), including SARS-CoV-2, MERS-CoV, SARS-CoV, and seasonal coronaviruses, encode a range of proteins that, through shared and distinct mechanisms, inhibit IFN-mediated innate immune responses. Compounding the issue, a dysregulated early IFN response can lead to a hyper-inflammatory immune reaction later in the infection, resulting in severe disease. This review provides a brief overview of HCoV replication and a detailed account of its interaction with host cellular innate immune pathways regulated by IFN.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
7
|
Chakraborty C, Bhattacharya M, Das A, Saha A. Regulation of miRNA in Cytokine Storm (CS) of COVID-19 and Other Viral Infection: An Exhaustive Review. Rev Med Virol 2025; 35:e70026. [PMID: 40032584 DOI: 10.1002/rmv.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In the initial stage of the COVID-19 pandemic, high case fatality was noted. The case fatality during this was associated with the cytokine storm (CS) or cytokine storm syndrome (CSS). Sometimes, virus infections are due to the excessive secretion of pro-inflammatory cytokines, leading to cytokine storms, which might be directed to ARDS, multi-organ failure, and death. However, it was noted that several miRNAs are involved in regulating cytokines during SARS-CoV-2 and other viruses such as IFNs, ILs, GM-CSF, TNF, etc. The article spotlighted several miRNAs involved in regulating cytokines associated with the cytokine storm caused by SARS-CoV-2 and other viruses (influenza virus, MERS-CoV, SARS-CoV, dengue virus). Targeting those miRNAs might help in the discovery of novel therapeutics, considering CS or CSS associated with different virus infections.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Abinit Saha
- Deparment of Zoology, J.K. College, Purulia, India
| |
Collapse
|
8
|
Abid H, karim S, Lahmidani N, Hammoumi W, Attar A, El khayari M, Benslimane A, Lahlali M, Lamine A, Benajah DA, Ibrahimi SA, El Abkari M, El Azami El Idrissi M, Khoussar I, Oubelkacem N, Alami Drideb N, Khammar Z, Berrady R, El yousfi M, Bennani B. Extrarespiratory, Digestive, and Hepatic Manifestations of COVID-19 in a Moroccan Series. SCIENTIFICA 2025; 2025:3524776. [PMID: 40225278 PMCID: PMC11986959 DOI: 10.1155/sci5/3524776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/09/2024] [Accepted: 02/10/2025] [Indexed: 04/15/2025]
Abstract
Background: Coronavirus disease 2019 (COVID-19) has emerged as a global human health threat. While SARS-CoV-2 infection exhibits fever and respiratory symptoms, extrarespiratory manifestations were also reported in many cases. Objectives: This study aimed to determine the prevalence of digestive and hepatic symptoms at the onset of infection and to assess whether digestive symptoms are associated with severe disease progression. Patients and Methods: Prospective study was conducted during the first COVID-19 wave (from April to October 2020). It included consenting Moroccan patients diagnosed with COVID-19 based on PCR test and chest computed tomography. Results: A total of 211 patients participated in the study. The patients mean age was 42.3 years, with a sex ratio (F/M) of 1.7. Digestive symptoms were present in 28% of cases, with the most common being nausea or vomiting (12.8%), diarrhea (11.4%), abdominal pain (5.2%), and anorexia (16.6%). These symptoms were significantly associated with diabetes and hypertension. Patients with digestive symptoms reported a significantly higher frequency of anosmia and headache. Hepatic manifestations were present in 21.3%, and digestive symptoms were significantly associated with higher prevalence of liver function disturbances, particularly cholestasis. Nearly half of the patients with digestive symptoms (49.2%) experienced moderate COVID-19, with a higher percentage observed (61.8%) among those aged 42 years or older. However, this association was not statistically significant. Conclusion: Healthcare professionals need to recognize the range of gastrointestinal and hepatic symptoms to ensure timely diagnosis and effective patient management.
Collapse
Affiliation(s)
- Hakima Abid
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Safae karim
- Department of Fundamental Sciences, Laboratory of Human Pathology Biomedicine and Environment, Faculty of Medicine, Pharmacy and Dentistry of Fez (FMPDF), Sidi Mohammed Ben Abdellah University (USMBA), URL-CNRST No. 15, Fez, Morocco
| | - Nada Lahmidani
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Wafae Hammoumi
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Aicha Attar
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Maryame El khayari
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Abdelilah Benslimane
- Department of Fundamental Sciences, Laboratory of Epidemiology, Faculty of Medicine, Pharmacy and Dentistry of Fez (FMPDF), Sidi Mohammed Ben Abdellah University (USMBA), Fez, Morocco
| | - Maria Lahlali
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Asmae Lamine
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Dafr allah Benajah
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Sidi Adil Ibrahimi
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Mohammed El Abkari
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Mohammed El Azami El Idrissi
- Department of Fundamental Sciences, Laboratory of Human Pathology Biomedicine and Environment, Faculty of Medicine, Pharmacy and Dentistry of Fez (FMPDF), Sidi Mohammed Ben Abdellah University (USMBA), URL-CNRST No. 15, Fez, Morocco
| | - Ikram Khoussar
- Department of Internal Medicine, Hassan II University Hospital Center, Fez, Morocco
| | - Naoual Oubelkacem
- Department of Internal Medicine, Hassan II University Hospital Center, Fez, Morocco
| | | | - Zineb Khammar
- Department of Internal Medicine, Hassan II University Hospital Center, Fez, Morocco
| | - Rhizlane Berrady
- Department of Internal Medicine, Hassan II University Hospital Center, Fez, Morocco
| | - Mounia El yousfi
- Department of Gastroenterology, Hassan II University Hospital Center, Fez, Morocco
| | - Bahia Bennani
- Department of Fundamental Sciences, Laboratory of Human Pathology Biomedicine and Environment, Faculty of Medicine, Pharmacy and Dentistry of Fez (FMPDF), Sidi Mohammed Ben Abdellah University (USMBA), URL-CNRST No. 15, Fez, Morocco
| |
Collapse
|
9
|
Sims AC, Schäfer A, Okuda K, Leist SR, Kocher JF, Cockrell AS, Hawkins PE, Furusho M, Jensen KL, Kyle JE, Burnum-Johnson KE, Stratton KG, Lamar NC, Niccora CD, Weitz KK, Smith RD, Metz TO, Waters KM, Boucher RC, Montgomery SA, Baric RS, Sheahan TP. Dysregulation of lung epithelial cell homeostasis and immunity contributes to Middle East respiratory syndrome coronavirus disease severity. mSphere 2025; 10:e0095124. [PMID: 39882872 PMCID: PMC11853001 DOI: 10.1128/msphere.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses. To better understand the virus and host interactions driving lethal MERS-CoV infection, we performed a longitudinal multi-omics analysis of sublethal and lethal MERS-CoV infection in mice. Significant differences were observed in body weight loss, virus titers, and acute lung injury among lethal and sub-lethal virus doses. Virus-induced apoptosis of type I and II alveolar epithelial cells suggests that loss or dysregulation of these key cell populations was a major driver of severe disease. Omics analysis suggested differential pathogenesis was multi-factorial with clear differences among innate and adaptive immune pathways as well as those that regulate lung epithelial homeostasis. Infection of mice lacking functional T and B cells showed that adaptive immunity was important in controlling viral replication but also increased pathogenesis. In summary, we provide a high-resolution host response atlas for MERS-CoV infection and disease severity. Multi-omics studies of viral pathogenesis offer a unique opportunity to not only better understand the molecular mechanisms of disease but also to identify genes and pathways that can be exploited for therapeutic intervention all of which is important for our future pandemic preparedness.IMPORTANCEEmerging coronaviruses like SARS-CoV, SARS-CoV-2, and MERS-CoV cause a range of disease outcomes in humans from an asymptomatic, moderate, and severe respiratory disease that can progress to death but the factors causing these disparate outcomes remain unclear. Understanding host responses to mild and life-threatening infections provides insight into virus-host networks within and across organ systems that contribute to disease outcomes. We used multi-omics approaches to comprehensively define the host response to moderate and severe MERS-CoV infection. Severe respiratory disease was associated with dysregulation of the immune response. Key lung epithelial cell populations that are essential for lung function get infected and die. Mice lacking key immune cell populations experienced greater virus replication but decreased disease severity implicating the immune system in both protective and pathogenic roles in response to MERS-CoV. These data could be utilized to design new therapeutic strategies targeting specific pathways that contribute to severe disease.
