1
|
Li J, Chen XL, Ou-Yang XL, Zhang XJ, Li Y, Sun SN, Wang LJ, Yang ZQ, Ni SH, Lu L. Association of tea consumption with all-cause/cardiovascular disease mortality in the chronic kidney disease population: an assessment of participation in the national cohort. Ren Fail 2025; 47:2449578. [PMID: 39806767 PMCID: PMC11734394 DOI: 10.1080/0886022x.2025.2449578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear. METHOD Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded. Key cohort demographics revealed a mean age of 62.3 years, with 52.1% female participants, and 57.3% identified as non-Hispanic White. A total of 5,835 deaths were recorded during follow-up, including 1,823 cardiovascular-related deaths. Cox and restricted cubic spline regression was used to examine the linear or nonlinear association of tea consumption with mortality. The substitution analysis explored the effects of replacing a specific type of tea with another type of tea. Subgroup analysis stratified by sex, age, body mass index (BMI), diabetes, cancer, cardiovascular disease (CVD), and urinary albumin. Sensitivity analysis was performed to ensure the reliability of our findings. RESULTS After adjusting for age, sex, race, education level, marital, annual household income, energy intake, total water intake, protein intake, carbohydrate intake, dietary fiber, sugar beverages, milk whole, total monounsaturated fatty acids, total polyunsaturated fatty acids, total saturated fatty acids, smoking, metabolic equivalent of task for physical activity level (MET-PA), BMI, diabetes, hypertension, urinary albumin, estimated glomerular filtration rate (eGFR), CVD, cancer, serum sodium, serum potassium, and serum phosphorus, setting the individuals without tea consumption record as reference. Consuming up to 4 cups of tea per day was significantly associated with lower all-cause mortality compared with that never drinking tea, among CKD patients at 1-2 stages [Hazard Ratio (HR) = 0.89; 95% Confidence Interval (CI) = 0.79, 0.99; p = 0.04], while the association between tea consumption and CVD mortality didn't reach statistical significance. Dose-response effect was observed, showing that consuming up to three to five cups of tea per day was associated with mitigated risks of all-cause mortality, particularly in early CKD stages (non-linear p > 0.05). A 1 cup per day higher intake of oxidized tea was associated with a 10% lower risk of all-cause mortality in CKD stage 1-2 [HR = 0.90; 95%CI = 0.82, 0.99; p = 0.03]. Replacing 1 cup of green tea with 1 cup of oxidized tea per day was associated with an 8% and 11% lower risk of all-cause mortality [HR = 0.92; 95%CI = 0.86, 0.98; p = 0.01] and CVD mortality [HR = 0.89; 95%CI = 0.80, 1.00; p < 0.05], respectively, in individuals with CKD stages 1-2. CONCLUSION Tea consumption showed protective effects on all-cause mortality in CKD population, with potential benefits observed in terms of both the cups quantity and types of tea consumed. These findings appeared to be more prominent among early stages CKD population.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing-Ling Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Lu Ou-Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Jiao Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Ning Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Jun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhong-Qi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Hao Ni
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Sanlier NT, Saçinti KG, Türkoğlu İ, Sanlier N. Some Polyphenolic Compounds as Potential Therapeutic Agents in Cervical Cancer: The Most Recent Advances and Future Prospects. Nutr Rev 2025; 83:880-896. [PMID: 39283708 DOI: 10.1093/nutrit/nuae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
The leading causes of cancer include gradual changes in regulatory proteins, dysregulated cell-signaling pathways, dysfunction of apoptosis, and oxidative stress. Consuming polyphenols from food sources has been proven to have strong connections with ameliorating specific physiological biomarkers along with other elements concerning cancer. Recent studies have focused on polyphenols' molecular mechanisms of action and anticancer and chemopreventive properties and effects in the treatment of different types of cancer. Polyphenols participate in the regulation of numerous cellular mechanisms alongside signaling pathways through their effects on inflammation, cellular proliferation, apoptosis, and partially via epigenetic alterations in cervical cancer. A number of animal models and cell and human studies have indicated the use of polyphenols to be safe and tolerable. Thus, it would be fair to state that, with their advantages vis-à-vis lack of toxicity, cost, and access, and with the positive clinical results, polyphenols have a potential to make a difference in cancer treatment. The present review examined the chemical and physical properties, analogs, metabolites, and mechanisms of physiological activities of various polyphenols and how they may affect the incidence rate and management of cervical cancer. Therefore, this review constitutes a starting point to examine the potential applications for cervical cancer.
Collapse
Affiliation(s)
- Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Turkish Ministry of Health, Ankara City Hospital, Ankara 06800, Turkey
| | - Koray Görkem Saçinti
- Department of Obstetrics and Gynecology, Aksaray University Training and Research Hospital, Aksaray 68200, Turkey
- Division of Epidemiology, Department of Public Health, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - İnci Türkoğlu
- Department of Nutrition and Dietetics, Hacettepe University School of Health Sciences, Ankara 06100, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University School of Health Sciences, Ankara 06050, Turkey
| |
Collapse
|
3
|
Khan IM, Gul H, Khan S, Nassar N, Khalid A, Swelum AA, Wang Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult Sci 2025; 104:105071. [PMID: 40157268 PMCID: PMC11995091 DOI: 10.1016/j.psj.2025.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Heat stress is a critical challenge in the poultry industry. It arises when birds are exposed to elevated ambient temperatures beyond their thermoneutral zone, often exacerbated by high humidity and inadequate ventilation. This condition disrupts the birds' ability to maintain thermal homeostasis, leading to physiological and behavioral changes such as increased panting, reduced feed intake, and elevated water consumption. These responses aim to dissipate heat but often result in energy imbalances, oxidative stress, and impaired immune function. Green tea polyphenols (GTPs) mitigate heat stress in poultry birds by modulating oxidative stress pathways, primarily by scavenging reactive oxygen species (ROS) and enhancing antioxidant defense mechanisms. These pathways play a pivotal role in neutralizing ROS generated during oxidative stress, inflammation, and exposure to electrophilic compounds. This action helps restore cellular balance and enhances overall antioxidant defense mechanisms by converting harmful free radicals into less reactive molecules, such as water and oxygen. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant character in the activation of the enzymatic antioxidants network. It translocates to the nucleus upon activation, binds to antioxidant response elements (AREs) in the promoter regions of target genes, and upregulates the expression of key antioxidant enzymes. Therefore, the regulation of Nrf2 is considered a critical molecular marker in mitigating the effects of heat stress, as its activation enhances the expression of antioxidant and detoxification enzymes, protecting against oxidative damage and inflammation induced by elevated temperatures. This exploratory review summarizes the antioxidant mechanisms and anti-oxidative stress effects of GTPs in mitigating heat stress in poultry. It highlights the cytoprotective molecular basis of epigallocatechin-3-gallate (EGCG), particularly its role in modulating Nrf2-mediated cellular pathways, which enhance antioxidant defense systems and protect against oxidative damage.
Collapse
Affiliation(s)
| | - Haji Gul
- District Livestock Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Lu X, Friedrich LJ, Efferth T. Natural products targeting tumour angiogenesis. Br J Pharmacol 2025; 182:2094-2136. [PMID: 37680009 DOI: 10.1111/bph.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Tumour angiogenesis is the formation of new blood vessels to support the growth of a tumour. This process is critical for tumour progression and metastasis, making it an attractive approach to cancer therapy. Natural products derived from plants, animals or microorganisms exert anti-angiogenic properties and can be used to inhibit tumour growth and progression. In this review, we comprehensively report on the current status of natural products against tumour angiogenesis from four perspectives until March 2023: (1) the role of pro-angiogenic factors and antiangiogenic factors in tumour angiogenesis; (2) the development of anti-tumour angiogenesis therapy (monoclonal antibodies, VEGFR-targeted small molecules and fusion proteins); (3) the summary of anti-angiogenic natural agents, including polyphenols, polysaccharides, alkaloids, terpenoids, saponins and their mechanisms of action, and (4) the future perspectives of anti-angiogenic natural products (bioavailability improvement, testing of dosage and side effects, combination use and discovery of unique natural-based compounds). Our review aims to better understand the potential of natural products for drug development in inhibiting tumour angiogenesis and further aid the effective transition of these outcomes into clinical trials. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lara Johanna Friedrich
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Dai C, Xiang F, Liu H, Zhou L, Li W. The Prolonged Application of Organic Fertilizers Increases the Quality and Yield of Tea Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:1317. [PMID: 40364346 PMCID: PMC12074248 DOI: 10.3390/plants14091317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
The substitution of chemical nitrogen (N) with organic fertilizers in tea plantations has been widely recognized as a strategy to maintain tea yield and improve soil quality, ensuring the sustainability of tea production systems. However, the effects of long-term organic-fertilizer substitution on tea yield and quality, soil properties, and bacterial communities have yet to be fully investigated, and the underlying mechanisms affecting tea yield and quality remain unclear. We conducted a six-year-long field experiment in a tea plantation to investigate the relationships among soil properties, bacterial communities, and the yield and quality of tea. Four treatments were compared: no fertilizer (NF), conventional fertilization (CF), 50% chemical N fertilizer substituted with a microbial organic fertilizer (MF), and 50% chemical N fertilizer substituted with a special organic fertilizer for tea (OF). The results showed that the substitution of organic fertilizers increased the spring tea yield by 6.4%~8.5% and the amino acid content of tea by up to 7.8%, while reducing tea polyphenol levels by 1.2-4.4% compared to CF. The soil quality improved significantly, with total phosphorus rising by 20.0% (MF) and 22.9% (OF), and soil organic matter increasing notably in the MF treatment group. The soil quality index (SQI) improved by 38.6% in the OF treatment group compared to the CF treatment group. Organic treatments reshaped bacterial communities, with the OF boosting Acidobacteriota (36.4%) and Planctomycetota (444.4%), and the MF enriching Actinobacteria and Gemmatimonadetes. Bacterial diversity (Shannon and Chao1 indices) correlated positively with the soil organic matter, total nitrogen, and pH. Changes in microbial communities were driven by pH, soil organic matter, and nitrogen levels. The partial least squares path model analysis confirmed that fertilization indirectly influenced tea yield (67% variance explained) and quality (79% variance explained) via soil properties and bacterial communities. These findings highlight the potential of organic-fertilizer substitution to promote sustainable tea production.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Hunan Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (C.D.); (F.X.); (H.L.); (L.Z.)
