1
|
Gudiksen A, Zhou E, Pedersen L, Zaia CA, Wille CE, Eliesen EV, Pilegaard H. Loss of PGC-1α causes depot-specific alterations in mitochondrial capacity, ROS handling and adaptive responses to metabolic stress in white adipose tissue. Mitochondrion 2025; 83:102034. [PMID: 40157624 DOI: 10.1016/j.mito.2025.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
White adipose tissue (WAT) delivers lipid-fueled metabolic support to systemic energy expenditure through control of lipolytic and re-esterifying regulatory pathways, facilitated by mitochondrial bioenergetic support. Mitochondria are important sources of reactive oxygen species (ROS) and oxidative damage may potentially derail adipocyte function when mitochondrial homeostasis is challenged by overproduction of ROS. Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α is a transcriptional co-activator that in skeletal muscle plays a central role in mitochondrial biogenesis and function but whether PGC-1α is equally important for mitochondrial function and adaptations in white adipose tissue remains to be fully resolved. The aim of the present study was to characterize the necessity of adipocyte PGC-1α for adaptive regulation of mitochondrial function in distinct white adipose depots. PGC-1α adipose tissue-specific knockout (ATKO) and floxed littermate control mice (CTRL) were subjected to either 24 h of fasting or 48 h of cold exposure. Bioenergetics, ROS handling, basal and adaptive protein responses, markers of protein damage as well as lipid cycling capacity and regulation were characterized in distinct WAT depots. ATKO mice demonstrated impairments in respiration as well as reduced OXPHOS protein content in fed and fasted conditions. Increased ROS emission in tandem with diminished mitochondrial antioxidant defense capacity resulted in increased protein oxidation in ATKO WAT. Adipose tissue PGC-1α knockout also led to changes in regulation of lipolysis and potentially triglyceride reesterification in WAT. In conclusion, PGC-1α regulates adipose tissue mitochondrial respiration and ROS balance as well as lipid cycling during metabolic challenges in a depot specific manner.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Eva Zhou
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catherine A Zaia
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie E Wille
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth V Eliesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Coker MS, Ravelli MN, Shriver TC, Schoeller DA, Slivka DR, Ruby BC, Coker RH. Sex-specific energy expenditure during the Alaska mountain wilderness ski classic; insights from an Arctic winter expedition. Front Physiol 2025; 16:1543834. [PMID: 40365085 PMCID: PMC12069259 DOI: 10.3389/fphys.2025.1543834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 05/15/2025] Open
Abstract
Purpose The Alaska Mountain Wilderness Ski Classic (AMWSC) is a self-supported and self-oriented winter expedition that occurs in the remote North American Brooks Range, ∼200 km north of the Arctic Circle. Few investigations have evaluated sex-specific physiological responses under extreme cold and isolated circumstances. Our study examined sex-specific differences in total energy expenditure (TEE), water turnover (WT), and changes in body composition during the expedition. Methods Twenty adult participants (8 females, age: 41 ± 6 years, body mass index: 22.8 ± 1.9 kg/m2 and 12 males, age: 38 ± 4 years, body mass index: 22.7 ± 1.6 kg/m2) enrolled in and completed the study. TEE and WT were examined during the expedition using the doubly labeled water (DLW) method. Body composition was measured using multi-frequency bioelectrical impedance. Results The duration of the expedition was similar in females (8.1 ± 1.6 days) and males (7.5 ± 0.9 days). Absolute rates of TEE were lower in females (20.8 ± 4.7 MJ/day) compared to males (31.1 ± 7.5 MJ/day). However, when expressed relative to fat free mass (FFM), rates of TEE were similar in females (0.42 ± 0.07 MJ/FFM/day) and males (0.45 ± 0.10 MJ/FFM/day). TEE/body mass plus pack weight (i.e., total load carriage) was lower in females compared to males. WT was reduced compared to previous reports of athletes exercising in thermoneutral and hot environments. Conclusion Absolute rates of TEE were lower in females compared to males, but there was no difference when TEE was expressed relative to fat free mass. Estimates of TEE/total load carriage were lower in females than males, modestly suggesting greater functional efficiency in females during this expedition. Compared to other ultra-endurance events in warm environments, WT may have been reduced by lack of water availability, self-selected reductions in exercise intensity, and limited sweat loss.
Collapse
Affiliation(s)
- Melynda S. Coker
- Montana Center for Work Physiology and Exercise Metabolism, School of Integrative Physiology and Athletic Training, College of Health, University of Montana, Missoula, MT, United States
| | - Michelle N. Ravelli
- Isotope Ratio Mass Spectrometry Core Laboratory, University of Wisconsin, Madison, WI, United States
| | - Timothy C. Shriver
- Isotope Ratio Mass Spectrometry Core Laboratory, University of Wisconsin, Madison, WI, United States
| | - Dale A. Schoeller
- Isotope Ratio Mass Spectrometry Core Laboratory, University of Wisconsin, Madison, WI, United States
| | - Dustin R. Slivka
- Montana Center for Work Physiology and Exercise Metabolism, School of Integrative Physiology and Athletic Training, College of Health, University of Montana, Missoula, MT, United States
| | - Brent C. Ruby
- Montana Center for Work Physiology and Exercise Metabolism, School of Integrative Physiology and Athletic Training, College of Health, University of Montana, Missoula, MT, United States
| | - Robert H. Coker
- Montana Center for Work Physiology and Exercise Metabolism, School of Integrative Physiology and Athletic Training, College of Health, University of Montana, Missoula, MT, United States
| |
Collapse
|
3
|
Rendine M, Venturi S, Marino M, Gardana C, Møller P, Martini D, Riso P, Del Bo C. Effects of Quercetin Metabolites on Glucose-Dependent Lipid Accumulation in 3T3-L1 Adipocytes. Mol Nutr Food Res 2025:e70070. [PMID: 40255141 DOI: 10.1002/mnfr.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
The aim of the study was to assess the effects of quercetin metabolites (QMs) on lipid accumulation in adipocytes under high-glucose and physiological-glucose concentrations and to elucidate the mechanisms involved. 3T3-L1 mature adipocytes were exposed to a physiological glucose concentration, as a model of caloric restriction (CR), or high glucose (control), with and without QMs (quercetin-3-glucuronide [Q3G] and isorhamnetin [ISOR]). Cells were treated with Q3G (0.3 and 0.6 µmol/L) and ISOR (0.2 and 0.4 µmol/L) for 48 h. Lipid accumulation (Oil Red O staining) and Δ glucose level (HPLC) were assessed. Under high glucose, Q3G and ISOR reduced lipid accumulation (-10.8% and -10.4%; p < 0.01) and Δ glucose level (-13.6% and -14.2%; p < 0.05). Under CR, QMs increased Δ glucose level (+21.6% for Q3G and +21% for ISOR; p < 0.05). ISOR increased pAMPK levels under high glucose (+1.4-fold; p < 0.05). Under CR, Q3G and ISOR increased pAMPK (+1.4- and +1.5-fold; p < 0.05), while ISOR upregulated SIRT1 and PGC-1α (+2.3- and +1.5-fold; p < 0.05). Findings support, for the first time, the potential contribution of QMs, especially ISOR, in the regulation of lipid metabolism in vitro, possibly via AMPK activation. Further studies, including in vivo, are encouraged to strengthen evidence of the mechanisms observed.