Collapse
Affiliation(s)
- Amy C. Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacob F. Kocher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam S. Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Padraig E. Hawkins
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Minako Furusho
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kara L. Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | | | - Kelly G. Stratton
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Natalie C. Lamar
- AI & Data Analytics Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Carrie D. Niccora
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A. Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Ashique S, Mishra N, Garg A, Garg S, Farid A, Rai S, Gupta G, Dua K, Paudel KR, Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am J Med 2025; 138:308-329. [PMID: 38485111 DOI: 10.1016/j.amjmed.2024.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The world is currently grappling with the potentially life-threatening coronavirus disease 2019 (COVID-19), marking it as the most severe health crisis in the modern era. COVID-19 has led to a pandemic, with the World Health Organization (WHO) predicting that individuals with diabetes are at a higher risk of contracting the virus compared to the general population. This review aims to provide a practical summary of the long-term impacts of COVID-19 on patients with diabetes. Specifically, it focuses on the effects of SARS-CoV-2 on different types of diabetic patients, the associated mortality rate, the underlying mechanisms, related complications, and the role of vitamin D and zinc in therapeutic and preventive approaches. METHODS Relevant literature was identified through searches on PubMed, Web of Science, and Science Direct in English, up to April 2023. RESULTS COVID-19 can lead to distressing symptoms and pose a significant challenge for individuals living with diabetes. Older individuals and those with pre-existing conditions such as diabetes, coronary illness, and asthma are more susceptible to COVID-19 infection. Managing COVID-19 in individuals with diabetes presents challenges, as it not only complicates the fight against the infection but also potentially prolongs the recovery time. Moreover, the virus may thrive in individuals with high blood glucose levels. Various therapeutic approaches, including antidiabetic drugs, are available to help prevent COVID-19 in diabetic patients. CONCLUSIONS Diabetes increases the morbidity and mortality risk for patients with COVID-19. Efforts are globally underway to explore therapeutic interventions aimed at reducing the impact of diabetes on COVID-19.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh, India
| | - Ashish Garg
- Drug Delivery and Nanotechnology Laboratories, Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Kukrikheda, Barela, Jabalpur, Madhya Pradesh, India
| | - Sweta Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Shweta Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Gyan Vihar Marg, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Xiao F, Hu J, Xu M, Wang D, Shen X, Zhang H, Miao J, Cai H, Wang J, Liu Y, Xiao S, Zhu L. Animal Models for Human-Pathogenic Coronavirus and Animal Coronavirus Research. Viruses 2025; 17:100. [PMID: 39861889 PMCID: PMC11768759 DOI: 10.3390/v17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection. These approaches include using viral delivery methods to induce the expression of viral receptors in mouse tissues and employing gene-editing techniques to create genetically modified mice. This has led to the successful establishment of infection models for multiple coronaviruses, significantly advancing related research. In contrast, livestock and pets that can be infected by animal coronaviruses provide valuable insights when used as infection models, enabling the collection of accurate clinical data through the analysis of post-infection pathological features. However, despite the potential insights, there is a paucity of research data pertaining to these infection models. In this review, we provide a detailed overview of recent progress in the development of animal models for coronaviruses that cause diseases in both humans and animals and suggest ways in which animal models can be adapted to further enhance their value in research.
Collapse
Affiliation(s)
- Fenglian Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Traditional Chinese Medicine and Health School, Nanfang College, Guangzhou 510970, China
| | - Jincheng Hu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Minsheng Xu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Di Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Xiaoyan Shen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Hua Zhang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jie Miao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Haodong Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Yaqing Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Longchao Zhu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
12
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
13
|
Zhang K, Yang XM, Sun H, Cheng ZS, Peng J, Dong M, Chen F, Shen H, Zhang P, Li JF, Zhang Y, Jiang C, Huang J, Chan JFW, Yuan S, Luo YS, Shen XC. Modulating apoptosis as a novel therapeutic strategy against Respiratory Syncytial Virus infection: insights from Rotenone. Antiviral Res 2024; 231:106007. [PMID: 39299548 DOI: 10.1016/j.antiviral.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infections, particularly in vulnerable populations such as neonates, infants, young children, and the elderly. Among infants, RSV is the primary cause of bronchiolitis and pneumonia, contributing to a notable proportion of child mortality under the age of 5. In this study, we focused on investigating the pathogenicity of a lethal RSV strain, GZ08-18, as a model for understanding mechanisms of hypervirulent RSV. Our findings indicate that the heightened pathogenicity of GZ08-18 stems from compromised activation of intrinsic apoptosis, as evidenced by aberration of mitochondrial membrane depolarization in host cells. We thus hypothesized that enhancing intrinsic apoptosis could potentially attenuate the virulence of RSV strains and explored the effects of Rotenone, a natural compound known to stimulate the intrinsic apoptosis pathway, on inhibiting RSV infection. Our results demonstrate that Rotenone treatment significantly improved mouse survival rates and mitigated lung pathology following GZ08-18 infection. These findings suggest that modulating the suppressed apoptosis induced by RSV infection represents a promising avenue for antiviral intervention strategies.
Collapse
Affiliation(s)
- Ke Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xiao-Meng Yang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhong-Shan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Minjun Dong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, 310000, China
| | - Fang Chen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Huyan Shen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Pingping Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jin-Fu Li
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Jiandong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China.
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Emergency, Liupanshui Hospital of the Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China.