| |
Collapse
|
6
|
Hernández-Fuentes GA, Sanchez-Ramirez CA, Cortes-Alvarez SI, Rodriguez-Hernández A, Cabrera-Medina AO, Moy-López NA, Guzman-Muñiz J, Garza-Veloz I, Rodriguez-Sanchez IP, Martinez-Fierro ML, Álvarez-Barajas JJ, Cortes-Alvarez NY, Ceballos-Magaña SG, Meza-Robles C, Delgado-Enciso I. Moringa oleifera Leaf Infusion as a Functional Beverage: Polyphenol Content, Antioxidant Capacity, and Its Potential Role in the Prevention of Metabolopathies. Life (Basel) 2025; 15:636. [PMID: 40283190 PMCID: PMC12028896 DOI: 10.3390/life15040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Moringa oleifera (MO) leaf infusion has gained attention for its potential therapeutic effects, particularly in metabolic health, due to its rich content of bioactive compounds, including polyphenols. The study evaluates the antioxidant properties and metabolic effects of the prophylactic administration of MO infusion in a high-fat diet (HFD)-induced murine model. First, polyphenol content (0.45 mg/g) and antioxidant activity (45.39%) were determined using Folin-Ciocalteu, DPPH, phosphomolybdenum, ferrocyanide, and anti-browning assays. In the in vivo phase, BALB/c mice were divided into three groups: a balanced diet group, a negative control group, and an HFD group supplemented with MO infusion. Over eight months, biochemical analyses, psychomotor tests, glucose tolerance assessments, and liver histopathology were conducted. MO infusion significantly reduced food intake, weight gain, lipid profiles, and liver inflammation compared to the negative control group, while promoting a metabolic profile similar to that of the balanced diet group. Additionally, it positively influenced psychomotor performance, reinforcing its neuroactive potential. These findings suggest that MO leaf infusion may serve as a functional beverage with protective effects against metabolic disorders, offering a promising natural strategy for managing obesity-related health issues.
Collapse
Affiliation(s)
- Gustavo A. Hernández-Fuentes
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
- Colima State Institute of Cancerology, IMSS-Bienestar, Colima 28085, Mexico;
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico;
| | - Carmen A. Sanchez-Ramirez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
| | - Salma I. Cortes-Alvarez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
- Colima State Institute of Cancerology, IMSS-Bienestar, Colima 28085, Mexico;
| | - Alejandrina Rodriguez-Hernández
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
| | - Ana O. Cabrera-Medina
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
| | - Norma A. Moy-López
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico; (N.A.M.-L.); (J.G.-M.); (N.Y.C.-A.)
| | - Jorge Guzman-Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico; (N.A.M.-L.); (J.G.-M.); (N.Y.C.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | | | - Nadia Y. Cortes-Alvarez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico; (N.A.M.-L.); (J.G.-M.); (N.Y.C.-A.)
- Department of Nursing and Midwifery, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36259, Mexico
| | | | - Carmen Meza-Robles
- Colima State Institute of Cancerology, IMSS-Bienestar, Colima 28085, Mexico;
| | - Iván Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (G.A.H.-F.); (S.I.C.-A.); (A.R.-H.); (A.O.C.-M.)
- Colima State Institute of Cancerology, IMSS-Bienestar, Colima 28085, Mexico;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Zhao Y, Zhao B. Protection of Green Tea Polyphenols against Neurodegenerative Diseases: Evidence and Possible Mechanisms. J Nutr 2025; 155:1077-1088. [PMID: 39956389 DOI: 10.1016/j.tjnut.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Aging is a major risk factor for neurodegenerative diseases. With aging of the global population, the prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has increased worldwide. Unfortunately, the available therapeutic options for these neurodegenerative diseases are limited, most of which only provide symptomatic relief and have potentially serious side effects. Epidemiological studies have shown that green tea consumption is associated with a lower prevalence of cognitive decline and decreased risk of AD and PD, providing an attractive preventive and therapeutic option. Polyphenols are major bioactive components in green tea, which contribute to the beneficial effects of green tea. Accumulating data suggest that green tea polyphenols (GTPs) have neuroprotective properties that inhibit the pathological development of neurodegenerative diseases; however, the underlying mechanisms are not yet completely understood. This paper reviews both in vitro and in vivo evidence that demonstrates the neuroprotective effects of GTPs against neurodegenerative diseases, with the main focus on AD and PD, and summarizes the possible molecular mechanisms by which GTPs impede the progression of neurodegeneration. In particular, this review highlights the modulation of GTPs on the common mechanisms involved in pathogenesis of neurodegenerative diseases, including oxidative stress-mediated neuronal toxicity, impaired proteostasis, and metal ion dyshomeostasis. The potential of using GTPs in the intervention of neurodegenerative diseases is also discussed, hopefully, providing useful insights into novel preventive and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, China
| | - Baolu Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2025; 70:307-322. [PMID: 38704088 PMCID: PMC11976426 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
9
|
Wang Y, Xu Y, Zhu F. Epigallocatechin-3-gallate Attenuates the Bromo-3-chloro-5,5-dimethylhydantoin-induced Immunotoxicity in Crayfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:69. [PMID: 40146333 DOI: 10.1007/s10126-025-10449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH), a widely used environmental disinfectant in aquaculture, may induce toxicity, adversely affecting the health and viability of aquatic organisms. Epigallocatechin-3-gallate (EGCG), a polyphenol present in green tea, exhibits antioxidant properties that can protect normal cells from oxidative stress. The findings suggest that exposure to BCDMH results in a reduction of antioxidant enzyme activity, whereas EGCG supplementation enhances crayfish immunity and alleviates damage. Moreover, BCDMH exposure is associated with a decrease in total hemocyte count and an increase in apoptosis rate; however, EGCG demonstrates a protective effect against BCDMH-induced cytotoxicity. Histopathological analysis indicates that exposure to BCDMH results in hepatopancreatic damage in crayfish, which is mitigated by EGCG. To identify the genes and pathways influenced by EGCG, a comparative transcriptome analysis was performed. Gene Ontology (GO) analysis revealed that proteolysis and innate immune response are significant biological processes induced by EGCG. Furthermore, KEGG pathway analysis identified endocytosis and phagosome as critical pathways modulated by EGCG. EGCG effectively enhanced the survival of crayfish challenged with V. alginolyticus following BCDMH exposure This study contributes to fully understand the mechanisms of EGCG in reducing the immunotoxicity of antibiotic residues on aquatic animals.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Zhang N, Tao J, Yu Q, Sun G, Liu X, Tang W, Zhang L, Yang Z. Dietary Tea Polyphenols Alleviate Acute-Heat-Stress-Induced Death of Hybrid Crucian Carp HCC2: Involvement of Modified Lipid Metabolisms in Liver. Metabolites 2025; 15:229. [PMID: 40278359 PMCID: PMC12028923 DOI: 10.3390/metabo15040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Global warming poses significant challenges to aquaculture, as elevated water temperatures adversely affect fish health and survival. This study investigated the effects and potential mechanisms of dietary tea polyphenols (TPs) on acute heat stress and survival in hybrid crucian carp HCC2. METHODS The fish in the control (CON) group and heat stress group (HS group, three replicates, each containing 20 fish, n = 60 per group) were fed diets with 0 mg/kg TPs, and the three experimental groups (HSLTP, HSMTP, and HSHTP, n = 20 × 3 replicates) were fed the diets with 100, 200, or 400 mg/kg TPs for 60 days. Further, fish in the experimental groups (HS, HSLTP, HSMTP, and HSHTP) were exposed at 38 °C for 24 h to induce acute heat stress. Survival data and serum and tissue samples were collected for the analysis. Metabolomics using UPLC-Q-TOF/MS was employed to evaluate the metabolite changes in the fish livers. RESULTS Notably, dietary TPs significantly improved survival rates and antioxidant enzyme levels and reduced serum ALT, AST, cortisol, glucose, MDA, and liver HSP-70 levels in the heat-stressed fish. Metabolomic analysis revealed that TPs modulated lipid metabolism, particularly glycerophospholipid and arachidonic acid pathways, which may contribute to a higher tolerance to acute heat stress. CONCLUSIONS These findings suggest that TPs are a promising, eco-friendly feed additive for protecting fish from heat stress and optimizing aquaculture practices.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jinsheng Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qifang Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Gege Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaopeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
