1
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
3
|
Ellis JR, Rowley PA. An apparent lack of synergy between degradative enzymes against Staphylococcus aureus biofilms. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001119. [PMID: 38596361 PMCID: PMC11002645 DOI: 10.17912/micropub.biology.001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Enzymes combat bacterial infections by degrading biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme mixtures, like cellulase and pepsin, show concentration-dependent dispersion, but low concentrations lack synergy. Only the sequential addition of pepsin followed by Arthrobacter luteus zymolyase 20T displays synergy, effectively dispersing biofilms. Purified zymolyase 100T outperforms zymolyase 20T but lacks synergy with pepsin. This study underscores the complexity of enzymatic biofilm dispersal, highlighting the need for tailored approaches based on enzyme properties and biofilm composition.
Collapse
Affiliation(s)
- Jeremy R. Ellis
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States
- The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States
| |
Collapse
|
4
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Casillo A, D’Angelo C, Imbimbo P, Monti DM, Parrilli E, Lanzetta R, Gomez d’Ayala G, Mallardo S, Corsaro MM, Duraccio D. Aqueous Extracts from Hemp Seeds as a New Weapon against Staphylococcus epidermidis Biofilms. Int J Mol Sci 2023; 24:16026. [PMID: 38003214 PMCID: PMC10671263 DOI: 10.3390/ijms242216026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Salvatore Mallardo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS)-CNR, Strada Delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
6
|
Ellis JR, Rowley PA. An apparent lack of synergy between degradative enzymes against Staphylococcus aureus biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561034. [PMID: 37873330 PMCID: PMC10592981 DOI: 10.1101/2023.10.05.561034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The use of enzymes represents an approach to combat bacterial infections by degrading extracellular biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme preparations, including cellulase, amylase, pectinase, zymolyase, and pepsin, exhibit concentration-dependent dispersion of S. aureus biofilms. Here, we report that low concentrations of these enzymes generally lack synergy when combined or added together sequentially to biofilms. Only the addition of a protease (pepsin) followed by a commercial mixture of degradative enzymes from Arthrobacter luteus (zymolyase 20T), demonstrated synergy and was effective at dispersing S. aureus biofilms. A more purified mixture of Arthrobacter luteus enzymes (zymolyase 100T) showed improved dispersal of S. aureus biofilms compared to zymolyase 20T but lacked synergy with pepsin. This study emphasizes the complexity of enzymatic biofilm dispersal and the need for tailored approaches based on the properties of degradative enzymes and biofilm composition.
Collapse
Affiliation(s)
- Jeremy R Ellis
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
- Johns Hopkins University, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A Rowley
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| |
Collapse
|
7
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
8
|
Ma Y, Deng Y, Hua H, Khoo BL, Chua SL. Distinct bacterial population dynamics and disease dissemination after biofilm dispersal and disassembly. THE ISME JOURNAL 2023; 17:1290-1302. [PMID: 37270584 PMCID: PMC10356768 DOI: 10.1038/s41396-023-01446-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Microbial communities that form surface-attached biofilms must release and disperse their constituent cells into the environment to colonize fresh sites for continued survival of their species. For pathogens, biofilm dispersal is crucial for microbial transmission from environmental reservoirs to hosts, cross-host transmission, and dissemination of infections across tissues within the host. However, research on biofilm dispersal and its consequences in colonization of fresh sites remain poorly understood. Bacterial cells can depart from biofilms via stimuli-induced dispersal or disassembly due to direct degradation of the biofilm matrix, but the complex heterogeneity of bacterial populations released from biofilms rendered their study difficult. Using a novel 3D-bacterial "biofilm-dispersal-then-recolonization" (BDR) microfluidic model, we demonstrated that Pseudomonas aeruginosa biofilms undergo distinct spatiotemporal dynamics during chemical-induced dispersal (CID) and enzymatic disassembly (EDA), with contrasting consequences in recolonization and disease dissemination. Active CID required bacteria to employ bdlA dispersal gene and flagella to depart from biofilms as single cells at consistent velocities but could not recolonize fresh surfaces. This prevented the disseminated bacteria cells from infecting lung spheroids and Caenorhabditis elegans in on-chip coculture experiments. In contrast, EDA by degradation of a major biofilm exopolysaccharide (Psl) released immotile aggregates at high initial velocities, enabling the bacteria to recolonize fresh surfaces and cause infections in the hosts efficiently. Hence, biofilm dispersal is more complex than previously thought, where bacterial populations adopting distinct behavior after biofilm departure may be the key to survival of bacterial species and dissemination of diseases.
