1
|
Kemper L, Herrmann F, König S, Falcone FH, Hensel A. Galactomannan and Vicilin from Fenugreek Seeds (Trigonella foenum-graecum) Impair Early Pathogen-Host Interaction of Campylobacter jejuni with Intestinal Cells via JlpA. PLANTA MEDICA 2025; 91:293-301. [PMID: 39929245 DOI: 10.1055/a-2536-8392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Campylobacter jejuni is the leading cause of severe enteritis worldwide. Identification of natural products against C. jejuni that inhibit early-stage host-pathogen interactions is a promising strategy, particularly by blocking bacterial adhesion to and invasion into the host cells. This should help to reduce the bacterial load in vector animals. From the seeds of Trigonella foenum-graecum, an aqueous extract (fenugreek high molecular fraction) of high-molecular compounds (polysaccharides, proteins) was obtained. The polysaccharide was characterized as galactomannan (1,4-mannose backbone, substituted at O-6 with single galactose residues and galactose oligosaccharide chains). The protein part consisted of 50 kDa vicilin as the main compound. The fenugreek high molecular fraction did not influence proliferation of C. jejuni and viability of Caco-2 cells (1 - 1000 µg/mL). The fenugreek high molecular fraction reduced bacterial adhesion to Caco-2 significantly (500 - 1000 µg/mL), which was due to an interaction with the bacterial adhesin JlpA, preventing the interaction of this outer membrane protein to its ligand HSP90α (IC50 = 23.4 µg/mL). Bacterial invasion was reduced significantly. Both polysaccharides as well as vicilin contribute to the observed antiadhesive effect. As vicilin-like proteins are widely found in plants from the Fabaceae family, a vicilin-enriched protein preparation from Pisum sativum was investigated for antiadhesive activity. These findings suggest that fenugreek seeds or vicilin-rich plant extracts could be used to develop novel strategies to control C. jejuni infections in food-producing animals, ultimately helping to decrease the prevalence of campylobacteriosis in humans.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Fabian Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Kim SY, Yun YS, Lee KJ, Kim J. Rapid and sensitive isolation of Campylobacter jejuni using immunomagnetic separation from patient specimens exposed to oxygen. Microbiol Spectr 2025; 13:e0190724. [PMID: 39964178 PMCID: PMC11960043 DOI: 10.1128/spectrum.01907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/24/2024] [Indexed: 04/03/2025] Open
Abstract
This study describes a method for detecting Campylobacter jejuni in patient stools with subsequent isolation using antibody-magnetic beads in conjunction with selective culture and PCR. Monoclonal antibodies specific for the flagellin A and major outer membrane protein of C. jejuni were generated; two clones (1C7 and 4B2) were used to coat magnetic beads for immunomagnetic separation (IMS). C. jejuni strain NCTC11168 was recovered from human stool samples spiked with varying concentrations (101-105 CFU/mL) by Campylobacter (Campy)-IMS or a conventional culture-based method and plated on modified charcoal-cefoperazone-deoxycholate agar; the number of colonies was enumerated. The detection limits of Campy-IMS and conventional culture-based method with spiked stool samples were 102 and 104 CFU/mL, respectively. The sensitivity of IMS-PCR was 10-10,000-fold higher than that of direct PCR. The recovery rate of C. jejuni from spiked stools stored for 12 to 72 h decreased from 72.3 to 5.9% with Campy-IMS and from 48.5 to 0.1% with the conventional culture-based method. Importantly, of 20 PCR (+)/bacterial culture (-) samples that were diagnosed as probable cases according to general criteria, 95% (19/20) were confirmed positive by Campy-IMS. Thus, this study suggests a solution to overcome the problems caused by the inconsistency between probable and confirmed cases of Campylobacter infection. IMPORTANCE The isolation, cultivation, and maintenance of Campylobacter spp. are difficult because of the microaerophilic conditions and specific medium needed. Although selective media are useful for the initial isolation of Campylobacter, subsequent exposure of the sample to oxygen has a detrimental effect on the positive culture rate of Campylobacter, significantly lowering the isolation rate from patient samples. In this study, the detection limit was improved by combining immunomagnetic separation and PCR methods to quickly detect Campylobacter jejuni in clinical patient stool samples using antibody-magnetic beads. Therefore, this study is expected to improve confirmation of C. jejuni infection where diagnosis would previously fail with patient samples because of oxygen exposure, inappropriate diagnostic methods, and interference from other bacteria in the sample.
Collapse
Affiliation(s)
- So Yeon Kim
- Division of Zoonotic and Vector-borne Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Cheongju, South Korea
| | - Young-Sun Yun
- Division of Acute Viral Disease, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, South Korea
| | - Kwang-Jun Lee
- Division of Zoonotic and Vector-borne Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Cheongju, South Korea
| | - Jonghyun Kim
- Division of Zoonotic and Vector-borne Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Cheongju, South Korea
| |
Collapse
|
3
|
Gahamanyi N, Habimana AM, Harerimana JP, Iranzi F, Ntwali S, Kamaliza G, Mukayisenga J, Bosco SJ, Komba EV, Rujeni N, Amachawadi RG. High prevalence of antibiotic resistant Campylobacter among patients attending clinical settings in Kigali, Rwanda. BMC Infect Dis 2025; 25:225. [PMID: 39955487 PMCID: PMC11829400 DOI: 10.1186/s12879-025-10626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Thermophilic Campylobacter species are important causes of human gastroenteritis and inappropriate use of antimicrobials has led to the emergence of antimicrobial resistance (AMR). In Rwanda, data is limited on the prevalence and AMR carriage rate of Campylobacter strains. This study aimed at assessing the prevalence and antimicrobial susceptibility profiles of Campylobacter species among isolates obtained from different clinical settings in Kigali city, Rwanda. METHODS This cross-sectional study used a purposive sampling method to collect 385 stool samples from consenting patients attending the Microbiology Department at Kigali University Teaching Hospital (CHUK), Nyarugenge District Hospital, Muhima and Biryogo Health Centers (HC). Campylobacter species were isolated using culture and characterized with biochemical tests and multiplex Polymerase Chain Reaction (PCR) for species confirmation. Antimicrobial susceptibility testing (AST) with six antimicrobials [ciprofloxacin (CIP), tetracycline (TET), chloramphenicol (CHL), streptomycin (STR), erythromycin (ERY), and gentamicin (GEN)] was carried out by using Kirby-Bauer disk diffusion. RESULTS The overall prevalence of Campylobacter spp. was 7.0% (27/385) and the highest prevalence of 77.8% (21/27) was recorded at Biryogo HC. The prevalence of C. jejuni and C. coli were 92.6% (25/27) and 7.4% (2/27), respectively. Infection was significantly associated with diarrhea (p < 0.0001). Campylobacter isolates showed high resistance to STR (85.2%, 23/27), followed by ERY (66.7%, 18/27), and CIP (37.1%, 10/27). The isolates were sensitive to CHL at 88.9% (24/27), TET at 66.7% (18/27), and GEN at 66.7% (18/27). CONCLUSION The prevalence of campylobacteriosis in Kigali City is not negligible and is associated with diarrhea. Campylobacter strains isolated from clinical settings were resistant to commonly used antimicrobials. Larger studies will provide insights into the national status of Campylobacter-related AMR. Routine monitoring of antimicrobial use is recommended to mitigate this public health threat. Molecular analyses of resistant strains are warranted to characterize the genomic drive of antibiotic resistance.
Collapse
Affiliation(s)
- Noel Gahamanyi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda.
- National Reference Laboratory, Rwanda Biomedical Centre, P.O. Box 7162, Kigali, Rwanda.
| | - Arsene Musana Habimana
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Jean Paul Harerimana
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Frank Iranzi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Salomon Ntwali
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Gaudence Kamaliza
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Josiane Mukayisenga
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Shimirwa Jean Bosco
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
| | - Erick Vitus Komba
- Tanzania Livestock Research Institute, Dar es Salaam, P.O. Box 9152, Tanzania
| | - Nadine Rujeni
- School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5606, USA
| |
Collapse
|
4
|
Cooper KK, Mourkas E, Schiaffino F, Parker CT, Pinedo Vasquez TN, Garcia Bardales PF, Peñataro Yori P, Paredes Olortegui M, Manzanares Villanueva K, Romaina Cachique L, Silva Delgado H, Hitchings MD, Huynh S, Sheppard SK, Pascoe B, Kosek MN. Sharing of cmeRABC alleles between C. coli and C. jejuni associated with extensive drug resistance in Campylobacter isolates from infants and poultry in the Peruvian Amazon. mBio 2025; 16:e0205424. [PMID: 39727415 PMCID: PMC11796421 DOI: 10.1128/mbio.02054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Campylobacter is a serious health threat because of the rapid progressive evolution of antimicrobial resistance and efficient transmission from zoonotic as well as human sources. Resistance to fluoroquinolones and macrolides is particularly concerning as this compromises the two most effective oral antibiotic agents currently available for human campylobacteriosis. Here, we report on the prevalence and worldwide distribution of the operon cmeRABC, which encodes an efflux pump conferring high levels of combined resistance to fluoroquinolones and macrolides in Campylobacter strains isolated from poultry (n = 75) and children (n = 177). These mutations were found to be highly prevalent in isolates from poultry (62.7%) and children (29.4%) in Iquitos, Peru. We investigated the population structure of genes in the cmeRABC operon and identified a potential genetic bottleneck for the cmeA and cmeB genes. While most cmeB alleles segregate by species, alleles associated with high resistance to fluoroquinolones and macrolides were found in both Campylobacter jejuni and Campylobacter coli. We inferred that the likely ancestry of these alleles was from C. jejuni and was later acquired by C. coli through recombination. Publicly accessible global genomic data from 16,120 Campylobacter genomes identified these mutations in approximately 6% of C. jejuni and C. coli isolates globally, with higher prevalence in samples from poultry in many countries, including Peru. Our findings suggest that these extensively drug-resistant Campylobacter strains originated from C. jejuni in poultry.IMPORTANCEAntimicrobial resistance in Campylobacter is a growing public health concern, driven by the rapid evolution and zoonotic transmission of resistant strains. This study focuses on mutations in the cmeABC efflux pump, which confer high resistance to fluoroquinolones and macrolides, the two most effective oral antibiotics for human campylobacteriosis. By analyzing genomes from poultry and children in Iquitos, Peru, as well as global genomic data sets, we identified a significant prevalence of these resistance-associated mutations, particularly in poultry and children. Our findings suggest that these mutations originated in Campylobacter jejuni and spread to C. coli through recombination. Globally, these mutations are found in approximately 6% of isolates, with higher prevalence in poultry in multiple countries. This research underscores the critical role of genomic epidemiology in understanding the origins, evolution, and dissemination of antimicrobial resistance and highlights the need to address poultry as a reservoir for resistant Campylobacter.