| | - Weirong Tang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lina Zhang
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhe Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; (N.Z.); (Q.Y.); (X.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Tang Z, Huang Z, Huang Y, Huang M, Liu H, Du J, Jia B. Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks. J Nanobiotechnology 2025; 23:158. [PMID: 40025537 PMCID: PMC11874145 DOI: 10.1186/s12951-025-03210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/09/2025] [Indexed: 03/04/2025] Open
Abstract
Metal-phenolic networks (MPNs), which comprise supramolecular amorphous networks formed by interlinking polyphenols with metal ions, garner escalating interest within the realm of nanomedicine. Presently, a comprehensive synthesis of the cumulative research advancements and utilizations of MPNs in nanomedicine remains absent. Thus, this review endeavors to firstly delineate the characteristic polyphenols, metal ions, and their intricate interaction modalities within MPNs. Subsequently, it elucidates the merits and demerits of diverse synthesis methodologies employed for MPNs, alongside exploring their potential functional attributes. Furthermore, it consolidates the diverse applications of MPNs across various nanomedical domains encompassing tumor therapy, antimicrobial interventions, medical imaging, among others. Moreover, a meticulous exposition of the journey of MPNs from their ingress into the human body to eventual excretion is provided. Lastly, the persistent challenges and promising avenues pertaining to MPNs are delineated. Hence, this review offering a comprehensive exposition on the current advancements of MPNs in nanomedicine, consequently offering indirect insights into their potential clinical implementation.
Collapse
Affiliation(s)
- Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Yuexiu District Stomatological Hospital, Guangzhou, Guangdong, China
| | - Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - JianZhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Johnson JJ, Siblini H, Al‐Hendy A, Segars JH, González F, Taylor HS, Singh B, Carson SA, Christman GM, Huang H, Dangi B, Zhang H. Evaluating the Effect of Epigallocatechin Gallate (EGCG) in Reducing Folate Levels in Reproductive Aged Women by MTHFR and DHFR Genotype in Combination With Letrozole or Clomiphene. Clin Transl Sci 2025; 18:e70189. [PMID: 40077973 PMCID: PMC11903501 DOI: 10.1111/cts.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Previous epidemiological studies have suggested that green tea catechins, including Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, may be associated with reduced serum folate levels. This is of particular interest as women of childbearing age may be consuming EGCG from tea, dietary supplements, or involved in active clinical trials studying EGCG or green tea extract. EGCG was reported to shrink uterine fibroids in preclinical and clinical studies. This observation led to the development of a multicenter NICHD-funded clinical trial to evaluate the safety of EGCG for treating women with fibroids and unexplained infertility (NCT04177693). To answer the question of whether green tea extract standardized to EGCG led to a reduction in folate, 39 women aged ≥ 18 to ≤ 40 years, with/without uterine fibroids, were evaluated. These women were randomized to receive either EGCG, EGCG + clomiphene, or EGCG + letrozole for 30 days. A daily dose of 720 mg of highly characterized green tea extract containing EGCG was used. Participants were genotyped for polymorphisms at positions 677 and 1298 in MTHFR and for the -19 bp deletion polymorphism of DHFR. During the intervention with EGCG, folate levels remained in the normal range in all subjects. Our data suggest that in reproductive-age women, a 30-day course of EGCG 720 mg daily taken alone or in combination with clomiphene citrate or letrozole (for 5 days) is well-tolerated and is not associated with folate deficiency even in the presence of MTHFR and/or DHFR polymorphisms known to negatively impact folate synthesis. Trial Registration: Clinical trial: NCT01311869.
Collapse
Affiliation(s)
- Jeremy J. Johnson
- Department of Pharmacy PracticeUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Hiba Siblini
- Department of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Ayman Al‐Hendy
- Department of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - James H. Segars
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Frank González
- Department of Obstetrics and GynecologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale UniversityNew HavenConnecticutUSA
| | - Bhuchitra Singh
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sandra A. Carson
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale UniversityNew HavenConnecticutUSA
| | - Gregory M. Christman
- Center for Reproductive MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Hao Huang
- Department of BiostatisticsYale University School of Public HealthNew HavenConnecticutUSA
| | - Bikash Dangi
- Department of Pharmacy PracticeUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Heping Zhang
- Department of BiostatisticsYale University School of Public HealthNew HavenConnecticutUSA
| |
Collapse
|
13
|
Cosme F, Aires A, Pinto T, Oliveira I, Vilela A, Gonçalves B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025; 30:800. [PMID: 40005115 PMCID: PMC11858154 DOI: 10.3390/molecules30040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Tannins, a diverse class of polyphenolic compounds, are widely present in a variety of plant-based foods and beverages, where they contribute significantly to flavor, astringency, and numerous health benefits. Known for their antioxidant, anti-inflammatory, and cardioprotective properties, tannins are associated with a reduced risk of chronic diseases such as cardiovascular disease, cancer, and diabetes. Their bioavailability and metabolism are influenced by factors such as polymerization, solubility, and interactions with the gut microbiota. Tannin-rich beverages, including tea, wine, fruit juices, and cider, offer a range of health-promoting effects, including antioxidant, cardioprotective, and antimicrobial activities. In addition, tannins contribute significantly to the sensory and nutritional characteristics of fruits, nuts, and vegetables, influencing flavor, color, and nutrient absorption. The levels and efficacy of tannins are subject to variation due to factors such as ripeness and food processing methods, which can increase their impact on food quality and health. This review provides a comprehensive examination of the bioactive roles of tannins, their nutritional implications, and their sensory effects, highlighting their importance in both dietary applications and overall well-being.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| |
Collapse
|
14
|
Wang Y, Jia W, Wang X, Aslam MM, Li W, Shao Y. Tea polyphenols coating improves physiological properties, microstructure and chemical composition of cuticle to suppress quality deterioration of passion fruit during cold storage. Food Chem 2025; 463:141524. [PMID: 39383792 DOI: 10.1016/j.foodchem.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The plant cuticle plays a crucial role in modulating postharvest quality and extending shelf life of horticultural crops. Passion fruit often suffers from quality degradation primarily due to peel wrinkling after harvest. Tea polyphenols (TPs) hold potential for enhancing postharvest preservation. However, the specific effects of TPs coating on preservation of passion fruit, as well as the underlying mechanisms involving cuticle regulation, have not been thoroughly investigated. This study demonstrated that treating 'Qinmi no.9' passion fruit with TPs at a concentration of 0.1 g L-1 significantly mitigates weight loss, maintains firmness, and reduces cell membrane permeability during storage at 10 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that TPs treatment notably enhances cuticle thickness and structural integrity. Furthermore, gas chromatography-mass spectrometry (GC-MS) and metabolomics analyses indicated that TPs treatment obviously promotes the accumulation of palmitic acid, stearic acid, and their derivatives-primarily 12-Octadecenoic acid and 10(E)-Octadecenoic acid-as well as increases the levels of 11-Octadecenoic acid, primary alcohols such as 1-Eicosanol, and long-chain alkanes (including C31 and C32 alkanes) in the fruit peel cuticle. These biochemical changes contribute to the quality maintenance of passion fruit during cold storage. The findings suggest that TPs treatment is a promising biological strategy for extending shelf life and mitigating quality degradation by regulating cuticle metabolism in postharvest passion fruit.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China
| | - Wenjun Jia
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Xin Wang
- College of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Muhammad Muzammal Aslam
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Wen Li
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China.