Collapse
Affiliation(s)
- Marco Rendine
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Samuele Venturi
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Mirko Marino
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Claudio Gardana
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Martini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Cristian Del Bo
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Bonfante ILP, Segantim HDS, Mendonça KNS, de Oliveira MAB, Monfort-Pires M, Duft RG, da Silva Mateus KC, Chacon-Mikahil MPT, Ramos CD, Velloso LA, Cavaglieri CR. Better cardiometabolic/inflammatory profile is associated with differences in the supraclavicular adipose tissue activity of individuals with T2DM. Endocrine 2025; 87:1011-1021. [PMID: 39627400 DOI: 10.1007/s12020-024-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
PURPOSE Brown adipose tissue (BAT), located in the supraclavicular region, has been associated with a better cardiometabolic profile and reduced risk of developing non-communicable chronic diseases (NCD), in addition to being associated with a healthier phenotype in obesity. However, it is unknown whether greater supraclavicular adipose tissue activity could be associated with a healthier metabolic profile in people already diagnosed with type 2 diabetes (T2DM). Thus, the present work evaluated if supraclavicular adipose tissue activity is associated with metabolic and molecular markers in individuals with T2DM. METHODS Based on a cluster study, individuals with T2DM were divided into groups according to high or low-standard uptake value (SUV) evaluated in the supraclavicular adipose tissue area by [18F]-fluorodeoxyglucose and positron emission tomography-computed tomography (18F-FDG-PET/CT) after mild cold exposure). Functional, biochemical, inflammatory, and molecular markers were measured. RESULTS When we evaluated the whole sample, women showed higher SUV, which favored a difference between groups in sex-related markers. On the other hand, volunteers in the high-SUV group showed lower BMI, monocytes count, triglycerides/glucose index (TYG-index) and z score of metabolic syndrome (MS) values, as well as lower triglycerides, and VLDL concentrations. Moreover, they also had enhanced expression of thermogenic genes in subcutaneous fat. When analyzing only women, the differences in markers associated with sex disappear, and a lower count of leukocytes, platelets, along with lower TYG-index, z score of MS values, and triglycerides, VLDL, LDL, and TNFα concentrations were observed in women with the high SUV. In addition, higher expression of thermogenic genes and BECN1 were detected. CONCLUSION Higher supraclavicular adipose tissue SUV in individuals with T2DM is associated with a better cardiometabolic/inflammatory profile and expression of thermogenic genes. CLINICAL TRIAL REGISTRATION UTN: U1111-1202-1476 - 08/20/2020.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil.
- Postdoctoral Researcher Program (PPPD), University of Campinas, Campinas, Brazil.
| | - Higor da Silva Segantim
- Higher Interdisciplinary Training Program (PROFIS), University of Campinas, Campinas, SP, Brazil
| | | | | | - Milena Monfort-Pires
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Turku Pet Centre, University of Turku, Turku, Finland
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Ashgrove Rd W, Aberdeen, Scotland, UK
| | | | | | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
5
|
Park HJ, Kim JS, Kim ER, Gu MB, Lee SJ. Nonanoic acid and cholecystokinin induce beige adipogenesis. Food Sci Biotechnol 2025; 34:709-720. [PMID: 39958186 PMCID: PMC11822144 DOI: 10.1007/s10068-024-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 02/18/2025] Open
Abstract
Beige adipocytes, crucial for thermogenesis, offer a potential therapeutic strategy for obesity. This study investigated the anti-obesity effects of nonanoic acid (NoA), medium-chain fatty acids, and cholecystokinin-8 (CCK-8) on beige adipogenesis in C3H10T1/2 mesenchymal stem cells (C3H10T1/2 MSCs). We observed a significant increase in cholecystokinin B receptor expression in beige adipocytes compared to preadipocytes. The co-treatment with NoA and CCK-8 enhanced beige adipocyte differentiation and lipid accumulation. Moreover, the co-treatment with NoA and CCK-8 upregulated the mRNA expression of thermogenic genes and increased mitochondrial activity more effectively than individual treatment. Specifically, NoA and CCK-8 co-treatment also elevated the protein expression of uncoupling protein 1 and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha. These findings suggest that the additive effect of NoA and CCK-8 promotes the beiging/browning of body fat in beige adipogenesis, potentially serving as an effective approach in the prevention and treatment of obesity and insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01699-6.
Collapse
Affiliation(s)
- Hyun Ji Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ji-Sun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four, Institute of Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
| | - Eun Ryung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung-Joon Lee
- Interdisciplinary Program in Precision Public Health, BK21 Four, Institute of Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
6
|
Gourronc FA, Bullert AJ, Helm-Kwasny BK, Adamcakova-Dodd A, Wang H, Jing X, Li X, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Exposure to PCB52 (2,2',5,5'-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104612. [PMID: 39674530 PMCID: PMC11717591 DOI: 10.1016/j.etap.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are linked to cancer, learning disabilities, liver and cardiovascular disease, and diabetes. Older schools often contain high levels of PCBs, and inhalation is a major source of exposure. Technical PCB mixtures, called Aroclors, and individual dioxin-like PCBs impair adipocyte function, which can lead to type II diabetes. To determine how PCB52, a non-dioxin like PCB congener found in school air, affects adipose, adolescent male and female rats were exposed to PCB52 by nose-only inhibition for 4 h per day for 28 consecutive days. Transcriptomic analysis of white adipose revealed sex-specific differences in gene expression between PCB52- and sham-exposed males and females. Exposed females showed mitochondrial gene changes, including downregulation of the thermogenic uncoupling gene, Ucp1. Human preadipocytes/adipocytes exposed to PCB52 or its main metabolite, 4-OH-PCB52, also showed reduced norepinephrine-induced UCP1 expression. These findings suggest that PCB52 inhalation disrupts thermogenesis in adipose tissue, potentially contributing to metabolic syndrome.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Amanda J Bullert
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | | | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
7
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Kuhnert LRB, Pontes RDFC, Neto JGO, Romão JS, Pinto CEDC, Oliveira KJ. Cinnamon powder intake enhances the effect of caloric restriction on white adipose tissue in male rats. J Mol Histol 2024; 56:19. [PMID: 39627596 DOI: 10.1007/s10735-024-10288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/30/2024] [Indexed: 02/07/2025]
Abstract
Caloric Restriction (CR) and cinnamon promote several benefits, including the modulation of lipid metabolism and body fat mass. We hypothesize that cinnamon may act as a mimetic of restriction or enhance the effects of caloric restriction on adipose tissue. Adult male Wistar rats were divided into Control (CT, n = 8) and Cinnamon (CIN, n = 7), with free access to standard chow; Calorie Restriction (CR, n = 8) and Calorie Restriction with Cinnamon (CIN-CR, n = 7), subjected to a 30% reduction in food intake compared to the average consumption of CT rats. Both CIN groups received 50 mg cinnamon powder (Cinnamomun verum) per kg body mass, by gavage, over 6 weeks. Cinnamon treatment did not alter food intake under either ad libitum or caloric restriction conditions. The CR and CIN-CR groups exhibit lower body mass. Basal glycemia, lipid profile, and triglyceride-glycemic index were similar between groups. The combination of both interventions induced lower visceral white adipose tissue (WAT) mass, and smaller adipocyte diameter in the visceral and subcutaneous WAT compartments, accompanied by reduced expression of genes related to lipid metabolism (Acaca, Fasn, Cd36, Srebf1c), suggesting decreased lipid synthesis. Histological analyses identified a browning phenotype in the CR, CIN, and CIN-CR groups, positive for UCP1 immunostaining. The CR and CIN-CR groups showed lower Atg7 expression, and CIN-CR animals expressed increased levels of Lamp2, suggesting modulation of autophagy. Brown adipose tissue mass and lipid content were not influenced by any intervention. These findings suggest that cinnamon may enhance the effects of caloric restriction in promoting adipocyte metabolic health.