Collapse
Affiliation(s)
- Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| | | | | | | | - Hermann Silva Delgado
- School of Human Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| |
Collapse
|
5
|
Zouganeli V, Kourek C, Bistola V, Mademli M, Grigoropoulos I, Thomas K, Tsiodras S, Filippatos G, Farmakis D. Campylobacter jejuni-Related Myocarditis: A Case Report and Review of the Literature. J Clin Med 2024; 13:7551. [PMID: 39768475 PMCID: PMC11727655 DOI: 10.3390/jcm13247551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacter jejuni, a common cause of gastroenteritis worldwide, has also been associated with rare extraintestinal infections, including myocarditis. We report a unique case of a 24-year-old male who presented with febrile diarrhea and acute chest pain. Diagnostic investigations revealed elevated cardiac troponin levels, normal electrocardiography findings, and myocardial inflammation on cardiac magnetic resonance imaging, confirming the diagnosis of acute myocarditis. Stool cultures identified Campylobacter jejuni as the causative agent. The patient was managed with supportive care, including hydration and electrolyte replacement, and a three-day course of azithromycin (500 mg daily). He achieved a full recovery and was discharged after eight days, with subsequent follow-up demonstrating the complete resolution of myocardial dysfunction. This case emphasizes the need to consider Campylobacter jejuni-related myocarditis in the differential diagnosis of young patients presenting with chest pain and diarrhea, along with an overview of its diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Virginia Zouganeli
- Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (V.Z.); (V.B.); (G.F.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Vasiliki Bistola
- Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (V.Z.); (V.B.); (G.F.)
| | - Maria Mademli
- Second Department of Radiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece;
| | - Ioannis Grigoropoulos
- Fourth Department of Internal Medicine, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (I.G.); (K.T.); (S.T.)
| | - Konstantinos Thomas
- Fourth Department of Internal Medicine, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (I.G.); (K.T.); (S.T.)
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (I.G.); (K.T.); (S.T.)
| | - Gerasimos Filippatos
- Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (V.Z.); (V.B.); (G.F.)
| | - Dimitrios Farmakis
- Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece; (V.Z.); (V.B.); (G.F.)
| |
Collapse
|
6
|
Wu X, Liping C, Dong F, Yan W, Shen Y, Ji L. Molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni and Campylobacter coli Isolates from Patients and raw meat in Huzhou, China, 2021-2022. PLoS One 2024; 19:e0311769. [PMID: 39661622 PMCID: PMC11633965 DOI: 10.1371/journal.pone.0311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Campylobacter species are zoonotic pathogens, and are considered to be the major foodborne pathogen that causes outbreaks and sporadic gastrointestinal illnesses both in developed and developing countries. In this study, the molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni and Campylobacter coli isolates from patients and raw meat between 2021 and 2022 in Huzhou were analyzed by using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and antimicrobial susceptibility testing. METHODS From September 1, 2021 to December 31, 2022, a total of 342 fecal specimens from diarrheal patients at a sentinel hospital in Huzhou and 168 samples of raw meat products collected from farmers' markets and supermarkets, were subjected to Campylobacter isolation and identification. The agar dilution method was used to determine resistance of the Campylobacter isolates to eleven antibiotics. In addition, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. RESULTS 78 Campylobacter isolates were recovered, comprising 58 isolates (74.36%, 58/78) of Campylobacter jejuni (34 patient isolates and 16 food isolates) and 20 isolates (25.64%, 20/78) of Campylobacter coli (6 patient isolates and 14 food isolates). Campylobacter has emerged as a predominant foodborne pathogen in the local region, with detection rate reached 11.70% among 342 diarrhea samples. The Campylobacter isolation rate in 168 raw meat was 22.62% (38/168), all originating from poultry meat, with chicken been the major source of infection (86.84%, 33/38). Both PGFE type and MLST data confirmed that Campylobacter stains circulating in Huzhou are genetically diverse, with Campylobacter jejuni isolates being more diverse than Campylobacter Coli. PFGE typing revealed 45 band patterns among 54 Campylobacter jejuni strains and 17 band patterns among 19 Campylobacter Coli strains. 50 Campylobacter jejuni strains from different sources were classified into 37 ST types, showing a dispersed distribution and encompassing over 12 clonal complexes (CCs), with CC-21 being the most prevalent CC (22.00%, 11/50). The distribution of ST types in the 18 Campylobacter Coli strains was relatively concentrated, with 83.33% (15/18) of isolates belonging to the CC-828. In this study, 2 groups of Campylobacter jejuni strains (PFGE J2-ST464 and PFGE J9-ST-2328) originated from humans and chickens showed high genetic homologies by comparing PFGE and MLST results. Besides, some disagreement between PFGE and MLST was observed for certain ST, indicating a weak correlation between PFGE and MLST for certain Campylobacter strains. Most of the Campylobacter isolates were highly resistant to nalidixic-acid, ciprofloxacin and tetracycline. The multiple antibiotic resistance of Campylobacter Coli (89.47%) is higher than Campylobacter jejuni (29.63%). CONCLUSION Campylobacter is an important foodborne pathogen in both diarrheal patients and raw meat products in Huzhou City, exhibiting multiple antibiotic resistance and high level of genetic diversity.
Collapse
Affiliation(s)
- Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Chen Liping
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Yuehua Shen
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| |
Collapse
|
7
|
Koide K, Kim H, Whelan MVX, Belotindos LP, Tanomsridachchai W, Changkwanyeun R, Usui M, Ó Cróinín T, Thapa J, Nakajima C, Suzuki Y. WQ-3810, a fluoroquinolone with difluoropyridine derivative as the R1 group exerts high potency against quinolone-resistant Campylobacter jejuni. Microbiol Spectr 2024; 12:e0432223. [PMID: 39162520 PMCID: PMC11448395 DOI: 10.1128/spectrum.04322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Quinolone-resistant Campylobacter jejuni have been increasing worldwide. Quinolones exert their antibacterial activity by inhibiting DNA gyrase, but most of the isolates acquire quinolone resistance via an amino acid substitution in the A subunit of DNA gyrase. WQ-3810 is a quinolone antibiotic that has been reported to have high potency even to DNA gyrase with amino acid substitutions in several bacterial species; however, there was no information on C. jejuni. Hence, this study aimed to evaluate the activity of WQ-3810 to inhibit wild-type/mutant DNA gyrases of C. jejuni and the bacterial growth for accessing the potency for the treatment of quinolone-resistant C. jejuni infection. The inhibitory activity of WQ-3810 was assessed and compared with ciprofloxacin and nalidixic acid by calculating the half maximal inhibitory concentration (IC50) against wild-type/mutant DNA gyrases. Next, the minimum inhibitory concentration (MIC) of WQ-3810 and five other quinolones was determined for C. jejuni including quinolone-resistant strains with amino acid substitutions in GyrA. Furthermore, the interaction between WQ-3810 and wild-type/mutant DNA gyrase was speculated using docking simulations. The IC50 of WQ-3810 against wild-type DNA gyrase was 1.03 µg/mL and not different from that of ciprofloxacin. However, those of WQ-3810 against mutant DNA gyrases were much lower than ciprofloxacin. The MICs of WQ-3810 ranged <0.016-0.031 µg/mL and were the lowest against both quinolone-susceptible and quinolone-resistant strains among the examined quinolones. The results obtained by the docking simulation agreed well with this observation. WQ-3810 seems to be a promising antimicrobial agent for the infections caused by quinolone-resistant C. jejuni. IMPORTANCE WQ-3810, a relatively new quinolone antibiotic, demonstrates exceptional antibacterial properties against certain pathogens in previous studies. However, its efficacy against quinolone-resistant Campylobacter jejuni was not previously reported. The prevalence of quinolone-resistant C. jejuni as a cause of foodborne illnesses is increasing, prompting this investigation into the effectiveness of WQ-3810 as a countermeasure. This study revealed high inhibitory activity of WQ-3810 against both wild-type and mutant DNA gyrases of C. jejuni. WQ-3810 was equally efficacious as ciprofloxacin against wild-type DNA gyrases but showed superior effectiveness against mutant DNA gyrases. WQ-3810 also demonstrated the lowest minimum inhibitory concentrations, highlighting its enhanced potency against both susceptible and resistant strains of C. jejuni. This observation was well supported by the results of the in silico analysis. Consequently, WQ-3810 exhibits a higher level of bactericidal activity compared to existing quinolones in combating both susceptible and resistant C. jejuni isolates.
Collapse
Affiliation(s)
- Kentaro Koide
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Lawrence P Belotindos
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | | | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| |
Collapse
|
8
|
Jonckheere S, Mairesse C, Vandecandelaere P, Vanbiervliet J, Terryn W, Somers J, Prevost B, Martiny D. Campylobacter coli Prosthetic Joint Infection: Case Report and a Review of the Literature. Pathogens 2024; 13:838. [PMID: 39452710 PMCID: PMC11510586 DOI: 10.3390/pathogens13100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Prosthetic joint infections caused by Campylobacter are uncommon, with the majority of cases being attributed to C. fetus. This case report represents the third instance of a prosthetic hip infection caused by C. coli following an episode of gastroenteritis and, notably, in an immunocompetent patient. The infection was successfully managed by surgical debridement and lavage with retention of the prosthesis and 12 weeks of antibiotics. Furthermore, we present the first whole-genome sequence of a Campylobacter strain responsible for prosthetic joint infection and offer a comprehensive review of the literature on such infections.
Collapse
Affiliation(s)
- Stijn Jonckheere
- Department of Laboratory Medicine, Jan Yperman Hospital, 8900 Ypres, Belgium; (S.J.)
| | - Celestin Mairesse
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (C.M.)
| | | | - Jens Vanbiervliet
- Department of Orthopaedic Surgery, Jan Yperman Hospital, 8900 Ypres, Belgium
| | - Wim Terryn
- General Internal Medicine and Nephrology, Jan Yperman Hospital, 8900 Ypres, Belgium
| | - Jan Somers
- Department of Orthopaedic Surgery, Jan Yperman Hospital, 8900 Ypres, Belgium
| | - Benoit Prevost
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (C.M.)
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (C.M.)
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| |
Collapse
|
9
|
Badjo AOR, Kabore NF, Zongo A, Gnada K, Ouattara A, Muhigwa M, Ouangraoua S, Poda A, Some SA, Schubert G, Eckmanns T, Leendertz FH, Belarbi E, Ouedraogo AS. Burden and epidemiology of Campylobacter species in acute enteritis cases in Burkina Faso. BMC Infect Dis 2024; 24:808. [PMID: 39123104 PMCID: PMC11316331 DOI: 10.1186/s12879-024-09709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Campylobacter spp. is a significant etiological agent of bacterial gastroenteritis globally. In Burkina Faso (BFA), the actual impact of this pathogen on gastroenteritis is considerably underestimated, primarily due to inadequate surveillance systems. OBJECTIVES This study aimed to investigate the proportion of Campylobacter species responsible for acute gastroenteritis among patients of all ages in urban and rural areas of BFA, using molecular biology techniques. STUDY DESIGN & METHODS Between 2018 and 2021, faecal specimens were obtained from 1,295 individuals presenting with acute gastroenteritis. These samples underwent screening for the Campylobacter coli/jejuni/lari complex utilizing real-time polymerase chain reaction (PCR) assays. Subsequently, positive samples were subjected to species-level differentiation through the application of species-specific primers. RESULTS Campylobacter spp. was detected in 25.0% (324/1,295) of the samples analysed. The majority of positive samples (95%, 308/324) were obtained from children under 5 years of age. Species identification was performed on a subset of 114 isolates, revealing 51 Campylobacter jejuni, 10 Campylobacter coli, and 53 Campylobacter isolates that remained unspeciated. CONCLUSIONS This study reveals a significant prevalence of Campylobacter species among patients with acute gastroenteritis, with a particularly high incidence observed in children under 5 years of age. Based on these findings, the implementation of routine Campylobacter surveillance in public health laboratories is strongly recommended to better monitor and address this health concern.