| | - Yuanzhi Shao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Life and Health, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
15
|
Tang J, Gao Z, Xu L, Zhao Q, Hu T, Luo Y, Dou J, Bai Y, Xia L, Du K. Smartphone-assisted colorimetric biosensor for the rapid visual detection of natural antioxidants in food samples. Food Chem 2025; 462:141026. [PMID: 39216373 DOI: 10.1016/j.foodchem.2024.141026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Quantitative monitoring of the concentrations of epigallocatechin gallate (EGCG) and cysteine (Cys) is of great significance for promoting human health. In this study, iron/aluminum bimetallic MOF material MIL-53 (Fe, Al) was rapidly prepared under room temperature using a co-precipitation method, followed by investigating the peroxidase-like (POD-like) activity of MIL-53(Fe, Al) using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate. The results showed that the Michaelis -Menten constants of TMB and H2O2 as substrates were 0.167 mM and 0.108 mM, respectively. A colorimetric sensing platform for detecting EGCG and Cys was developed and successfully applied for analysis and quantitative detection using a smartphone. The linear detection range for EGCG was 15∼80 μM (R2=0.994) and for Cys was 7∼95 μM (R2=0.998). The limits of detection (LOD) were 0.719 μM and 0.363 μM for EGCG and Cys, respectively. This work provides a new and cost-effective approach for the real-time analysis of catechins and amino acids.
Collapse
Affiliation(s)
- Jun Tang
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Zhenyu Gao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Longfei Xu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Qianqian Zhao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Tianfeng Hu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Yongfeng Luo
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Jinkang Dou
- Department of Energetic Materials Science and Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Liaoyuan Xia
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Kun Du
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China.
| |
Collapse
|
16
|
Liu XX, Ke XY, Jiang C, Bo LW, Sun N, Li LL, Qin SQ, He JC, Ren JL, Wu QQ, Li SZ, Yang JL, Yu LL, Lu QY, Liu LZ, Li WY, Xian XH, Zhang LN. Na +-K +-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156349. [PMID: 39765036 DOI: 10.1016/j.phymed.2024.156349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na+-K+-ATPase (NKA)-induced ion concentration gradient differences. EGCG, a substance found in tea polyphenols, can reduce infarct areas in ischemia-reperfusion models, reduce stroke incidence, and prolong life in which NKA is involved. PURPOSE In this study, we investigated the potential of EGCG in protecting against cerebral ischemia-reperfusion injury by regulating the interaction between NKA and GLT-1. STUDY DESIGN This study was designed to investigate the protective effects of EGCG against cerebral ischemia-reperfusion injury by modulating the interaction between NKA and GLT-1, utilizing both the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model and the oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultures of rat hippocampal neurons and astrocytes. METHODS The neuronal survival rate was assessed using CCK8, and the cerebral infarction area and neurological function were determined by TTC staining and neurological deficit scores. NKA activity was measured using an inorganic phosphorous detection method, and NKA and GLT-1 expression was detected using western blotting. The interaction between NKAα2 and GLT-1 was identified by co-immunoprecipitation (CoIP) assay, laser confocal microscopy, and Imaris 3D confocal rendering technology. An adenovirus vector with overexpression of NKAα2 was constructed, packaged, and injected into the rat lateral ventricle. Neurological function and the cerebral infarction area were identified, and the interaction between NKAα2 and GLT-1 was identified using CoIP assay. RESULTS EGCG reduced the infarction area and neurological deficit scores, restored NKA activity, alleviated the decrease in membrane NKAα2 and GLT-1 expression, and relieved the uncoupling of NKAα2 and GLT-1 in the hippocampal CA1 after rat MCAO/R injury. By promoting the coupling of NKAα2 and GLT-1 in rat MCAO/R models, overexpression of NKAα2 reduced the cerebral infarction area and neurological impairment scores. CONCLUSION EGCG improved cerebral ischemia-reperfusion injury by restoring NKA activity and increasing membrane GLT-1 expression due to NKA-GLT-1 interaction. For the first time, our findings demonstrate the critical role that NKA and GLT-1 colocalization plays in cerebral ischemia-reperfusion damage. Our findings provide new strategic directions for the pathogenesis and prevention of thrombolytic injury in the clinical treatment of stroke, while also serving as a basis for further development and utilization of EGCG.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Department of Science and Education, Xingtai People's Hospital, 818 Xiangdu North Road, Xingtai 054001, China
| | - Xue-Ying Ke
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Jiang
- Forensic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Ling-Wei Bo
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Nan Sun
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin-Lin Li
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qi Qin
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jin-Chen He
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jia-Lin Ren
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian-Qian Wu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Shuai-Zhen Li
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Jia-Lei Yang
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Lan-Ling Yu
- Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi-Yong Lu
- Department of Neurosurgery, Hengshui Fifth People's Hospital, 1638 Shengli West Road, Hengshui 053010, China
| | - Li-Zhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen-Ya Li
- Department of Physiology, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Xiao-Hui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China.
| | - Li-Nan Zhang
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
17
|
Hernandez-Fuentes GA, Delgado-Enciso OG, Larios-Cedeño EG, Sánchez-Galindo JM, Ceballos-Magaña SG, Pineda-Urbina K, Alcalá-Pérez MA, Magaña-Vergara NE, Delgado-Enciso J, Díaz-Llerenas U, Diaz-Martinez J, Garza-Veloz I, Martinez-Fierro ML, Rodriguez-Sanchez IP, Delgado-Enciso I. Comparative Analysis of Infusions and Ethanolic Extracts of Annona muricata Leaves from Colima, Mexico: Phytochemical Profile and Antioxidant Activity. Life (Basel) 2024; 14:1702. [PMID: 39768408 PMCID: PMC11677062 DOI: 10.3390/life14121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Annona muricata L. (guanabana) leaves are rich in bioactive compounds with potential antioxidant properties. In the state of Colima, both ethanolic extracts and infusions are traditionally used in folk medicine to address various ailments. This study aimed to evaluate and compare the phytochemical composition and antioxidant activities of ethanolic extracts and infusions of A. muricata leaves from three geographic regions in Colima, Mexico, with a focus on how geographic origin affects their bioactive properties. METHODS Ethanolic extracts and infusions were prepared from A. muricata leaves and analyzed using phytochemical screening; DPPH, total antioxidant capacity (TAC), and total phenolic content (TPC) measurements; and HPLC. TLC was also conducted to examine the presence of specific compounds, such as flavonoids and phenols. RESULTS Both the ethanolic extracts and infusions contained significant levels of alkaloids, flavonoids, tannins, and phenolic compounds. The infusions demonstrated superior antioxidant capacity, with DPPH inhibition values of 72.5%, 68.3%, and 65.1% in the northern, central, and southern regions, respectively, compared to the ethanolic extracts' values of 50.3%, 48.9%, and 45.0%. HPLC identified quercetin as a major compound across all samples. Geographically, the northern region exhibited higher concentrations of bioactive compounds, particularly total flavonoid content (TFC) and iron-reducing power (FRPA). CONCLUSIONS Both the ethanolic extracts and infusions of A. muricata leaves exhibited significant antioxidant properties, with the infusions showing superior performance. The results suggest that A. muricata infusions may have potential applications in managing oxidative stress-related diseases such as cancer and diabetes. Exploring their use in traditional medicine and employing this type of approach can help discern the metabolite profile responsible for these bioactivities. Geographic factors influence the bioactive profile of the plant, and further research is needed to isolate specific bioactive compounds and elucidate their therapeutic mechanisms.