Collapse
Affiliation(s)
- Lia Rafaella Ballard Kuhnert
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Experimental Pathology, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niteroi, RJ, Brazil
| | | | - Jessika Geisebel Oliveira Neto
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Santos Romão
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Carla Eponina de Carvalho Pinto
- Laboratory of Experimental Pathology, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niteroi, RJ, Brazil
| | - Karen Jesus Oliveira
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
9
|
Huang L, Zhu L, Zhao Z, Jiang S. Hyperactive browning and hypermetabolism: potentially dangerous element in critical illness. Front Endocrinol (Lausanne) 2024; 15:1484524. [PMID: 39640882 PMCID: PMC11617193 DOI: 10.3389/fendo.2024.1484524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Brown/beige adipose tissue has attracted much attention in previous studies because it can improve metabolism and combat obesity through non-shivering thermogenesis. However, recent studies have also indicated that especially in critical illness, overactivated brown adipose tissue or extensive browning of white adipose tissue may bring damage to individuals mainly by exacerbating hypermetabolism. In this review, the phenomenon of fat browning in critical illness will be discussed, along with the potential harm, possible regulatory mechanism and corresponding clinical treatment options of the induction of fat browning. The current research on fat browning in critical illness will offer more comprehensive understanding of its biological characteristics, and inspire researchers to develop new complementary treatments for the hypermetabolic state that occurs in critically ill patients.
Collapse
Affiliation(s)
- Lu Huang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Department of Plastic and Reconstructive Surgery, Taizhou Enze Hospital, Taizhou, China
| | - Zhenxiong Zhao
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shenglu Jiang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
10
|
Benvie AM, Berry DC. Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice. Mol Metab 2024; 89:102028. [PMID: 39278546 PMCID: PMC11458544 DOI: 10.1016/j.molmet.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. METHODS We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. RESULTS Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. CONCLUSIONS This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Kim YJ, Lee SG, Jang SI, Kim WK, Oh KJ, Bae KH, Kim HJ, Seong JK. Lactate utilization in Lace1 knockout mice promotes browning of inguinal white adipose tissue. Exp Mol Med 2024; 56:2491-2502. [PMID: 39511428 PMCID: PMC11612233 DOI: 10.1038/s12276-024-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 11/15/2024] Open
Abstract
Recent studies have focused on identifying novel genes involved in the browning process of inguinal white adipose tissue (iWAT). In this context, we propose that the mitochondrial ATPase gene lactation elevated 1 (Lace1) utilizes lactate to regulate the browning capacity of iWAT, specifically in response to challenge with CL-316,243 (CL), a beta3-adrenergic receptor (β3-AR) agonist. The mice were injected with CL over a span of 3 days and exposed to cold temperatures (4-6 °C) for 1 week. The results revealed a significant increase in Lace1 expression levels during beige adipogenesis. Additionally, a strong positive correlation was observed between Lace1 and Ucp1 mRNA expression in iWAT under browning stimulation. To further explore this phenomenon, we subjected engineered Lace1 KO mice to CL and cold challenges to validate their browning potential. Surprisingly, Lace1 KO mice presented increased oxygen consumption and heat generation upon CL challenge and cold exposure, along with increased expression of genes related to brown adipogenesis. Notably, deletion of Lace1 led to increased lactate uptake and browning in iWAT under CL challenge compared with those of the controls. These unique phenomena stem from increased lactate release due to the inactivation of pyruvate dehydrogenase (PDH) in the hearts of Lace1 KO mice.
Collapse
Affiliation(s)
- Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang Gyu Lee
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Su In Jang
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Korea Model animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Pingitore A, Gaggini M, Mastorci F, Sabatino L, Cordiviola L, Vassalle C. Metabolic Syndrome, Thyroid Dysfunction, and Cardiovascular Risk: The Triptych of Evil. Int J Mol Sci 2024; 25:10628. [PMID: 39408957 PMCID: PMC11477096 DOI: 10.3390/ijms251910628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The triad formed by thyroid dysfunction, metabolic syndrome (MetS), and cardiovascular (CV) risk forms a network with many connections that aggravates health outcomes. Thyroid hormones (THs) play an important role in glucose and lipid metabolism and hemodynamic regulation at the molecular level. It is noteworthy that a bidirectional association between THs and MetS and their components likely exists as MetS leads to thyroid dysfunction, whereas thyroid alterations may cause a higher incidence of MetS. Thyroid dysfunction increases insulin resistance, the circulating levels of lipids, in particular LDL-C, VLDL-C, and triglycerides, and induces endothelial dysfunction. Furthermore, THs are important regulators of both white and brown adipose tissue. Moreover, the pathophysiological relationship between MetS and TH dysfunction is made even tighter considering that these conditions are usually associated with inflammatory activation and increased oxidative stress. Therefore, the role of THs takes place starting from the molecular level, then manifesting itself at the clinical level, through an increased risk of CV events in the general population as well as in patients with heart failure or acute myocardial infarction. Thus, MetS is frequently associated with thyroid dysfunction, which supports the need to assess thyroid function in this group, and when clinically indicated, to correct it to maintain euthyroidism. However, there are still several critical points to be further investigated both at the molecular and clinical level, in particular considering the need to treat subclinical dysthyroidism in MetS patients.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Francesca Mastorci
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Laura Sabatino
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | | | | |
Collapse
|
13
|
Vargas-Castillo A, Sun Y, Smythers AL, Grauvogel L, Dumesic PA, Emont MP, Tsai LT, Rosen ED, Zammit NW, Shaffer SM, Ordonez M, Chouchani ET, Gygi SP, Wang T, Sharma AK, Balaz M, Wolfrum C, Spiegelman BM. Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle. Cell Metab 2024; 36:2146-2155.e5. [PMID: 39084217 PMCID: PMC12005060 DOI: 10.1016/j.cmet.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.