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
14
|
Niu Y, Liu S, Qiu Q, Fu D, Xiao Y, Liang L, Cui Y, Ye S, Xu H. Increased serum level of IL-6 predicts poor prognosis in anti-MDA5-positive dermatomyositis with rapidly progressive interstitial lung disease. Arthritis Res Ther 2024; 26:184. [PMID: 39468670 PMCID: PMC11520069 DOI: 10.1186/s13075-024-03415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUD Anti-melanoma differentiation-associated protein 5 antibody-positive dermatomyositis (anti-MDA5-positvie DM) is a subtype of dermatomyositis with a poor prognosis, characterized by rapidly progressive interstitial lung disease (RP-ILD). The study aims to investigate the significance of serum cytokines profiles and peripheral lymphocytes in predicting prognoses of anti-MDA5-positvie DM with RP-ILD. Furthermore, it seeks to analyze longitudinal data of lymphocytes during hospitalization to identify distinct trajectories and cluster patients accordingly. METHODS A total of 168 patients with anti-MDA5-positive DM were enrolled in this retrospective study from two cohorts. Univariate and multivariate Cox regression analyses were conducted to determine the predictors of 6-month all-cause mortality and RP-ILD. Group-based trajectory modeling (GBTM) was employed to model the trajectories of longitudinal peripheral lymphocytes. RESULTS In the multivariate Cox regression analysis, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, lymphocytes from 0.5 to 1.0 × 109 /L, older age, and elevated LDH were identified as independent predictors of 6-month all-cause mortality. Furthermore, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, and lymphocytes from 0.5 to 1.0 × 109 /L were found to be independent predictors of RP-ILD. Additionally, three trajectory groups of lymphocytes within the first week after admission were established based on GBTM. These groups included: Group 1, with low-level of lymphocytes that declined; Group 2, with medium-level of lymphocytes that slightly rose; and Group 3, with high-level of lymphocytes that rose. Notably, group 1 showed the highest mortality (90.7%) and all experiencing RP-ILD. Increased expression of IL-6 in lung tissues was observed in two cases with RP-ILD compared to two cases without RP-ILD. We also found the increased infiltration of CD4 + and CD8 + T cells, particularly CD8 + T cells, in lung tissues from patients with RP-ILD. CONCLUSIONS Our study demonstrated that increased level of serum IL-6 (≥ 13.41pg/mL) and severe lymphopenia were promising predictors of 6-month all-cause mortality and the occurrence of RP-ILD in anti-MDA5-positive DM patients. Furthermore, tracking distinct trajectories of lymphocytes during hospitalization can be utilized to cluster patients.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Department of General Practice, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Di Fu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Yang Cui
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, Guangdong Province, 510180, China.
| | - Shanhui Ye
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
15
|
Bisht P, Gallagher MD, Barrasa MI, Boucau J, Harding A, Déjosez M, Godoy-Parejo C, Bisher ME, de Nola G, Lytton-Jean AKR, Gehrke L, Zwaka TP, Jaenisch R. Abortive infection of bat fibroblasts with SARS-CoV-2. Proc Natl Acad Sci U S A 2024; 121:e2406773121. [PMID: 39401365 PMCID: PMC11513954 DOI: 10.1073/pnas.2406773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Bats are tolerant to highly pathogenic viruses such as Marburg, Ebola, and Nipah, suggesting the presence of a unique immune tolerance toward viral infection. Here, we compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of human and bat (Rhinolophus ferrumequinum) pluripotent cells and fibroblasts. Since bat cells do not express an angiotensin-converting enzyme 2 (ACE2) receptor that allows virus infection, we transduced the human ACE2 (hA) receptor into the cells and found that transduced cells can be infected with SARS-CoV-2. Compared to human embryonic stem cells-hA, infected bat induced Pluripotent Stem Cells (iPSCs)-hA produced about a 100-fold lower level of infectious virus and displayed lower toxicity. In contrast, bat embryonic fibroblast-hA produced no infectious virus while being infectable and synthesizing viral RNA and proteins, suggesting abortive infection. Indeed, electron microscopy failed to detect virus-like particles in infected bat fibroblasts in contrast to bat iPSCs or human cells, consistent with the latter producing infectious viruses. This suggests that bat somatic but not pluripotent cells have an effective mechanism to control virus replication. Consistent with previous results by others, we find that bat cells have a constitutively activated innate immune system, which might limit SARS-CoV-2 infection compared to human cells.
Collapse
Affiliation(s)
- Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | | | | | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Alfred Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Marion Déjosez
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Carlos Godoy-Parejo
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Margaret E. Bisher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Giovanni de Nola
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Abigail K. R. Lytton-Jean
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lee Gehrke
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
16
|
Alam S, Khan S, Jain V, Kashyap V, Kapur P. Utility of Hematological and Biochemical Parameters as a Screening Tool for Assessing Coronavirus Disease 2019 Infection and its Severity. J Microsc Ultrastruct 2024; 12:214-220. [PMID: 39811594 PMCID: PMC11729020 DOI: 10.4103/jmau.jmau_59_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background The rapidly evolving pandemic of Coronavirus disease 2019 (COVID-19) has presented with clinical severity, which varies from asymptomatic cases to being fatal in others. The need of the hour is to find meaningful and cost-effective COVID-19 biomarkers out of conventional hematological and biochemical parameters, which will help in the early identification of patients with a poor prognosis, leading to timely intervention. Aim The aim was to analyze different biochemical and hematological parameters in COVID-19 patients and also to study the association of these parameters with disease severity. Materials and Methods Cross-sectional observational study was carried out on 100 COVID-19 patients from a hospital from July to October 2020. Based on saturation of oxygen (SpO2), admitted patients were grouped into mild-moderate (SpO2 ≥90%) and severe groups (SpO2 <90%). Hematological and biochemical parameters were studied in both groups, and association with disease severity was analyzed. Results Out of 100 patients, 57 patients were seen in the mild-moderate group (SpO2 ≥90%), while 43 patients (SpO2 <90%) belonged to the severe category. Males were predominant in both mild-moderate and severe groups. Among the hematological parameters, statistically significant higher values of absolute neutrophil count (P = 0.046) and significantly lower absolute lymphocyte count (P = 0.003) values were observed. With regard to biochemical parameters, increased urea and decreased total protein were found in the severe category and this association was statistically significant. Conclusion To conclude, early identification and monitoring of hematological and biochemical parameters, especially those associated with higher disease severity, may contribute toward improving disease outcomes.
Collapse
Affiliation(s)
- Sana Alam
- Department of Biochemistry, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| | - Sabina Khan
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| | - Vineet Jain
- Department of Medicine, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| | - Varun Kashyap
- Department of Community Medicine, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
19
|
Jan MI, Anwar Khan R, Khan N, Iftikhar SM, Ali S, Khan MI, Gul S, Nishan U, Ali T, Ullah R, Bari A. Modulation in serum and hematological parameters as a prognostic indicator of COVID-19 infection in hypertension, diabetes mellitus, and different cardiovascular diseases. Front Chem 2024; 12:1361082. [PMID: 38741671 PMCID: PMC11089109 DOI: 10.3389/fchem.2024.1361082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
SARS-CoV-2 infection affects and modulates serum as well as hematological parameters. However, whether it modifies these parameters in the existing disease conditions, which help in the erection of specific treatments for the disease, is under investigation. Here, we aimed to determine whether serum and hematological parameters alteration in various diseases, diabetes mellitus (DM), hypertension (HTN), ischemic heart disease (IHD) and myocardial infarction (MI) conditions correlate and signal SARS-CoV-2 infection, which could be used as a rapid diagnosis tool for SARS-CoV-2 infection in disease conditions. To assess the projected goals, we collected blood samples of 1,113 male and female patients with solo and multiple disease conditions of DM/HTN/IHD/MI with severe COVID-19, followed by biochemical analysis, including COVID-19 virus detection by RT-qPCR. Furthermore, blood was collected from age-matched disease and healthy individuals 502 and 660 and considered as negative control. In our results, we examined higher levels of serum parameters, including D-dimer, ferritin, hs-CRP, and LDH, as well as hematological parameters, including TLC in sole and multiple diseases (DM/HTN/IHD/MI) conditions compared to the control subjects. Besides, the hematological parameters, including Hb, RBC, and platelet levels, decreased in the patients. In addition, we found declined levels of leukocyte count (%), lymphocyte (%), monocyte (%), and eosinophil (%), and elevated level of neutrophil levels (%) in all the disease patients infected with SARS-CoV-2. Besides, NLR and NMR ratios were also statistically significantly (p < 0.05) high in the patients with solo and multiple disease conditions of DM/HTN/IHD/MI infected with the SARS-CoV-2 virus. In conclusion, rapid alteration of sera and hematological parameters are associated with SARS-CoV-2 infections, which could help signal COVID-19 in respective disease patients. Moreover, our results may help to improve the clinical management for the rapid diagnosis of COVID-19 concurrent with respective diseases.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Anwar Khan
- Qazi Hussain Ahmad Teaching Hospital, Nowshehra, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Syed Muhammad Iftikhar
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sajid Ali
- Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - M. I. Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saima Gul
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Rodon J, Sachse M, Te N, Segalés J, Bensaid A, Risco C, Vergara-Alert J. Middle East respiratory coronavirus (MERS-CoV) internalized by llama alveolar macrophages does not result in virus replication or induction of pro-inflammatory cytokines. Microbes Infect 2024; 26:105252. [PMID: 37981029 DOI: 10.1016/j.micinf.2023.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/06/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Severe Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers. Although limited infiltration of leukocytes has been observed in the lower respiratory tract of camelids, their role during infection remains unknown. Here we studied whether llama alveolar macrophages (LAMs) are susceptible to MERS-CoV infection and can elicit pro-inflammatory responses. MERS-CoV did not replicate in LAMs; however, they effectively capture and degrade viral particles. Moreover, transcriptomic analyses showed that LAMs do not induce pro-inflammatory cytokines upon MERS-CoV sensing.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Martin Sachse
- Centro Nacional de Biotecnología (CNB), CSIC, Campus de la UAM, 28049 Madrid, Spain.