Collapse
Affiliation(s)
- Gustavo A. Hernandez-Fuentes
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Osiris G. Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
| | - Edgar G. Larios-Cedeño
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
| | - Juan M. Sánchez-Galindo
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
| | | | - Kayim Pineda-Urbina
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Mario A. Alcalá-Pérez
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Nancy E. Magaña-Vergara
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Josuel Delgado-Enciso
- Foundation for Ethics, Education, and Cancer Research of the State Cancer Institute of Colima AC, Colima 28085, Mexico;
| | - Uriel Díaz-Llerenas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Janet Diaz-Martinez
- Research Center in Minority Institutions, Robert Stempel College of Public Health, Florida International University (FIU-RCMI), Miami, FL 33199, USA;
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
18
|
Ntezimana B, Xu W, Li Y, Zhou J, Pathak S, Chen Y, Yu Z, Zhang D, Ni D. Integrated Transcriptomic and Metabolomic Analyses Reveal Changes in Aroma- and Taste-Related Substances During the Withering Process of Black Tea. Foods 2024; 13:3977. [PMID: 39683049 DOI: 10.3390/foods13233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Withering is one of the major processing steps critical for the quality of black tea. In this study, we investigated the mechanisms underlying the physicochemical changes in metabolites and gene expression during the withering process of black tea using metabolomic and transcriptomic approaches, respectively. Based on gas chromatography/mass spectrometry non-targeted metabolomic approaches (GC-MS) and ultra-high performance liquid chromatograph-tandem mass spectrometry (UHPLC-MS/MS), a total of 76 volatile compounds and 160 non-volatile compounds were identified from tea leaves, respectively. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) for the comparative combination of withering time (i.e., W4h, W6h, W8h, W10h, and W12h) compared with CK (i.e., fresh leaves) were 3634, 2906, 4127, 5736, and 7650, respectively. The core genes in starch metabolism, namely alpha-amylase (AMY) and beta-amylase (BAM), were upregulated as withering time increased. AMY and BAM contributed to the decomposition of starch to increase the soluble sugars. The content of tea leaf alcohols and aldehydes, which are the vital contributors for greenish aroma, gradually decreased as withering time increased due to the downregulation of associated genes while the compounds related to sweet and fruity characteristics increased due to the upregulated expression of related genes. Most DEGs involved in amino acids were significantly upregulated, leading to the increase in free amino acids content. However, DEGs involved in catechins metabolism were generally downregulated during withering, and resulted in a reduction in catechins content and the accumulation of theaflavins. The same trend was observed in alpha-linolenic acid metabolism-related genes that were downregulated and enhanced the reduction in grassy aroma in black tea. The weighted gene co-expression network analysis (WGCNA) of DEGs showed that one module can be associated with more components and one component can be regulated by various modules. Our findings provide new insights into the quality formation of black tea during the withering process.
Collapse
Affiliation(s)
- Bernard Ntezimana
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuchuan Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Sujan Pathak
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Leng T, Zhang L, Ma J, Qu X, Lei B. Intrinsically bioactive multifunctional Poly(citrate-curcumin) for rapid lung injury and MRSA infection therapy. Bioact Mater 2024; 41:158-173. [PMID: 39131630 PMCID: PMC11314446 DOI: 10.1016/j.bioactmat.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulated inflammation after trauma or infection could result in the further disease and delayed tissue reconstruction. The conventional anti-inflammatory drug treatment suffers to the poor bioavailability and side effects. Herein, we developed an amphiphilic multifunctional poly (citrate-polyglycol-curcumin) (PCGC) nano oligomer with the robust anti-inflammatory activity for treating acute lung injury (ALI) and Methicillin-resistant staphylococcus aureus (MRSA) infected wound. PCGC demonstrated the sustained curcumin release, inherent photoluminescence, good cellular compatibility, hemocompatibility, robust antioxidant activity and enhanced cellular uptake. PCGC could efficiently scavenge nitrogen-based free radicals, oxygen-based free radicals, and intracellular oxygen species, enhance the endothelial cell migration and reduce the expression of pro-inflammatory factors through the NF-κB signal pathway. Combined the anti-inflammation and antioxidant properties, PCGC can shortened the inflammatory process. In animal model of ALI, PCGC was able to reduce the pulmonary edema, bronchial cell infiltration, and lung inflammation, while exhibiting rapid metabolic behavior in vivo. The MRSA-infection wound model showed that PCGC significantly reduced the expression of pro-inflammatory factors, promoted the angiogenesis and accelerated the wound healing. The transcriptome sequencing and molecular mechanism studies further demonstrated that PCGC could inhibit multiple inflammatory related pathways including TNFAIP3, IL-15RA, NF-κB. This work demonstrates that PCGC is efficient in resolving inflammation and promotes the prospect of application in inflammatory diseases as the drug-loaded therapeutic system.
Collapse
Affiliation(s)
- Tongtong Leng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Junping Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
20
|
Wang Y, Zhou J, Yang M, Zhu L, Wang F. Tea Administration Facilitates Immune Homeostasis by Modulating Host Microbiota. Nutrients 2024; 16:3675. [PMID: 39519508 PMCID: PMC11547558 DOI: 10.3390/nu16213675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tea, derived from the young leaves and buds of the Camellia sinensis plant, is a popular beverage that may influence the host microbiota. Its consumption has been shown to promote the growth of beneficial bacterial species while suppressing harmful ones. Simultaneously, host bacteria metabolize tea compounds, resulting in the production of bioactive molecules. Consequently, the health benefits associated with tea may stem from both the favorable bacteria it nurtures and the metabolites produced by these microbes. The gut microbiota plays a vital role in mediating the systemic immune homeostasis linked to tea consumption, functioning through complex pathways that involve the gut-lung, gut-brain, and gut-liver axes. Recent studies have sought to establish connections between tea, its bioactive compounds, and immune regulation via the gut microbiota. In this paper, we aim to summarize the latest research findings in this field.
Collapse
Affiliation(s)
- Yihui Wang
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Jiayu Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Min Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Liying Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.Z.); (M.Y.); (L.Z.)
| |
Collapse
|
21
|
Wu Y, Wang X, Chen L, Li Q, He J, Deng X, Xu J, Che R, Zhou J, Yuan W, Wu T, Tian J, Chen Y, Wang B. Effects of Five Different Withering Methods on the Composition and Quality of Congou Black Tea. Foods 2024; 13:3456. [PMID: 39517239 PMCID: PMC11545746 DOI: 10.3390/foods13213456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
To explore the effects of different withering methods on the quality of Congou black tea, this study focused on five different withering methods: natural withering, warm-air withering, sun-natural combined withering, sun withering, and shaking withering. Gas chromatography‒mass spectrometry (GC‒MS), high-performance liquid chromatography (HPLC), and ion-exchange chromatography techniques were used to analyze the nonvolatile and volatile components and composition of the tea. The results revealed significant differences (p < 0.05) in the contents of nonvolatile constituents including caffeine, polyphenols, soluble sugars, free amino acids and their components, theaflavins, thearubigins, and catechins among the five different withering methods, with varying degrees of correlation between these components. A total of 227 aroma compounds were detected, and significant differences in the contents of alcohols, aldehydes, and ketones were observed. A relative odor activity value (ROVA) analysis of the aroma compounds revealed that 19 compounds had an ROVA > 1. Among them, benzylaldehyde, trans-2-decenal, decanal, benzaldehyde, nonanal, hexanal, trans-linalool, and geraniol from the shaking withering method had significantly higher ROVA values than those from the other withering methods, which may be the reason for the prominent floral and fruity aroma of shaking withering. This study revealed the impact of different withering methods on the quality of Congou black tea, providing a scientific basis for the development of Congou black tea with different flavors and the improvement of Congou black tea processing techniques.
Collapse
Affiliation(s)
- Yamin Wu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Xinghua Wang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Lijiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Junjie He
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Jiayi Xu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Raoqiong Che
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Jianyun Zhou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Tianyu Wu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Juan Tian
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| | - Yaping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (X.W.); (L.C.); (J.H.); (X.D.); (J.X.); (R.C.); (J.Z.); (W.Y.); (T.W.); (J.T.)
