1
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
2
|
Quarta S, Calabriso N, Carluccio MA, Albano C, Khalifa I, Wabitsch M, Blando F, Massaro M. Shielding Human Adipocytes From Inflammation: The Protective Potential of Polyphenol-Rich Opuntia ficus-indica Cladode Extract. Mol Nutr Food Res 2025:e70114. [PMID: 40377300 DOI: 10.1002/mnfr.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
Opuntia ficus-indica (OFI) has attracted much attention as a source of antioxidant and antiinflammatory compounds. We hypothesize that the antioxidant content of OFI cladode extract may improve adipocyte dysfunction resulting from inflammatory stimulation of hypertrophic adipocytes. To this end, the properties of OFI cladode hydroalcoholic extract were evaluated in terms of antioxidant activity, regulation of adipocyte inflammation, and adipocyte/monocyte interaction in human adipocytes rendered dysfunctional by the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The major phenolic compounds identified were isorhamnetin derivatives and phenolic acids, including piscidic and eucomic acids. Our results show that OFI cladode extract exhibits antiradical activities and reduces the adhesion and transmigration activity of monocytes to inflamed adipocytes by inhibiting various cytokines, chemokines, and adhesion molecules such as interleukin (IL)-6 and IL-8 by ∼80%, monocyte chemotactic protein (MCP)-1, C-X-C motif chemokine ligand (CXC-L)10, macrophage colony-stimulating factor (M-CSF) from 40% to 50%, and intercellular adhesion molecule-1 (ICAM-1) by 70% at the higher concentration. In structurally and mechanistically by protein-ligand docking profiling study, piscidic acid proved to be the best potential candidate for a regulatory interaction with the activities of nuclear factor erythroid 2-related factor 2 (NRF-2) and nuclear factor-κB (NF-κB). In summary, these data highlight the potential of OFI as a dietary supplement in nutritional treatments aimed at combating the inflammatory stigmata of obesity.
Collapse
Affiliation(s)
- Stefano Quarta
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | | | - Clara Albano
- National Research Council (CNR) Institute of Sciences of Food Production (ISPA), CNR, Lecce, Italy
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Federica Blando
- National Research Council (CNR) Institute of Sciences of Food Production (ISPA), CNR, Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| |
Collapse
|
3
|
Wang J, Li S, Ye J, Yan Y, Liu Q, Jia Q, Jia Y, Wang L. Mesencephalic astrocyte-derived neurotrophic factor (MANF): A novel therapeutic target for chemotherapy-induced peripheral neuropathy via regulation of integrated stress response and neuroinflammation. Neuropharmacology 2025; 268:110342. [PMID: 39909174 DOI: 10.1016/j.neuropharm.2025.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents a severe complication, impacting up to 90% of cancer patients administered with chemotherapeutic agents such as oxaliplatin. The purpose of our study was to examine the potential role and therapeutic efficacy of Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF), given its recognized neuroprotective and immunomodulatory properties in diverse neurological disorders. Utilizing an oxaliplatin-induced CIPN mouse model, we investigated MANF expression in the dorsal root ganglia (DRG) and spinal cord, and evaluated the impacts of AAV-mediated MANF overexpression on CIPN. Our findings revealed substantial downregulation of MANF expression in both the DRG and spinal cord of CIPN inflicted mice, with MANF majorly localized in neurons as opposed to glial cells. Intrathecal administration of AAV-MANF preceding oxaliplatin treatment yielded several beneficial results. MANF overexpression diminished mechanical hypersensitivity and decreased Calcitonin Gene-Related Peptide (CGRP) expression in DRG and the spinal dorsal horn. These enhancements were concomitant with modulation of the integrated stress response (ISR) and neuroinflammation. Intervention with AAV-MANF effectively regulated ISR markers (BiP, CHOP, and p-eIF2α), mitigated activation of microglia and astrocytes in the DRG and spinal dorsal horn, and inhibited NFκB and ERK inflammatory signaling pathways. To conclude, our study underscores the potential of MANF as a viable therapeutic target for CIPN, manifesting its ability to modulate ISR and neuroinflammation. These insights recommend that continued exploration of MANF-centered approaches could facilitate the advancement of more efficacious interventions for this incapacitating chemotherapy complication.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shenghong Li
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jishi Ye
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yafei Yan
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qi Liu
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qiang Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
4
|
Barik A, Bhoga D, Dhingra T, Karmarkar G, Ghosh B, Malik N, Parmar K, Datta A, Borah A, Bhattacharya P. Clemastine Reduces post-stroke Neurodegeneration by Alleviating Endoplasmic Reticulum stress-mediated Demyelination and Cognitive Impairment Through PERK/ATF4/CHOP Signaling Pathway. Neurochem Res 2025; 50:151. [PMID: 40274676 DOI: 10.1007/s11064-025-04403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The progressive brain damage following ischemic stroke is primarily due to oxidative stress and activation of inflammatory pathways. Post-stroke neurodegeneration can lead to the loss of neurons and glial cells, including oligodendrocytes, contributing to demyelination. Following ischemic stroke, reperfusion results in increased intracellular calcium, generation of free radicals, and inflammation culminating in accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen augmenting the ER stress. ER stress has been shown to aggravate post-stroke neurodegeneration by triggering neuronal apoptosis and also contributing towards demyelination of neurons. To address the limitations of current stroke therapies, repurposing of drugs as future adjunctive therapy may be promising. Clemastine, an antihistaminic drug, improves post stroke outcome as evident in the present study. Male Sprague Dawley (SD) rats were treated with clemastine following ischemic stroke. Harvested brain tissues were subjected to different biochemical assays, molecular assays, and histopathological analysis. Clemastine was able to reduce infarct size, alleviate oxidative stress, improve neuronal count, and functional outcomes. Clemastine downregulated genes and proteins responsible for ER stress, apoptosis and demyelination as shown by the western blot and qPCR results. Our study suggests that clemastine may alleviate endoplasmic reticulum stress-mediated demyelination by modulating PERK/ATF4/CHOP axis, and may be used as one of the adjunctive therapies for stroke in future.