| | - Nigeer Te
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Albert Bensaid
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Cristina Risco
- Centro Nacional de Biotecnología (CNB), CSIC, Campus de la UAM, 28049 Madrid, Spain.
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
21
|
Huang X, Kantonen J, Nowlan K, Nguyen NA, Jokiranta ST, Kuivanen S, Heikkilä N, Mahzabin S, Kantele A, Vapalahti O, Myllykangas L, Heinonen S, Mäyränpää MI, Strandin T, Kekäläinen E. Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients. Virus Res 2024; 341:199315. [PMID: 38211733 PMCID: PMC10826420 DOI: 10.1016/j.virusres.2024.199315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8+Vα7.2+CD161+ MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.
Collapse
Affiliation(s)
- Xiaobo Huang
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
| | - Jonas Kantonen
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ngoc Anh Nguyen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi T Jokiranta
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Shamita Mahzabin
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Meilahti Vaccine Research Center, MeVac, Infectious Diseases, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland; Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Santtu Heinonen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland
| |
Collapse
|
22
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
23
|
McKendry R, Lemm NM, Papargyris L, Chiu C. Human Challenge Studies with Coronaviruses Old and New. Curr Top Microbiol Immunol 2024; 445:69-108. [PMID: 35181805 DOI: 10.1007/82_2021_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.
Collapse
Affiliation(s)
- Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
24
|
Mitrea A, Postolache P, Man MA, Motoc NS, Sárközi HK, Dumea E, Zamfir V, Dantes E. [The profile of serum inflammatory biomarkers in patients with SARS-CoV-2 infection: how well do they reflect the presence of pulmonary involvement?]. Orv Hetil 2023; 164:1607-1615. [PMID: 37987704 DOI: 10.1556/650.2023.32880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with inflammatory and imaging alterations that vary depending on the disease severity. OBJECTIVE Monitoring changes in inflammatory biomarkers may offer insights into the extent of pulmonary alterations observed in chest-CT. This study aimed to evaluate the profile of different inflammatory biomarkers, widely available and routinely measured in COVID-19 patients, and to determine whether alterations in their activity at admission and discharge correlate with lung involvement assessed through CT scans. METHODS We conducted a retrospective observational study, wherein chest-CT scans were performed upon admission, and blood tests were conducted at admission and discharge. Treatment and monitoring adhered to national and international guidelines. RESULTS The profile of serum inflammatory markers (including values at admission and discharge, as well as their evolution during hospitalization) demonstrated a correlation with lung involvement as assessed by the total severity score. The high activity of serum inflammatory markers upon admission, accompanied by minimal changes during hospitalization, indicated a severe form of COVID-19 with notable lung involvement. While statistically significant differences were observed in C-reactive protein, fibrinogen, erythrocyte sedimentation rate, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio, C-reactive protein emerged as the most reliable marker for assessing pulmonary involvement. CONCLUSION Changes in serum inflammatory markers during hospitalization exhibited a weak to moderate negative correlation with the severity of lung involvement. Orv Hetil. 2023; 164(41): 1607-1615.
Collapse
Affiliation(s)
- Adriana Mitrea
- 1 Konstancai "Ovidius" Egyetem, Általános Orvostudományi Kar, "Sf. Apostol Andrei" Konstanca Megyei Sürgősségi Kórház, Tüdőgyógyászati Osztály Konstanca Románia
| | | | - Milena Adina Man
- 3 Kolozsvári "Iuliu Hațieganu" Orvosi és Gyógyszerészeti Egyetem, Általános Orvosi Kar, Tüdőgyógyászati Tanszék, "Leon Daniello" Pneumophtysiologiai Klinikai Kórház Kolozsvár Románia
| | - Nicoleta Stefania Motoc
- 3 Kolozsvári "Iuliu Hațieganu" Orvosi és Gyógyszerészeti Egyetem, Általános Orvosi Kar, Tüdőgyógyászati Tanszék, "Leon Daniello" Pneumophtysiologiai Klinikai Kórház Kolozsvár Románia
| | - Hédi-Katalin Sárközi
- 4 Marosvásárhelyi "George Emil Palade" Orvosi, Gyógyszerészeti, Tudomány- és Technológiai Egyetem, Tüdőgyógyászati Tanszék Marosvásárhely Románia
| | - Elena Dumea
- 5 Konstancai "Ovidius" Egyetem, Általános Orvostudományi Kar, Fertőző Betegségek Klinikai Kórháza Konstanca Románia
| | - Viorica Zamfir
- 6 Konstancai "Ovidius" Egyetem, Általános Orvostudományi Kar, Pneumophtisiologiai Klinikai Kórház Konstanca Románia
| | - Elena Dantes
- 6 Konstancai "Ovidius" Egyetem, Általános Orvostudományi Kar, Pneumophtisiologiai Klinikai Kórház Konstanca Románia
| |
Collapse
|
25
|
Wang J, Li D, Tang B, Sun X, Shi W, Li H, Zhang Z, Wu Y, Zhang Y, Qiao Q. The clinical and immunological characteristics of COVID-19 patients with delayed SARS-CoV-2 virus clearance. Immun Inflamm Dis 2023; 11:e999. [PMID: 37773701 PMCID: PMC10540562 DOI: 10.1002/iid3.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a great threat to human health. Some severe COVID-19 patients still carried detectable levels of SARS-CoV-2 even after prolonged intensive care unit treatment. However, the immunological features of these COVID-19 patients with delayed virus clearance (CDVC) are still unclear. METHODS We retrospectively reviewed the clinical and immunological data of 13 CDVC cases, who were admitted into one hospital in Wuhan from February to April 2020. These data were also compared to those of perished (n = 9) and recovered (n = 52) cases. The expression of the exhaustion marker PD-1 on circulating T cells of these patients was measured by flow cytometry. RESULTS High levels of serum interleukin-6 (IL-6), IL-1β, IL-8, as well as other inflammatory mediators, were seen in CDVC cases. Severe lymphopenia was observed in CDVC patients with the counts of total lymphocytes (0.9 × 109 /L), CD4+ T cells (0.35 × 109 /L), and CD8+ T cells (0.28 × 109 /L) below their corresponding lower limits of normal range. Similar to the perished group, CDVC cases have higher percentages of CD25+ Foxp3+ regulatory T cells (Treg) in circulation. Moreover, enhanced expression of the exhaustion marker PD-1 on CCR7- CD45RA+ effector, CCR7+ CD45RA- central memory, and CCR7- CD45RA- effector memory CD4+ and CD8+ T cells were also observed in CDVC cases. CONCLUSION CDVC patients still have SARS-CoV-2 and these cases manifest with severe clinical symptoms due to persistent inflammation. Augmentation of the frequency of circulating Treg, severe lymphopenia, and functional exhaustion of T cells might lead to inefficient clearance of SARS-CoV-2. Therefore, enhancing lymphocyte counts and reversing T-cell exhaustion might be key methods to boost immune responses and eliminate SARS-CoV-2 in CDVC patients.