| |
Collapse
|
22
|
Chen W, Jia R, Liu L, Lin W, Guo Z. Comparative study on dynamic in vitro digestion characteristics of lotus seed starch-EGCG complex prepared by different processing methods. Food Chem 2024; 455:139849. [PMID: 38823120 DOI: 10.1016/j.foodchem.2024.139849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To study the effect of starch-polyphenol interaction induced by different processing methods on digestion characteristics, a dynamic in vitro human gastrointestinal system was employed to investigate the digestive characteristics of lotus seed starch-epigallocatechin gallate (EGCG) complex (LS-EGCG) prepared by different processing methods. Digestion altered crystal structure, particle size, morphology, pH, starch hydrolysis, and EGCG content. Processing broke physical barriers, reducing particle size by enzyme erosion. Enzymatic hydrolysis gradually exposed EGCG, indicated by green fluorescence. Heat and high pressure treatments enhanced starch dissolution, increasing sugar accumulation and hydrolysis. However, ultrasonic-microwave and high pressure microfluidization treatments formed dense structures, decreasing hydrolysis rates. Overall, the complex formed by high pressure microfluidization showed better enzyme resistance. The results provide a scientific basis for the development of food with quality and functional properties.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Wanyi Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
23
|
Smyth A, Hankey GJ, Langhorne P, Reddin C, Ryglewicz D, Rosengren A, Xavier D, Canavan M, Oveisgharan S, Wang X, Jaramillo PL, Damasceno A, Czlonkowska A, Iversen HK, Lanas F, Yusuf S, O’Donnell M. Tea and coffee consumption and risk of acute stroke: The INTERSTROKE Study. Int J Stroke 2024; 19:1053-1063. [PMID: 38887998 PMCID: PMC11523547 DOI: 10.1177/17474930241264685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Stroke is a leading global cause of death and disability. Daily tea/coffee intake is consumed by > 50% of populations and may represent an important population-level exposure. Therefore, it is first essential that we better understand the associations between the tea/coffee intake and stroke. AIMS This research aims to generate hypotheses about the global associations between tea and coffee intake and stroke. These insights will identify interventions for stroke prevention that can be further explored using alternative study designs. METHODS INTERSTROKE is a large international matched case-control study of first stroke from 32 countries. Participants were asked "how many cups do you drink each day?" of coffee, green tea, black tea, and other tea. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between intake and stroke. RESULTS We included 13,462 cases and 13,488 controls from INTERSTROKE; mean age was 61.7 (13.4) years and 59.6% (n = 16,010) were male. Overall, 19.4% (n = 5239) did not consume tea/coffee, 47.0% (n = 12,666) consumed tea only, 14.9% (n = 4024) consumed coffee alone, and 18.6% (n = 5021) consumed both, with significant regional variations. After multivariable adjustment, there was no association between low/moderate coffee intake and stroke, but high consumption (> 4/day) was associated with higher odds of all stroke (OR = 1.37 (95% CI = 1.06-1.77)) or ischemic stroke (OR = 1.32 (95% CI = 1.00-1.74)). Tea consumption was associated with lower odds of all (OR = 0.81 (95% CI = 0.69-0.94) for highest intake) or ischemic stroke (OR = 0.81 (95% CI = 0.68-0.98) for highest intake). CONCLUSIONS High coffee consumption was associated with higher odds of all or ischemic stroke; low-moderate coffee had no association with stroke. In contrast, tea consumption was associated with lower odds of stroke. These associations suggest that individuals consider avoiding high coffee consumption (⩾ five cups/day) to impact future stroke risk. DATA ACCESS STATEMENT The design and rationale of INTERSTROKE was published previously. Individual participant data, or other documents are not available.
Collapse
Affiliation(s)
- Andrew Smyth
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Graeme J Hankey
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter Langhorne
- Academic Section of Geriatric Medicine, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | - Catriona Reddin
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | | | - Annika Rosengren
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dennis Xavier
- St John’s Medical College and Research Institute, Bangalore, India
| | - Michelle Canavan
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Shahram Oveisgharan
- RUSH Alzheimer Disease Research Center, RUSH University Medical Center, Chicago, IL, USA
| | - Xingyu Wang
- Beijing Hypertension League Institute, Beijing, China
| | - Patricio Lopez Jaramillo
- Masira Research Institute, Universidad de Santander, Bucaramanga, Colombia
- Facultad de Medicina Eugenio Espejo, Universidad UTI, Quito, Ecuador
| | | | | | | | - Fernando Lanas
- Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin O’Donnell
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| |
Collapse
|
24
|
Zhang M, Qiu Z. The impact of freeze-dried Baiyedancong-Oolong tea aqueous extract containing bioactive compounds on the activities of CYP450 enzymes, the transport capabilities of P-gp and OATs, and transcription levels in mice. Food Nutr Res 2024; 68:10605. [PMID: 39376904 PMCID: PMC11457910 DOI: 10.29219/fnr.v68.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
In this study, (-)-epigallocatechin gallate (EGCG) and caffeine extracted from freeze-dried autumn Baiyedancong Oolong tea (FBOT) were orally administered to mice for 7 consecutive days to explore the effects of BOT and its bioactive compounds on the activities and transcription levels of CYP450 enzymes, intestinal effluence transporter P-gp, and renal ingestion Organic Anion Transporters (OATs). Concurrently, EGCG and caffeine enhanced the activities of CYP3A, CYP2E1, and CYP2C37 in the liver of mice, while impairing the transport capabilities of P-gp and OATs. Reduced levels of MDR1 encoding P-gp transcription in the small intestine and renal OAT1 and OAT3 revealed that transcription was involved in the regulation of CYP450, P-gp, and OATs. The reduced transcription level of liver CYP2E1 suggested that CYP2E1 activity may have been elevated due to alternative mechanisms, but not through transcription. The absorption, metabolism, and excretion of drugs may be influenced by the daily consumption or high-dose administration of BOT and its related products, in which EGCG and caffeine may make great contributions.
Collapse
Affiliation(s)
- Miaogao Zhang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhenguo Qiu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
25
|
Zhang L, Zhou C, Zhang C, Zhang M, Guo Y. Volatilomics and Macro-Composition Analyses of Primary Wuyi Rock Teas of Rougui and Shuixian Cultivars from Different Production Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:2206. [PMID: 39204641 PMCID: PMC11359256 DOI: 10.3390/plants13162206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Wuyi Rock Tea (WRT) is cherished for its exceptional "rock flavor" and its quality shows obvious regional differences. However, the flavor characteristics of Primary Wuyi Rock Teas (PWRTs) from different production areas remain unclear. Here, the Camellia sinensis var. sinensis cv. 'Rougui' and 'Shuixian', two quintessential cultivars for making WRT, planted in Zhengyan, Banyan, at high elevations, and Waishan production areas were used to make PWRTs. We conducted a comprehensive comparison of the sensory attributes, volatile organic compounds (VOCs), and macro-compositions of PWRTs of 'Rougui' and 'Shuixian' cultivars from different producing areas. Sensory evaluation indicated that both 'Rougui' and 'Shuixian' PWRTs from Zhengyan exhibited the best flavor qualities, followed by those from Banyan, at high altitudes, and Waishan production areas. The results of the determination and analysis of VOCs showed 680 VOCs in 'Rougui' and 'Shuixian' PWRTs, and that the different production areas mainly influenced the quantitative pattern of VOCs and rarely the qualitative composition. Integrated multivariate statistical analysis methods revealed that benzyl alcohol, hotrienol, butanoic acid, 2-methyl-, hexyl ester, benzene, (2-nitroethyl)-, and geranyl isobutyrate may be the key VOCs affecting the aroma differences in PWRTs from different production areas. In addition, water-extractable substances, tea polyphenols, caffeine, and free amino acids may be the important macro-compositions that distinguish PWRTs from different production areas. The metabolite basis for differences in the flavor qualities of PWRTs across production areas was elucidated, which may be helpful for the production of high-quality WRT.
Collapse
Affiliation(s)
- Lixuan Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Mengcong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
- Tea Green Cultivation and Processing Collaborative Innovation Center, Anxi County, Quanzhou 362400, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Yang Y, Ye Z, Qin Y, Pathirana S, Araujo LD, Culley NJ, Kilmartin PA. Effects of post-fermentation addition of green tea extract for sulfur dioxide replacement on Sauvignon Blanc wine phenolic composition, antioxidant capacity, colour, and mouthfeel attributes. Food Chem 2024; 447:138976. [PMID: 38492300 DOI: 10.1016/j.foodchem.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
This study examines the feasibility of replacing SO2 in a New Zealand Sauvignon Blanc wine with a green tea extract. The treatments included the control with no preservatives (C), the addition of green tea extract at 0.1 and 0.2 g/L (T1 and T2), and an SO2 treatment at 50 mg/L (T3). Five monomeric phenolic compounds were detected in the green tea extract used for the experiment, and their concentrations ranged in the order (-)-epigallocatechin gallate > (-)-epigallocatechin > (-)-epicatechin > (-)-epicatechin gallate > gallic acid. At the studied addition rates, these green tea-derived phenolic compounds contributed to ∼70% of the antioxidant capacity (ABTS), ∼71% of the total phenolic index (TPI), and ∼ 84% of tannin concentration (MCPT) of the extract dissolved in a model wine solution. Among wine treatments, T1 and T2 significantly increased the wine's colour absorbance at 420 nm, MCPT, gallic acid and total monomeric phenolic content. TPI and ABTS were significantly higher in wines with preservatives (i.e., T2 > T1 ≅ T3 > C, p < 0.05). These variations were observed both two weeks after the treatments and again after five months of wine aging. Additionally, an accelerated browning test and a quantitative sensory analysis of wine colour and mouthfeel attributes were performed after 5 months of wine aging. When exposed to excessive oxygen and high temperature (50 °C), T1 and T2 exhibited ∼29% and 24% higher browning capacity than the control, whereas T3 reduced the wine's browning capacity by ∼20%. Nonetheless, the results from sensory analysis did not show significant variations between the treatments. Thus, using green tea extract to replace SO2 at wine bottling appears to be a viable option, without inducing a negative impact on the perceptible colour and mouthfeel attributes of Sauvignon Blanc wine.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| | - Zhijing Ye
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Yunxuan Qin
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Sreeni Pathirana
- Food Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Leandro Dias Araujo
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Neill J Culley
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
27
|
Li Y, Zhou L, Zhou W, Zhang H, Qin X, Liu G. Whey protein isolate and inulin-glycosylated conjugate affect the physicochemical properties and oxidative stability of pomegranate seed oil emulsion. Food Chem 2024; 444:138649. [PMID: 38330610 DOI: 10.1016/j.foodchem.2024.138649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Glycosylated protein was obtained by the reaction of whey protein isolate(WPI) with inulin of different polymerization degrees and was used to stabilize a pomegranate seed oil emulsion. The physicochemical and antioxidative properties of the emulsions were assessed, and the impacts of accelerated oxidation on pomegranate seed oil were examined. The interfacial tension of WPI and short-chain inulin (SCI)-glycosylated conjugate (WPI-SCI) gradually decreased with increasing glycosylation reaction time. Emulsions stabilized by WPI-SCI (72 h) were the most stable, with a thick interfacial film on the surface of the droplets. After accelerated oxidation for 72 h, WPI-SCI inhibited the oxidation of oil in the emulsion. GC-IMS results showed that the production of harmful volatile components in oil was inhibited, and the peroxide strength was less than 30 mmol/kg oil. This study contributes to understanding of stable storage of lipids.