Collapse
Affiliation(s)
- Yeping Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Haojun Hua
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Kowloon, Hong Kong SAR, 999077, China.
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen, 518057, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China.
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
9
|
Yang S, Wang Y, Ren F, Li Z, Dong Q. Applying enzyme treatments in Bacillus cereus biofilm removal. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Li Y, Xing Z, Wang S, Wang Y, Wang Z, Dong L. Disruption of biofilms in periodontal disease through the induction of phase transition by cationic dextrans. Acta Biomater 2023; 158:759-768. [PMID: 36638945 DOI: 10.1016/j.actbio.2023.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Biofilm of oral pathogenic microorganisms induced by their multiplication and coaggregation would lead to periodontitis. In biofilms, the extracellular polymeric substances (EPS) as a protective shield encapsulates the individual bacteria, protecting them against attack. To alleviate periodontal disease, disrupting the EPS of pathogenic bacteria is crucial and challenging. Based on the sufficient capacity of disorganizing EPS of our designed cationic dextrans, we hypothesized that these polymers could be competent in relieving periodontitis. We validated that cationic dextrans could induce the phase transition of EPS in biofilms, especially the Porphyromonas gingivalis (P. gingivalis), a keystone periodontal pathogen, thus effectively destroying biofilm in vitro. More importantly, satisfactory in vivo treatment was achieved in a rat periodontal disease model. In summary, the study exploited a practical and effective strategy to treat periodontitis with cationic dextrans' powerful biofilm-controlling potential. STATEMENT OF SIGNIFICANCE: Periodontal disease is closely related to dental plaque biofilms on the tooth surface. The biofilm forms gel structures and shields the bacteria underneath, thus protecting oral pathogens from traditional anti-bacterial reagents. Due to limited penetration into gel, the efficacy of these reagents in biofilm elimination is restricted. Our designed cationic dextran could wipe out the coverage of gel-like EPS to disperse encapsulated bacteria. Such superior capacity endowed them with satisfactory effect in disrupting biofilm. Notably, in a rat periodontitis model, cationic dextrans dramatically suppressed alveolar bone loss and alleviated periodontal inflammation by controlling dental plaque. Given the increasing global concerns about periodontal disease, it's worth expanding the application of cationic dextrans both scientifically and clinically.
Collapse
Affiliation(s)
- Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China.
| |
Collapse
|
11
|
Paleczny J, Brożyna M, Dudek-Wicher R, Dydak K, Oleksy-Wawrzyniak M, Madziała M, Bartoszewicz M, Junka A. The Medium Composition Impacts Staphylococcus aureus Biofilm Formation and Susceptibility to Antibiotics Applied in the Treatment of Bone Infections. Int J Mol Sci 2022; 23:ijms231911564. [PMID: 36232864 PMCID: PMC9569719 DOI: 10.3390/ijms231911564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The biofilm-associated infections of bones are life-threatening diseases, requiring application of dedicated antibiotics in order to counteract the tissue damage and spread of microorganisms. The in vitro analyses on biofilm formation and susceptibility to antibiotics are frequently carried out using methods that do not reflect conditions at the site of infection. To evaluate the influence of nutrient accessibility on Staphylococcus aureus biofilm development in vitro, a cohesive set of analyses in three different compositional media was performed. Next, the efficacy of four antibiotics used in bone infection treatment, including gentamycin, ciprofloxacin, levofloxacin, and vancomycin, against staphylococcal biofilm, was also assessed. The results show a significant reduction in the ability of biofilm to grow in a medium containing elements occurring in the serum, which also translated into the diversified changes in the efficacy of used antibiotics, compared to the setting in which conventional media were applied. The differences indicate the need for implementation of adequate in vitro models that closely mimic the infection site. The results of the present research may be considered an essential step toward the development of in vitro analyses aiming to accurately indicate the most suitable antibiotic to be applied against biofilm-related infections of bones.
Collapse
Affiliation(s)
- Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marcin Madziała
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
12
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
13
|
Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles. Arch Microbiol 2022; 204:637. [PMID: 36127470 DOI: 10.1007/s00203-022-03232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
The persistence of Staphylococcus aureus within biofilm can lead to contamination of medical devices and life-threatening infections. Luckily, lactic acid bacteria (LAB) have an inhibitory effect on the growth of these bacteria. This study aims to select LAB strains from fermented vegetables, and analyze their potential inhibition activities against S. aureus. In total, 45 isolates of LAB were successfully isolated from Sichuan pickles, and the CFS of Lactiplantibacillus plantarum LR-14 exerted the strongest inhibitory effect against S. aureus. Moreover, S. aureus cells in planktonic and biofilm states both wrinkled and damaged when treated with the CFS of L. plantarum LR-14. In addition, whole genome sequencing analysis indicates that L. plantarum LR-14 contains various functional genes, including predicted extracellular polysaccharides (EPS) biosynthesis genes, and genes participating in the synthesis and metabolism of fatty acid, implying that L. plantarum LR-14 has the potential to be used as a probiotic with multiple functions.