Collapse
Affiliation(s)
- Jinsong Wang
- Institute of Immunology, PLAArmy Medical UniversityChongqingChina
| | - Debao Li
- Department of ImmunologyMedical College of Qingdao UniversityQingdaoShandongChina
| | - Bo Tang
- Chongqing International Institute for ImmunologyChongqingChina
| | - Xuemin Sun
- Institute of Immunology, PLAArmy Medical UniversityChongqingChina
| | - Wenjiong Shi
- Chongqing International Institute for ImmunologyChongqingChina
| | - Hao Li
- Pingdingshan Medical Districtthe 989th Hospital of the PLA Joint Logistic Support ForcePingdingshanHenanChina
| | - Zhenhua Zhang
- Department of Radiologythe 989th Hospital of the PLA Joint Logistic Support ForceLuoyangHenanChina
| | - Yuzhang Wu
- Institute of Immunology, PLAArmy Medical UniversityChongqingChina
| | - Yi Zhang
- Chongqing International Institute for ImmunologyChongqingChina
- School of Pharmacy and BioengineeringChongqing University of TechnologyChongqingChina
| | - Qinghua Qiao
- Pingdingshan Medical Districtthe 989th Hospital of the PLA Joint Logistic Support ForcePingdingshanHenanChina
| |
Collapse
|
26
|
Shoraka S, Samarasinghe AE, Ghaemi A, Mohebbi SR. Host mitochondria: more than an organelle in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1228275. [PMID: 37692170 PMCID: PMC10485703 DOI: 10.3389/fcimb.2023.1228275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Memphis, TN, United States
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Pustake M, Giri P, Ganiyani MA, Mumtaz K, Deshmukh K, Saju M, Nunez JV, Orlova N, Das A. Drawing Parallels between SARS, MERS, and COVID-19: A Comparative Overview of Epidemiology, Pathogenesis, and Pathological Features. Indian J Community Med 2023; 48:518-524. [PMID: 37662119 PMCID: PMC10470569 DOI: 10.4103/ijcm.ijcm_460_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/22/2023] [Indexed: 09/05/2023] Open
Abstract
Background Since November 2019, when the novel coronavirus arose in Wuhan City, over 188 million people worldwide have been infected with COVID-19. It is the third coronavirus outbreak in the twenty-first century. Until now, practically all coronavirus epidemics have occurred due to zoonotic spread from an animal or transitional host or through the consumption of their products. Coronaviruses can infect humans and cause severe illness and even death. Material and Methods This review was designed to help us recognize and harmonize the similarities and differences between these three coronaviridae family members. Result Measures aimed at containing the epidemic should be emphasized in this circumstance. Prioritizing and planning these activities require an understanding of the particulars of these three viruses. Given the pandemic's enormous death toll and rapid spread, we should be cognizant of the parallels and differences between these three viruses. Additionally, this pandemic warns us to be cautious against the possibility of a future pandemic. Conclusion We highlight the fundamental characteristics of coronaviruses that are critical for recognizing coronavirus epidemiology, pathogenesis, and pathological features that reveal numerous significant pathological attributes and evolutionary patterns in the viral genome that aid in better understanding and anticipating future epidemics.
Collapse
Affiliation(s)
- Manas Pustake
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Purushottam Giri
- Department of Community Medicine, IIMSR Medical College, Jalna, Maharashtra, India
| | - Mohammad Arfat Ganiyani
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Kahkashan Mumtaz
- Department of Pediatrics, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Krishna Deshmukh
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Michael Saju
- Department of Community Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | | | | | - Arghadip Das
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Rodon J, Te N, Segalés J, Vergara-Alert J, Bensaid A. Enhanced antiviral immunity and dampened inflammation in llama lymph nodes upon MERS-CoV sensing: bridging innate and adaptive cellular immune responses in camelid reservoirs. Front Immunol 2023; 14:1205080. [PMID: 37388723 PMCID: PMC10300347 DOI: 10.3389/fimmu.2023.1205080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C). Viral replication was not supported in LN, but a cellular immune response was mounted. Reminiscent Th1 responses (IFN-γ, IL-2, IL-12) were elicited upon MERS-CoV sensing, accompanied by a marked and transient peak of antiviral responses (type I IFNs, IFN-λ3, ISGs, PRRs and TFs). Importantly, expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) or inflammasome components (NLRP3, CASP1, PYCARD) was dampened. The role of IFN-λ3 to counterbalance inflammatory processes and bridge innate and adaptive immune responses in camelid species is discussed. Our findings shed light into key mechanisms on how reservoir species control MERS-CoV in the absence of clinical disease.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Nigeer Te
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Albert Bensaid
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| |
Collapse
|
29
|
Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol 2023; 14:1148727. [PMID: 37261341 PMCID: PMC10228733 DOI: 10.3389/fimmu.2023.1148727] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Innate immunity is an important first line of defense against pathogens, including viruses. These pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively), resulting in the induction of inflammatory cell death, are detected by specific innate immune sensors. Recently, Z-DNA binding protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that contains two Z-form nucleic acid-binding domains (Zα1 and Zα2) in the N-terminus and two receptor-interacting protein homotypic interaction motifs (RHIM1 and RHIM2) in the middle, which interact with other proteins with the RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which protects host cells against viral infections, such as influenza A virus (IAV) and herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses (CoVs), induce PANoptosis to hyperactivate the immune system, leading to cytokine storm, organ failure, tissue damage, and even death. In this review, we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-inflammatory cytokines that influence the double-edged sword of results in the host cell. Understanding the ZBP1-derived PANoptosis mechanism may be critical for improving therapeutic strategies.