Collapse
Affiliation(s)
- Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Louisa Grauvogel
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan W Zammit
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anand K Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
16
|
Yuan Y, Hu R, Park J, Xiong S, Wang Z, Qian Y, Shi Z, Wu R, Han Z, Ong SG, Lin S, Varady KA, Xu P, Berry DC, Shu G, Jiang Y. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. SCIENCE ADVANCES 2024; 10:eadn5229. [PMID: 38924414 PMCID: PMC11204298 DOI: 10.1126/sciadv.adn5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Collapse
Affiliation(s)
- Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Benvie AM, Berry DC. Reversing Pdgfrβ Signaling Restores Metabolically Active Beige Adipocytes by Alleviating ILC2 Suppression in Aged and Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599436. [PMID: 38948810 PMCID: PMC11212986 DOI: 10.1101/2024.06.17.599436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. Methods We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. Results Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. Conclusion This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| |
Collapse
|
18
|
Yuan N, Shen L, Peng Q, Sha R, Wang Z, Xie Z, You X, Feng Y. SRSF1 Is Required for Mitochondrial Homeostasis and Thermogenic Function in Brown Adipocytes Through its Control of Ndufs3 Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306871. [PMID: 38569495 PMCID: PMC11151030 DOI: 10.1002/advs.202306871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2024] [Indexed: 04/05/2024]
Abstract
RNA splicing dysregulation and the involvement of specific splicing factors are emerging as common factors in both obesity and metabolic disorders. The study provides compelling evidence that the absence of the splicing factor SRSF1 in mature adipocytes results in whitening of brown adipocyte tissue (BAT) and impaired thermogenesis, along with the inhibition of white adipose tissue browning in mice. Combining single-nucleus RNA sequencing with transmission electron microscopy, it is observed that the transformation of BAT cell types is associated with dysfunctional mitochondria, and SRSF1 deficiency leads to degenerated and fragmented mitochondria within BAT. The results demonstrate that SRSF1 effectively binds to constitutive exon 6 of Ndufs3 pre-mRNA and promotes its inclusion. Conversely, the deficiency of SRSF1 results in impaired splicing of Ndufs3, leading to reduced levels of functional proteins that are essential for mitochondrial complex I assembly and activity. Consequently, this deficiency disrupts mitochondrial integrity, ultimately compromising the thermogenic capacity of BAT. These findings illuminate a novel role for SRSF1 in influencing mitochondrial function and BAT thermogenesis through its regulation of Ndufs3 splicing within BAT.
Collapse
Affiliation(s)
- Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| | - Lei Shen
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhiqi Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| |
Collapse
|
19
|
Lee D, Benvie AM, Steiner BM, Kolba NJ, Ford JG, McCabe SM, Jiang Y, Berry DC. Smooth muscle cell-derived Cxcl12 directs macrophage accrual and sympathetic innervation to control thermogenic adipose tissue. Cell Rep 2024; 43:114169. [PMID: 38678562 PMCID: PMC11413973 DOI: 10.1016/j.celrep.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.
Collapse
Affiliation(s)
- Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nikolai J Kolba
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Josie G Ford
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sean M McCabe
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Yang Y, Zhou T, Zhao X, Cai Y, Xu Y, Gang X, Wang G. Main mechanisms and clinical implications of alterations in energy expenditure state among patients with pheochromocytoma and paraganglioma: A review. Medicine (Baltimore) 2024; 103:e37916. [PMID: 38669419 PMCID: PMC11049756 DOI: 10.1097/md.0000000000037916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Xu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Bellitto V, Gabrielli MG, Martinelli I, Roy P, Nittari G, Cocci P, Palermo FA, Amenta F, Micioni Di Bonaventura MV, Cifani C, Tomassoni D, Tayebati SK. Dysfunction of the Brown Adipose Organ in HFD-Obese Rats and Effect of Tart Cherry Supplementation. Antioxidants (Basel) 2024; 13:388. [PMID: 38671836 PMCID: PMC11047636 DOI: 10.3390/antiox13040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity has a great impact on adipose tissue biology, based on its function as a master regulator of energy balance. Brown adipose tissue (BAT) undergoes remodeling, and its activity declines in obese subjects due to a whitening process. The anti-obesity properties of fruit extracts have been reported. The effects of tart cherry against oxidative stress, inflammation, and the whitening process in the BAT of obese rats were investigated. Intrascapular BAT (iBAT) alterations and effects of Prunus cerasus L. were debated in rats fed for 17 weeks with a high-fat diet (DIO), in DIO supplemented with seed powder (DS), and with seed powder plus the juice (DJS) of tart cherry compared to CHOW rats fed with a normo-caloric diet. iBAT histologic observations revealed a whitening process in DIO rats that was reduced in the DS and DJS groups. A modulation of uncoupling protein-1 (UCP-1) protein and gene expression specifically were detected in the obese phenotype. An upregulation of UCP-1 and related thermogenic genes after tart cherry intake was detected compared to the DIO group. Metabolic adjustment, endoplasmic reticulum stress, protein carbonylation, and the inflammatory microenvironment in the iBAT were reported in DIO rats. The analysis demonstrated an iBAT modulation that tart cherry promoted. In addition to our previous results, these data confirm the protective impact of tart cherry consumption on obesity.
Collapse
Affiliation(s)
- Vincenzo Bellitto
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Proshanta Roy
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Giulio Nittari
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Carlo Cifani
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| |
Collapse
|
22
|
Zhou E, Zhang L, He L, Xiao Y, Zhang K, Luo B. Cold exposure, gut microbiota and health implications: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170060. [PMID: 38242473 DOI: 10.1016/j.scitotenv.2024.170060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Temperature has been recognized as an important environmental factor affecting the composition and function of gut microbiota (GM). Although research on high-temperature impacts has been well studied, knowledge about the effect of cold exposure on GM remains limited. This narrative review aims to synthesize the latest scientific findings on the impact of cold exposure on mammalian GM, and its potential health implications. Chronic cold exposure could disrupt the α-diversity and the composition of GM in both experimental animals and wild-living hosts. Meanwhile, cold exposure could impact gut microbial metabolites, such as short-chain fatty acids. We also discussed plausible biological pathways and mechanisms by which cold-induced changes may impact host health, including metabolic homeostasis, fitness and thermogenesis, through the microbiota-gut-brain axis. Intriguingly, alterations in GM may provide a tool for favorably modulating the host response to the cold temperature. Finally, current challenges and future perspectives are discussed, emphasizing the need for translational research in humans. GM could be manipulated by utilizing nutritional strategies, such as probiotics and prebiotics, to deal with cold-related health issues and enhance well-being in populations living or working in cold environments.
Collapse
Affiliation(s)
- Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
23
|
Gilani A, Stoll L, Homan EA, Lo JC. Adipose Signals Regulating Distal Organ Health and Disease. Diabetes 2024; 73:169-177. [PMID: 38241508 PMCID: PMC10796297 DOI: 10.2337/dbi23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 01/21/2024]
Abstract
Excessive adiposity in obesity is a significant risk factor for development of type 2 diabetes (T2D), nonalcoholic fatty liver disease, and other cardiometabolic diseases. An unhealthy expansion of adipose tissue (AT) results in reduced adipogenesis, increased adipocyte hypertrophy, adipocyte hypoxia, chronic low-grade inflammation, increased macrophage infiltration, and insulin resistance. This ultimately culminates in AT dysfunction characterized by decreased secretion of antidiabetic adipokines such as adiponectin and adipsin and increased secretion of proinflammatory prodiabetic adipokines including RBP4 and resistin. This imbalance in adipokine secretion alters the physiological state of AT communication with target organs including pancreatic β-cells, heart, and liver. In the pancreatic β-cells, adipokines are known to have a direct effect on insulin secretion, gene expression, cell death, and/or dedifferentiation. For instance, impaired secretion of adipsin, which promotes insulin secretion and β-cell identity, results in β-cell failure and T2D, thus presenting a potential druggable target to improve and/or preserve β-cell function. The cardiac tissue is affected by both the classic white AT-secreted adipokines and the newly recognized brown AT (BAT)-secreted BATokines or lipokines that alter lipid deposition and ventricular function. In the liver, adipokines affect hepatic gluconeogenesis, lipid accumulation, and insulin sensitivity, underscoring the importance of adipose-liver communication in the pathogenesis of nonalcoholic fatty liver disease. In this perspective, we outline what is currently known about the effects of individual adipokines on pancreatic β-cells, liver, and the heart.