Collapse
|
14
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
15
|
Afzal M, Vijay AK, Stapleton F, Willcox M. Virulence Genes of Staphylococcus aureus Associated With Keratitis, Conjunctivitis, and Contact Lens-Associated Inflammation. Transl Vis Sci Technol 2022; 11:5. [PMID: 35802366 PMCID: PMC9279920 DOI: 10.1167/tvst.11.7.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Staphylococcus aureus, cause a range of ocular diseases in humans, including noninfectious corneal infiltrative events (niCIE), infectious conjunctivitis and sight threatening microbial keratitis (MK). This study aimed to determine the possession of known virulence genes of S. aureus associated with MK and conjunctivitis, in strains isolated from these conditions and niCIE. Methods Sixty-three S. aureus strains—23 from MK, 26 from conjunctivitis, and 14 from niCIE—were evaluated for possession of genes. Polymerase chain reaction was used for the detection of mecA and 10 known virulence genes involved in MK (clfA, fnbpA, eap, coa, scpA, sspB, sspA, hla, hld, and hlg), 2 associated with conjunctivitis (pvl and seb). Results mecA was present in 35% of infections and 7% of niCIE strains (P = 0.05). It was not seen in infection strains from Australia. Adhesion genes were found in all strains except clfA, which was found in 75% of infection and 93% of niCIE strains. Invasion genes were found in higher frequency in infections strains—hlg (100% vs. 85%; P = 0.04) and hld (94% vs. 50%; P = 0.005)—compared with niCIE strains. Evasion genes were common in infection strains except scpA, which was found at a significantly higher frequency in niCIE strains (86%) compared with infection strains (45%; P = 0.001). Conclusions The higher rates of hlg and hld in strains isolated from infections than niCIE may have a role in pathogenesis, whereas scpA may be an important virulence factor during niCIEs. Translational Relevance This study has identified virulence factors involved in the ocular pathogenesis of S. aureus infections and niCIE.
Collapse
Affiliation(s)
- Madeeha Afzal
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ajay Kumar Vijay
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark Willcox
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Deepika G, Subbarayadu S, Chaudhary A, Sarma PVGK. Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) showing anti-S. aureus and anti-biofilm properties by elevating activities of serine protease (SspA) and cysteine protease staphopain B (SspB). Arch Microbiol 2022; 204:397. [PMID: 35708833 DOI: 10.1007/s00203-022-02974-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus biofilms are the pathogenic factor in the spread of infection and are more pronounced in multidrug-resistant strains of S. aureus, where high expression of proteases is observed. Among various proteases, Serine protease (SspA) and cysteine protease Staphopain B (SspB) are known to play a key role in the biofilm formation and removal of biofilms. In earlier studies, we have reported Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) exhibits anti-S. aureus and anti-biofilm properties by elevating the expression of the protease. In this study, the effect of DBTMP on the activities of SspA, and SspB of S. aureus was evaluated. The SspA and SspB genes of S. aureus ATCC12600 were sequenced (Genbank accession numbers: MZ456982 and MW574006). In S. aureus active SspA is formed by proteolytic cleavage of immature SspA, to get this mature SspA (mSspA), we have PCR amplified the mSspA sequence from the SspA gene. The mSspA and SspB genes were cloned, expressed, and characterized. The pure recombinant proteins rSspB and rmSspA exhibited a single band in SDS-PAGE with a molecular weight of 40 and 30 KD, respectively. The activities of rmSspA and rSspB are 32.33 and 35.45 Units/mL correspondingly. DBTMP elevated the activities of rmSspA and rSspB by docking with respective enzymes. This compound disrupted the biofilms formed by the multidrug-resistant strains of S. aureus and further prevented biofilm formation. These findings explain that DBTMP possesses anti-S. aureus and anti-biofilm features.