Collapse
Affiliation(s)
- Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lian Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenhao Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China.
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| |
Collapse
|
28
|
Michel R, Hazimeh D, Saad EE, Olson SL, Musselman K, Elgindy E, Borahay MA. Common Beverage Consumption and Benign Gynecological Conditions. BEVERAGES (BASEL, SWITZERLAND) 2024; 10:33. [PMID: 38948304 PMCID: PMC11211953 DOI: 10.3390/beverages10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The purpose of this article is to review the effects of four commonly consumed beverage types-sugar-sweetened beverages (SSBs), caffeinated beverages, green tea, and alcohol-on five common benign gynecological conditions: uterine fibroids, endometriosis, polycystic ovary syndrome (PCOS), anovulatory infertility, and primary dysmenorrhea (PD). Here we outline a plethora of research, highlighting studies that demonstrate possible associations between beverage intake and increased risk of certain gynecological conditions-such as SSBs and dysmenorrhea-as well as studies that demonstrate a possible protective effect of beverage against risk of gynecological condition-such as green tea and uterine fibroids. This review aims to help inform the diet choices of those with the aforementioned conditions and give those with uteruses autonomy over their lifestyle decisions.
Collapse
Affiliation(s)
- Rachel Michel
- Department of Population, Family, and Reproductive Health, Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Eslam E. Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Sydney L. Olson
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Kelsey Musselman
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Eman Elgindy
- Department of Gynecology and Obstetrics, Zagazig University School of Medicine, Zagazig, 44519, Egypt
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
29
|
Peng X, McClements DJ, Liu X, Liu F. EGCG-based nanoparticles: synthesis, properties, and applications. Crit Rev Food Sci Nutr 2024; 65:2177-2198. [PMID: 38520117 DOI: 10.1080/10408398.2024.2328184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Bae J, Park SJ. The Combination of Oolonghomobisflavan B and Diallyl Disulfide Induces Apoptotic Cell Death via 67-kDa Laminin Receptor/Cyclic Guanosine Monophosphate in Acute Myeloid Leukemia Cells. Curr Issues Mol Biol 2024; 46:2444-2455. [PMID: 38534770 DOI: 10.3390/cimb46030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.
Collapse
Affiliation(s)
- Jaehoon Bae
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| |
Collapse
|
31
|
Hasumura T, Kinoshita K, Minegishi Y, Ota N. Combination of tea catechins and ornithine effectively activates the urea cycle: an in vitro and human pilot study. Eur J Appl Physiol 2024; 124:827-836. [PMID: 37707596 DOI: 10.1007/s00421-023-05310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).
Collapse
Affiliation(s)
- Takahiro Hasumura
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| | - Keita Kinoshita
- Health and Wellness Products Research Laboratories, Kao Corporation, Sumida, Tokyo, 131-8501, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|
32
|
Jin B, Chen H, Liu P, Wang Y, Guo Y, Wang C, Jia Y, Zou R, Niu L. Assessing the association between tea intake and risk of dental caries and periodontitis: a two-sample Mendelian randomization study. Sci Rep 2024; 14:4728. [PMID: 38413668 PMCID: PMC10899219 DOI: 10.1038/s41598-024-54860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Tea is an indispensable beverage in people's daily life. However, the relationship between tea intake and dental caries and periodontitis is controversial. We extracted datasets for tea intake and oral diseases from genome-wide association studies (GWASs) conducted by the UK Biobank and the Gene Lifestyle Interactions in Dental Endpoints consortium. We selected 38 single-nucleotide polymorphisms (SNPs) significantly associated with tea intake as instrumental variables (IVs) (P < 5.0 × 10-8). Mendelian randomization (MR) was performed to investigate the potential causality between tea intake and caries and periodontitis. Multivariable Mendelian randomization (MVMR) analyses were utilized to estimate causal effects of tea intake on risk of caries and periodontitis after adjusting for smoking, body mass index (BMI), and socioeconomic factors. The results showed that higher tea intake was suggestively associated with fewer natural teeth (β = - 0.203; 95% CI = 0.680 to 0.980; P = 0.029) and higher risk of periodontitis (OR = 1.622; 95% CI = 1.194 to 2.205; P = 0.002). After Bonferroni correction, the causality of tea intake on periodontitis remained significant. The significance of periodontitis disappeared after adjusting for the socioeconomic factors in MVMR (OR = 1.603; 95% CI = 0.964 to 2.666; P = 0.069). Tea intake had no association with risk of caries. Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. Our results provide insight into the potential relationship between tea intake and oral diseases from a dietary lifestyle perspective, which may help prevent oral diseases.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
33
|
Al-Hendy A, Segars JH, Taylor HS, González F, Siblini H, Zamah M, Alkelani H, Singh B, Flores VA, Christman GM, Johnson JJ, Huang H, Zhang H. Fibroids and unexplained infertility treatment with epigallocatechin gallate: a natural compound in green tea (FRIEND) - protocol for a randomised placebo-controlled US multicentre clinical trial of EGCG to improve fertility in women with uterine fibroids. BMJ Open 2024; 14:e078989. [PMID: 38216200 PMCID: PMC10806662 DOI: 10.1136/bmjopen-2023-078989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024] Open
Abstract
INTRODUCTION Uterine fibroids affect 30%-77% of reproductive-age women and are a significant cause of infertility. Surgical myomectomies can restore fertility, but they often have limited and temporary benefits, with postoperative complications such as adhesions negatively impacting fertility. Existing medical therapies, such as oral contraceptives, gonadotropin hormone-releasing hormone (GnRH) analogues and GnRH antagonists, can manage fibroid symptoms but are not fertility friendly. This study addresses the pressing need for non-hormonal, non-surgical treatment options for women with fibroids desiring pregnancy. Previous preclinical and clinical studies have shown that epigallocatechin gallate (EGCG) effectively reduces uterine fibroid size. We hypothesise that EGCG from green tea extract will shrink fibroids, enhance endometrial quality and increase pregnancy likelihood. To investigate this hypothesis, we initiated a National Institute of Child Health and Human Development Confirm-funded trial to assess EGCG's efficacy in treating women with fibroids and unexplained infertility. METHODS AND ANALYSIS This multicentre, prospective, interventional, randomised, double-blinded clinical trial aims to enrol 200 participants with fibroids and unexplained infertility undergoing intrauterine insemination (IUI). Participants will be randomly assigned in a 3:1 ratio to two groups: green tea extract (1650 mg daily) or a matched placebo, combined with clomiphene citrate-induced ovarian stimulation and timed IUI for up to four cycles. EGCG constitutes approximately 45% of the green tea extract. The primary outcome is the cumulative live birth rate, with secondary outcomes including conception rate, time to conception, miscarriage rate, change in fibroid volume and symptom severity scores and health-related quality of life questionnaire scores. ETHICS AND DISSEMINATION The FRIEND trial received approval from the Food and Drug adminstration (FDA) (investigational new drug number 150951), the central Institutional Review Board (IRB) at Johns Hopkins University and FRIEND-collaborative site local IRBs. The data will be disseminated at major conferences, published in peer-reviewed journals and support a large-scale clinical trial. TRIAL REGISTRATION NUMBER NCT05364008.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, USA
| | - James H Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
| | - Frank González
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, USA
| | - Musa Zamah
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, USA
| | - Hiba Alkelani
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Johns Hopkins, Baltimore, Maryland, USA
| | - Valerie A Flores
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gregory M Christman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeremy J Johnson
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hao Huang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
35
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
36
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
37
|
Li M, Feng Z, Wang F, Chen J, Fan J, Wang J, Liu Z, Yin J. Effects of brewing water on the volatile composition of tea infusions. Food Chem 2023; 429:136971. [PMID: 37516052 DOI: 10.1016/j.foodchem.2023.136971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
There is a huge demand for brewing water in tea consumption, and the sensory flavor of tea infusion is significantly affected by the water used for brewing. To investigate the impact of brewing water on the aroma of tea infusions made from Camelia senensis, the three tea infusions of green, oolong and black tea brewed by six different drinking waters were analyzed by sensory evaluation, solid-phase microextraction, gas chromatography-mass spectrometry, and chemometrics. Brewing water with high pH values (>8.10) and high TDS content (>140 ppm) resulted in a lower overall aroma acceptability for tea infusion, where HCO3-, Ca2+ and Mg2+ were key influencing ions. A total of 86, 106, and 131 volatiles were identified in green, oolong and black tea infusions, respectively, which were strongly influenced by six different brands of waters. Decanal, dimethyl sulfide, β-ionone and linalool were potent volatiles in tea aroma changes caused by brewing water.