Collapse
Affiliation(s)
- Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Lisa Stoll
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Edwin A. Homan
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - James C. Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
24
|
Li X, Yao Z, Qi X, Cui J, Zhou Y, Tan Y, Huang X, Ye H. Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice. Curr Res Food Sci 2024; 8:100683. [PMID: 38313225 PMCID: PMC10835601 DOI: 10.1016/j.crfs.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Naringin, a natural flavanone primarily found in citrus fruits, has garnered increased attention due to its recognized antioxidative, anti-inflammatory, and cardioprotective attributes. However, the functions of naringin in regulating energy expenditure are poorly understood. In the present study, we observed that twelve weeks of naringin supplementation substantially reshaped the metabolic profile of high-fat diet (HFD)-fed mice, by inhibiting body weight gain, reducing liver weight, and altering body compositions. Notably, naringin exhibited a remarkable capacity to augment whole-body energy expenditure of the tested mice by enhancing the thermogenic activity of brown adipose tissue (BAT) and stimulating browning of inguinal white adipose tissue (iWAT). Furthermore, our results showed naringin supplementation modified gut microbiota composition, specifically increasing the abundance of Bifidobacterium and Lachnospiraceae_bacterium_28-4, while reducing the abundance of Lachnospiraceae_bacterium_DW59 and Dubosiella_newyorkensis. Subsequently, we also found naringin supplementation altered fecal metabolite profile, by significantly promoting the production of taurine, tyrosol, and thymol, which act as potent activators of thermoregulation. Interestingly, the metabolic effects of naringin were abolished upon gut microbiota depletion through antibiotic intervention, concurrently leading the disappearance of naringin-induced thermogenesis and protective actions on diet-induced obesity. This discovery revealed a novel food-driven cross-sectional communication between gut bacteria and adipose tissues. Collectively, our data indicate that naringin supplementation stimulates BAT thermogenesis, alters fat distribution, promotes the browning process, and consequently inhibits body weight gain; importantly these metabolic effects require the participation of gut bacteria.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Culinary Science, Sichuan Tourism University, Chengdu, 610100, China
| | - Zhao Yao
- School of Health Industry, Sichuan Tourism University, Chengdu, 610100, China
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - JinLing Cui
- College of Culinary Science, Sichuan Tourism University, Chengdu, 610100, China
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - Yihong Tan
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hui Ye
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| |
Collapse
|
25
|
Chen W, Jiang J, Gao J, Wang G, Wang R, Lv J, Ben J. Roles and signaling pathways of CITED1 in tumors: overview and novel insights. J Int Med Res 2024; 52:3000605231220890. [PMID: 38190845 PMCID: PMC10775745 DOI: 10.1177/03000605231220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
CBP/p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (CITED1) is a transcriptional activator belonging to the non-DNA-binding transcription co-regulator family. It regulates diverse pathways, including the transforming growth factor/bone morphogenetic protein/SMAD, estrogen, Wnt-β-catenin, and androgen-AR signaling pathways, by binding to CBP/p300 co-activators through its conserved transactivation domain CR2. CITED1 plays an important role in embryonic development and a certain regulatory role in the occurrence and development of various tumors. In this article, the biological characteristics, expression regulation, participating signaling pathways, and potential roles of CITED1 in the clinical diagnosis and treatment of tumors are reviewed.
Collapse
Affiliation(s)
- Wenting Chen
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jianing Jiang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinqi Gao
- Department of Intervention, The Second Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Gang Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruoyu Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinyan Lv
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Ben
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
26
|
Nakano T, Suzuki A, Goto K. Ablation of diacylglycerol kinase ε promotes whitening of brown adipose tissue under high fat diet feeding. Adv Biol Regul 2024; 91:100994. [PMID: 37875386 DOI: 10.1016/j.jbior.2023.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Adipose tissue (AT) comprises distinct fat depots such as white AT and brown AT. White and brown adipocytes exhibit different morphological and physiological properties. White adipocytes containing large single lipid droplet (LD) provide energy on demand whereas brown adipocytes loaded with multilocular LDs consume energy to generate heat or dissipate excess energy. Recent studies have shown that multilocular brown-like cells emerge in white AT under certain conditions. These cells termed beige adipocytes participate in energy expenditure and heat generation. In the process of lipolysis, TG is broken down into free fatty acid and diacylglycerol (DG). In this regard, DG also serves as a signaling molecule activating some proteins such as protein kinase C. Therefore, DG kinase (DGK), an enzyme which phosphorylates DG into phosphatidic acid (PA), plays a pivotal role in integrating energy homeostasis and intracellular signaling. Recently, we described that DGKε-KO mice exhibit increased adiposity in visceral white AT accompanied with impaired glucose tolerance early (40 days) in the course of high fat diet (HFD) feeding, although these mice exhibit "browning or beiging" in visceral white AT associated with improved glucose tolerance after longer term HFD feeding (180 days). This study was conducted to understand the overall features of adipose tissues and investigate changes in subcutaneous (inguinal) white AT and interscapular brown AT of DGKε-KO mice during the course of HFD feeding. Results demonstrated that fat accumulation is promoted in all fat depots under 40 days of HFD feeding conditions. Remarkably, "whitening" of brown adipocytes was identified in DGKε-deficient brown AT during the course of HFD feeding, suggesting brown adipocyte dysfunction. In addition, insulin levels were considerably elevated in DGKε-KO mice under 180 days of HFD feeding conditions. Collectively, these findings suggest that brown adipocytes are dysfunctional in DGKε-KO mice, which promotes browning or beiging in visceral white AT. Beige adipocytes may take over energy disposal and contribute to improving glucose tolerance with the aid of high levels of insulin in DGKε-KO mice upon excess feeding.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan.
| | - Ayako Suzuki
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan
| |
Collapse
|
27
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Lee HS, Choi SM, Lim SH, Choi CI. Betanin from Beetroot ( Beta vulgaris L.) Regulates Lipid Metabolism and Promotes Fat Browning in 3T3-L1 Adipocytes. Pharmaceuticals (Basel) 2023; 16:1727. [PMID: 38139853 PMCID: PMC10748323 DOI: 10.3390/ph16121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fat browning, which converts white adipose tissue to brown, has attracted attention as a promising strategy for the treatment of obesity. Betanin (BT) has been reported to have potential anti-obesity activity. 3T3-L1 cells were differentiated for 7 days during BT treatment. The BT concentration range for the study was determined using an MTT assay, and lipid accumulation was evaluated by Oil-Red-O staining. The expression of protein level was analyzed by Western blot. Immunofluorescence images were performed with confocal microscopy to visually show the amount and location of thermogenesis factor uncoupling protein1 (UCP1) and mitochondria. qRT-PCR was performed to evaluate mRNA expression. BT inhibited lipid accumulation and increased the expression of UCP1, peroxisome-proliferator-activated receptor gamma (PPARγ), and PPARγ coactivator-1 alpha (PGC-1α). In addition, the increases in beige adipocyte-specific markers were observed, supporting BT-mediated browning of the fat tissue. The UCP1 was localized in the inner membrane of the mitochondria, and its expression was associated with mitochondrial activation. Consistent with this, the mRNA expression of mitochondrial biogenesis markers increased in 3T3-L1 cells after BT treatment. Immunofluorescence staining also indicated an increased number of mitochondria and UCP1, respectively. Moreover, BT inhibited lipogenesis and enhanced lipolysis and fatty acid oxidation. This mechanism has been suggested to be mediated by an adenosine monophosphate-activated protein kinase (AMPK) pathway. BT induces fat browning and regulates lipid metabolism via the AMPK-mediated pathway in 3T3-L1 cells, suggesting that BT can be a promising candidate for controlling obesity.