Collapse
Affiliation(s)
- G Deepika
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - S Subbarayadu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Padmavati Medical College (Women), SVIMS, Tirupati, Andhra Pradesh, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
17
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
18
|
Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100131. [PMID: 35909621 PMCID: PMC9325880 DOI: 10.1016/j.crmicr.2022.100131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii has notably become a superbug due to its mounting risk of infection and escalating rates of antimicrobial resistance, including colistin, the last-resort antibiotic. Its propensity to form biofilm on biotic and abiotic surfaces has contributed to the majority of nosocomial infections. Bacterial cells in biofilms are resistant to antibiotics and host immune response, and pose challenges in treatment. Therefore current scenario urgently requires the development of novel therapeutic strategies for successful treatment outcomes. This article provides a holistic understanding of sequential events and regulatory mechanisms directing A. baumannii biofilm formation. Understanding the key factors functioning and regulating the biofilm machinery of A. baumannii will provide us insight to develop novel approaches to combat A. baumannii infections. Further, the review article deliberates promising strategies for the prevention of biofilm formation on medically relevant substances and potential therapeutic strategies for the eradication of preformed biofilms which can help tackle biofilm-associated A. baumannii infections. Advances in emerging therapeutic opportunities such as phage therapy, nanoparticle therapy and photodynamic therapy are also discussed to comprehend the current scenario and future outlook for the development of successful treatment against biofilm-associated A. baumannii infections.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| |
Collapse
|
19
|
Mendes SR, Eckhard U, Rodríguez-Banqueri A, Guevara T, Czermak P, Marcos E, Vilcinskas A, Xavier Gomis-Rüth F. An engineered protein-based submicromolar competitive inhibitor of the Staphylococcus aureus virulence factor aureolysin. Comput Struct Biotechnol J 2022; 20:534-544. [PMID: 35465156 PMCID: PMC9002140 DOI: 10.1016/j.csbj.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
Aureolysin, a secreted metallopeptidase (MP) from the thermolysin family, functions as a major virulence factor in Staphylococcus aureus. No specific aureolysin inhibitors have yet been described, making this an important target for the development of novel antimicrobial drugs in times of rampant antibiotic resistance. Although small-molecule inhibitors are currently more common in the clinic, therapeutic proteins and peptides (TPs) are favourable due to their high selectivity, which reduces off-target toxicity and allows dosage tuning. The greater wax moth Galleria mellonella produces a unique defensive protein known as the insect metallopeptidase inhibitor (IMPI), which selectively inhibits some thermolysins from pathogenic bacteria. We determined the ability of IMPI to inhibit aureolysin in vitro and used crystal structures to ascertain its mechanism of action. This revealed that IMPI uses the “standard mechanism”, which has been poorly characterised for MPs in general. Accordingly, we designed a cohort of 12 single and multiple point mutants, the best of which (I57F) inhibited aureolysin with an estimated inhibition constant (Ki) of 346 nM. Given that animals lack thermolysins, our strategy may facilitate the development of safe TPs against staphylococcal infections, including strains resistant to conventional antibiotics.
Collapse
|
20
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
21
|
Trizna E, Baidamshina D, Gorshkova A, Drucker V, Bogachev M, Tikhonov A, Kayumov A. Improving the Efficacy of Antimicrobials against Biofilm-Embedded Bacteria Using Bovine Hyaluronidase Azoximer (Longidaza ®). Pharmaceutics 2021; 13:1740. [PMID: 34834156 PMCID: PMC8622991 DOI: 10.3390/pharmaceutics13111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
While in a biofilm, bacteria are extremely resistant to both antimicrobials and the immune system, leading to the development of chronic infection. Here, we show that bovine hyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-ethylenepiperazinium bromide (Longidaza®) destroys both mono- and dual-species biofilms formed by various bacteria. After 4 h of treatment with 750 units of the enzyme, the residual biofilms of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae preserved about 50-70% of their initial mass. Biomasses of dual-species biofilms formed by S. aureus and the four latter species were reduced 1.5-fold after 24 h treatment, while the significant destruction of S. aureus-P. aeruginosa and S. aureus-K. pneumoniae was also observed after 4 h of treatment with Longidaza®. Furthermore, when applied in combination, Longidaza® increased the efficacy of various antimicrobials against biofilm-embedded bacteria, although with various increase-factor values depending on both the bacterial species and antimicrobials chosen. Taken together, our data indicate that Longidaza® destroys the biofilm structure, facilitating the penetration of antimicrobials through the biofilm, and in this way improving their efficacy, lowering the required dose and thus also potentially reducing the associated side effects.