Collapse
Affiliation(s)
- Ange Oho Roseline Badjo
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso.
| | | | - Arsène Zongo
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Kobo Gnada
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Aminata Ouattara
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Bacteriology and Virology Department, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| | - Merci Muhigwa
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
| | - Soumeya Ouangraoua
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | - Armel Poda
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
- Department of Infectious Diseases, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| | - Satouro Arsène Some
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
| | | | | | | | | | - Abdoul-Salam Ouedraogo
- Laboratory of Emerging and Re-emerging Pathogens, Nazi Boni University, 01 BP 1091, Bobo Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique, Bobo Dioulasso, Burkina Faso
- Bacteriology and Virology Department, Souro Sanou University Hospital, Bobo Dioulasso, Burkina Faso
| |
Collapse
|
10
|
Djeghout B, Le-Viet T, Martins LDO, Savva GM, Evans R, Baker D, Page A, Elumogo N, Wain J, Janecko N. Capturing clinically relevant Campylobacter attributes through direct whole genome sequencing of stool. Microb Genom 2024; 10:001284. [PMID: 39213166 PMCID: PMC11570993 DOI: 10.1099/mgen.0.001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is the leading bacterial cause of infectious intestinal disease, but the pathogen typically accounts for a very small proportion of the overall stool microbiome in each patient. Diagnosis is even more difficult due to the fastidious nature of Campylobacter in the laboratory setting. This has, in part, driven a change in recent years, from culture-based to rapid PCR-based diagnostic assays which have improved diagnostic detection, whilst creating a knowledge gap in our clinical and epidemiological understanding of Campylobacter genotypes - no isolates to sequence. In this study, direct metagenomic sequencing approaches were used to assess the possibility of replacing genome sequences with metagenome sequences; metagenomic sequencing outputs were used to describe clinically relevant attributes of Campylobacter genotypes. A total of 37 diarrhoeal stool samples with Campylobacter and five samples with an unknown pathogen result were collected and processed with and without filtration, DNA was extracted, and metagenomes were sequenced by short-read sequencing. Culture-based methods were used to validate Campylobacter metagenome-derived genome (MDG) results. Sequence output metrics were assessed for Campylobacter genome quality and accuracy of characterization. Of the 42 samples passing quality checks for analysis, identification of Campylobacter to the genus and species level was dependent on Campylobacter genome read count, coverage and genome completeness. A total of 65% (24/37) of samples were reliably identified to the genus level through Campylobacter MDG, 73% (27/37) by culture and 97% (36/37) by qPCR. The Campylobacter genomes with a genome completeness of over 60% (n=21) were all accurately identified at the species level (100%). Of those, 72% (15/21) were identified to sequence types (STs), and 95% (20/21) accurately identified antimicrobial resistance (AMR) gene determinants. Filtration of stool samples enhanced Campylobacter MDG recovery and genome quality metrics compared to the corresponding unfiltered samples, which improved the identification of STs and AMR profiles. The phylogenetic analysis in this study demonstrated the clustering of the metagenome-derived with culture-derived genomes and revealed the reliability of genomes from direct stool sequencing. Furthermore, Campylobacter genome spiking percentages ranging from 0 to 2% total metagenome abundance in the ONT MinION sequencer, configured to adaptive sequencing, exhibited better assembly quality and accurate identification of STs, particularly in the analysis of metagenomes containing 2 and 1% of Campylobacter jejuni genomes. Direct sequencing of Campylobacter from stool samples provides clinically relevant and epidemiologically important genomic information without the reliance on cultured genomes.
Collapse
Affiliation(s)
- Bilal Djeghout
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Thanh Le-Viet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ngozi Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
11
|
Iqbal S, Qureshi S, Banday MS, Farooq S, Kashoo ZA, Gulzar M, Bhat MA, Pandit A, Hussain MI, Dar P, Badroo G, Hafiz M, Ud Din F, Mehraj J. Short Variable Regions flaA Gene (SVR-flaA) Diversity and Virulence Profile of Multidrug-Resistant Campylobacter from Poultry and Poultry Meat in India. J Food Prot 2024; 87:100308. [PMID: 38815809 DOI: 10.1016/j.jfp.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Human gastrointestinal infections caused by Campylobacter species is the second most important foodborne illness after salmonellosis worldwide. Poultry represent one of the main sources of Campylobacter organisms. In the present study, the short variable region of flagellin gene (SVR-flaA) typing was carried out to determine the variation among the circulating strains of Campylobacter jejuni and Campylobacter coli. The C. jejuni and C. coli isolated from poultry and poultry meat were screened for the presence of virulence determinants like cadF, flaA, cdtB, and wlaN gene. The screening for wlaN gene is crucial in view of the fact that most patients with Guillian Barre's (GB) syndrome with a preceding history of diarrheal illness have been found to harbor wlaN gene-positive C jejuni strains. Out of the 200 samples comprising poultry meat and cloacal swabs, 21.5% of samples were found to harbor Campylobacter spp. of which 2.5% were Campylobacter jejuni, and 19% were confirmed as Campylobacter coli. The cadF, flaA, cdtB virulence genes were detected in all the Campylobacter spp. isolated in the present study. The presence of the wlaN gene in the Campylobacter jejuni isolated in the present study may pose a public health threat with long-term human health implications. The SVR-flaA typing of twelve Campylobacter isolates obtained in the present study revealed that Campylobacter coli flaA sequence OL471375 is a new strain with a novel allele type 1,675 and peptide sequence 5 which stands deposited in pubMLST database for Campylobacter. The other flaA-SVR gene sequences identified in this study were OL471369, OL471370, OL471371, OL471372, OL471373, and OL471374. Among twelve Campylobacter spp., three distinct DdeI-RFLP patterns were observed, each varying in size from 100 to 1,000 base pairs. Antimicrobial profiling of the Campylobacter spp. isolated in the present study revealed that 50% of the strains were multidrug resistant. All the Campylobacter spp. were resistant to ciprofloxacin (CIP), ampicillin (AMP), penicillin (PEN), and nalidixic acid (NAL) whereas 57.1% of strains were resistant to tetracycline (TET) and erythromycin (ERY) 28% to amoxicillin (AMX) and enrofloxacin (ENO), 85% to amikacin (AMK). The high degree of resistance to fluoroquinolones observed in the present study is crucial in view of fluoroquinolones being drugs of choice for the treatment of human Campylobacter infections.
Collapse
Affiliation(s)
- Saima Iqbal
- Shere Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), India
| | - Sabia Qureshi
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India.
| | - Muddasir S Banday
- Department of Clinical Pharmacology, Sheri Kashmir Institute of Medical Sciences (SKIMS), Soura, India
| | - Shaheen Farooq
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Zahid A Kashoo
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Maliha Gulzar
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - M Altaf Bhat
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Arif Pandit
- Directorate of Research, SKUAST-K, Shalimar, Srinagar, J&K 190025, India
| | - Md Isfaqul Hussain
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Pervaiz Dar
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Gulzar Badroo
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Mahrukh Hafiz
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Faheem Ud Din
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| | - Junaid Mehraj
- Campylobacter Laboratory, Division of Veterinary Microbiology & Immunology, FVSC &A.H Shuhama (Aulesteng) SKUAST-K, J&K 190006, India
| |
Collapse
|
12
|
Zhang Z, Yan Y, Pang J, Dai L, Zhang Q, Yu EW. Structural basis of DNA recognition of the Campylobacter jejuni CosR regulator. mBio 2024; 15:e0343023. [PMID: 38323832 PMCID: PMC10936212 DOI: 10.1128/mbio.03430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Campylobacter jejuni is a foodborne pathogen commonly found in the intestinal tracts of animals. This pathogen is a leading cause of gastroenteritis in humans. Besides its highly infectious nature, C. jejuni is increasingly resistant to a number of clinically administrated antibiotics. As a consequence, the Centers for Disease Control and Prevention has designated antibiotic-resistant Campylobacter as a serious antibiotic resistance threat in the United States. The C. jejuni CosR regulator is essential to the viability of this bacterium and is responsible for regulating the expression of a number of oxidative stress defense enzymes. Importantly, it also modulates the expression of the CmeABC multidrug efflux system, the most predominant and clinically important system in C. jejuni that mediates resistance to multiple antimicrobials. Here, we report structures of apo-CosR and CosR bound with a 21 bp DNA sequence located at the cmeABC promotor region using both single-particle cryo-electron microscopy and X-ray crystallography. These structures allow us to propose a novel mechanism for CosR regulation that involves a long-distance conformational coupling and rearrangement of the secondary structural elements of the regulator to bind target DNA. IMPORTANCE Campylobacter jejuni has emerged as an antibiotic-resistant threat worldwide. CosR is an essential regulator for this bacterium and is important for Campylobacter adaptation to various stresses. Here, we describe the structural basis of CosR binding to target DNA as determined by cryo-electron microscopy and X-ray crystallography. Since CosR is a potential target for intervention, our studies may facilitate the development of novel therapeutics to combat C. jejuni infection.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jinji Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lei Dai
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Huong LQ, Chisnall T, Rodgers JD, Cawthraw SA, Card RM. Prevalence, antibiotic resistance, and genomic characterisation of Campylobacter spp. in retail chicken in Hanoi, Vietnam. Microb Genom 2024; 10:001190. [PMID: 38294872 PMCID: PMC10868608 DOI: 10.1099/mgen.0.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Campylobacter spp. are a leading cause of bacterial foodborne zoonosis worldwide, with poultry meat and products recognised as a significant source of human infection. In Vietnam there are few data regarding the occurrence, antimicrobial resistance, and genomic diversity of Campylobacter in poultry and poultry meat. The aim of this study was to estimate the prevalence of Campylobacter in chicken meat at retail in Hanoi, determine antimicrobial sensitivities of the Campylobacter isolated, and assess their genetic diversity. A total of 120 chicken meat samples were collected from eight traditional retail markets (n=80) and four supermarkets (n=40). Campylobacter was isolated following ISO 10272-1 : 2017 and identification verified by PCR. The prevalence of Campylobacter was 38.3 % (46/120) and C. coli was the most prevalent species in both retail markets (74 %) and supermarkets (88 %). The minimum inhibitory concentrations for ciprofloxacin, erythromycin, gentamicin, nalidixic acid, streptomycin, and tetracycline were determined by broth microdilution for 32 isolates. All characterised Campylobacter were resistant to ciprofloxacin, nalidixic acid, and tetracycline, with corresponding resistance determinants detected in the sequenced genomes. Most C. coli were multidrug resistant (24/28) and two harboured the erythromycin resistance gene ermB on a multiple drug-resistance genomic island, a potential mechanism for dissemination of resistance. The 32 isolates belonged to clonal complexes associated with both poultry and people, such as CC828 for C. coli. These results contribute to the One Health approach for addressing Campylobacter in Vietnam by providing detailed new insights into a main source of human infection and can inform the design of future surveillance approaches.