Collapse
Affiliation(s)
| | | | | | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (H.S.L.); (S.M.C.); (S.H.L.)
| |
Collapse
|
29
|
Guo B, Shu H, Luo L, Liu X, Ma Y, Zhang J, Liu Z, Zhang Y, Fu L, Song T, Qiao Y, Zhang C. Lactate Conversion by Lactate Dehydrogenase B Is Involved in Beige Adipocyte Differentiation and Thermogenesis in Mice. Nutrients 2023; 15:4846. [PMID: 38004240 PMCID: PMC10674895 DOI: 10.3390/nu15224846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue (AT) is the primary reservoir of lipid, the major thermogenesis organ during cold exposure, and an important site for lactate production. However, the utilization of lactate as a metabolic substrate by adipocytes, as well as its potential involvement in the regulation of adipocyte thermogenesis, remain unappreciated. In vitro experiments using primary stromal vascular fraction preadipocytes isolated from mouse inguinal white adipose tissue (iWAT) revealed that lactate dehydrogenase B (LDHB), the key glycolytic enzyme that catalyzes the conversion of lactate to pyruvate, is upregulated during adipocyte differentiation, downregulated upon chronic cold stimulation, and regained after prolonged cold exposure. In addition, the global knockout of Ldhb significantly reduced the masses of iWAT and epididymal WAT (eWAT) and impeded the utilization of iWAT during cold exposure. In addition, Ldhb loss of function impaired the mitochondrial function of iWAT under cold conditions. Together, these findings uncover the involvement of LDHB in adipocyte differentiation and thermogenesis.
Collapse
Affiliation(s)
- Bin Guo
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523018, China;
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Ling Luo
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yixue Qiao
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China; (H.S.); (L.L.); (X.L.); (Y.M.); (J.Z.); (Z.L.); (Y.Z.)
| |
Collapse
|
30
|
Liu Y, Qu Y, Cheng C, Tsai PY, Edwards K, Xue S, Pandit S, Eguchi S, Sanghera N, Barrow JJ. Nipsnap1-A regulatory factor required for long-term maintenance of non-shivering thermogenesis. Mol Metab 2023; 75:101770. [PMID: 37423391 PMCID: PMC10404556 DOI: 10.1016/j.molmet.2023.101770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The activation of non-shivering thermogenesis (NST) has strong potential to combat obesity and metabolic disease. The activation of NST however is extremely temporal and the mechanisms surrounding how the benefits of NST are sustained once fully activated, remain unexplored. The objective of this study is to investigate the role of 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) in NST maintenance, which is a critical regulator identified in this study. METHODS The expression of Nipsnap1 was profiled by immunoblotting and RT-qPCR. We generated Nipsnap1 knockout mice (N1-KO) and investigated the function of Nipsnap1 in NST maintenance and whole-body metabolism using whole body respirometry analyses. We evaluate the metabolic regulatory role of Nipsnap1 using cellular and mitochondrial respiration assay. RESULTS Here, we show Nipsnap1 as a critical regulator of long-term thermogenic maintenance in brown adipose tissue (BAT). Nipsnap1 localizes to the mitochondrial matrix and increases its transcript and protein levels in response to both chronic cold and β3 adrenergic signaling. We demonstrated that these mice are unable to sustain activated energy expenditure and have significantly lower body temperature in the face of an extended cold challenge. Furthermore, when mice are exposed to the pharmacological β3 agonist CL 316, 243, the N1-KO mice exhibit significant hyperphagia and altered energy balance. Mechanistically, we demonstrate that Nipsnap1 integrates with lipid metabolism and BAT-specific ablation of Nipsnap1 leads to severe defects in beta-oxidation capacity when exposed to a cold environmental challenge. CONCLUSION Our findings identify Nipsnap1 as a potent regulator of long-term NST maintenance in BAT.
Collapse
Affiliation(s)
- Yang Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Yue Qu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Chloe Cheng
- Department of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Kaydine Edwards
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Siwen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Supriya Pandit
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Sakura Eguchi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Navneet Sanghera
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
| | - Joeva J Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
31
|
Filfilan WM. Thyroid Hormones Regulate the Thermoregulatory Mechanisms of the Body: Review. Pak J Biol Sci 2023; 26:453-457. [PMID: 38044694 DOI: 10.3923/pjbs.2023.453.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Thyroid hormones (TH) play a critical role in metabolism, energy balance and thermogenesis. The mechanisms whereby thyroid hormone increases heat production have been analyzed with emphasis in more recent developments. Thyroid hormone increases obligatory thermogenesis as a result of the stimulation of numerous metabolic pathways involved in the development, remodeling and delivery of energy to the tissues. In this section, alterations in primary hyperthyroidism and hypothyroidism will be contrasted with the physiological characteristics of TH-dependent regulation in response to fasting and exposure to cold. The current review will discuss the situation with regard to regional thyroid hormones in the Central Nervous System (CNS) and more specifically, in peripheral cells. When caused by exposure to cold or fasting, local anomalies in the CNS are distinct from peripheral compartments, in contrast to hyperthyroidism and hypothyroidism, which differ when similar changes are observed. Lower hypothalamic TH concentrations are associated with cold exposure, although higher peripheral TH levels. The TH tendency is reversed by fasting. Primary hypothyroidism and hyperthyroidism impair them. The current study aims to trace the various mechanisms used by the thyroid gland to regulate the body's energy production process.
Collapse
|
32
|
Zhou H, Chen C, Hu H, Jiang B, Yin Y, Zhang K, Shen M, Wu S, Wang Z. High-intensity interval training improves fatty infiltration in the rotator cuff through the β3 adrenergic receptor in mice. Bone Joint Res 2023; 12:455-466. [PMID: 37524338 PMCID: PMC10390263 DOI: 10.1302/2046-3758.128.bjr-2022-0309.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aims Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Methods Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the β3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via β3AR. Conclusion HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and β3AR.