Collapse
Affiliation(s)
- Elena Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.T.); (D.B.)
| | - Diana Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.T.); (D.B.)
| | - Anna Gorshkova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664000 Irkutsk, Russia; (A.G.); (V.D.)
| | - Valentin Drucker
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664000 Irkutsk, Russia; (A.G.); (V.D.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | | | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.T.); (D.B.)
| |
Collapse
|
22
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
23
|
Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci 2021; 22:ijms22169100. [PMID: 34445806 PMCID: PMC8396552 DOI: 10.3390/ijms22169100] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
After the first ancient studies on microbial slime (the name by which the biofilm matrix was initially indicated), multitudes of studies on the morphology, composition and physiology of biofilms have arisen. The emergence of the role that biofilms play in the pathogenesis of recalcitrant and persistent clinical infections, such as periprosthetic orthopedic infections, has reinforced scientific interest. Extracellular DNA (eDNA) is a recently uncovered component that is proving to be almost omnipresent in the extracellular polymeric substance (EPS) of biofilm. This macromolecule is eliciting unprecedented consideration for the critical impact on the pathogenesis of chronic clinical infections. After a systematic review of the literature, an updated description of eDNA in biofilms is presented, with a special focus on the latest findings regarding its fundamental structural role and the contribution it makes to the complex architecture of bacterial biofilms through interactions with a variety of other molecular components of the biofilm matrix.
Collapse
|
24
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
25
|
Rather MA, Gupta K, Bardhan P, Borah M, Sarkar A, Eldiehy KSH, Bhuyan S, Mandal M. Microbial biofilm: A matter of grave concern for human health and food industry. J Basic Microbiol 2021; 61:380-395. [PMID: 33615511 DOI: 10.1002/jobm.202000678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Pathogenic microorganisms have adapted different strategies during the course of time to invade host defense mechanisms and overcome the effect of potent antibiotics. The formation of biofilm on both biotic and abiotic surfaces by microorganisms is one such strategy to resist and survive even in presence of antibiotics and other adverse environmental conditions. Biofilm is a safe home of microorganisms embedded within self-produced extracellular polymeric substances comprising of polysaccharides, extracellular proteins, nucleic acid, and water. It is because of this adaptation strategy that pathogenic microorganisms are taking a heavy toll on the health and life of organisms. In this review, we discuss the colonization of pathogenic microorganisms on tissues and medically implanted devices in human beings. We also focus on food spoilage, disease outbreaks, biofilm-associated deaths, burden on economy, and other major concerns of biofilm-forming pathogenic microorganisms in food industries like dairy, poultry, ready-to-eat food, meat, and aquaculture.
Collapse
Affiliation(s)
- Muzamil A Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Pritam Bardhan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Khalifa S H Eldiehy
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
26
|
Ranjith K, Sharma S, Shivaji S. Microbes of the human eye: Microbiome, antimicrobial resistance and biofilm formation. Exp Eye Res 2021; 205:108476. [PMID: 33549582 DOI: 10.1016/j.exer.2021.108476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
Luo Z, Zhou L, Zhu Y, Zhou C. Effects of different drying methods on the physicochemical property and edible quality of fermented
Pyracantha fortuneana
fruit powder. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhencen Luo
- College of Food Science Southwest University Chongqing400715China
| | - Lingguo Zhou
- Chongqing Food Technology Institute Chongqing400042China
| | - Yiwei Zhu
- Chongqing Food Technology Institute Chongqing400042China
| | - Caiqiong Zhou
- College of Food Science Southwest University Chongqing400715China
- Engineering & Technology Research Centre of Characteristic Food Chongqing400715China
| |
Collapse
|
28
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
29
|
Ghoreishi FS, Roghanian R, Emtiazi G. Inhibition of quorum sensing-controlled virulence factors with natural substances and novel protease, obtained from Halobacillus karajensis. Microb Pathog 2020; 149:104555. [PMID: 33010361 DOI: 10.1016/j.micpath.2020.104555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In recent years, a challenge in clinical treatment has developed due to bacterial resistance to antibiotics. One of the new mechanisms against infections is virulence factor inhibition. Many virulence factors are controlled by quorum sensing pathways such as biofilm formation and pyocyanin production. The goal of the present study was to investigate the effect of an obligate halophilic bacterial strain on Pseudomonas aeruginosa and Staphylococcus aureus, due to its halo-tolerant substances and enzymes. METHODS The effect of Halobacillus karajensis on bacterial growth and production of virulence factors was studied in this work. The obligate halophile cells and supernatant fractions were extracted by the methanol/chloroform method and characterized by Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Gas Chromatography-Mass Spectrometry (GC-MS), and zymography. The effects of these fractions were studied on biofilm formation in P. aeruginosa and S. aureus as well as on pyocyanin production in P. aeruginosa. The effective protein in the fraction was analyzed by the SDS-PAGE method, and all protein fragments were studied for pyocyanin inhibition. RESULTS The crude supernatant extract, MMS fraction, from H. karajensis was effective for the biofilm reduction in S. aureus (74%) and P. aeruginosa (27%). Two proteases in this fraction, which were recognized by zymography on skim milk, were the probable causes for extracellular polymeric substances (EPS) hydrolysis in the biofilm matrix. Also, halide crystals and branched fatty acids, 12methyl-tetradecanoic acid, in the other fractions decreased the biofilm by 18% in S. aureus. The results showed that a new 25 kD protein, which was obtained from MMS fraction, inhibited pyocyanin production by 60% in P. aeruginosa. The zymogram and bioinformatics studies showed that this protein was a serine alkaline metalloprotease and had an interaction with AHL molecules. CONCLUSION The inhibitory effects of the non-toxic natural substances and proteases on biofilm formation and pyocyanin production, specifically the 25 kD protease, are novel in this study and make them a good candidate for infected wound healing and inhibiting the virulence factors.