Collapse
Affiliation(s)
- Luu Quynh Huong
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Road, Dong Da district, Hanoi, Vietnam
| | - Thomas Chisnall
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - John D. Rodgers
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - Shaun A. Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - Roderick M. Card
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| |
Collapse
|
14
|
Bárria C, Athayde D, Hernandez G, Fonseca L, Casinhas J, Cordeiro TN, Archer M, Arraiano CM, Brito JA, Matos RG. Structure and function of Campylobacter jejuni polynucleotide phosphorylase (PNPase): Insights into the role of this RNase in pathogenicity. Biochimie 2024; 216:56-70. [PMID: 37806617 DOI: 10.1016/j.biochi.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.
Collapse
Affiliation(s)
- Cátia Bárria
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Diogo Athayde
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Guillem Hernandez
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Leonor Fonseca
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Jorge Casinhas
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tiago N Cordeiro
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Margarida Archer
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José A Brito
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Rute G Matos
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
15
|
Daniel IK, Njue OM, Sanad YM. Antimicrobial Effects of Plant-Based Supplements on Gut Microbial Diversity in Small Ruminants. Pathogens 2023; 13:31. [PMID: 38251338 PMCID: PMC10819137 DOI: 10.3390/pathogens13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Every year in the United States, approximately 48 million people are affected by bacterial illnesses that are transmitted through food, leading to 3000 fatalities. These illnesses typically stem from food animals and their by-products, which may harbor dangerous pathogens like Salmonella enterica, Listeria monocytogenes, enterohemorrhagic Escherichia coli O157:H7, and Campylobacter jejuni. Factors that contribute to contamination include manure used as a soil amendment, exposure to polluted irrigation water, and contact with animals. To improve food safety, researchers are studying pre-slaughter intervention methods to eliminate bacterial contamination in live animals. While small ruminants are vital to global agriculture and income generation for small farms, traditional feeding practices involve supplements and antibiotics to boost performance, which contributes to antibiotic resistance. Hence, researchers are looking for friendly bacterial strains that enhance both animal and human health without impacting livestock productivity. The global trend is to minimize the use of antibiotics as feed supplements, with many countries prohibiting or limiting their use. The aim of this review is to provide a comprehensive insight on the antioxidant capabilities, therapeutic attributes, and applications of bioactive compounds derived from sweet potato tops (SPTs), rice bran (RB) and radish tops (RTs). This overview provides an insight on plant parts that are abundant in antioxidant and prebiotic effects and could be used as value-added products in animal feed and pharmaceutical applications. This review was based on previous findings that supplementation of basal diets with natural supplements represents a multifaceted intervention that will become highly important over time. By remarkably reducing the burden of foodborne pathogens, they apply to multiple species, are cheap, do not require withdrawal periods, and can be applied at any time in food animal production.
Collapse
Affiliation(s)
- Ian K. Daniel
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Obadiah M. Njue
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Yasser M. Sanad
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
16
|
Hsu MD, Ta APD, Iwamoto S, Leo A, Chu G. Ceftriaxone Resistance in Campylobacter Gastroenteritis. Cureus 2023; 15:e50632. [PMID: 38229795 PMCID: PMC10791088 DOI: 10.7759/cureus.50632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Annually, millions of people worldwide are exposed to Campylobacter, a species of bacteria that commonly causes gastroenteritis and in cases of immunocompromised individuals, can also lead to life-threatening complications. After stool cultures are obtained, the usual treatment for infectious diarrhea involves metronidazole and quinolones such as ciprofloxacin or levofloxacin. Quinolones are a family of broad-spectrum antibiotics known to be effective against various gram-negative infections that also include Campylobacter jejuni (C. jejuni). However, due to adverse side effects and bacterial resistance risks that may exist with medication use, they are no longer used as a first line. Our patient, initially treated with ceftriaxone for symptoms resembling bacterial meningitis, pneumonia, and infectious diarrhea, showed minimal to no improvement. Subsequent cerebral spinal fluid (CSF) ruled out meningitis while stool studies confirmed C. jejuni as the causative agent. A switch to levofloxacin resulted in a noticeable improvement in the patient's condition. This case emphasizes the importance of considering changes in antibiotic regimen from ceftriaxone to quinolones when faced with persistent infectious diarrhea, due to the high prevalence of ceftriaxone resistance in C. jejuni infections.
Collapse
Affiliation(s)
- Megan D Hsu
- College of Medicine, California Northstate University, Elk Grove, USA
| | - An Phuc D Ta
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Satori Iwamoto
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Alexis Leo
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Gary Chu
- Internal Medicine, Kaiser South Sacramento, Sacramento, USA
- College of Medicine, California Northstate University, Elk Grove, USA
| |
Collapse
|
17
|
Zhang Z, Lizer N, Wu Z, Morgan CE, Yan Y, Zhang Q, Yu EW. Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance. Microbiol Spectr 2023; 11:e0119723. [PMID: 37289051 PMCID: PMC10434076 DOI: 10.1128/spectrum.01197-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Campylobacter jejuni is a bacterium that is commonly present in the intestinal tracts of animals. It is also a major foodborne pathogen that causes gastroenteritis in humans. The most predominant and clinically important multidrug efflux system in C. jejuni is the CmeABC (Campylobacter multidrug efflux) pump, a tripartite system that includes an inner membrane transporter (CmeB), a periplasmic fusion protein (CmeA), and an outer membrane channel protein (CmeC). This efflux protein machinery mediates resistance to a number of structurally diverse antimicrobial agents. A recently identified CmeB variant, termed resistance enhancing CmeB (RE-CmeB), can increase its multidrug efflux pump activity, likely by influencing antimicrobial recognition and extrusion. Here, we report structures of RE-CmeB in its apo form as well as in the presence of four different drugs by using single-particle cryo-electron microscopy (cryo-EM). Coupled with mutagenesis and functional studies, this structural information allows us to identify critical amino acids that are important for drug resistance. We also report that RE-CmeB utilizes a somewhat unique subset of residues to bind different drugs, thereby optimizing its ability to accommodate different compounds with distinct scaffolds. These findings provide insights into the structure-function relationship of this newly emerged antibiotic efflux transporter variant in Campylobacter. IMPORTANCE Campylobacter jejuni has emerged as one of the most problematic and highly antibiotic-resistant pathogens, worldwide. The Centers for Disease Control and Prevention have designated antibiotic-resistant C. jejuni as a serious antibiotic resistance threat in the United States. We recently identified a C. jejuni resistance enhancing CmeB (RE-CmeB) variant that can increase its multidrug efflux pump activity and confers an exceedingly high-level of resistance to fluoroquinolones. Here, we report the cryo-EM structures of this prevalent and clinically important C. jejuni RE-CmeB multidrug efflux pump in both the absence and presence of four antibiotics. These structures allow us to understand the action mechanism for multidrug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nicholas Lizer
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Hamad GM, Gerges M, Mehany T, Hussein SM, Eskander M, Tawfik RG, El-Halmouch Y, Mansour AM, Hafez EE, Esatbeyoglu T, Elghazaly EM. Estimating the Prevalence of Foodborne Pathogen Campylobacter jejuni in Chicken and Its Control via Sorghum Extracts. Pathogens 2023; 12:958. [PMID: 37513805 PMCID: PMC10385792 DOI: 10.3390/pathogens12070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative bacterium which is considered as the most reported cause of foodborne infection, especially for poultry species. The object of this work is to evaluate the occurrence of C. jejuni in chicken meat as well its control via three types of sorghum extracts (white sorghum (WS), yellow sorghum (YS), and red sorghum (RS)); antibacterial activity, antioxidant power, and cytotoxicity of sorghum extracts were also assessed. It was found that C. jejuni is very abundant in chicken meat, especially breast and thigh. WS extract showed more effectiveness than both yellow and red ones. Lyophilized WS extract offered high total phenolic compounds (TPCs) and total flavonoid compounds (TFCs) of 64.2 ± 0.8 mg gallic acid equivalent (GAE/g) and 33.9 ± 0.4 mg catechol equivalent (CE)/g, respectively. Concerning the antibacterial and antioxidant activities, WS showed high and significant antibacterial activity (p < 0.001); hence, WS displayed a minimum inhibitory concentration (MIC) of 6.25%, and revealed an inhibition zone of 7.8 ± 0.3 mm; it also showed an IC50 at a concentration of 34.6 μg/mL. In our study, different samples of chicken fillet were collected and inoculated with pathogenic C. jejuni and stored at 4 °C. Inoculated samples were treated with lyophilized WS extract at (2%, 4%, and 6%), the 2% treatment showed a full reduction in C. jejuni on the 10th day, the 4% treatment showed a full reduction in C. jejuni on the 8th day, while the 6% treatment showed a full reduction in C. jejuni on the 6th day. Additionally, 2%, 4%, and 6% WS extracts were applied on un-inoculated grilled chicken fillet, which enhanced its sensory attributes. In sum, WS extract is a promising natural preservative for chicken meat with accepted sensory evaluation results thanks to its high antibacterial and antioxidant potentials.
Collapse
Affiliation(s)
- Gamal M Hamad
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Mariam Gerges
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 22758, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Saleh M Hussein
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Michael Eskander
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Rasha G Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Yasser El-Halmouch
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Alaa M Mansour
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Eman M Elghazaly
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh 51511, Egypt
| |
Collapse
|
19
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
20
|
Campylobacter jejuni and Campylobacter coli from Houseflies in Commercial Turkey Farms Are Frequently Resistant to Multiple Antimicrobials and Exhibit Pronounced Genotypic Diversity. Pathogens 2023; 12:pathogens12020230. [PMID: 36839502 PMCID: PMC9965530 DOI: 10.3390/pathogens12020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Campylobacter is a leading foodborne pathogen, and poultry are a major vehicle for infection. Houseflies play important roles in colonization of broiler flocks with Campylobacter but comparable information for turkey farms is limited. Here, we investigated houseflies as potential vectors for Campylobacter in 28 commercial turkey flocks. We characterized species, genotypes, and the antimicrobial resistance (AMR) profiles of Campylobacter from turkey feces and houseflies in the same turkey house. Of the 28 flocks, 25 yielded Campylobacter from turkey droppings and houseflies, with an average of 6.25 and 3.11 Campylobacter log CFU/g feces and log CFU/fly, respectively. Three flocks were negative for Campylobacter both in turkey feces and in houseflies. Both C. coli and C. jejuni were detected in turkey feces and houseflies, with C. coli more likely to be recovered from houseflies than feces. Determination of Campylobacter species, genotypes, and AMR profiles revealed up to six different strains in houseflies from a single house, including multidrug-resistant strains. For the predominant strain types, presence in houseflies was predictive of presence in feces, and vice versa. These findings suggest that houseflies may serve as vehicles for dissemination of Campylobacter, including multidrug-resistant strains, within a turkey house, and potentially between different turkey houses and farms in the same region.