Collapse
|
30
|
Soni S, Mebratu YA. B-cell lymphoma-2 family proteins-activated proteases as potential therapeutic targets for influenza A virus and severe acute respiratory syndrome coronavirus-2: Killing two birds with one stone? Rev Med Virol 2023; 33:e2411. [PMID: 36451345 PMCID: PMC9877712 DOI: 10.1002/rmv.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a global health emergency. There are many similarities between SARS-CoV-2 and influenza A virus (IAV); both are single-stranded RNA viruses infecting airway epithelial cells and have similar modes of replication and transmission. Like IAVs, SARS-CoV-2 infections poses serious challenges due to the lack of effective therapeutic interventions, frequent appearances of new strains of the virus, and development of drug resistance. New approaches to control these infectious agents may stem from cellular factors or pathways that directly or indirectly interact with viral proteins to enhance or inhibit virus replication. One of the emerging concepts is that host cellular factors and pathways are required for maintaining viral genome integrity, which is essential for viral replication. Although IAVs have been studied for several years and many cellular proteins involved in their replication and pathogenesis have been identified, very little is known about how SARS-CoV-2 hijacks host cellular proteins to promote their replication. IAV induces apoptotic cell death, mediated by the B-cell lymphoma-2 (Bcl-2) family proteins in infected epithelia, and the pro-apoptotic members of this family promotes viral replication by activating host cell proteases. This review compares the life cycle and mode of replication of IAV and SARS-CoV-2 and examines the potential roles of host cellular proteins, belonging to the Bcl-2 family, in SARS-CoV-2 replication to provide future research directions.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Yohannes A. Mebratu
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
31
|
Rosichini M, Bordoni V, Silvestris DA, Mariotti D, Matusali G, Cardinale A, Zambruno G, Condorelli AG, Flamini S, Genah S, Catanoso M, Del Nonno F, Trezzi M, Galletti L, De Stefanis C, Cicolani N, Petrini S, Quintarelli C, Agrati C, Locatelli F, Velardi E. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J Allergy Clin Immunol 2023; 151:911-921. [PMID: 36758836 PMCID: PMC9907790 DOI: 10.1016/j.jaci.2023.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Bordoni
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Domenico Alessandro Silvestris
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Davide Mariotti
- Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Giulia Matusali
- Virology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Flamini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Shirley Genah
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Matteo Trezzi
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Galletti
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Pathology Unit, Core Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Medicine and Surgery, University of Naples Federico II, Rome, Italy
| | - Chiara Agrati
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
32
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Zhou H, Ren R, Yau SST. Utilizing the codon adaptation index to evaluate the susceptibility to HIV-1 and SARS-CoV-2 related coronaviruses in possible target cells in humans. Front Cell Infect Microbiol 2023; 12:1085397. [PMID: 36760235 PMCID: PMC9905242 DOI: 10.3389/fcimb.2022.1085397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
Comprehensive identification of possible target cells for viruses is crucial for understanding the pathological mechanism of virosis. The susceptibility of cells to viruses depends on many factors. Besides the existence of receptors at the cell surface, effective expression of viral genes is also pivotal for viral infection. The regulation of viral gene expression is a multilevel process including transcription, translational initiation and translational elongation. At the translational elongation level, the translational efficiency of viral mRNAs mainly depends on the match between their codon composition and cellular translational machinery (usually referred to as codon adaptation). Thus, codon adaptation for viral ORFs in different cell types may be related to their susceptibility to viruses. In this study, we selected the codon adaptation index (CAI) which is a common codon adaptation-based indicator for assessing the translational efficiency at the translational elongation level to evaluate the susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different human cell types. Compared with previous studies that evaluated the infectivity of viruses based on codon adaptation, the main advantage of our study is that our analysis is refined to the cell-type level. At first, we verified the positive correlation between CAI and translational efficiency and strengthened the rationality of our research method. Then we calculated CAI for ORFs of two viruses in various human cell types. We found that compared to high-expression endogenous genes, the CAIs of viral ORFs are relatively low. This phenomenon implied that two kinds of viruses have not been well adapted to translational regulatory machinery in human cells. Also, we indicated that presumptive susceptibility to viruses according to CAI is usually consistent with the results of experimental research. However, there are still some exceptions. Finally, we found that two viruses have different effects on cellular translational mechanisms. HIV-1 decouples CAI and translational efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits increased CAI for its ORFs in infected cells. Our results implied that at least in cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to assess cells' susceptibility to viruses but cannot be used as the only evidence to identify viral target cells.
Collapse
Affiliation(s)
- Haoyu Zhou
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruohan Ren
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Zhili College, Tsinghua University, Beijing, China
| | - Stephen Shing-Toung Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Department of Mathematical Sciences, Tsinghua University, Beijing, China,*Correspondence: Stephen Shing-Toung Yau,
| |
Collapse
|
34
|
Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol 2023; 29:425-449. [PMID: 36688024 PMCID: PMC9850933 DOI: 10.3748/wjg.v29.i3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | | | - Mahmoud M Ali
- Department of Pharmacology, Al-Azhar University, Assiut 71524, Egypt
| | - Osama M Ghogar
- Department of Biochemistry Faculty of Pharmacy, Badr University in Assiut, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
35
|
Leon C, Tokarev A, Bouchnita A, Volpert V. Modelling of the Innate and Adaptive Immune Response to SARS Viral Infection, Cytokine Storm and Vaccination. Vaccines (Basel) 2023; 11:vaccines11010127. [PMID: 36679972 PMCID: PMC9861811 DOI: 10.3390/vaccines11010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In this work, we develop mathematical models of the immune response to respiratory viral infection, taking into account some particular properties of the SARS-CoV infections, cytokine storm and vaccination. Each model consists of a system of ordinary differential equations that describe the interactions of the virus, epithelial cells, immune cells, cytokines, and antibodies. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study the dynamics of solutions. The behavior of the solutions is characterized by large peaks of virus concentration specific to acute respiratory viral infections. At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. Viral infection down-regulates interferon production. This competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. After that, we introduce the adaptive immune response with antigen-specific T- and B-lymphocytes. The resulting model shows how the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, an increase in the initial viral load leads to a shorter incubation period and higher maximal viral load. The model shows that a deficient production of antibodies leads to an increase in the incubation period and even higher maximum viral loads. In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on the parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by the excessive production of proinflammatory cytokines. Finally, we study the production of antibodies due to vaccination. We determine the dose-response dependence and the optimal interval of vaccine dose. Assumptions of the model and obtained results correspond to the experimental and clinical data.
Collapse
Affiliation(s)
- Cristina Leon
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- M&S Decisions, 5 Naryshkinskaya Alley, 125167 Moscow, Russia
- Department of Foreign Languages No. 2, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 115093 Moscow, Russia
- Correspondence:
| | - Alexey Tokarev
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
- Bukhara Engineering Technological Institute, 15 Murtazoyeva Street, Bukhara 200100, Uzbekistan
| | - Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79902, USA
| | - Vitaly Volpert
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
36
|
Wong LYR, Perlman S. Proviral role of caspase-6 in coronavirus infections. Cell Res 2023; 33:7-8. [PMID: 36131099 PMCID: PMC9490723 DOI: 10.1038/s41422-022-00728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
37
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
38
|
Wang Z, Zhan J, Gao H. Computer-aided drug design combined network pharmacology to explore anti-SARS-CoV-2 or anti-inflammatory targets and mechanisms of Qingfei Paidu Decoction for COVID-19. Front Immunol 2022; 13:1015271. [PMID: 36618410 PMCID: PMC9816407 DOI: 10.3389/fimmu.2022.1015271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
39
|
Peng F, Yi Q, Zhang Q, Deng J, Li C, Xu M, Wu C, Zhong Y, Wu S. Performance of D-dimer to lymphocyte ratio in predicting the mortality of COVID-19 patients. Front Cell Infect Microbiol 2022; 12:1053039. [PMID: 36590587 PMCID: PMC9797859 DOI: 10.3389/fcimb.2022.1053039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nowadays, there is still no effective treatment developed for COVID-19, and early identification and supportive therapies are essential in reducing the morbidity and mortality of COVID-19. This is the first study to evaluate D-dimer to lymphocyte ratio (DLR) as a prognostic utility in patients with COVID-19. METHODS We retrospectively analyzed 611 patients and separated them into groups of survivors and non-survivors. The area under the curve (AUC) of various predictors integrated into the prognosis of COVID-19 was compared using the receiver operating characteristic (ROC) curve. In order to ascertain the interaction between DLR and survival in COVID-19 patients, the Kaplan-Meier (KM) curve was chosen. RESULTS Age (OR = 1.053; 95% CI, 1.022-1.086; P = 0.001), NLR (OR = 1.045; 95% CI, 1.001-1.091; P = 0.046), CRP (OR = 1.010; 95% CI, 1.005-1.016; P < 0.001), PT (OR = 1.184; 95% CI, 1.018-1.377; P = 0.029), and DLR (OR = 1.048; 95% CI, 1.018-1.078; P = 0.001) were the independent risk factors related with the mortality of COVID-19. DLR had the highest predictive value for COVID-19 mortality with the AUC of 0.924. Patients' survival was lower when compared to those with lower DLR (Log Rank P <0.001). CONCLUSION DLR might indicate a risk factor in the mortality of patients with COVID-19.