Collapse
Affiliation(s)
- Anirban Barik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Dipakkumar Bhoga
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Gautam Karmarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Nikita Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Krupanshu Parmar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India.
| |
Collapse
|
5
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Cerullo M, Armeli F, Mengoni B, Menin M, Crudeli ML, Businaro R. Curcumin Modulation of the Gut-Brain Axis for Neuroinflammation and Metabolic Disorders Prevention and Treatment. Nutrients 2025; 17:1430. [PMID: 40362738 PMCID: PMC12073396 DOI: 10.3390/nu17091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, has gained significant attention for its potential therapeutic benefits, particularly counteracting inflammation, oxidative stress, and metabolic disorders. Its chemical structure, featuring conjugated double bonds between two aromatic rings, allows it to act as an electron donor, thereby mitigating free radical formation. Despite its poor solubility in water, curcumin is stable in acidic environments and undergoes significant metabolism in both the liver and the gut. Intestinal microbiota, particularly at the colon level, further metabolizes curcumin into several derivatives, including dihydrocurcumin and tetrahydrocurcumin, which exhibit antioxidant and anti-inflammatory properties. Studies suggest that curcumin can reduce body mass index (BMI) and improve other body composition parameters, especially when used in combination with lifestyle changes, though its bioavailability is low due to its rapid metabolism and the resulting low blood concentration. In obesity, dysfunctional adipose tissue remodeling and chronic inflammation play critical roles in the development of metabolic complications. Curcumin's anti-inflammatory properties are related to the inhibition of the NF-κB pathway, leading to the reduction in inflammatory markers in adipocytes and macrophages. Additionally, curcumin modulates oxidative stress by activating the NRF2 pathway, enhancing cellular antioxidant defenses. Emerging evidence also supports curcumin's potential in improving gut health by modulating microbiota composition, enhancing intestinal barrier function, and reducing systemic inflammation. This interaction with the gut-brain axis highlights the broader implications of curcumin in neuroprotection, as it positively affects cognitive function and mitigates neuroinflammation in neurodegenerative diseases like Alzheimer's. disease. Thus, curcumin holds promise as a multifaceted agent in the management of obesity and associated diseases.
Collapse
Affiliation(s)
- Miriam Cerullo
- Neurofarba Department, University of Florence, 50139 Florence, Italy;
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Martina Menin
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Maria Luisa Crudeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| |
Collapse
|
7
|
Wu D, Eeda V, Maria Z, Rawal K, Wang A, Herlea-Pana O, Babu Undi R, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in male obese mice. eLife 2025; 13:RP100581. [PMID: 40244655 PMCID: PMC12005715 DOI: 10.7554/elife.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional 'M1-like' CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the 'M1-like' CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and 'M1-like' ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | | | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Hui-Ying Lim
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| |
Collapse
|
8
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
9
|
Hermanson JN, Barny LA, Plate L. Development of an Adaptive, Economical, and Easy-to-Use SP3-TMT Automated Sample Preparation Workflow for Quantitative Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639731. [PMID: 40060590 PMCID: PMC11888279 DOI: 10.1101/2025.02.23.639731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Liquid handling robots have been developed to automate various steps of the bottom-up proteomics workflow, however, protocols for the generation of isobarically labeled peptides remain limited. Existing methods often require costly specialty devices and are constrained by fixed workflows. To address this, we developed a cost-effective, flexible, automated sample preparation protocol for TMT-labeled peptides using the Biomek i5 liquid handler. Our approach leverages Single-Pot Solid-Phase-Enhanced Sample Preparation (SP3) with paramagnetic beads to streamline protein cleanup and digestion. The protocol also allows for adjustment of trypsin concentration and peptide-to-TMT ratio to increase throughput and reduce costs, respectively. We compared our automated and manual 18-plex TMT-Pro labeling workflows by monitoring select protein markers of the Unfolded Protein Response (UPR) in pharmacologically activatable, engineered cell lines. Overall, the automated protocol demonstrated equivalent performance in peptide and protein identifications, digestion and labeling efficiency, and an enhancement in the dynamic range of TMT quantifications. Compared to the manual method, the Biomek protocol significantly reduces hands-on time and minimizes sample handling errors. The 96-well format additionally allows for the number of TMT reactions to be scaled up quickly without a significant increase in user interaction. Our optimized automated workflow enhances throughput, reproducibility, and cost-effectiveness, making it a valuable tool for high-throughput proteomics studies.
Collapse
Affiliation(s)
- Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University Nashville, Tennessee
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University Nashville, Tennessee
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University Nashville, Tennessee
- Program in Chemical and Physical Biology, Vanderbilt University Nashville, Tennessee
- Department of Chemistry, Vanderbilt University Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
10
|
Wu D, Eeda V, Maria Z, Rawal K, Wang A, Herlea-Pana O, Undi RB, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in male obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603931. [PMID: 39071288 PMCID: PMC11275733 DOI: 10.1101/2024.07.17.603931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional "M1-like" CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the "M1-like" CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and "M1-like" ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Audrey Wang
- Indian Springs School, 190 Woodward Dr, Pelham, Alabama 35124
| | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Hui-Ying Lim
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
11
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
12
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
13
|
Seifishahpar M, Kim JH, Parkman JK, Rhode A, Menikdiwela K, Zu Y, Scoggin S, Freeman L, Kalupahana NS, Moustaid-Moussa N. Mechanisms Mediating Tart Cherry and Fish Oil Metabolic Effects in Diet-Induced (C57BL/6J) and Genetically (TALYHO/Jng) Obese Mice. Nutrients 2024; 16:4179. [PMID: 39683572 DOI: 10.3390/nu16234179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major public health concern that increases the risk of chronic diseases. In obesity, adipose tissue undergoes remodeling, which is associated with chronic low-grade inflammation and disruption of its homeostatic mechanisms including endoplasmic reticulum (ER) function and autophagy. Fish oil (FO) and tart cherry (TC) have known anti-inflammatory properties. We hypothesized that while TC and FO individually decrease inflammation, their combined effects will be greater and will be either synergistic or additive in regulating inflammation and other adipose tissue functions. METHODS Here, we conducted gene expression analyses, using qRT-PCR, on gonadal white adipose tissues from a previous study where male and female C57BL/6J (B6) and TALLYHO/Jng (TH) mice were fed low fat (LF), high fat (HF), or HF diets supplemented with TC, FO, or TC + FO for 14 weeks from weaning. Data was statistically analyzed by one or two-way ANOVA, using GraphPad Prism. RESULTS HF diet increased adiposity and upregulated markers of inflammation, ER stress, and autophagy compared to the LF diet in both mouse models. While both TC and FO supplementation individually reduced the expression of inflammatory, ER stress, and autophagy markers on HF diet, their combination showed no consistent additive or synergistic effects. CONCLUSIONS Overall, our findings suggest that although TC and FO effectively mitigate inflammation in white adipose tissue, their combined use did not result in synergistic or additive effects of the two interventions.