Collapse
|
21
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Talukdar PK, Crockett TM, Gloss LM, Huynh S, Roberts SA, Turner KL, Lewis STE, Herup-Wheeler TL, Parker CT, Konkel ME. The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Front Microbiol 2022; 13:1062464. [PMID: 36619995 PMCID: PMC9812494 DOI: 10.3389/fmicb.2022.1062464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage to DNA is a significant source of mutations in living organisms. While DNA damage must be repaired to maintain the integrity of the genome and cell survival, errors made during DNA repair may contribute to evolution. Previous work has revealed that Campylobacter jejuni growth in the presence of bile salt deoxycholate (DOC) causes an increase in reactive oxygen species and the occurrence of 8-oxo-deoxyguanosine (8-oxo-dG) DNA lesions. The fundamental goal of this project was to determine if C. jejuni growth in a medium containing DOC contributes to DNA mutations that provide a fitness advantage to the bacterium. Co-culture experiments revealed that C. jejuni growth in a DOC-supplemented medium increases the total number of ciprofloxacin-resistant isolates compared to C. jejuni grown in the absence of DOC. We recovered two individual isolates grown in a medium with DOC that had a point mutation in the gene encoding the EptC phosphoethanolamine transferase. Transformants harboring the EptC variant protein showed enhanced resistance to the antimicrobial agent polymyxin B and DOC when compared to an eptC deletion mutant or the isolate complemented with a wild-type copy of the gene. Finally, we found that the base excision repair (BER), homologous recombination repair (HRR), and nucleotide excision repair (NER) are involved in general oxidative damage repair in C. jejuni but that the BER pathway plays the primary role in the repair of the 8-oxo-dG lesion. We postulate that bile salts drive C. jejuni mutations (adaptations) and enhance bacterial fitness in animals.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Torin M. Crockett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Steven Huynh
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Steven A. Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kyrah L. Turner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sebastien T. E. Lewis
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tristin L. Herup-Wheeler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Craig T. Parker
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States,*Correspondence: Craig T. Parker, ✉
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Michael E. Konkel, ✉
| |
Collapse
|
23
|
Riegert AS, Narindoshvili T, Platzer NE, Raushel FM. Functional Characterization of a HAD Phosphatase Involved in Capsular Polysaccharide Biosynthesis in Campylobacter jejuni. Biochemistry 2022; 61:2431-2440. [PMID: 36214481 PMCID: PMC9633586 DOI: 10.1021/acs.biochem.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium found in the intestinal tracts of chickens and many other farm animals. C. jejuni infection results in campylobacteriosis, which can cause nausea, diarrhea, fever, cramps, and death. The surface of the bacterium is coated with a thick layer of sugar known as the capsular polysaccharide. This highly modified polysaccharide contains an unusual d-glucuronamide moiety in serotypes HS:2 and HS:19. Previously, we have demonstrated that a phosphorylated glucuronamide intermediate is synthesized in C. jejuni NCTC 11168 (serotype HS:2) by cumulative reactions of three enzymes: Cj1441, Cj1436/Cj1437, and Cj1438. Cj1441 functions as a UDP-d-glucose dehydrogenase to make UDP-d-glucuronate; then Cj1436 or Cj1437 catalyzes the formation of ethanolamine phosphate or S-serinol phosphate, respectively, and finally Cj1438 catalyzes amide bond formation using d-glucuronate and either ethanolamine phosphate or S-serinol phosphate. Here, we investigated the final d-glucuronamide-modifying enzyme, Cj1435. Cj1435 was shown to catalyze the hydrolysis of the phosphate esters from either the d-glucuronamide of ethanolamine phosphate or S-serinol phosphate. Kinetic constants for a range of substrates were determined, and the stereoselectivity of the enzyme for the hydrolysis of glucuronamide of S-serinol phosphate was established using 31P nuclear magnetic resonance spectroscopy. A bioinformatic analysis of Cj1435 reveals it to be a member of the HAD phosphatase superfamily with a unique DXXE catalytic motif.
Collapse
Affiliation(s)
- Alexander S. Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Nicole E. Platzer
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
24
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Conesa A, Garofolo G, Di Pasquale A, Cammà C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011-2021): Microbiological and WGS data risk assessment. EFSA J 2022; 20:e200406. [PMID: 35634560 PMCID: PMC9131813 DOI: 10.2903/j.efsa.2022.e200406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Campylobacter jejuni is considered as the main pathogen in human food-borne outbreaks worldwide. Over the past years, several studies have reported antimicrobial resistance (AMR) in C. jejuni strains. In Europe, the official monitoring of AMR comprises the testing of Campylobacter spp. from food-producing animals because this microorganism is responsible for human infections and usually predominant in poultry. Food-producing animals are considered to be a major source of campylobacteriosis through contamination of food products. Concerns are growing due to the current classification of C. jejuni by the WHO as a 'high priority pathogen' due to the emergence of resistance to multiple drugs such as those belonging to the fluoroquinolones, macrolides and other classes, which limits the treatment alternatives. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritise food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to the understanding of their epidemiology and population structure. Using a population genetic approach and grouping the isolates into sequence types within different clonal complexes, it is possible to investigate the source of the human cases. The work programme was aimed for the fellow to assess the AMR of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats. Given the public health concern represented by resistant pathogens in food-producing animals and the paucity of data about this topic in Italy, the aim was to identify correlations between phenotypic and genotypic AMR and comparing the origin of the isolates. The work programme allowed the fellow to acquire knowledge, skills and competencies on the web-based tools used by IZSAM to process the NGS data and perform bioinformatics analyses for the identification of epidemiological clusters, the study of AMR patterns in C. jejuni isolates, and the assessment of the human exposure to such AMR pathogens. Furthermore, the fellow became able to transfer the acquired knowledge through innovative web-based didactical tools applied to WGS and clustering of specific food-borne pathogens, with particular reference to C. jejuni. To achieve this objective, 2,734 C. jejuni strains isolated from domestic and wild animals and humans, during the period 2011-2021 were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, for the following antibiotics: nalidixic acid, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, streptomycin, tetracycline. The data were complemented by WGS data for each strain, uploaded in the Italian information system for the collection and analysis of complete genome sequence of pathogens isolated from animal, food and environment (GENPAT) developed and maintained at IZSAM; information like clonal complex and sequence type to understand the phylogenetical distance between strains according to their origins were also considered. This work underlines that a better knowledge of the resistance levels of C. jejuni is necessary, and mandatory monitoring of Campylobacter species in the different animal productions is strongly suggested.
Collapse
Affiliation(s)
- A Conesa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - G Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - A Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - C Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| |
Collapse
|
26
|
Simms AJ, Kobayashi T, Schwartzhoff PV, Sekar P. Prosthetic hip infection due to Campylobacter jejuni. BMJ Case Rep 2022; 15:e248240. [PMID: 35272991 PMCID: PMC8915350 DOI: 10.1136/bcr-2021-248240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
A woman in her 60s with a left hip prosthesis was presented with left hip pain and fever. She had an elevated white blood cell count and inflammatory markers. Synovial fluid Gram stain demonstrated curved Gram-negative rods identified as Campylobacter jejuni The patient initially refused surgery and after 3 months underwent one-stage exchange after which she was treated with 12 weeks of levofloxacin. Her inflammatory markers normalised and she was clinically doing well at her 6-month follow-up. C. jejuni is a rare cause of prosthetic joint infection and should be included in the differential diagnosis when a patient has risk factors even without significant preceding gastrointestinal symptoms. Per most recent Infectious Diseases Society of America guidelines, treatment after one-stage revision includes 4-6 weeks of intravenous antimicrobials followed by possible oral suppression therapy, while the European guidelines recommend 12 weeks of orally bioavailable antibiotics.
Collapse
Affiliation(s)
- Andrew Joseph Simms
- Internal Medicine, Infectious Diseases, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Takaaki Kobayashi
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Patrick V Schwartzhoff
- Internal Medicine, Carver College of Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Poorani Sekar
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Predicting Hospital Readmission for Campylobacteriosis from Electronic Health Records: A Machine Learning and Text Mining Perspective. J Pers Med 2022; 12:jpm12010086. [PMID: 35055401 PMCID: PMC8779953 DOI: 10.3390/jpm12010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
(1) Background: This study investigates influential risk factors for predicting 30-day readmission to hospital for Campylobacter infections (CI). (2) Methods: We linked general practitioner and hospital admission records of 13,006 patients with CI in Wales (1990–2015). An approach called TF-zR (term frequency-zRelevance) technique was presented to evaluates how relevant a clinical term is to a patient in a cohort characterized by coded health records. The zR is a supervised term-weighting metric to assign weight to a term based on relative frequencies of the term across different classes. Cost-sensitive classifier with swarm optimization and weighted subset learning was integrated to identify influential clinical signals as predictors and optimal model for readmission prediction. (3) Results: From a pool of up to 17,506 variables, 33 most predictive factors were identified, including age, gender, Townsend deprivation quintiles, comorbidities, medications, and procedures. The predictive model predicted readmission with 73% sensitivity and 54% specificity. Variables associated with readmission included male gender, recurrent tonsillitis, non-healing open wounds, operation for in-gown toenails. Cystitis, paracetamol/codeine use, age (21–25), and heliclear triple pack use, were associated with a lower risk of readmission. (4) Conclusions: This study gives a profile of clustered variables that are predictive of readmission associated with campylobacteriosis.
Collapse
|
28
|
Zang X, Lv H, Tang H, Jiao X, Huang J. Capsular Genotype and Lipooligosaccharide Class Associated Genomic Characterizations of Campylobacter jejuni Isolates From Food Animals in China. Front Microbiol 2021; 12:775090. [PMID: 34950120 PMCID: PMC8690235 DOI: 10.3389/fmicb.2021.775090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the leading causative agent of gastroenteritis and Guillain–Barré syndrome (GBS). Capsular polysaccharide (CPS) and lipooligosaccharide (LOS) contribute to the susceptibility of campylobacteriosis, which have been concern the major evaluation indicators of C. jejuni isolates from clinical patients. As a foodborne disease, food animal plays a primary role in the infection of campylobacteriosis. To assess the pathogenic characterizations of C. jejuni isolates from various ecological origins, 1609 isolates sampled from 2005 to 2019 in China were analyzed using capsular genotyping. Strains from cattle and poultry were further characterized by LOS classification and multilocus sequence typing (MLST), compared with the isolates from human patients worldwide with enteritis and GBS. Results showed that the disease associated capsular genotypes and LOS classes over-represented in human isolates were also dominant in animal isolates, especially cattle isolates. Based on the same disease associated capsular genotype, more LOS class types were represented by food animal isolates than human disease isolates. Importantly, high-risk lineages CC-22, CC-464, and CC-21 were found dominated in human isolates with GBS worldwide, which were also represented in the food animal isolates with disease associated capsular types, suggesting a possibility of clonal spread of isolates across different regions and hosts. This is the first study providing genetic evidence for food animal isolates of particular capsular genotypes harbor similar pathogenic characteristics to human clinical isolates. Collective efforts for campylobacteriosis hazard control need to be focused on the zoonotic pathogenicity of animal isolates, along the food chain “from farm to table.”