Collapse
Affiliation(s)
- Fei Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Yi
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quan Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of respiratory medicine, Hunan Provincial People’s Hospital, Changsha, China
| | - Min Xu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenfang Wu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Yu J, Li H, Jia J, Huang Z, Liu S, Zheng Y, Mu S, Deng X, Zou X, Wang Y, Shang X, Cui D, Huang L, Feng X, Liu WJ, Cao B. Pandemic influenza A (H1N1) virus causes abortive infection of primary human T cells. Emerg Microbes Infect 2022; 11:1191-1204. [PMID: 35317717 PMCID: PMC9045768 DOI: 10.1080/22221751.2022.2056523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 01/20/2023]
Abstract
Influenza A virus still represents a noticeable epidemic risk to international public health at present, despite the extensive use of vaccines and anti-viral drugs. In the fight against pathogens, the immune defence lines consisting of diverse lymphocytes are indispensable for humans. However, the role of virus infection of lymphocytes and subsequent abnormal immune cell death remains to be explored. Different T cell subpopulations have distinct characterizations and functions, and we reveal the high heterogeneity of susceptibility to viral infection and biological responses such as apoptosis in various CD4+ T and CD8+ T cell subsets through single-cell transcriptome analyses. Effector memory CD8+ T cells (CD8+ TEM) that mediate protective memory are identified as the most susceptible subset to pandemic influenza A virus infection among primary human T cells. Non-productive infection is established in CD8+ TEM and naïve CD8+ T cells, which indicate the mechanism of intracellular antiviral activities for inhibition of virus replication such as abnormal viral splicing efficiency, incomplete life cycles and up-regulation of interferon-stimulated genes in human T cells. These findings provide insights into understanding lymphopenia and the infectious mechanisms of pandemic influenza A virus and broad immune host-pathogen interactional atlas in primary human T cells.
Collapse
Affiliation(s)
- Jiapei Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Ju Jia
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhisheng Huang
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Shengrui Mu
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyan Deng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Medicine, Beijing, People’s Republic of China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao Shang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Dan Cui
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Respiratory Medicine, Harbin Medical University, Harbin, People’s Republic of China
| | - Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoxuan Feng
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, Chinese Centre for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bin Cao
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
42
|
Sun X, Gao C, Zhao K, Yang Y, Rassadkina Y, Fajnzylber J, Regan J, Li JZ, Lichterfeld M, Yu XG. Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Front Immunol 2022; 13:984553. [PMID: 36439166 PMCID: PMC9682031 DOI: 10.3389/fimmu.2022.984553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 09/08/2024] Open
Abstract
SARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19. However, the effects of viremia on immune responses in blood cells remain unclear. The current study comprehensively examined transcriptional signatures of PBMCs involving T cells, B cells, NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) respectively, from three different groups including individuals with moderate (nM), or severe disease with (vS) or without (nS) detectable plasma viral load. Whole transcriptome analysis demonstrated that all seven immune cell subsets were associated with disease severity regardless of cell type. Supervised clustering analysis demonstrated that mDCs and pDCs gene signatures could distinguish disease severity. Notably, transcriptional signatures of the vS group were enriched in pathways related to DNA repair, E2F targets, and G2M checkpoints; in contrast, transcriptional signatures of the nM group were enriched in interferon responses. Moreover, we observed an impaired induction of interferon responses accompanied by imbalanced cell-intrinsic immune sensing and an excessive inflammatory response in patients with severe disease (nS and vS). In sum, our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in seven major immune cells in COVID-19 patients.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
| | - Ke Zhao
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanhui Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jesse Fajnzylber
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - James Regan
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jonathan Z. Li
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, United States
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
43
|
Alhetheel A, Albarrag A, Shakoor Z, Somily A, Barry M, Altalhi H, Bakhrebah M, Nassar M, Alfageeh M, Assiri A, Alfaraj S, Memish ZA. Differential expression of carcinoembryonic antigen-related cell adhesion molecule-5 (CEACAM5) and dipeptidyl peptidase-4 (DPP4) with detection of Middle East respiratory syndrome-coronavirus in peripheral blood. J Infect Public Health 2022; 15:1315-1320. [PMID: 36279687 PMCID: PMC9576204 DOI: 10.1016/j.jiph.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome-coronavirus (MERS-CoV) utilizes CD26 (dipeptidyl peptidase-4) and CD66e or CEACAM5 (carcinoembryonic antigen-related cell adhesion molecule 5) receptors for cell infection. Peripheral blood mononuclear cells (PBMCs) play a critical role in mounting adaptive immune response against the virus. This study was performed to assess the expression of CD26 and CD66e on PBMCs and their susceptibility to MERS-CoV infection. METHODS Surface expression of CD26 and CD66e receptors on PBMCs from MERS-CoV patients (n = 20) and healthy controls (n = 20) was assessed by flow cytometry and the soluble forms were determined by enzyme-linked immunosorbent assay (ELISA). MERS-CoV UpE and Orf1a genes in PBMCs were detected by using Altona diagnostics reverse transcription polymerase chain reaction (RT-PCR) kit. RESULTS Mean fluorescent intensity (MFI) of CD66e was significantly higher on CD4 + lymphocytes (462.4 ± 64.35 vs 325.1 ± 19.69; p < 0.05) and CD8 + lymphocytes (533.8 ± 55.32 vs 392.4 ± 37.73; p < 0.04) from patients with MERS-CoV infection compared to the normal controls. No difference in MFI for CD66e was observed on monocytes (381.8 ± 40.34 vs 266.8 ± 20.6; p = 0.3) between the patients and controls. Soluble form of CD66e among MERS-CoV patients was also higher than the normal controls (mean= 338.7 ± 58.75 vs 160.7 ± 29.49 ng/mL; p < 0.01). Surface expression of CD26 on PBMCs and its soluble form were no different between the groups. MERS-CoV was detected by RT-PCR in 16/20 (80%) patients from whole blood, among them 8 patients were tested in PBMCs, 4/8 (50%) patients were positive. CONCLUSION Increased expression levels of CD66e (CEACAM5) may contribute to increased susceptibility of PBMCs to MERS-CoV infection and disease progression.