Collapse
Affiliation(s)
- Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya Medical School of Central South University, Changsha, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Liu L, Wess J. Adipocyte G Protein-Coupled Receptors as Potential Targets for Novel Antidiabetic Drugs. Diabetes 2023; 72:825-834. [PMID: 37339353 PMCID: PMC10281224 DOI: 10.2337/db23-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
The functional state of adipocytes plays a central role in regulating numerous important metabolic functions, including energy and glucose homeostasis. While white adipocytes store excess calories as fat (triglycerides) and release free fatty acids as a fuel source in times of need, brown and beige adipocytes (so-called thermogenic adipocytes) convert chemical energy stored in substrates (e.g., fatty acids or glucose) into heat, thus promoting energy expenditure. Like all other cell types, adipocytes express many G protein-coupled receptors (GPCRs) that are linked to four major functional classes of heterotrimeric G proteins (Gs, Gi/o, Gq/11, and G12/13). During the past few years, novel experimental approaches, including the use of chemogenetic strategies, have led to a series of important new findings regarding the metabolic consequences of activating or inhibiting distinct GPCR/G protein signaling pathways in white, brown, and beige adipocytes. This novel information should guide the development of novel drugs capable of modulating the activity of specific adipocyte GPCR signaling pathways for the treatment of obesity, type 2 diabetes, and related metabolic disorders.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
34
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
35
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Li X, Yao Y, Yu C, Wei T, Xi Q, Li J, Chen F, Deng ZY, Luo T. Modulation of PPARα-thermogenesis gut microbiota interactions in obese mice administrated with zingerone. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3065-3076. [PMID: 36424723 DOI: 10.1002/jsfa.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to uncover the potential effects of zingerone (ZIN), one of the bioactive compounds in ginger, on the development of obesity as well as the mechanisms responsible for these effects in C57BL/6J mice fed with a high-fat diet (HFD). RESULTS Supplementation with 0.2% (wt/wt) zingerone for 16 weeks significantly reduced the final body weight, liver weight, and epididymal white adipose tissue (eWAT) weight without changing the food intake of the mice when compared with the HFD group. The hyperlipidemia of HFD-fed mice was ameliorated after zingerone administration, including decreased plasma triacylglycerol (TG) and total cholesterol (TC) level. The lipid content in liver was lower and the adipocyte size in eWAT and inguinal white adipose tissue (iWAT) was smaller in HFD + ZIN-fed mice compared with HFD group. Zingerone also binds with nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα) with an optimal docking energy of -7.31 kJ/mol. Uncoupling protein 1 (UCP1), PPAR-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16), the downstream genes of PPAR which are related to thermogenic function of adipocytes, were significantly increased in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) after zingerone administration, in comparison with HFD fed mice. Zingerone intake also restructured the community composition of gut microbiota. The ratio of Firmicutes to Bacteroidetes was decreased, and the relative abundance of Akkermansia_mucinphila was increased. CONCLUSION Zingerone can attenuate obesity and related symptoms in HFD-fed mice, probably through the modulation of PPARα-thermogenesis-gut microbiota interactions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yexuan Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengwei Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Teng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qinghua Xi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Benvie AM, Lee D, Steiner BM, Xue S, Jiang Y, Berry DC. Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023; 14:1806. [PMID: 37002214 PMCID: PMC10066302 DOI: 10.1038/s41467-023-37386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrβ) to prevent beige adipogenesis. We show that genetically deleting Pdgfrβ, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrβ in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrβ beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrβ signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrβ signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Siwen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Lee HS, Heo CU, Song YH, Lee K, Choi CI. Naringin promotes fat browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Arch Pharm Res 2023; 46:192-205. [PMID: 36840853 DOI: 10.1007/s12272-023-01432-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Induction of the brown adipocyte-like phenotype in white adipocytes (fat browning) is considered a promising therapeutic strategy to treat obesity. Naringin, a citrus flavonoid, has antioxidant, anti-inflammatory, and anticancer activities. We examined the application of naringin as an anti-obesity compound based on an investigation of its induction of fat browning in 3T3-L1 adipocytes. Naringin did not induce lipid accumulation in differentiated 3T3-L1 adipocytes. Additionally, naringin reduced the expression levels of proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) involved in adipogenesis during lipid metabolism and increased the levels of PPARα and adiponectin involved in fatty acid oxidation. The expression levels of fat browning markers uncoupling protein 1 (UCP1; involved in thermogenesis) and PR domain containing 16 (PRDM16) increased. In addition, naringin treatment resulted in the activation of PPARγ coactivator 1-alpha (PGC-1α), a factor related to UCP1 transcription and mitochondrial biogenesis. Moreover, the expression of beige adipocyte-specific genes such as Cd137, Cited1, Tbx1, and Tmem26 was also induced. The small multi-lipid droplets characteristic of beige adipocytes indicated that naringin treatment increased the levels of all lipolysis markers (hormone-sensitive lipase [HSL], adipose triglyceride lipase [ATGL], perilipin [PLIN], and protein kinase A [PKA]). Adenosine monophosphate-activated protein kinase (AMPK) and UCP1 levels increased by treatment with naringin alone; this was possibly mediated by the stimulation of the AMPK signaling pathway. According to mechanistic studies, naringin activated the thermogenic protein UCP1 via the AMPK signaling pathway. In conclusion, naringin induces fat browning and is a promising therapeutic agent for metabolic disorders based on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ho Seon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chan Uk Heo
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Young-Ho Song
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea.
| |
Collapse
|
39
|
Zhang H, Guan Q, Wang R, Yang S, Yu X, Cui D, Su Z. Novel association of SNP rs2297828 in PRDM16 gene with predisposition to type 2 diabetes. Gene X 2023; 849:146916. [DOI: 10.1016/j.gene.2022.146916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022] Open
|
40
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
41
|
Zhang X, Luo S, Wang M, Cao Q, Zhang Z, Huang Q, Li J, Deng Z, Liu T, Liu CL, Meppen M, Vromman A, Flavell RA, Hotamışlıgil GS, Liu J, Libby P, Liu Z, Shi GP. Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nat Commun 2022; 13:7582. [PMID: 36482059 PMCID: PMC9732325 DOI: 10.1038/s41467-022-35256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) plays a role in storing energy, while brown adipose tissue (BAT) is instrumental in the re-distribution of stored energy when dietary sources are unavailable. Interleukin-18 (IL18) is a cytokine playing a role in T-cell polarization, but also for regulating energy homeostasis via the dimeric IL18 receptor (IL18r) and Na-Cl co-transporter (NCC) on adipocytes. Here we show that IL18 signaling in metabolism is regulated at the level of receptor utilization, with preferential role for NCC in brown adipose tissue (BAT) and dominantly via IL18r in WAT. In Il18r-/-Ncc-/- mice, high-fat diet (HFD) causes more prominent body weight gain and insulin resistance than in wild-type mice. The WAT insulin resistance phenotype of the double-knockout mice is recapitulated in HFD-fed Il18r-/- mice, whereas decreased thermogenesis in BAT upon HFD is dependent on NCC deletion. BAT-selective depletion of either NCC or IL18 reduces thermogenesis and increases BAT and WAT inflammation. IL18r deletion in WAT reduces insulin signaling and increases WAT inflammation. In summary, our study contributes to the mechanistic understanding of IL18 regulation of energy metabolism and shows clearly discernible roles for its two receptors in brown and white adipose tissues.