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongyue Lv
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
29
|
Zang X, Huang P, Li J, Jiao X, Huang J. Genomic Relatedness, Antibiotic Resistance and Virulence Traits of Campylobacter jejuni HS19 Isolates From Cattle in China Indicate Pathogenic Potential. Front Microbiol 2021; 12:783750. [PMID: 34956150 PMCID: PMC8698899 DOI: 10.3389/fmicb.2021.783750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Although campylobacteriosis is a zoonotic foodborne illness, high-risk isolates from animal sources are rarely characterized, and the pathogenic potential of zoonotic strains remains an obstacle to effective intervention against human infection. HS19 has been acknowledged as a maker serotype represented by Campylobacter jejuni (C. jejuni) isolates from patients with post-infection Guillain-Barré syndrome (GBS), which is circulation in developed countries. However, a previous serotype epidemiological study of C. jejuni isolates in an animal population revealed that HS19 was also prevalent in isolates from cattle in China. In this study, to investigate the hazardous potential of zoonotic strains, 14 HS19 isolates from cattle were systematically characterized both by genotype and phenotype. The results showed that all of these cattle isolates belonged to the ST-22 complex, a high-risk lineage represented by 77.2% HS19 clinical isolates from patients worldwide in the PubMLST database, indicating that the ST-22 complex is the prominent clonal complex of HS19 isolates, as well as the possibility of clonal spread of HS19 isolates across different regions and hosts. Nevertheless, these cattle strains clustered closely with the HS19 isolates from patients, suggesting a remarkable phylogenetic relatedness and genomic similarity. Importantly, both tetracycline genes tet(O) and gyrA (T86I) reached a higher proportional representation among the cattle isolates than among the human clinical isolates. A worrying level of multidrug resistance (MDR) was observed in all the cattle isolates, and two MDR profiles of the cattle isolates also existed in human clinical isolates. Notably, although shared with the same serotype HS19 and sequence type ST-22, 35.7% of cattle isolates induced severe gastrointestinal pathology in the IL-10–/– C57BL/6 mice model, indicating that some bacteria could change due to host adaptation to induce a disease epidemic, thus the associated genetic elements deserve further investigation. In this study, HS19 isolates from cattle were first characterized by a systematic evaluation of bacterial genomics and in vitro virulence, which improved our understanding of the potential zoonotic hazard from food animal isolates with high-risk serotypes, and provided critical information for the development of targeted C. jejuni mitigation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Jie Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
- *Correspondence: Jinlin Huang,
| |
Collapse
|
30
|
Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility. mBio 2021; 12:e0149421. [PMID: 34425711 PMCID: PMC8406305 DOI: 10.1128/mbio.01494-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions.
Collapse
|
31
|
Sen K, Berglund T, Patel N, Chhabra N, Ricci DM, Dutta S, Mukhopadhyay AK. Genotypic analyses and antimicrobial resistance profiles of Campylobacter jejuni from crows (Corvidae) of United States and India reflect their respective local antibiotic burdens. J Appl Microbiol 2021; 132:696-706. [PMID: 34260789 DOI: 10.1111/jam.15220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
AIM The study examined the hypothesis that crow-borne Campylobacter can function as environmental reservoirs and indicators of antibiotic resistance (AR) determinants circulating in a human population. METHODS AND RESULTS Two species of crows from Washington (WA), United States, and Kolkata, India, respectively, were examined for their ability to carry antibiotic resistant Campylobacter. Campylobacter jejuni was the only species isolated by selective agar plating from crow faecal samples. Disk diffusion method used to compare the AR profile of the isolates showed tetracycline (TET) resistance to be the most prevalent (27%) among WA isolates, followed by ciprofloxacin (CIP; 24%). Among Kolkata isolates, nalidixic acid resistance was most common (36%), followed by CIP (27%). The AR profile demonstrated by crow isolates of WA reflects those reported by the US National Antimicrobial Resistance Monitoring System for human isolates (2007-2011), where resistance to TET was most prevalent (≈45%), followed by quinolones (≈24%). The Kolkata crow isolates reflected the AR profile of human clinical isolates from India, where 97% resistance was shown to quinolones, followed by TET (18%). Multilocus sequence typing of 37 isolates, including 11 water isolates from the crow roost area, showed 24 different sequence types (STs). Seventeen of these were previously found in wild birds, 2 in human diarrhoea, 4 in poultry and 8 in environmental water. One isolate was found in both water and faeces, though from different sites within WA. CONCLUSIONS The results indicate that crows most likely acquire the AR from anthropogenic sources. Although they are colonized by specific STs, rarely isolated from humans, they can facilitate the spread of AR. SIGNIFICANCE AND IMPACT OF THE STUDY By studying two areas in different continents, this research demonstrates that Campylobacter borne by crows can function as environmental reservoirs and indicators of AR determinants that circulate in a human population. This information will be of importance to scientists from the medical and poultry industries.
Collapse
Affiliation(s)
- Keya Sen
- Division of Biological Sciences, STEM, University of Washington, Bothell, Washington, USA
| | - Tanner Berglund
- Division of Biological Sciences, STEM, University of Washington, Bothell, Washington, USA
| | - Nidhi Patel
- Division of Biological Sciences, STEM, University of Washington, Bothell, Washington, USA
| | - Neha Chhabra
- Division of Biological Sciences, STEM, University of Washington, Bothell, Washington, USA
| | - David M Ricci
- Division of Biological Sciences, STEM, University of Washington, Bothell, Washington, USA
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric disease, Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric disease, Kolkata, India
| |
Collapse
|
32
|
Emberland KE, Wensaas KA, Litleskare S, Iversen A, Hanevik K, Langeland N, Rortveit G. Clinical features of gastroenteritis during a large waterborne Campylobacter outbreak in Askøy, Norway. Infection 2021; 50:343-354. [PMID: 34215942 PMCID: PMC8942940 DOI: 10.1007/s15010-021-01652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Purpose Outbreaks of Campylobacter infection are common, but studies exploring the clinical features of acute illness in the outbreak setting are scarce in existing literature. The main purpose of the present study was to investigate the clinical features of self-reported acute illness in gastroenteritis cases during a large waterborne Campylobacter outbreak in Askøy municipality, Norway, in 2019. Methods A web-based self-administered questionnaire, and invitation to participate was sent by the municipality of Askøy as text message to mobile phones using the municipality’s warning system to the inhabitants during the ongoing outbreak. Results Out of 3624 participants, 749 (20.7%) were defined as cases, of which 177 (23.6%) reported severe gastroenteritis. The most common symptoms were loose stools (90.7%), abdominal pain (89.3%) and diarrhea (88.9%), whereas 63.8% reported fever, 50.2% joint pain and 14.2% bloody stools. Tiredness, a symptom non-specific to gastroenteritis, was the overall most common symptom (91.2%). Conclusion About one in four of the cases reported symptoms consistent with severe gastroenteritis. We found more joint pain and less bloody stools than reported in published studies of laboratory confirmed campylobacteriosis cases. Tiredness was common in the current study, although rarely described in previous literature of acute illness in the outbreak setting. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-021-01652-3.
Collapse
Affiliation(s)
- Knut Erik Emberland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway. .,Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway.
| | - K-A Wensaas
- Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway
| | - S Litleskare
- Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway
| | - A Iversen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Community Medicine, Askøy municipality, Norway
| | - K Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit On Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - N Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - G Rortveit
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway
| |
Collapse
|
33
|
Tang S, Yang R, Wu Q, Ding Y, Wang Z, Zhang J, Lei T, Wu S, Zhang F, Zhang W, Xue L, Zhang Y, Wei X, Pang R, Wang J. First report of the optrA-carrying multidrug resistance genomic island in Campylobacter jejuni isolated from pigeon meat. Int J Food Microbiol 2021; 354:109320. [PMID: 34229231 DOI: 10.1016/j.ijfoodmicro.2021.109320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. The optrA gene, encoding an ATP-binding cassette F (ABC-F) protein that confers resistance to oxazolidinones and phenicols, has been found in C. coli in China. In this study, the optrA gene was first identified in C. jejuni collected from retail meat in China from 2013 to 2016. Nine strains, isolated from a pigeon meat sample, carry the optrA gene. The molecular characteristics of the optrA-positive strains were determined by whole genome sequencing. Pulsed-field gel electrophoresis, multilocus sequence typing, and single nucleotide polymorphism analyses demonstrated that the nine optrA-positive isolates were genetically homogeneous. Phylogenetic characteristics and sequence comparison revealed that optrA was located on a chromosome-borne multidrug resistance genomic island. The optrA gene along with the tet(O) gene formed two different translocatable units (TUs), thereby supporting the transmission of TU-associated resistance genes. The emergence and spread of such TUs and strains are of great concern in terms of food safety, and measures must be implemented to avoid their dissemination in other Gram-negative bacteria and food chains.
Collapse
Affiliation(s)
- Shengjun Tang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weipei Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
34
|
Passive Immunization of Chickens with Anti-Enterobactin Egg Yolk Powder for Campylobacter Control. Vaccines (Basel) 2021; 9:vaccines9060569. [PMID: 34205835 PMCID: PMC8230082 DOI: 10.3390/vaccines9060569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Enterobactin (Ent) is a highly conserved and important siderophore for the growth of many Gram-negative bacterial pathogens. Therefore, targeting Ent for developing innovative intervention strategies has attracted substantial research interest in recent years. Recently, we developed a novel Ent conjugate vaccine that has been demonstrated to be effective for controlling Gram-negative pathogens using both in vitro and in vivosystems. In particular, active immunization of chickens with the Ent conjugate vaccine elicited strong immune responses and significantly reduced intestinal colonization of Campylobacter jejuni, the leading foodborne bacterial pathogen. Given that hyperimmune egg yolk immunoglobulin Y (IgY) has been increasingly recognized as a promising and practical non-antibiotic approach for passive immune protection against pathogens in livestock, in this study, we assessed the efficacy of oral administration of broiler chickens with the anti-Ent hyperimmune egg yolk powder to control C. jejuni colonization in the intestine. However, supplementation of feed with 2% (w/w) of anti-Ent egg yolk powder failed to reduce C. jejuni colonization when compared to the control group. Consistent with this finding, the ELISA titers of the specific IgY in cecum, ileum, duodenum, gizzard, and serum contents were similar between the two groups throughout the trial. Chicken intestinal microbiota also did not change in response to the egg yolk powder treatment. Subsequently, to examine ex vivo stability of the egg yolk IgY, the chicken gizzard and duodenum contents from two independent sources were spiked with the egg yolk antibodies, incubated at 42 °C for different lengths of time, and subjected to ELISA analysis. The specific IgY titers were dramatically decreased in gizzard contents (up to 2048-fold) but were not changed in duodenum contents. Collectively, oral administration of broiler chickens with the anti-Ent egg yolk powder failed to confer protection against intestinal colonization of C. jejuni, which was due to instability of the IgY in gizzard contents as demonstrated by both in vivo and ex vivo evidence.