Collapse
Affiliation(s)
- Fatemeh S Ghoreishi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rasoul Roghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Giti Emtiazi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
30
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
31
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
32
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
33
|
Ribič U, Jakše J, Toplak N, Koren S, Kovač M, Klančnik A, Jeršek B. Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms 2020; 8:E344. [PMID: 32121333 PMCID: PMC7143832 DOI: 10.3390/microorganisms8030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.
Collapse
Affiliation(s)
- Urška Ribič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Nataša Toplak
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Simon Koren
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Minka Kovač
- Omega d.o.o., Dolinškova 8, SI-1000 Ljubljana, Slovenia; (N.T.); (S.K.); (M.K.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (U.R.); (A.K.)
| |
Collapse
|
34
|
σ B Inhibits Poly- N-Acetylglucosamine Exopolysaccharide Synthesis and Biofilm Formation in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00098-19. [PMID: 30858304 DOI: 10.1128/jb.00098-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus clinical strains are able to produce at least two distinct types of biofilm matrixes: biofilm matrixes made of the polysaccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine (PNAG), whose synthesis is mediated by the icaADBC locus, and biofilm matrixes built of proteins (polysaccharide independent). σB is a conserved alternative sigma factor that regulates the expression of more than 100 genes in response to changes in environmental conditions. While numerous studies agree that σB is required for polysaccharide-independent biofilms, controversy persists over the role of σB in the regulation of PIA/PNAG-dependent biofilm development. Here, we show that genetically unrelated S. aureus σB-deficient strains produced stronger biofilms under both static and flow conditions and accumulated higher levels of PIA/PNAG exopolysaccharide than their corresponding wild-type strains. The increased accumulation of PIA/PNAG in the σB mutants correlated with a greater accumulation of the IcaC protein showed that it was not due to adjustments in icaADBC operon transcription and/or icaADBC mRNA stability. Overall, our results reveal that in the presence of active σB, the turnover of Ica proteins is accelerated, reducing the synthesis of PIA/PNAG exopolysaccharide and consequently the PIA/PNAG-dependent biofilm formation capacity.IMPORTANCE Due to its multifaceted lifestyle, Staphylococcus aureus needs a complex regulatory network to connect environmental signals with cellular physiology. One particular transcription factor, named σB (SigB), is involved in the general stress response and the expression of virulence factors. For many years, great confusion has existed about the role of σB in the regulation of the biofilm lifestyle in S. aureus Our study demonstrated that σB is not necessary for exopolysaccharide-dependent biofilms and, even more, that S. aureus produces stronger biofilms in the absence of σB The increased accumulation of exopolysaccharide correlates with higher stability of the proteins responsible for its synthesis. The present findings reveal an additional regulatory layer to control biofilm exopolysaccharide synthesis under stress conditions.
Collapse
|
35
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
36
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 824] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
37
|
Fernández L, González S, Quiles-Puchalt N, Gutiérrez D, Penadés JR, García P, Rodríguez A. Lysogenization of Staphylococcus aureus RN450 by phages ϕ11 and ϕ80α leads to the activation of the SigB regulon. Sci Rep 2018; 8:12662. [PMID: 30139986 PMCID: PMC6107660 DOI: 10.1038/s41598-018-31107-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a major opportunistic pathogen that commonly forms biofilms on various biotic and abiotic surfaces. Also, most isolates are known to carry prophages in their genomes. With this in mind, it seems that acquiring a better knowledge of the impact of prophages on the physiology of S. aureus biofilm cells would be useful for developing strategies to eliminate this pathogen. Here, we performed RNA-seq analysis of biofilm cells formed by S. aureus RN450 and two derived strains carrying prophages ϕ11 and ϕ80α. The lysogenic strains displayed increased biofilm formation and production of the carotenoid pigment staphyloxanthin. These phenotypes could be partly explained by the differences in gene expression displayed by prophage-harboring strains, namely an activation of the alternative sigma factor (SigB) regulon and downregulation of genes controlled by the Agr quorum-sensing system, especially the decreased transcription of genes encoding dispersion factors like proteases. Nonetheless, spontaneous lysis of part of the population could also contribute to the increased attached biomass. Interestingly, it appears that the phage CI protein plays a role in orchestrating these phage-host interactions, although more research is needed to confirm this possibility. Likewise, future studies should examine the impact of these two prophages during the infection.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain.