Collapse
Affiliation(s)
- Maryam Seifishahpar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ana Rhode
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Kalhara Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Logan Freeman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Institute for One Health Innovation, Texas Tech University, Lubbock, TX 79409, USA
- Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Jiang Y, Guo JQ, Wu Y, Zheng P, Wang SF, Yang MC, Ma GS, Yao YY. Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity. Ther Adv Endocrinol Metab 2024; 15:20420188241282707. [PMID: 39381518 PMCID: PMC11459521 DOI: 10.1177/20420188241282707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
As the prevalence of obesity continues to rise globally, the research on adipocytes has attracted more and more attention. In the presence of nutrient overload, adipocytes are exposed to pressures such as hypoxia, inflammation, mechanical stress, metabolite, and oxidative stress that can lead to organelle dysfunction. Endoplasmic reticulum (ER) is a vital organelle for sensing cellular pressure, and its homeostasis is essential for maintaining adipocyte function. Under conditions of excess nutrition, ER stress (ERS) will be triggered by the gathering of abnormally folded proteins in the ER lumen, resulting in the activation of a signaling response known as the unfolded protein responses (UPRs), which is a response system to relieve ERS and restore ER homeostasis. However, if the UPRs fail to rescue ER homeostasis, ERS will activate pathways to damage cells. Studies have shown a role for disturbed activation of adipocyte ERS in the pathophysiology of obesity and its complications. Prolonged or excessive ERS in adipocytes can aggravate lipolysis, insulin resistance, and apoptosis and affect the bioactive molecule production. In addition, ERS also impacts the expression of some important genes. In view of the fact that ERS influences adipocyte function through various mechanisms, targeting ERS may be a viable strategy to treat obesity. This article summarizes the effects of ERS on adipocytes during obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Peng Zheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shao-Fan Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Meng-Chen Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
15
|
Brito ML, Coutinho-Wolino KS, Almeida PP, Trigueira PDC, Alves APDP, Magliano DC, Stockler-Pinto MB. Unstressing the Reticulum: Nutritional Strategies for Modulating Endoplasmic Reticulum Stress in Obesity. Mol Nutr Food Res 2024; 68:e2400361. [PMID: 39363792 DOI: 10.1002/mnfr.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Indexed: 10/05/2024]
Abstract
The progression of obesity involves several molecular mechanisms that are closely associated with the pathophysiological response of the disease. Endoplasmic reticulum (ER) stress is one such factor. Lipotoxicity disrupts endoplasmic reticulum homeostasis in the context of obesity. Furthermore, it induces ER stress by activating several signaling pathways via inflammatory responses and oxidative stress. ER performs crucial functions in protein synthesis and lipid metabolism; thus, triggers such as lipotoxicity can promote the accumulation of misfolded proteins in the organelle. The accumulation of these proteins can lead to metabolic disorders and chronic inflammation, resulting in cell death. Thus, alternatives, such as flavonoids, amino acids, and polyphenols that are associated with antioxidant and anti-inflammatory responses have been proposed to attenuate this response by modulating ER stress via the administration of nutrients and bioactive compounds. Decreasing inflammation and oxidative stress can reduce the expression of several ER stress markers and improve clinical outcomes through the management of obesity, including the control of body weight, visceral fat, and lipid accumulation. This review explores the metabolic changes resulting from ER stress and discusses the role of nutritional interventions in modulating the ER stress pathway in obesity.
Collapse
Affiliation(s)
- Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Karen Salve Coutinho-Wolino
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Patricia Pereira Almeida
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | | | - Ana Paula de Paula Alves
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
- Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, 24020-150, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Nutrition Sciences Postgraduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24020-140, Brazil
| |
Collapse
|
16
|
McGlennon TW, Roberts A, Buchwald JN, Pories WJ, Ahnfeldt EP, Perryman S, Greimel S, Buchwald H. Metabolic Surgery and Chronic Traumatic Encephalopathy: Perceptions of Former NFL Players. Obes Surg 2024; 34:3703-3716. [PMID: 39292334 DOI: 10.1007/s11695-024-07475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Chronic traumatic encephalopathy (CTE) has been diagnosed in 91.7% of retired United States National Football League (NFL) players at postmortem. There is no treatment or cure for CTE. Most living former NFL athletes with probable CTE suffer from obesity and its comorbidities. Our previous reviews document the improvement in cognition following metabolic/bariatric surgery (MBS) (e.g., gastric bypass, sleeve gastrectomy). These operations might reduce microglial maladaptive states, thereby attenuating neurodegeneration and CTE-like neurocognitive impairment. The study evaluated former NFL players' views on metabolic surgery in relation to reduction of obesity and CTE risk. MATERIALS AND METHODS An online multiple-choice questionnaire (30 items, 125 response options, 10-min completion) developed in the Research Electronic Data Capture (REDCap) system was sent to 1,014 athletes screened in 2017-2022 by the Living Heart Foundation. RESULTS From 2/2022 to 7/2023, of 700 surveys opened, 72 (10.3%) of the retired players responded. Mean age was 61.6 ± 12.6 years; 45.0% had the disease of obesity with a mean BMI 35.5 ± 4.6 kg/m2. Thirty-three percent reported ≥ 2 obesity-related comorbidities; 40.3% memory-related TBI symptoms; 66.7% ≥ 1 cognitive symptom; 85.0% believed MBS was safe and effective but were unlikely to elect MBS for weight management. Yet, 57.0% of the entire cohort, and 68.8% of players with obesity were more likely to elect MBS if it could also reduce CTE risk. CONCLUSIONS Results of the study bode well for future research recruitment. Most surveyed retired NFL players with obesity believed MBS to be effective and would be more likely to undergo MBS if it also reduced CTE risk.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, Psychometric Research Analyst, McGlennon MotiMetrics, w4457 120th, Avenue, Maiden Rock, WI, USA.
| | | | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | | | - Sue Greimel
- Aerobic Exercise/Alzheimer's Disease Study, University of Minnesota, Minneapolis, MN, USA
| | - Henry Buchwald
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
17
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Kaul R, Paul P, Harfouche M, Ayyan M, Laws S, Chaari A. The effect of microbiome-modulating therapeutics on glucose homeostasis in metabolic syndrome: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Syndr 2024; 18:103118. [PMID: 39298907 DOI: 10.1016/j.dsx.2024.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a chronic disorder featuring overweight/obesity, high blood pressure, and dysfunction of lipid and carbohydrate metabolism. Microbiome-modulating probiotics, prebiotics, synbiotics and fecal microbiota transplant (FMT) are promising adjunct therapies for improving parameters of glucose homeostasis and insulinemia. METHODS We conducted a comprehensive systematic review, meta-analyses, and meta-regressions to investigate the effect of the abovementioned microbiome therapies on various biomarkers after screening clinical trials published through April 2023. We pooled data using random effects meta-analyses, reporting them as mean differences (MDs) with 95 % confidence intervals (CIs), and conducting univariate linear model meta-regressions. RESULTS Data from 21 trial comparisons across 19 studies (n = 911) revealed that, compared to placebo/control, microbiome-modulating therapies were associated with statistically significant changes in fasting plasma glucose (MD: 4.03 mg/dL [95%CI: 6.93; -1.13]; p effect = 0.006, I2 = 89.8 %), and fasting insulin (MD: 2.56 μU/mL [95%CI: 4.28; -0.84]; p effect = 0.004, I2 = 87.9 %), but not insulin resistance or sensitivity indices and HbA1c. Age, baseline BMI, baseline biomarker value, pro/synbiotic dosage, trial duration, nutraceutical type, and WHO region were factors affecting the efficacy of these interventions at producing changes in biomarkers, signaling the potential role of personalized precision medicine adjunct therapy for deranged glucose homeostasis in patients with MetS. Nevertheless, presence of heterogeneity calls for further investigation before their clinical application. CONCLUSIONS Probiotics, prebiotics, synbiotics and FMT supplementation improved fasting glucose and insulin in patients with MetS. Further large-scale and high-quality trials are required before potential clinical applications.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Pradipta Paul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar; World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Muhammad Ayyan
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Sa'ad Laws
- Health Sciences Library, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
19
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
20
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
21
|
Mladenović D, Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Radić L, Macut JB, Macut D. Adipose-derived extracellular vesicles - a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine 2024; 85:18-34. [PMID: 38285412 DOI: 10.1007/s12020-024-03702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.