Collapse
Affiliation(s)
- Xian Zhang
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China ,grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Songyuan Luo
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.413405.70000 0004 1808 0686Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000 China
| | - Minjie Wang
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Qiongqiong Cao
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Zhixin Zhang
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Qin Huang
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Jie Li
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Zhiyong Deng
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Tianxiao Liu
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Cong-Lin Liu
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.207374.50000 0001 2189 3846Department of Nephrology, the First Affiliated Hospital, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052 China
| | - Mathilde Meppen
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Amelie Vromman
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Richard A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520 USA
| | - Gökhan S. Hotamışlıgil
- grid.38142.3c000000041936754XDepartment of Molecular Metabolism, Harvard School of Public Health, Boston, MA 02115 USA
| | - Jian Liu
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Peter Libby
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Zhangsuo Liu
- grid.207374.50000 0001 2189 3846Department of Nephrology, the First Affiliated Hospital, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052 China
| | - Guo-Ping Shi
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
42
|
Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol 2022; 13:1043237. [PMID: 36545281 PMCID: PMC9760686 DOI: 10.3389/fphys.2022.1043237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid metabolism disorder is a common pathological manifestation of menopausal women, and is also an important risk factor for many diseases at this stage of life. Epidemiological studies have shown that high levels of follicle-stimulating hormone (FSH) in menopausal women are closely associated with changes in body composition, central obesity, and cognitive decline. Exogenous FSH causes growth and proliferation of adipose, whereas blockage of the FSH signaling pathway leads to decline in adipose. Mechanistically, FSH, FSH receptor (FSHR), G protein coupling, gene mutation and other pathways are involved in adipogenesis and cognitive impairment. Here, we review the critical role and potential interactions of FSH in adipogenesis and cognitive impairment in menopausal women. Further understanding of the exact mechanisms of FSH aggravating obesity and cognitive impairment may provide a new perspective for promoting healthy aging in menopausal women.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
43
|
Inulin prebiotic dietary supplementation improves metabolic parameters by reducing the Toll-like receptor 4 transmembrane protein gene and interleukin 6 expression in adipose tissue. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Li T, Bai H, Fang H, Yang L, Yan P. Growth hormone inhibits adipogenic differentiation and induces browning in bovine subcutaneous adipocytes. Growth Horm IGF Res 2022; 66:101498. [PMID: 36007464 DOI: 10.1016/j.ghir.2022.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is well established that growth hormone (GH) has the ability to stimulate lipolysis. The effects of GH on adipocyte differentiation and browning have not been clearly described. Therefore, the present study aimed to elucidate the role of GH in the differentiation and browning of bovine subcutaneous adipocytes as well as its underlying molecular mechanisms. METHODS We first treated bovine subcutaneous preadipocytes with different concentrations (0, 10, 100, and 500 ng/mL) of GH for 8 days and measured lipid accumulation and gene expression. Afterward, we treated preadipocytes and mature adipocytes with 500 ng/mL GH and determined differentiation and browning-related indicators. Finally, we investigated the expression of STAT5B in both preadipocytes and mature adipocytes after GH treatment. RESULTS We demonstrated that GH inhibited lipid accumulation and decreased the expression levels of adipogenic key genes (SCD1, SREBP1, PPARγ, and CEBPα) during adipocyte differentiation. Moreover, we observed that the inhibitory effect of GH on the early stage of adipocyte differentiation (0-2 days) was stronger than that on the later stage of adipocyte differentiation (2-8 days). We also found that GH promoted the expression levels of browning-related genes such as uncoupling protein 1 (UCP1) in mature adipocytes. Concurrently, GH promoted mitochondrial biogenesis and increased the expression levels of mitochondrial biogenesis-related genes. In addition, GH promoted phosphorylation of signal transducers and activator of transcription 5 b (STAT5B) and contributed to translocation of STAT5B to nucleus. After blocking the expression of STAT5B protein, GH weakened the inhibition of adipogenic key genes and reduced the promotion of browning-related genes in bovine subcutaneous adipocytes. CONCLUSIONS GH can inhibit adipocyte differentiation and promote adipocyte browning by regulating STAT5B in bovine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyuan Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
46
|
Dias-Rocha CP, Almeida MM, Woyames J, Mendonça R, Andrade CBV, Pazos-Moura CC, Trevenzoli IH. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci 2022; 306:120831. [PMID: 35882274 DOI: 10.1016/j.lfs.2022.120831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022]
Abstract
AIMS The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.
Collapse
Affiliation(s)
- Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raphael Mendonça
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
47
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
48
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
49
|
Li X, Wei T, Li J, Yuan Y, Wu M, Chen F, Deng ZY, Luo T. Tyrosol Ameliorates the Symptoms of Obesity, Promotes Adipose Thermogenesis, and Modulates the Composition of Gut Microbiota in HFD Fed Mice. Mol Nutr Food Res 2022; 66:e2101015. [PMID: 35385199 DOI: 10.1002/mnfr.202101015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/08/2022] [Indexed: 12/21/2022]
Abstract
SCOPE Tyrosol is one of the main polyphenolic compounds in extra virgin olive oil (EVOO) and its role in combating obesity is unknown. Thus, this study is designed to investigate the effect of tyrosol consumption on obesity and its underlying mechanisms in high-fat diet (HFD)-induced mice. METHODS AND RESULTS After supplementation with 0.2% (wt/wt) tyrosol for 16 weeks, the final body weight, and the levels of plasma triacylglycerol (TG), total cholesterol (TC), and fasting glucose are significantly decreased when compared with HFD group. Furthermore, tyrosol may act as a ligand which binds with nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα). Uncoupling protein 1 (UCP1), iodothyronine deiodinase 2 (DIO2), PPAR-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16), the downstream genes of PPARα which are related to thermogenic function of adipocytes, are significantly increased in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) after tyrosol administration. In addition, tyrosol changes the community composition of gut microbiota, including decreasing the ratio of Firmicutes to Bacteroidetes, and increasing the relative abundance of family muribaculaceae, genus Blautia and Lachnospiraceae_bacterium_28_4. CONCLUSION Tyrosol consumption attenuates obesity and related symptoms in HFD-fed mice probably via the modulation of PPARα-thermogenesis and gut microbiota.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Teng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jingfang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
50
|
Zhang Y, Sun L, Zhu R, Zhang S, Liu S, Wang Y, Wu Y, Xing S, Liao X, Mi J. Porcine gut microbiota in mediating host metabolic adaptation to cold stress. NPJ Biofilms Microbiomes 2022; 8:18. [PMID: 35383199 PMCID: PMC8983680 DOI: 10.1038/s41522-022-00283-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
The gut microbiota plays a key role in host metabolic thermogenesis by activating UCP1 and increasing the browning process of white adipose tissue (WAT), especially in cold environments. However, the crosstalk between the gut microbiota and the host, which lacks functional UCP1, making them susceptible to cold stress, has rarely been illustrated. We used male piglets as a model to evaluate the host response to cold stress via the gut microbiota (four groups: room temperature group, n = 5; cold stress group, n = 5; cold stress group with antibiotics, n = 5; room temperature group with antibiotics, n = 3). We found that host thermogenesis and insulin resistance increased the levels of serum metabolites such as glycocholic acid (GCA) and glycochenodeoxycholate acid (GCDCA) and altered the compositions and functions of the cecal microbiota under cold stress. The gut microbiota was characterized by increased levels of Ruminococcaceae, Prevotellaceae, and Muribaculaceae under cold stress. We found that piglets subjected to cold stress had increased expression of genes related to bile acid and short-chain fatty acid (SCFA) metabolism in their liver and fat lipolysis genes in their fat. In addition, the fat lipolysis genes CLPS, PNLIPRP1, CPT1B, and UCP3 were significantly increased in the fat of piglets under cold stress. However, the use of antibiotics showed a weakened or strengthened cold tolerance phenotype, indicating that the gut microbiota plays important role in host thermogenesis. Our results demonstrate that the gut microbiota-blood-liver and fat axis may regulate thermogenesis during cold acclimation in piglets.
Collapse
Affiliation(s)
- Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Run Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shiyu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shuo Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|