Collapse
|
35
|
Tong S, Ma L, Ronholm J, Hsiao W, Lu X. Whole genome sequencing of Campylobacter in agri-food surveillance. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Nahn EP, de Oliveira EC, Barbosa MJ, Mareco TCDS, Brígido HA. Brazilian Protocol for Sexually Transmitted Infections, 2020: sexually transmitted enteric infections. Rev Soc Bras Med Trop 2021; 54:e2020598. [PMID: 34008720 PMCID: PMC8210495 DOI: 10.1590/0037-8682-598-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
The sexually transmitted enteric infections topic is one of the chapters of the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health in 2020. The document was developed based on scientific evidence and validated in discussions with specialists. This article presents epidemiological and clinical aspects of these infections and guidance for service managers on their programmatic and operational management. The aim is to assist health professionals with screening, diagnosis, and treatment of people with sexually transmitted enteric infections and their sexual partners, in addition to supporting strategies for their surveillance, prevention, and control. The incidence of anorectal sexually transmitted infections has increased over the last years, mainly due to the increase in the practice of unprotected receptive anal sexual intercourse.
Collapse
|
37
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
38
|
Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech 2021; 11:242. [PMID: 33968585 PMCID: PMC8079594 DOI: 10.1007/s13205-021-02796-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that inhabits human digestive tract affect global health and enteric disorders. Previous studies have documented the effectiveness and mode of action of probiotics and classified as human-friendly biota and a competitor to enteric pathogens. Statistical studies reported more than 1.5 billion cases of gastrointestinal infections caused by enteric pathogens and their long-term exposure can lead to mental retardation, temporary or permanent physical weakness, and leaving the patient susceptible for opportunistic pathogens, which can cause fatality. We reviewed previous literature providing evidence about therapeutic approaches regarding probiotics to cure enteric infections efficiently by producing inhibitory substances, immune system modulation, improved barrier function. The therapeutic effects of probiotics have shown success against many foodborne pathogens and their therapeutic effectiveness has been exponentially increased using genetically engineered probiotics. The bioengineered probiotic strains are expected to provide a better and alternative approach than traditional antibiotic therapy against enteric pathogens, but the novelty of these strains also raise doubts about the possible untapped side effects, for which there is a need for further studies to eliminate the concerns relating to the use and safety of probiotics. Many such developments and optimization of the classical techniques will revolutionize the treatments for enteric infections.
Collapse
Affiliation(s)
- Zunaira Iqbal
- Department of Microbiology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Shahzaib Ahmed
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Natasha Tabassum
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Debajyoti Bose
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| |
Collapse
|
39
|
Nahn Junior EP, Oliveira ECD, Barbosa MJ, Mareco TCDS, Brígido HA. [Brazilian Protocol for Sexually Transmitted Infections 2020: sexually transmitted enteric infections]. ACTA ACUST UNITED AC 2021; 30:e2020598. [PMID: 33729403 DOI: 10.1590/s1679-4974202100012.esp1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 01/19/2023]
Abstract
The topic of sexually transmitted enteric infections is one of the chapters of the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health in 2020. The document was developed based on scientific evidence and validated in discussions with specialists. This article presents epidemiological and clinical aspects related to these infections, as well as guidance for service managers on their programmatic and operational management. The aim is to assist health professionals with screening, diagnosis and treatment of people with sexually transmitted enteric infections and their sexual partners, in addition to supporting strategies for their surveillance, prevention and control.
Collapse
|
40
|
Multiple drug resistance of Campylobacter jejuni and Shigella isolated from diarrhoeic children at Kapsabet County referral hospital, Kenya. BMC Infect Dis 2021; 21:109. [PMID: 33485326 PMCID: PMC7825205 DOI: 10.1186/s12879-021-05788-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Diarrhoea is a common cause of mortality and morbidity in children under five years old. In Kenya, it has a 21% case fatality with Enteropathogenic E. coli, Campylobacter jejuni, Shigella spp. and Salmonella spp. accounting for 50–60% of the cases. Sulphonamides, tetracycline, ampicillin and trimethoprim/sulfamethoxazole are typically used in the treatment of diarrhoeal diseases but have become ineffective in the face of emerging antimicrobial resistance. The objective of this study was to evaluate the prevalence and antimicrobial susceptibility of Campylobacter jejuni and Shigella species in children under five years of age presenting with diarrhoea at Kapsabet County Referral Hospital in Kenya. Methods Faecal samples were collected from 139 children admitted with diarrhoea. Each sample was examined macroscopically for colour, texture, and presence of extraneous material. The samples were then cultured for bacterial growth. Observed bacterial growth was isolated and identified by a series of biochemical tests. Resistance patterns were also evaluated using the Kirby – Bauer Disk diffusion method. The chi – square test and Pearson Correlation Coefficient were used to establish statistical significance. Results Approximately 33.1% of the total faecal samples tested were positive for enteric pathogens. Shigella spp. demonstrated resistance to erythromycin (91.7%), doxycyclin (83.3%), ampicillin (82.1%), cotrimoxazole (73.1%), minocycline (66.7%) and cefuroxime (54.2%). Campylobacter jejuni also exhibited resistance to erythromycin (87.5%), doxycyclin (75%), ampicillin (73.7%), cotrimoxazole (73.3%) and minocycline (68.8%). Conclusions The resistance patterns of Shigella spp. and Campylobacter jejuni reported in this study necessitates the need for a comprehensive multiregional investigation to evaluate the geographical prevalence and antimicrobial resistance distributions of these microorganisms. These findings also support the need for the discovery and development of effective therapeutic alternatives. Trial registration Retrospectively registered. Certificate No. 00762
Collapse
|
41
|
Emergence of a Novel tet(L) Variant in Campylobacter spp. of Chicken Origin in China. Antimicrob Agents Chemother 2020; 65:AAC.01622-20. [PMID: 33046498 DOI: 10.1128/aac.01622-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
Tetracyclines are widely used in veterinary medicine and food animal production. Campylobacter members are major foodborne pathogens, and their resistance to tetracycline has been widely reported in different countries. To date, Tet(O), a ribosomal protection protein, is the only confirmed Tet resistance determinant in Campylobacter spp. Here, we reported the detection and characterization of a novel Tet resistance element in Campylobacter spp. of chicken origin. This gene is identified to be a variant of tet(L), which encodes an efflux pump for Tet resistance. The variant was detected in 14 of the 82 tetracycline-resistant Campylobacter isolates collected from chickens in Henan, China. Cloning of the tet(L) variant into tetracycline-susceptible Campylobacter jejuni NCTC 11168 confirmed its function in conferring resistance to tetracycline and doxycycline. In addition, this tet(L) variant elevated the MIC (4-fold increase) of tigecycline in the heterologous Escherichia coli host. Sequencing analysis indicated the tet(L) variant was located within a multidrug-resistance genomic island (MDRGI) containing tet(L) variant IS1216E-ORF1-fexA-Δtnp-IS1216E-tet(O)-tnpV-repA This MDRGI is inserted into conserved gene potB on the chromosome. Multilocus sequence type (MLST) analysis revealed that both clonal expansion and horizontal transfer were involved in the dissemination of the tet(L) variant. These findings reveal the emergence of a new Tet resistance determinant in Campylobacter spp., which may facilitate their adaptation to the antimicrobial selection pressure in chickens.
Collapse
|
42
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Mousa A, Calland JK, Pascoe B, Sheppard SK, Elhadidy M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol 2020; 95:103706. [PMID: 33397624 DOI: 10.1016/j.fm.2020.103706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Jessica K Calland
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand
| | - Samuel K Sheppard
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand; Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
43
|
Ramires T, de Oliveira MG, Kleinubing NR, de Fátima Rauber Würfel S, Mata MM, Iglesias MA, Lopes GV, Dellagostin OA, da Silva WP. Genetic diversity, antimicrobial resistance, and virulence genes of thermophilic Campylobacter isolated from broiler production chain. Braz J Microbiol 2020; 51:2021-2032. [PMID: 32514993 PMCID: PMC7688733 DOI: 10.1007/s42770-020-00314-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to investigate the prevalence of thermophilic Campylobacter in the broiler production chain of southern Brazil, by evaluating broiler farms and slaughter line samples, and to determine the genetic diversity, antimicrobial resistance, and virulence genes of the isolates. Of the 140 samples investigated in this study, 75 (53.6%) were positive for thermophilic Campylobacter, and all isolates were identified by phenotypic and molecular tests as C. jejuni. The resistance to nalidixic acid was the most common (74%), followed by resistance to enrofloxacin (67.3%) and ciprofloxacin (37.1%). However, there was no resistance to the macrolides tested which are recommended for the treatment of human campylobacteriosis. The PFGE showed that the isolates were grouped in eight macrorestriction patterns (P1 to P8). A representative isolate of each macrorestriction pattern was investigated for the presence of virulence genes and all isolates carried the cadF, ciaB, cdtA, cdtB, cdtC, and flaA genes. The dnaJ gene was detected in 87.5% (7/8) of the isolates. The flhA and racR genes were detected in 75% (6/8), while the pldA gene was present in 62.5% (5/8) and the wlaN gene in 25% (2/8). The presence of C. jejuni in broiler farms and in the slaughterhouse is a hazard to consumer given that this pathogen can be maintained throughout the broiler production chain and contaminates the final product. Moreover, the presence of the major virulence genes in the isolates demonstrates that they have the ability to develop campylobacteriosis in humans.