Collapse
Affiliation(s)
- Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelica Bjekić Macut
- University of Belgrade Faculty of Medicine, Department of Endocrinology, UMC Bežanijska kosa, Belgrade, Serbia
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
22
|
Yuvaraj S, Vasudevan V, Puhari SSM, Sasikumar S, Ramprasath T, Selvi MS, Selvam GS. Chrysin reduces heart endoplasmic reticulum stress-induced apoptosis by inhibiting PERK and Caspase 3-7 in high-fat diet-fed rats. Mol Biol Rep 2024; 51:678. [PMID: 38796673 DOI: 10.1007/s11033-024-09612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Chrysin (Chy) is a naturally occurring flavonoid found in fruits, vegetables, honey, propolis, and many plant extracts that has shown notable medicinal value. Chy exhibits diverse pharmacological properties, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholesteremic, and cardioprotective. However, the influence of Chy in mitigating high-fat diet (HFD)-induced ER stress of rat myocardium remains unknown. PURPOSE The current work intended to determine the therapeutic potential of Chy against HFD-induced endoplasmic stress-mediated apoptosis. METHODS To evaluate the therapeutic value of Chy in HFD-induced endoplasmic stress-mediated apoptosis in the myocardium; The male wistar rats were divided into different groups; control, HFD control, HFD fed followed by Chy-treated and HFD fed followed by atorvastatin (Atv) treated rats. RESULTS When compared to the control group, the HFD-fed rats had significantly higher levels of marker enzymes such as CK-NAC and ALP, as well as lipid peroxidation and lipid profile (TC, TG, LDL, and VLDL). Chy therapy greatly reversed these marker enzymes and the lipid profile. qRT-PCR Studies showed that Chy supplementation considerably improved Nrf2 and its target genes. In addition, Chy lowered the expression of PERK, CHOP, ATF6, GRP78, and Caspase-3 genes in the heart tissue of HFD-fed rats. Immunohistochemistry results demonstrated that Chy substantially enhanced the Nrf2 and reduced PERK and Caspase3-7 protein expression in HFD-fed rats. CONCLUSION The current study concluded that Chy may mediate the cardioprotective effect by activating Nrf2 and inhibiting PERK signaling pathway against ER stress-mediated apoptosis induced by HFD. Therefore, supplementation with Chy could serve as a promising therapeutic target against HFD-induced ER stress-mediated cardiac complication.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sunderasan Sasikumar
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Mariaraj Sivakumar Selvi
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
23
|
Kwon A, Kim YS, Kim J, Koo JH. Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling. Biomol Ther (Seoul) 2024; 32:341-348. [PMID: 38589295 PMCID: PMC11063487 DOI: 10.4062/biomolther.2023.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 04/10/2024] Open
Abstract
Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.
Collapse
Affiliation(s)
- Ari Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol 2024; 15:1381227. [PMID: 38638434 PMCID: PMC11024263 DOI: 10.3389/fimmu.2024.1381227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
AlBashtawi J, Al-Jaber H, Ahmed S, Al-Mansoori L. Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets. Biomedicines 2024; 12:793. [PMID: 38672148 PMCID: PMC11047871 DOI: 10.3390/biomedicines12040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in cancer, influencing tumor cell survival and growth by releasing factors like vascular endothelial growth factor (VEGF). The unfolded protein response (UPR) is pivotal in this process, offering both pro-survival and apoptotic pathways. This review offers an extensive exploration of the sophisticated connection between ER stress provoked by obesity and its role in both the onset and advancement of cancer. It delves into the intricate interplay between oncogenic signaling and the pathways associated with ER stress in individuals who are obese. Furthermore, this review sheds light on potential therapeutic strategies aimed at managing ER stress induced by obesity, with a focus on addressing cancer initiation and progression. The potential to alleviate ER stress through therapeutic interventions, which may encompass the use of small molecules, FDA-approved medications, and gene therapy, holds great promise. A more in-depth examination of pathways such as UPR, ER-associated protein degradation (ERAD), autophagy, and epigenetic regulation has the potential to uncover innovative therapeutic approaches and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Joud AlBashtawi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Sara Ahmed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| |
Collapse
|
26
|
Bellitto V, Gabrielli MG, Martinelli I, Roy P, Nittari G, Cocci P, Palermo FA, Amenta F, Micioni Di Bonaventura MV, Cifani C, Tomassoni D, Tayebati SK. Dysfunction of the Brown Adipose Organ in HFD-Obese Rats and Effect of Tart Cherry Supplementation. Antioxidants (Basel) 2024; 13:388. [PMID: 38671836 PMCID: PMC11047636 DOI: 10.3390/antiox13040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity has a great impact on adipose tissue biology, based on its function as a master regulator of energy balance. Brown adipose tissue (BAT) undergoes remodeling, and its activity declines in obese subjects due to a whitening process. The anti-obesity properties of fruit extracts have been reported. The effects of tart cherry against oxidative stress, inflammation, and the whitening process in the BAT of obese rats were investigated. Intrascapular BAT (iBAT) alterations and effects of Prunus cerasus L. were debated in rats fed for 17 weeks with a high-fat diet (DIO), in DIO supplemented with seed powder (DS), and with seed powder plus the juice (DJS) of tart cherry compared to CHOW rats fed with a normo-caloric diet. iBAT histologic observations revealed a whitening process in DIO rats that was reduced in the DS and DJS groups. A modulation of uncoupling protein-1 (UCP-1) protein and gene expression specifically were detected in the obese phenotype. An upregulation of UCP-1 and related thermogenic genes after tart cherry intake was detected compared to the DIO group. Metabolic adjustment, endoplasmic reticulum stress, protein carbonylation, and the inflammatory microenvironment in the iBAT were reported in DIO rats. The analysis demonstrated an iBAT modulation that tart cherry promoted. In addition to our previous results, these data confirm the protective impact of tart cherry consumption on obesity.