| | - Silvia González
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, UK
| | - Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, UK
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n 33300 -, Villaviciosa, Asturias, Spain
| |
Collapse
|
38
|
Discovery of small molecule protease inhibitors by investigating a widespread human gut bacterial biosynthetic pathway. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Blanchette KA, Wenke JC. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J Bone Jt Infect 2018; 3:50-67. [PMID: 29761067 PMCID: PMC5949568 DOI: 10.7150/jbji.23423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic orthopedic injuries, particularly extremity wounds, are a significant cause of morbidity. Despite prophylactic antibiotic treatment and surgical intervention, persistent infectious complications can and do occur. Persistent bacterial infections are often caused by biofilms, communities of antibiotic tolerant bacteria encased within a matrix. The structural and metabolic differences in this mode of growth make treatment difficult. Herein, we describe both established and novel, experimental treatments targeted at various stages of wound healing that are specifically aimed at reducing and eliminating biofilm bacteria. Importantly, the highly tolerant nature of these bacterial communities suggests that most singular approaches could be circumvented and a multifaceted, combinatorial approach will be the most effective strategy for treating these complicated infections.
Collapse
Affiliation(s)
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Ft Sam Houston, TX
| |
Collapse
|
40
|
Martínez-García S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS 2018; 126:177-185. [PMID: 29399876 DOI: 10.1111/apm.12805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023]
Abstract
Staphylococci produce a large number of extracellular proteases, some of which are considered as potential virulence factors. Staphylococcus epidermidis is a causative agent of nosocomial infections in medical devices by the formation of biofilms. It has been proposed that proteases contribute to the different stages of biofilm formation. S. epidermidis secretes a small number of extracellular proteases, such as serine protease Esp, cysteine protease EcpA, and metalloprotease SepA that have a relatively low substrate specificity. Recent findings indicate a significant contribution of extracellular proteases in biofilm formation through the proteolytic inactivation of adhesion molecules. The objective of this work is to provide an overview of the current knowledge of S. epidermidis' extracellular proteases during pathogenicity, especially in the different stages of biofilm formation.
Collapse
Affiliation(s)
- Sergio Martínez-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mario E Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan C Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
41
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
42
|
Zhang P, Li S, Chen H, Wang X, Liu L, Lv F, Wang S. Biofilm Inhibition and Elimination Regulated by Cationic Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16933-16938. [PMID: 28480700 DOI: 10.1021/acsami.7b05227] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we demonstrate that water-soluble conjugated polymers (PFP) have the ability to inhibit biofilm formation and eradicate mature established biofilm using reactive oxygen species (ROS) produced by PFP under white light irradiation. Upon addition of PFP to planktonic Staphylococcus aureus (S. aureus), electrostatic interactions bring cationic PFP to the surface of S. aureus, which possesses negative charges. As the amount of PFP coated on S. aureus becomes saturated, the interactions of bacteria to bacteria and bacteria to surface may be disrupted, resulting in reduced biofilm formation. After the biofilm matures, those PFP on the surface of the biofilm can generate ROS under white light irradiation, which has the ability to inactivate bacteria nearby. Once the biofilm is broken, PFP can penetrate throughthe biofilm and continuously generate ROS under irradiation, resulting in biofilm disruption. As a consequence, this makes conjugated polymers a very promising material for the disruption of biofilm in biomedical and industrial applications.