Collapse
Affiliation(s)
- Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mauricéia Greici de Oliveira
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcia Magalhães Mata
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Huang J, Zang X, Lei T, Ren F, Jiao X. Prevalence of Campylobacter spp. in Pig Slaughtering Line in Eastern China: Analysis of Contamination Sources. Foodborne Pathog Dis 2020; 17:712-719. [DOI: 10.1089/fpd.2020.2800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| | - Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| | - Tianyao Lei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, People's Republic of China
| | - Fangzhe Ren
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, People's Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
45
|
Zhang P, Zhang X, Liu Y, Jiang J, Shen Z, Chen Q, Ma X. Multilocus Sequence Types and Antimicrobial Resistance of Campylobacter jejuni and C. coli Isolates of Human Patients From Beijing, China, 2017-2018. Front Microbiol 2020; 11:554784. [PMID: 33193135 PMCID: PMC7604515 DOI: 10.3389/fmicb.2020.554784] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Campylobacter species are zoonotic pathogens and the leading cause of bacterial enteritis worldwide. With the increase of antimicrobial resistance to fluoroquinolones and macrolides, they have been identified by the World Health Organization (WHO) as high-priority antimicrobial-resistant pathogens. There is currently little known about the prevalence and antimicrobial resistance characteristics of Campylobacter species in Beijing. In this study, we performed a 2-year surveillance of Campylobacter in Beijing, China. We used multilocus sequence typing (MLST) and antimicrobial susceptibility testing to analyze 236 Campylobacter isolates recovered from 230 clinical infectious cases in Beijing between 2017 and 2018. The Campylobacter isolation rate in diarrhea patients was 7.81%, with higher isolation rates in male patients than female patients and in autumn compared with other seasons. We identified 125 sequence types (STs) of 23 cloning complexes (CCs) among the 236 isolates, including four new alleles and 19 new STs. The most commonly isolated STs of Campylobacter jejuni were ST-22 and ST-760 (4.50%), and the most commonly isolated ST of Campylobacter coli was ST-9227 (16.67%). We also compared our isolates with clinical Campylobacter isolates from other countries in Asia, CC-353 of Campylobacter coli was found in eight countries, CC-1034 and CC-1287 of Campylobacter coli were found only in China. All C. jejuni isolates were resistant to at least one antimicrobial. C. jejuni showed the highest rate of resistance toward ciprofloxacin (94.50%), followed by tetracycline (93.50%), and nalidixic acid (92.00%), while C. coli showed highest resistance toward ciprofloxacin (94.44%) and tetracycline (94.44%) followed by nalidixic acid (88.89%). The most commonly observed MDR combination of C. jejuni were quinolone, phenicol and tetracycline (11.50%), while the most commonly observed MDR combination of C. coli were macrolide, quinolone, phenicol, tetracycline and lincosamide (30.56%). Surveillance of molecular characterization will provide important information for prevention of Campylobacter infection. This study enhances insight into Campylobacter infections in diarrheal patients, with relevance for treatment regimens in Beijing.
Collapse
Affiliation(s)
- Penghang Zhang
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| | - Xiaoai Zhang
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| | - Yuzhu Liu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| | - Jinru Jiang
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Chen
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| | - Xiaochen Ma
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Beijing Centers for Disease Preventive Medical Research, Beijing, China
| |
Collapse
|
46
|
Masila NM, Ross KE, Gardner MG, Whiley H. Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens 2020; 9:pathogens9100799. [PMID: 32998205 PMCID: PMC7601876 DOI: 10.3390/pathogens9100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population. Exposure to pet squamates, wild animals, consumption of reptilian cuisines and cross contamination with untreated water were risk factors associated with Campylobacter infections. Proper hand hygiene practices, responsible pet ownership, ‘One Health’ education and awareness on zoonotic diseases will help reduce the public health risks arising from Campylobacter exposure through squamates. Continued surveillance using molecular diagnostic methods will also enhance detection and response to squamate-linked campylobacteriosis.
Collapse
Affiliation(s)
- Nicodemus M Masila
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), P.O. BOX 66290, Westlands, Nairobi 00800, Kenya
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
47
|
Liu D, Li X, Liu W, Yao H, Liu Z, Feßler AT, He J, Zhou Y, Shen Z, Wu Z, Schwarz S, Zhang Q, Wang Y. Characterization of multiresistance gene cfr(C) variants in Campylobacter from China. J Antimicrob Chemother 2020; 74:2166-2170. [PMID: 31081013 DOI: 10.1093/jac/dkz197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the occurrence, the genetic environment and the functionality of novel variants of the MDR gene cfr(C) in Campylobacter from China. METHODS A total of 370 Campylobacter isolates of porcine and chicken origin collected from three regions of China in 2015 were screened for cfr(C) by PCR. The phenotypes and genotypes of cfr(C)-positive isolates were investigated by antimicrobial susceptibility testing, PFGE, MLST, S1-PFGE, Southern blotting and WGS. Quantitative RT-PCR was used to compare the expression levels of the cfr(C) variants in their original isolate and clone constructs in Campylobacter jejuni NCTC 11168. RESULTS Four (1.1%) porcine Campylobacter coli isolates were positive for cfr(C). They failed to show elevated MICs of phenicols. The deduced Cfr(C) sequences identified exhibited 2-6 amino acid changes compared with the original Cfr(C) reported in the USA. Cloning of the cfr(C) variant genes into C. jejuni NCTC 11168 resulted in ≥32-fold increases in the MICs of phenicols, indicating that the cfr(C) variant genes are functional. The cfr(C)-carrying isolates belonged to three genotypes and WGS analysis revealed the cfr(C) genes were chromosomally located in MDR genomic islands, which contained multiple antibiotic resistance genes of Gram-positive origin. CONCLUSIONS This study identified chromosomal cfr(C) genes in C. coli isolates from China. They appeared functionally dormant in the original isolates but were fully functional when cloned and expressed in C. jejuni. The cfr(C) genes were co-transferred with other antibiotic resistance genes, possibly from Gram-positive bacteria. These findings reveal new insights into the function and transmission of cfr(C) in Campylobacter.
Collapse
Affiliation(s)
- Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.,The State Key Laboratory of Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwen Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhihai Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zuowei Wu
- College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Stefan Schwarz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Qijing Zhang
- College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Tejera N, Crossman L, Pearson B, Stoakes E, Nasher F, Djeghout B, Poolman M, Wain J, Singh D. Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Front Microbiol 2020; 11:1072. [PMID: 32636809 PMCID: PMC7318876 DOI: 10.3389/fmicb.2020.01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni, the most frequent cause of food-borne bacterial gastroenteritis, is a fastidious organism when grown in the laboratory. Oxygen is required for growth, despite the presence of the metabolic mechanism for anaerobic respiration. Amino acid auxotrophies are variably reported and energy metabolism can occur through several electron donor/acceptor combinations. Overall, the picture is one of a flexible, but vulnerable metabolism. To understand Campylobacter metabolism, we have constructed a fully curated, metabolic model for the reference organism M1 (our variant is M1cam) and validated it through laboratory experiments. Our results show that M1cam is auxotrophic for methionine, niacinamide, and pantothenate. There are complete biosynthesis pathways for all amino acids except methionine and it can produce energy, but not biomass, in the absence of oxygen. M1cam will grow in DMEM/F-12 defined media but not in the previously published Campylobacter specific defined media tested. Using the model, we identified potential auxotrophies and substrates that may improve growth. With this information, we designed simple defined media containing inorganic salts, the auxotrophic substrates, L-methionine, niacinamide, and pantothenate, pyruvate and additional amino acids L-cysteine, L-serine, and L-glutamine for growth enhancement. Our defined media supports a 1.75-fold higher growth rate than Brucella broth after 48 h at 37°C and sustains the growth of other Campylobacter jejuni strains. This media can be used to design reproducible assays that can help in better understanding the adaptation, stress resistance, and the virulence mechanisms of this pathogen. We have shown that with a well-curated metabolic model it is possible to design a media to grow this fastidious organism. This has implications for the investigation of new Campylobacter species defined through metagenomics, such as C. infans.
Collapse
Affiliation(s)
- Noemi Tejera
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Lisa Crossman
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.,SequenceAnalysis.co.uk, NRP Innovation Centre, Norwich, United Kingdom.,University of East Anglia, Norwich, United Kingdom
| | - Bruce Pearson
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fauzy Nasher
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Bilal Djeghout
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Poolman
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, United Kingdom
| | - John Wain
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Dipali Singh
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
49
|
Hasan MM, Talukder S, Mandal AK, Tasmim ST, Parvin MS, Ali MY, Sikder MH, Islam MT. Prevalence and risk factors of Campylobacter infection in broiler and cockerel flocks in Mymensingh and Gazipur districts of Bangladesh. Prev Vet Med 2020; 180:105034. [PMID: 32460154 DOI: 10.1016/j.prevetmed.2020.105034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Campylobacter spp. is one of the most frequent causes of foodborne gastroenteritis. This study aimed to estimate the prevalence and to identify the risk factors of farm-level Campylobacter infection in meat-type chicken flocks. A cross-sectional study was conducted in two selected districts of Bangladesh over the period of January to July 2019. A total of 84 pooled cloacal swab samples were collected from 84 broiler and cockerel farms. Data on farm management, biosecurity, and hygiene practices were collected using a structured questionnaire through a face-to-face interview during sampling. Thereafter, Campylobacter spp. were isolated through bacteriological culture and identified by Gram staining and biochemical tests. Furthermore, the isolates were confirmed using the polymerase chain reaction by targeting the 16S rRNA gene. The risk factors were analyzed at the farm level using multivariable logistic regression with the significant levels of P-value ≤ 0.05. Among the 84 farms, 34 were positive to Campylobacter spp.; thus, the prevalence was estimated to be 40.5% (95% CI: 30.1%-51.8%). In risk factor analysis, the following factors were found to be significantly associated with Campylobacter infection: shed older than five years, birds older than 30 days, flock size with more than 1500 birds, downtime less than seven days, no disinfection of shed surroundings during rearing, rice husk as litter materials, and less than 10 years of farming experience. The study identified the factors that could lead to the setting of effective interventions in controlling Campylobacter infection in chickens to reduce campylobacteriosis in humans through meat consumption.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Amit Kumar Mandal
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Syeda Tanjina Tasmim
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mst Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Livestock Services, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
50
|
Konkel ME, Talukdar PK, Negretti NM, Klappenbach CM. Taking Control: Campylobacter jejuni Binding to Fibronectin Sets the Stage for Cellular Adherence and Invasion. Front Microbiol 2020; 11:564. [PMID: 32328046 PMCID: PMC7161372 DOI: 10.3389/fmicb.2020.00564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni, a foodborne pathogen, is one of the most common bacterial causes of gastroenteritis in the world. Undercooked poultry, raw (unpasteurized) dairy products, untreated water, and contaminated produce are the most common sources associated with infection. C. jejuni establishes a niche in the gut by adhering to and invading epithelial cells, which results in diarrhea with blood and mucus in the stool. The process of colonization is mediated, in part, by surface-exposed molecules (adhesins) that bind directly to host cell ligands or the extracellular matrix (ECM) surrounding cells. In this review, we introduce the known and putative adhesins of the foodborne pathogen C. jejuni. We then focus our discussion on two C. jejuni Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs), termed CadF and FlpA, which have been demonstrated to contribute to C. jejuni colonization and pathogenesis. In vitro studies have determined that these two surface-exposed proteins bind to the ECM glycoprotein fibronectin (FN). In vivo studies have shown that cadF and flpA mutants exhibit impaired colonization of chickens compared to the wild-type strain. Additional studies have revealed that CadF and FlpA stimulate epithelial cell signaling pathways necessary for cell invasion. Interestingly, CadF and FlpA have distinct FN-binding domains, suggesting that the functions of these proteins are non-redundant. In summary, the binding of FN by C. jejuni CadF and FlpA adhesins has been demonstrated to contribute to adherence, invasion, and cell signaling.
Collapse
Affiliation(s)
- Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | | | | | | |
Collapse
|