Collapse
Affiliation(s)
- Vincenzo Bellitto
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Proshanta Roy
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Giulio Nittari
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Carlo Cifani
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| |
Collapse
|
27
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
28
|
Nakagawa S, Fukui-Miyazaki A, Yoshida T, Ishii Y, Murata E, Taniguchi K, Ishizu A, Kasahara M, Tomaru U. Decreased Proteasomal Function Exacerbates Endoplasmic Reticulum Stress-Induced Chronic Inflammation in Obese Adipose Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00076-2. [PMID: 38423355 DOI: 10.1016/j.ajpath.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Low-grade chronic inflammation contributes to both aging and the pathogenesis of age-related diseases. White adipose tissue (WAT) in obese individuals exhibits chronic inflammation, which is associated with obesity-related disorders. Aging exacerbates obesity-related inflammation in WAT; however, the molecular mechanisms underlying chronic inflammation and its exacerbation by aging remain unclear. Age-related decline in activity of the proteasome, a multisubunit proteolytic complex, has been implicated in age-related diseases. This study employed a mouse model with decreased proteasomal function that exhibits age-related phenotypes to investigate the impact of adipocyte senescence on WAT inflammation. Transgenic mice expressing proteasomal subunit β5t with weak chymotrypsin-like activity experience reduced lifespan and develop age-related phenotypes. Mice fed with a high-fat diet and experiencing proteasomal dysfunction exhibited increased WAT inflammation, increased infiltration of proinflammatory M1-like macrophages, and increased proinflammatory adipocytokine-like monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and tumor necrosis factor-α, which are all associated with activation of endoplasmic reticulum (ER) stress-related pathways. Impaired proteasomal activity also activated ER stress-related molecules and induced expression of proinflammatory adipocytokines in adipocyte-like cells differentiated from 3T3-L1 cells. Collective evidence suggests that impaired proteasomal activity increases ER stress and that subsequent inflammatory pathways play pivotal roles in WAT inflammation. Because proteasomal function declines with age, age-related proteasome impairment may be involved in obesity-related inflammation among elderly individuals.
Collapse
Affiliation(s)
- Shimpei Nakagawa
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Fukui-Miyazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takuma Yoshida
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasushi Ishii
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Eri Murata
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Fundamental Nursing, School of Nursing, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
29
|
Rösing S, Ullrich F, Meisterfeld S, Schmidt F, Mlitzko L, Croon M, Nattrass RG, Eberl N, Mahlberg J, Schlee M, Wieland A, Simon P, Hilbig D, Reuner U, Rapp A, Bremser J, Mirtschink P, Drukewitz S, Zillinger T, Beissert S, Paeschke K, Hartmann G, Trifunovic A, Bartok E, Günther C. Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release. Nat Commun 2024; 15:1534. [PMID: 38378748 PMCID: PMC10879130 DOI: 10.1038/s41467-024-45535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.
Collapse
Affiliation(s)
- Sarah Rösing
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Fabian Ullrich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Susann Meisterfeld
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Franziska Schmidt
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Laura Mlitzko
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Marijana Croon
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Ryan G Nattrass
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Nadia Eberl
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Julia Mahlberg
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Anja Wieland
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Philipp Simon
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Daniel Hilbig
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ulrike Reuner
- Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Cell biology and Epigenetic, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Bremser
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Stephan Drukewitz
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany.
| |
Collapse
|
30
|
De Paoli M, Shah D, Zakharia A, Patel Z, Patel Z, Pakhi P, Werstuck GH. Investigating the Role of 17-Beta Estradiol in the Regulation of the Unfolded Protein Response (UPR) in Pancreatic Beta Cells. Int J Mol Sci 2024; 25:1816. [PMID: 38339098 PMCID: PMC10855194 DOI: 10.3390/ijms25031816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is clinically defined by chronic hyperglycemia. Sex differences in the presentation and outcome of diabetes exist with premenopausal women having a reduced risk of developing diabetes, relative to men, or women after menopause. Accumulating evidence shows a protective role of estrogens, specifically 17-beta estradiol, in the maintenance of pancreatic beta cell health; however, the mechanisms underlying this protection are still unknown. To elucidate these potential mechanisms, we used a pancreatic beta cell line (BTC6) and a mouse model of hyperglycemia-induced atherosclerosis, the ApoE-/-:Ins2+/Akita mouse, exhibiting sexual dimorphism in glucose regulation. In this study we hypothesize that 17-beta estradiol protects pancreatic beta cells by modulating the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. We observed that ovariectomized female and male ApoE-/-:Ins2+/Akita mice show significantly increased expression of apoptotic UPR markers. Sham operated female and ovariectomized female ApoE-/-:Ins2+/Akita mice supplemented with exogenous 17-beta estradiol increased the expression of adaptive UPR markers compared to non-supplemented ovariectomized female ApoE-/-:Ins2+/Akita mice. These findings were consistent to what was observed in cultured BTC6 cells, suggesting that 17-beta estradiol may protect pancreatic beta cells by repressing the apoptotic UPR and enhancing the adaptive UPR activation in response to pancreatic ER stress.
Collapse
Affiliation(s)
- Monica De Paoli
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Deep Shah
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Alexander Zakharia
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Zil Patel
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Zinal Patel
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada
| | - Pakhi Pakhi
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
| | - Geoff H. Werstuck
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada; (M.D.P.); (Z.P.); (Z.P.)
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada
| |
Collapse
|
31
|
Wi D, Park CY. 1,25-dihydroxyvitamin D 3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes. Nutr Res Pract 2024; 18:1-18. [PMID: 38352211 PMCID: PMC10861344 DOI: 10.4162/nrp.2024.18.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.
Collapse
Affiliation(s)
- Dain Wi
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| | - Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| |
Collapse
|
32
|
Cao H, Wang Y, Zhang D, Liu B, Zhou H, Wang S. Periprostatic Adipose Tissue: A New Perspective for Diagnosing and Treating Prostate Cancer. J Cancer 2024; 15:204-217. [PMID: 38164282 PMCID: PMC10751678 DOI: 10.7150/jca.89750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Prostate cancer (PCa) is the most common tumor of the male genitourinary system. It will eventually progress to fatal metastatic castration-resistant prostate cancer, for which treatment options are limited. Adipose tissues are distributed in various parts of the body. They have different morphological structures and functional characteristics and are associated with the development of various tumors. Periprostatic adipose tissue (PPAT) is the closest white visceral adipose tissue to the prostate and is part of the PCa tumor microenvironment. Studies have shown that PPAT is involved in PCa development, progression, invasion, and metastasis through the secretion of multiple active molecules. Factors such as obesity, diet, exercise, and organochlorine pesticides can affect the development of PCa indirectly or directly through PPAT. Based on the mechanism of PPAT's involvement in regulating PCa, this review summarized various diagnostic and therapeutic approaches for PCa with potential applications to assess the progression of patients' disease and improve clinical outcomes.