Collapse
Affiliation(s)
- Abdulkarim Alhetheel
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Albarrag
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Shakoor
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Somily
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Barry
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Infectious Diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hifa Altalhi
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | - Majed Nassar
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Alfageeh
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Ayed Assiri
- Critical Care Unit, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Sarah Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Zhu X, Trimarco JD, Williams CA, Barrera A, Reddy TE, Heaton NS. ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Rep 2022; 41:111540. [PMID: 36243002 PMCID: PMC9533670 DOI: 10.1016/j.celrep.2022.111540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Courtney A. Williams
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA,Corresponding author
| |
Collapse
|
45
|
Prognostic value of lymphocyte count for in-hospital mortality in patients with severe AECOPD. BMC Pulm Med 2022; 22:376. [PMID: 36199131 PMCID: PMC9533979 DOI: 10.1186/s12890-022-02137-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Patients with severe acute exacerbations of chronic obstructive pulmonary disease often have a poor prognosis. Biomarkers can help clinicians personalize the assessment of different patients and mitigate mortality. The present study sought to determine if the lymphocyte count could act as a risk factor for mortality in individuals with severe AECOPD. Methods A retrospective study was carried out with 458 cases who had severe AECOPD. For analysis, patients were divided into two groups on the basis of lymphocyte count: < 0.8 × 109/L and ≥ 0.8 × 109/L. Results Patients who fulfilled the criteria for inclusion were enrolled, namely 458 with a mean age of 78.2 ± 8.2 years. Of these patients, 175 had a low lymphocyte count. Compared to patients with normal lymphocyte counts, those with low counts were older (79.2 ± 7.4 vs. 77.5 ± 8.6 years, p = 0.036), had lower activities of daily living scores on admission (35.9 ± 27.6 vs. 47.5 ± 17.1, p < 0.001), and had a greater need for home oxygen therapy (84.6 vs. 72.1%, p = 0.002). Patients with low lymphocytes had higher mortality rates during hospitalization (17.1 vs. 7.1%, p = 0.001), longer hospital stay (median [IQR] 16 days [12–26] vs. 14 days [10–20], p = 0.002) and longer time on mechanical ventilation (median [IQR] 11.6 days [5.8–18.7] vs. 10.9 days [3.8–11.6], p < 0.001). The logistic regression analysis showed lymphocyte count < 0.8 × 109/L was an independent risk factor associated with in-hospital mortality (OR 2.74, 95%CI 1.33–5.66, p = 0.006). Conclusion Lymphocyte count could act as a predictor of mortality in patients with severe AECOPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02137-1.
Collapse
|
46
|
Mentzer SJ, Ackermann M, Jonigk D. Endothelialitis, Microischemia, and Intussusceptive Angiogenesis in COVID-19. Cold Spring Harb Perspect Med 2022; 12:a041157. [PMID: 35534210 PMCID: PMC9524390 DOI: 10.1101/cshperspect.a041157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.
Collapse
Affiliation(s)
- Steven J Mentzer
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, 42283 Wuppertal, Germany; Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hanover, Germany; Member of the German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease Hannover, 30625 Hanover, Germany
| |
Collapse
|
47
|
Goyal R, Gautam RK, Chopra H, Dubey AK, Singla RK, Rayan RA, Kamal MA. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI JOURNAL 2022; 21:1245-1272. [PMID: 36483910 PMCID: PMC9727256 DOI: 10.17179/excli2022-5355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India,MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India-453331,*To whom correspondence should be addressed: Rupesh K. Gautam, Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore – 453331 (M.P.), India; Tel.: +91 9413654324, E-mail:
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India-140401
| | | | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 5422031, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh,Enzymoics, 7 Peterlee Place, Hebersham NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
48
|
Coronaviruses exploit a host cysteine-aspartic protease for replication. Nature 2022; 609:785-792. [PMID: 35922005 DOI: 10.1038/s41586-022-05148-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.
Collapse
|
49
|
Alkahtani AM, Alraey Y, Zaman GS, Al‐Shehri H, Alghamdi IS, Chandramoorthy HC, Al-Hakami AM, Alamri AM, Alshehri HA. Haematological Traits in Symptomatic and Asymptomatic COVID-19 Positive Patients for Predicting Severity and Hospitalization. J Blood Med 2022; 13:447-459. [PMID: 36062061 PMCID: PMC9432386 DOI: 10.2147/jbm.s365218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The present investigation aims on the clinical attributes and haematological parameters between symptomatic (COVID-19 ICU) and asymptomatic (COVID-19 homes isolation) patients as predisposing sign for COVID-19 related mortality. Materials and Methods A retrospective cohort research was conducted of admitted patients to ICU, who were suffering from severe COVID-19 in Aseer Central Hospital, Abha, Kingdom of Saudi Arabia (KSA) from July 2020 until September 2020. The study included individuals with COVID -19 and ICU admission as symptomatic group and others who are COVID-19 positives with quarantine as asymptomatic group. Epidemiological, clinical and haematological laboratory data were retrospectively collected, analysed with control subjects. Results Of the 38 ICU patients studied, the most common symptoms were fever and respiratory distress (100%), cough (86.8%). Majority were of Saudi origin (78.9%). Eighteen (47.4%) COVID-19 ICU patients showed leukocytosis, 6 (15.8%) had severe thrombocytopenia (with most having thrombocytopenia), 18 (47.4%) were anaemic. A significant correlation was observed between the WBC, RBC, Hb, platelets, neutrophil and lymphocyte count between ICU inmates compared with quarantine (p < 0.001) and RBC, Hb, neutrophil and lymphocyte count with control groups (p < 0.001). Conclusion From the observations it is evident that, the blood tests have potential clinical value in predicting COVID-19 progression. Further, patient characteristics including age, leukocyte count, RBC, platelets and differential leukocyte counts may be significant predictors for monitoring the progression of the critical illness observed in SARS-COV-2 patients. Also, treatment procedures can be re-defined further to reduce COVID-19 mortalities in more critically ill COVID-19 individuals.
Collapse
Affiliation(s)
- Abdullah M Alkahtani
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hajri Al‐Shehri
- Central Laboratory, Assir Central Hospital, Ministry of Health, Abha, Saudi Arabia
| | | | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Al-Hakami
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmad M Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha, Saudi Arabia
| | - Hassan Ali Alshehri
- Central Laboratory, Assir Central Hospital, Ministry of Health, Abha, Saudi Arabia
| |
Collapse
|
50
|
Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:1156273. [PMID: 35992513 PMCID: PMC9391183 DOI: 10.1155/2022/1156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 01/08/2023]
Abstract
Within past decades, human infections with emerging and reemerging zoonotic viral pathogens have raised the eminent public health concern. Since November 2002, three highly pathogenic and major deadly human coronaviruses of the βετα-genera (β-hCoVs), namely, severe acute respiratory distress syndrome-coronavirus (SARS-CoV), middle east respiratory syndrome-coronavirus (MERS-CoV), and SARS-CoV-2, have been globally emerged and culminated in the occurrence of SARS epidemic, MERS outbreak, and coronavirus disease 19 (COVID-19) pandemic, respectively. The global emergence and spread of these three major deadly β-hCoVs have extremely dreadful impacts on human health and become an economic burden. Unfortunately, clear specific and highly efficient medical countermeasures for these three β-hCoVs and their underlying fatal illnesses remain under development. Although they belong to the same family and share many features and convergent evolution, these three deadly β-hCoVs have some important and obvious differences. By utilizing their lessons and gaining a deeper understanding of these β-hCoVs, we can identify areas of improvement and provide preparedness plans for fighting and controlling the future reemerging human infections that might arise from them or from other potential pathogenic hCoVs. Therefore, this review summarizes the state-of-the-art information and compares the similarities and dissimilarities between SARS-CoV, MERS-CoV, and SARS-CoV-2, in terms of their evolution trait, genome organization, host cell entry mechanisms, tissue infectivity tropisms, transmission routes and contagiousness, and the clinical characteristics, laboratory features, and immunological abnormalities of their related illnesses. It also provides an overview of the emerging SARS-CoV-2 variants. Additionally, it discusses the challenges of the most proposed treatment options for SARS-CoV-2 infections.
Collapse
|