Collapse
Affiliation(s)
- Pengbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xiaoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, nstitute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
43
|
Liu Q, Wang X, Qin J, Cheng S, Yeo WS, He L, Ma X, Liu X, Li M, Bae T. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:181. [PMID: 28555174 PMCID: PMC5430930 DOI: 10.3389/fcimb.2017.00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022] Open
Abstract
Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking UniversityBeijing, China
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-NorthwestGary, IN, USA
| | - Lei He
- Department of Laboratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking UniversityBeijing, China
| | - Min Li
- Department of Laboratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-NorthwestGary, IN, USA
| |
Collapse
|
44
|
Approaches to Dispersing Medical Biofilms. Microorganisms 2017; 5:microorganisms5020015. [PMID: 28368320 PMCID: PMC5488086 DOI: 10.3390/microorganisms5020015] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated infections pose a complex problem to the medical community, in that residence within the protection of a biofilm affords pathogens greatly increased tolerances to antibiotics and antimicrobials, as well as protection from the host immune response. This results in highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as 80% of human bacterial infections are biofilm-associated, many researchers have begun investigating therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells into their more vulnerable, planktonic mode of life. This review addresses the current state of research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes (including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules). Throughout our discussion, we provide detailed lists and summaries of some of the most prominent and extensively researched dispersal agents that have shown promise against the biofilms of clinically relevant pathogens, and we catalog which specific microorganisms they have been shown to be effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal agents, and contemplate what needs to be done to overcome them.
Collapse
|
45
|
Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen D, Xu Z. Formation and development ofStaphylococcusbiofilm: With focus on food safety. J Food Saf 2017. [DOI: 10.1111/jfs.12358] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jian Miao
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Yanrui Liang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Lequn Chen
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Wenxin Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Jingwen Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
| | - Bing Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Lin Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| | - Dingqiang Chen
- Department of Laboratory Medicine; First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Zhenbo Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou China
- Department of Microbial Pathogenesis; University of Maryland; Baltimore
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; Guangzhou China
| |
Collapse
|
46
|
Pires RH, Felix SB, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. NANOSCALE 2016; 8:14193-14202. [PMID: 27387552 DOI: 10.1039/c6nr03416k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 ± 0.04 μm(2) on average and thus in the size range of small pathogens. Topological profiles typically up to 3 ± 1 nm in height are compatible with a "beads on a string" model of nucleosome chromatin. Typical branch lengths of 153 ± 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 ± 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ∼65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis.
Collapse
Affiliation(s)
- Ricardo H Pires
- ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Germany.
| | | | | |
Collapse
|
47
|
Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathog 2016; 12:e1005711. [PMID: 27327765 PMCID: PMC4915627 DOI: 10.1371/journal.ppat.1005711] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. Major components of the biofilm matrix scaffold are proteins that assemble to create a unified structure that maintain bacteria attached to each other and to surfaces. We provide evidence that a surface protein present in several staphylococcal species forms functional amyloid aggregates to build the biofilm matrix in response to specific environmental conditions. Under low Ca2+ concentrations and acidic pH, Bap is processed and forms insoluble aggregates with amyloidogenic properties. When the Ca2+ concentration increases, metal-coordinated Bap adopts a structurally more stable conformation and as a consequence, the N-terminal region is unable to assemble into amyloid aggregates. The control of Bap cleavage and assembly helps to regulate biofilm matrix development as a function of environmental changes.
Collapse
|
48
|
Yokoi KJ, Kuzuwa S, Iwasaki SI, Yamakawa A, Taketo A, Kodaira KI. Aureolysin of Staphylococcus warneri M accelerates its proteolytic cascade, and participates in biofilm formation. Biosci Biotechnol Biochem 2016; 80:1238-42. [PMID: 27008278 DOI: 10.1080/09168451.2016.1148576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aureolysin (Aur) gene of S. warneri M (aurWM) was cloned and sequenced. Analyses of the aurWM-inactivated mutant (S. warneri Mau) suggested that AurWM was probably associated with efficient processing of the PROM protease (homolog of V8/SspA serine protease), whereas considerable amount of mature-PROC protease (homolog of SspB cysteine protease) accumulated without AurWM. Additionally, AurWM appeared to affect biofilm formation in an uncertain suppressive way.
Collapse
Affiliation(s)
- Ken-Ji Yokoi
- a Food Biochemistry Division , Toyama prefectural Food Research Institute , Toyama , Japan
| | - Shinya Kuzuwa
- b Molecular Biology Group, Faculty of Engineering , Toyama University , Toyama , Japan
| | - Shu-Ichi Iwasaki
- c Quality Control Group , White Food Industry Co. Ltd. , Nanto , Japan
| | - Ayanori Yamakawa
- d Biochemistry Division, Department of Material Science , Wakayama National College of Technology , Wakayama , Japan
| | - Akira Taketo
- e Department of Applied Physics and Chemistry , Fukui University of Technology , Fukui , Japan
| | - Ken-Ichi Kodaira
- b Molecular Biology Group, Faculty of Engineering , Toyama University , Toyama , Japan
| |
Collapse
|
49
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
50
|
Solis N, Cain JA, Cordwell SJ. Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics. J Proteomics 2016; 130:190-9. [DOI: 10.1016/j.jprot.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
|