Collapse
Affiliation(s)
- Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, China
| | - Song Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
33
|
Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes 2023; 16:4147-4156. [PMID: 38145256 PMCID: PMC10749174 DOI: 10.2147/dmso.s441762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Respiratory Research Institute, Shanghai, People’s Republic of China
| | - Dongni Hou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
34
|
Molangiri A, Varma S, Hridayanka KSN, Srinivas M, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Gestational exposure to bisphenol S induces microvesicular steatosis in male rat offspring by modulating metaflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166775. [PMID: 37660821 DOI: 10.1016/j.scitotenv.2023.166775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Prenatal exposure to endocrine-disrupting bisphenol A (BPA) shows a long-lasting programming effect on an organ's metabolic function and predisposes it to the risk of adult metabolic diseases. Although a reduced contaminant risk due to "BPA-free" exposure is proposed, limited data on a comparative assessment of gestational exposure to BPS and BPA and their effects on metaflammation in predisposing liver metabolic disease is reported. Pregnant Wistar rats were exposed to BPS and BPA (0.0, 0.4, 4.0 μg/kg bw) via gavage from gestational day 4 to 21, and effects were assessed in the 90 d male offspring. Prenatal BPS-exposed offspring showed a more obesogenic effect than BPA, including changes in body fat distribution, feed efficiency, and leptin signalling. The BPS exposure induced the adipocyte hypertrophy of visceral adipose to a greater extent than BPA. The adipose hypertrophy was augmented by tissue inflammation, endoplasmic reticulum (ER) stress, and apoptosis due to increased expression of pro-inflammatory (IL6, IL1β, CRP, COX2) cytokines, ER stress modulator (CHOP), and apoptotic effector (Caspase 3). The enlarged, stressed, inflamed adipocytes triggered de novo lipogenesis in the bisphenol-exposed offspring liver due to increased expression of cholesterol and lipid biogenesis mediators (srebf1, fasn, acaca, PPARα) concomitant with elevated triacylglycerol (TG) and cholesterol (TC), resulted in impaired hepatic clearance of lipids. The lipogenic effects were also promoted by increased expression of HSD11β1. BPS exposure increased absolute liver weight, discoloration, altered liver lobes more than in BPA. Liver histology showed numerous lipid droplets, and hepatocyte ballooning, upregulated ADRP expression, an increased expression of pro-inflammatory mediators (IL6, CRP, IL1β, TNFα, COX2), enhanced lipid peroxidation in the BPS-exposed offspring's liver suggest altered metaflammation leads to microvesicular steatosis. Overall, gestational BPS exposure demonstrated a higher disruption in metabolic changes than BPA, involving excess adiposity, liver fat, inflammation, and predisposition to steatosis in the adult male offspring.
Collapse
Affiliation(s)
- Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | | | - Myadara Srinivas
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Suryam Reddy Kona
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ahamed Ibrahim
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
35
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
36
|
López-Alcalá J, Soler-Vázquez MC, Tercero-Alcázar C, Sánchez-Ceinos J, Guzmán-Ruiz R, Malagón MM, Gordon A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. Int J Mol Sci 2023; 24:17177. [PMID: 38139006 PMCID: PMC10743551 DOI: 10.3390/ijms242417177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER-LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER-LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date. Herein, the ER-LD connection and Rab18 distribution at ER-LD contact sites are examined in adipocytes challenged with fibrosis and inflammatory conditions, which represent known hallmarks of the adipose tissue in obesity. Our results show that adipocytes differentiated in fibrotic conditions caused ER fragmentation, the expansion of ER-LD contact sites, and modified Rab18 dynamics. Likewise, adipocytes exposed to inflammatory conditions favored ER-LD contact, Rab18 accumulation in the ER, and Rab18 redistribution to large LDs. Finally, our studies in human adipocytes supported the suggestion that Rab18 transitions to the LD coat from the ER. Taken together, our results suggest that obesity-related pathogenic processes alter the maintenance of ER-LD interactions and interfere with Rab18 trafficking through these contact sites.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - M. Carmen Soler-Vázquez
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Instituto de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institute (KI), Karolinska University Hospital (NKS), 17177 Stockholm, Sweden;
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| |
Collapse
|
37
|
Vidal J, Fernandez EA, Wohlwend M, Laurila P, Lopez‐Mejia A, Ochala J, Lobrinus AJ, Kayser B, Lopez‐Mejia IC, Place N, Zanou N. Ryanodine receptor type 1 content decrease-induced endoplasmic reticulum stress is a hallmark of myopathies. J Cachexia Sarcopenia Muscle 2023; 14:2882-2897. [PMID: 37964752 PMCID: PMC10751419 DOI: 10.1002/jcsm.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Decreased ryanodine receptor type 1 (RyR1) protein levels are a well-described feature of recessive RYR1-related myopathies. The aim of the present study was twofold: (1) to determine whether RyR1 content is also decreased in other myopathies and (2) to investigate the mechanisms by which decreased RyR1 protein triggers muscular disorders. METHODS We used publicly available datasets, muscles from human inflammatory and mitochondrial myopathies, an inducible muscle-specific RYR1 recessive mouse model and RyR1 knockdown in C2C12 muscle cells to measure RyR1 content and endoplasmic reticulum (ER) stress markers. Proteomics, lipidomics, molecular biology and transmission electron microscopy approaches were used to decipher the alterations associated with the reduction of RyR1 protein levels. RESULTS RYR1 transcripts were reduced in muscle samples of patients suffering from necrotizing myopathy (P = 0.026), inclusion body myopathy (P = 0.003), polymyositis (P < 0.001) and juvenile dermatomyositis (P < 0.001) and in muscle samples of myotonic dystrophy type 2 (P < 0.001), presymptomatic (P < 0.001) and symptomatic (P < 0.001) Duchenne muscular dystrophy, Becker muscular dystrophy (P = 0.004) and limb-girdle muscular dystrophy type 2A (P = 0.004). RyR1 protein content was also significantly decreased in inflammatory myopathy (-75%, P < 0.001) and mitochondrial myopathy (-71%, P < 0.001) muscles. Proteomics data showed that depletion of RyR1 protein in C2C12 myoblasts leads to myotubes recapitulating the common molecular alterations observed in myopathies. Mechanistically, RyR1 protein depletion reduces ER-mitochondria contact length (-26%, P < 0.001), Ca2+ transfer to mitochondria (-48%, P = 0.002) and the mitophagy gene Parkinson protein 2 transcripts (P = 0.037) and induces mitochondrial accumulation (+99%, P = 0.005) and dysfunction (P < 0.001). This was associated to the accumulation of deleterious sphingolipid species. Our data showed increased levels of the ER stress marker chaperone-binding protein/glucose regulated protein 78, GRP78-Bip, in RyR1 knockdown myotubes (+45%, P = 0.046), in mouse RyR1 recessive muscles (+58%, P = 0.001) and in human inflammatory (+96%, P = 0.006) and mitochondrial (+64%, P = 0.049) myopathy muscles. This was accompanied by increased protein levels of the pro-apoptotic protein CCAAT-enhancer-binding protein homologous protein, CHOP-DDIT3, in RyR1 knockdown myotubes (+27%, P < 0.001), mouse RyR1 recessive muscles (+63%, P = 0.009), human inflammatory (+50%, P = 0.038) and mitochondrial (+51%, P = 0.035) myopathy muscles. In publicly available datasets, the decrease in RYR1 content in myopathies was also associated to increased ER stress markers and RYR1 transcript levels are inversely correlated with ER stress markers in the control population. CONCLUSIONS Decreased RyR1 is commonly observed in myopathies and associated to ER stress in vitro, in mouse muscle and in human myopathy muscles, suggesting a potent role of RyR1 depletion-induced ER stress in the pathogenesis of myopathies.
Collapse
Affiliation(s)
- Jeremy Vidal
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Eric A. Fernandez
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Martin Wohlwend
- Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Andrea Lopez‐Mejia
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Julien Ochala
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alexander J. Lobrinus
- Institute of PathologyLausanne University Hospital (CHUV)LausanneSwitzerland
- Department of Clinical PathologyUniversity Hospital GenevaGenevaSwitzerland
| | - Bengt Kayser
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
38
|
Molonia MS, Muscarà C, Speciale A, Salamone FL, Costa G, Vento G, Saija A, Cimino F. Low concentrations of antimony impair adipogenesis and endoplasmic reticulum homeostasis during 3T3-L1 cells differentiation. Food Chem Toxicol 2023; 181:114107. [PMID: 37858840 DOI: 10.1016/j.fct.2023.114107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Antimony (Sb) is a metalloid widely present in plastics used for food contact packaging, toys and other household items. Since Sb can be released by these plastics and come into contact with humans, health concerns have been highlighted. The effect of Sb on human tissues is yet controversial, and biochemical mechanisms of toxicity are lacking. In the present study, the effect of very low nanomolar concentrations of Sb(III), able to mimicking chronic human exposure, was evaluated in 3T3-L1 murine cells during the differentiation process. Low nanomolar Sb exposure (from 0.05 to 5 nM) induced lipid accumulation and a marked increase in C/EBP-β and PPAR-γ levels, the master regulators of adipogenesis. The Sb-induced PPAR-γ was reverted by the estrogen receptor antagonist ICI 182,780. Additionally, Sb stimulated preadipocytes proliferation inducing G2/M phase of cell cycle and this effect was associated to reduced cell-cycle inhibitor p21 levels. In addition to these metabolic dysfunctions, Sb activated the proinflammatory NF-κB pathway and altered endoplasmic reticulum (ER) homeostasis inducing ROS increase, ER stress markers XBP-1s and pEIF2a and downstream genes, such as Grp78 and CHOP. This study, for the first time, supports obesogenic effects of low concentrations exposure of Sb during preadipocytes differentiation.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, 98100, Messina, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Gregorio Costa
- Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125, Messina, Italy.
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genova, 16132, Genoa, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
39
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
40
|
Ly M, Yu GZ, Mian A, Cramer A, Meysami S, Merrill DA, Samara A, Eisenstein SA, Hershey T, Babulal GM, Lenze EJ, Morris JC, Benzinger TLS, Raji CA. Neuroinflammation: A Modifiable Pathway Linking Obesity, Alzheimer's disease, and Depression. Am J Geriatr Psychiatry 2023; 31:853-866. [PMID: 37365110 PMCID: PMC10528955 DOI: 10.1016/j.jagp.2023.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Obesity, depression and Alzheimer's disease (AD) are three major interrelated modern health conditions with complex relationships. Early-life depression may serve as a risk factor for AD, while late-life depression may be a prodrome of AD. Depression affects approximately 23% of obese individuals, and depression itself raises the risk of obesity by 37%. Mid-life obesity independently increases AD risk, while late-life obesity, particularly metabolically healthy obesity, may offer protection against AD pathology. Chronic inflammation serves as a key mechanism linking obesity, AD, and depression, encompassing systemic inflammation from metabolic disturbances, immune dysregulation through the gut microbiome, and direct interactions with amyloid pathology and neuroinflammation. In this review, we explore the biological mechanisms of neuroinflammation in relation to obesity, AD, and depression. We assess the efficacy of therapeutic interventions targeting neuroinflammation and discuss current and future radiological imaging initiatives for studying neuroinflammation. By comprehending the intricate interplay among depression, obesity, and AD, especially the role of neuroinflammation, we can advance our understanding and develop innovative strategies for prevention and treatment.
Collapse
Affiliation(s)
- Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Gary Z Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Ali Mian
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | | | - Somayeh Meysami
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - David A Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - Amjad Samara
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO; Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ganesh M Babulal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; Institute of Public Health, Washington University in St. Louis, St. Louis, MO; Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa; Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurology, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
41
|
Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med 2023; 16:4405-4418. [PMID: 37789878 PMCID: PMC10543758 DOI: 10.2147/ijgm.s428482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Adipose tissue dysfunction plays an important role in metabolic diseases associated with chronic inflammation, insulin resistance and lipid ectopic deposition in obese patients. In recent years, it has been found that under the stimulation of adipocyte endoplasmic reticulum stress (ERS), the over-activated ER unfolded protein response (UPR) exacerbates the inflammatory response of adipose tissue by interfering with the normal metabolism of adipose tissue, promotes the secretion of adipokines, and affects the browning and thermogenic pathways of adipose tissue, ultimately leading to the manifestation of metabolic syndrome such as ectopic lipid deposition and disorders of glucolipid metabolism in obese patients. This paper mainly summarizes the relationship between adipocyte ERS and obese adipose tissue dysfunction and provides an overview of the mechanisms by which ERS induces metabolic disorders such as catabolism, thermogenesis and inflammation in obese adipose tissue through the regulation of molecules and pathways such as NF-κB, ADPN, STAMP2, LPIN1, TRIP-Br2, NF-Y and SIRT2 and briefly describes the current mechanisms targeting adipocyte endoplasmic reticulum stress to improve obesity and provide ideas for intervention and treatment of obese adipose tissue dysfunction.
Collapse
Affiliation(s)
- Shengjie Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Jiaqiu Xi
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tao Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
42
|
Alshahrani A, Aljada A, Masood A, Mujammami M, Alfadda AA, Musambil M, Alanazi IO, Al Dubayee M, Abdel Rahman AM, Benabdelkamel H. Proteomic Profiling Identifies Distinct Regulation of Proteins in Obese Diabetic Patients Treated with Metformin. Pharmaceuticals (Basel) 2023; 16:1345. [PMID: 37895816 PMCID: PMC10609691 DOI: 10.3390/ph16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Obesity and type 2 diabetes mellitus (T2DM) are characterized by underlying low-grade chronic inflammation. Metformin has been used as the first line of therapy in T2DM as it decreases hepatic glucose production and glucose intestinal absorption, enhances insulin sensitivity and weight loss, and is known to ameliorate inflammation. The mechanisms through which metformin exerts its effect remain unclear. Proteomics has emerged as a unique approach to explore the biological changes associated with diseases, including T2DM. It provides insight into the circulating biomarkers/mediators which could be utilized for disease screening, diagnosis, and prognosis. Methods: This study evaluated the proteomic changes in obese (Ob), obese diabetics (OD), and obese diabetic patients on metformin (ODM) using a 2D DIGE MALDI-TOF mass spectrometric approach. Results: Significant changes in sixteen plasma proteins (15 up and 1 down, ANOVA, p ≤ 0.05; fold change ≥ 1.5) were observed in the ODM group when compared to the Ob and OD groups. Bioinformatic network pathway analysis revealed that the majority of these altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. Conclusions: Our study provides important information about the possible biomarkers altered by metformin treatment in obese patients with and without T2DM. These altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. The presented proteomic profiling approach may help in identifying potential biomarkers/mediators affected by metformin treatment in T2DM and inform the understanding of metformin's mechanisms of action.
Collapse
Affiliation(s)
- Awad Alshahrani
- Department of Medicine, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
- King Abdullah International Medical Research Center, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| | - Ibrahim O. Alanazi
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohammed Al Dubayee
- Department of Medicine, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
- King Abdullah International Medical Research Center, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| |
Collapse
|
43
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248:154706. [PMID: 37499516 DOI: 10.1016/j.prp.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
When large amounts of misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER) in response to stress, a process called unfolded protein response (UPR) is activated. The disruption of this process leads to many diseases including diabetes, neurodegenerative diseases, and many cancers. In the process of UPR in response to stress and unfolded proteins, specific signaling pathways are induced in the endoplasmic reticulum and subsequently transmitted to the nucleus and cytoplasm, causing homeostasis and restoring the cell's normal condition with reducing protein translation and synthesis. The UPR response followed by stress enhancement balances cell survival with death, therefore in this condition cells decide either to survive or have the path of apoptosis ahead. However, in some cases, this balance is disturbed and the UPR pathway is chronically activated or not activated and the cell conditions lead to cancer. This study aimed to briefly investigate the association between ER stress, UPR, apoptosis, and autophagy in colorectal cancer (CRC). Moreover, in current study, we will try to demonstrate canonical ways and methods for the treatment of CRC cells with attenuated ER stress.
Collapse
Affiliation(s)
| | | | - Iraj Alipourfard
- Insttue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia, Katowice, Poland
| | - Peyman Hassani
- DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
45
|
Abstract
Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed "energetic stress," which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.
Collapse
Affiliation(s)
- Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
47
|
Yadav U, Kumar N, Sarvottam K. Role of obesity related inflammation in pathogenesis of peripheral artery disease in patients of type 2 diabetes mellitus. J Diabetes Metab Disord 2023; 22:175-188. [PMID: 37255816 PMCID: PMC10225462 DOI: 10.1007/s40200-023-01221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Objective Type 2 diabetes mellitus (T2DM) has emerged as one of the greatest global health challenges of twenty-first century. Visceral obesity is one of the most important determinant of insulin resistance (IR) as well as T2DM complications. Therefore this review focuses on the molecular mechanism of obesity induced inflammation, signaling pathways contributing to diabetes, as well as role of lifestyle interventions and medical therapies in the prevention and management of T2DM. Method Articles were searched on digital data base PubMed, Cochrane Library, and Web of Science. The key words used for search included Type 2 diabetes mellitus, obesity, insulin resistance, vascular inflammation and peripheral arterial disease. Result Visceral obesity is associated with chronic low grade inflammation and activation of immune systems which are involved in pathogenesis of obesity related IR and T2DM. Conclusion Metabolic dysregulation of adipose tissue leads to local hypoxia, misfolded/unfolded protein response and increased circulating free fatty acids, which in turn initiate inflammatory signaling cascades in the population of infiltrating cells. Mechanism that relates the role of adipocytokines with insulin sensitivity and glucose homeostasis might throw a light on the development of therapeutic interventions and subsequently might result in the reduction of vascular complications.
Collapse
Affiliation(s)
- Umashree Yadav
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Nilesh Kumar
- Department of General Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Kumar Sarvottam
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
48
|
Kim J, Lee JY, Kim CY. Allium macrostemon whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice. Food Nutr Res 2023; 67:9256. [PMID: 37223261 PMCID: PMC10202093 DOI: 10.29219/fnr.v67.9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Obesity is a major risk factor for metabolic syndrome and a serious health concern worldwide. Various strategies exist to treat and prevent obesity, including dietary approaches using bioactive ingredients from natural sources. Objective This study aimed to investigate the anti-obesity effect of whole-plant Allium macrostemon (also called as long-stamen chive) extract (AME) as a potential new functional food. Design C57BL/6N mice were divided into three groups and fed either a control diet (CD), high-fat diet (HFD), or HFD with AME treatment (200 mg/kg BW daily) for 9 weeks. The mice in the CD and HFD groups were treated with vehicle control. Results AME supplementation reduced HFD-induced body weight gain, fat mass, and adipocyte size. AME suppressed peroxisome proliferator-activated receptor γ and fatty acid synthase mRNA expression, indicating reduced adipogenesis and lipogenesis in adipose tissue. In addition, AME lowered inflammation in adipose tissue, as demonstrated by the lower number of crown-like structures, mRNA, and/or protein expression of macrophage filtration markers, as well as pro-inflammatory cytokines, including F4/80 and IL-6. Endoplasmic reticulum stress was also alleviated by AME administration in adipose tissue. Several phenolic acids known to have anti-obesity effects, including ellagic acid, protocatechuic acid, and catechin, have been identified in AME. Conclusion By suppressing adipose tissue expansion and inflammation, AME is a potential functional food for the prevention and/or treatment of obesity and its complications.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
49
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
50
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|