Collapse
Affiliation(s)
- Meiqin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jieqiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
38
|
Bakun P, Mlynarczyk DT, Koczorowski T, Cerbin-Koczorowska M, Piwowarczyk L, Kolasiński E, Stawny M, Kuźmińska J, Jelińska A, Goslinski T. Tea-break with epigallocatechin gallate derivatives - Powerful polyphenols of great potential for medicine. Eur J Med Chem 2023; 261:115820. [PMID: 37776575 DOI: 10.1016/j.ejmech.2023.115820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Epigallocatechin gallate (EGCG) is a polyphenol present in green tea (Camellia sinensis), which has revealed anti-cancer effects toward a variety of cancer cells in vitro and protective potential against neurodegenerative diseases such as Alzheimer's and Parkinson's. Unfortunately, EGCG presents disappointing bioavailability after oral administration, primarily due to its chemical instability and poor absorption. Due to these limitations, EGCG is currently not used in medication, but only as a dietary supplement in the form of green tea extract. Therefore, it needs further modifications before being considered suitable for extensive medical applications. In this article, we review the scientific literature about EGCG derivatives focusing on their biological properties and potential medical applications. The most common chemical modifications of epigallocatechin gallate rely on introducing fatty acid chains or sugar molecules to its chemical structure to modify solubility. Another frequently employed procedure is based on blocking EGCG's hydroxyl groups with various substituents. Novel derivatives reveal interesting properties, of which, antioxidant, anti-inflammatory, antitumor and antimicrobial, are especially important. It is worth noting that the most promising EGCG derivatives present higher stability and activity than base EGCG.
Collapse
Affiliation(s)
- Paweł Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland.
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Magdalena Cerbin-Koczorowska
- Chair and Department of Medical Education, Poznan University of Medical Sciences, Rokietnicka 7, Poznań, 60-806, Poland; Edinburgh Medical School: Medical Education, University of Edinburgh, Chancellor's Building, EH16 4SB, Edinburgh, Scotland, United Kingdom
| | - Ludwika Piwowarczyk
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Emil Kolasiński
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Joanna Kuźmińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Anna Jelińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland.
| |
Collapse
|
39
|
Mendpara V, Garg S, Shah P, Bhavsar J, Anamika F, Patel M, Munjal RS, Gupta V, Garg N, Jain R. Is Coffee and Tea a Threat or Ally to Cardiovascular Health? Cureus 2023; 15:e49991. [PMID: 38186410 PMCID: PMC10769121 DOI: 10.7759/cureus.49991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Tea and coffee have become ingrained in our daily lives and have become the most widely consumed drinks after water. Their effects vary on an individual basis depending upon the amount of daily consumption, genetic polymorphisms, and the presence of comorbidities. Non-habitual individuals experience an initial, brief increase in blood pressure due to caffeine's vasoactive effects. Caffeine also appears to be protective against arrhythmias and heart failure. Along with having a generally cardioprotective profile, they have also demonstrated to have a favorable impact on insulin resistance and reduced risk of diabetes mellitus. Physicians often practice caution and advise patients with known cardiovascular diseases to refrain from drinking caffeine; however, studies have shown that drinking two to three cups a day has either no or some beneficial effects on both patients with or without cardiac disorders like arrhythmias. This article focuses on the effects of tea and coffee on the cardiovascular system as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Vaidehi Mendpara
- Medicine and Surgery, Government Medical College Surat, Surat, IND
| | - Shreya Garg
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Priyanshi Shah
- Internal Medicine, Narendra Modi Medical College, Ahmedabad, IND
| | - Jill Bhavsar
- Internal Medicine, Government Medical College, Baroda, IND
| | - Fnu Anamika
- Medicine, University College of Medical Sciences, New Delhi, IND
| | - Meet Patel
- Internal Medicine, Tianjin Medical University, Tianjin, CHN
| | | | - Vasu Gupta
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Nikita Garg
- Pediatrics, Southern Illinois University School of Medicine, Springfield, USA
| | - Rohit Jain
- Internal Medicine, Penn State Hershey Medical Center, Hershey, USA
| |
Collapse
|
40
|
Wiseman M, Hinks M, Hallett D, Blundell J, Sweeney E, Thorpe CM, Walling SG, Swift-Gallant A. Evidence that ovarian hormones, but not diet and exercise, contribute to the sex disparity in post-traumatic stress disorder. J Psychiatr Res 2023; 168:213-220. [PMID: 37918034 DOI: 10.1016/j.jpsychires.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Females are twice as likely as males to receive a diagnosis of post-traumatic stress disorder (PTSD). One hypothesis for this sex disparity is that ovarian hormones, including estrogen and progesterone, contribute to PTSD risk. Alternatively, sex differences in lifestyle factors, such as diet and exercise, may play a role in PTSD risk. Using data from the Atlantic Partnership for Tomorrow's Health (PATH) cohort (n = 16,899), the relationship between endogenous hormone fluctuations (e.g., menarche, pregnancy, and menopause), exogenous hormone use (e.g., hormonal contraception and hormone replacement therapy (HRT)) and lifestyle variables (diet and exercise habits, as measured by the Mediterranean Diet Adherence Screener, Healthy Eating Index, and International Physical Activity Questionnaire) with PTSD diagnosis and treatment were analyzed. While several hormonal variables, including contraceptive use, higher total number of pregnancies, younger menarche age, and having undergone menopause increased the risk of PTSD, no lifestyle variables contributed to an increased risk of PTSD diagnosis. These findings support the theory that ovarian hormones contribute to the sex-linked disparity in PTSD diagnosis.
Collapse
Affiliation(s)
- Megan Wiseman
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Meagan Hinks
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Ellen Sweeney
- Atlantic PATH, Faculty of Medicine, Dalhousie University, 5849 University Ave, Halifax, NS, B3H 4R2, Canada
| | - Christina M Thorpe
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Susan G Walling
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland, 242 Elizabeth Ave. St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
41
|
Parzhanova A, Yanakieva V, Vasileva I, Momchilova M, Dimitrov D, Ivanova P, Tumbarski Y. Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria. Life (Basel) 2023; 13:2237. [PMID: 38137839 PMCID: PMC10744543 DOI: 10.3390/life13122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
The present study examined the physicochemical, antioxidant, and antimicrobial properties of three medicinal plants: thyme (Thymus callieri Borbás ex Velen), cotton thistle (Onopordum acanthium L.), and hawthorn fruit (Crataegus monogyna Jacq.) from the Western Rhodope Mountains, Bulgaria. The first stage determined the physicochemical characteristics (moisture, ash, carbohydrates, proteins, and vitamin C) of the three herbs. The second stage investigated four types of extracts (aqueous, oil, methanolic, and ethanolic) of each herb and evaluated their total phenolic content, the presence of phenolic compounds (flavonoids and phenolic acids), their antioxidant activity, and antimicrobial properties. Thyme was characterised by the highest ash, protein, and vitamin C content (6.62%, 11.30%, and 571 mg/100 g, respectively). Hawthorn fruit showed the highest moisture and carbohydrate content (8.50% and 4.20%, respectively). The 70% ethanolic extracts of the three herbs exhibited the highest levels of phenolic compounds and, consequently, pronounced antioxidant activity, compared to the other three types of extracts. The aqueous, oil, methanolic, and ethanolic thyme extracts demonstrated the highest total phenolic content-TPC (27.20 mg GAE/g, 8.20 mg GAE/g, 31.70 mg GAE/g, and 310.00 mg GAE/g, respectively), compared to the extracts of the other two plants. These results were consistent with the highest antioxidant activity of the thyme extracts determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the oxygen radical absorbance capacity (ORAC) assay, and the hydroxyl radical averting capacity (HORAC) assay (except for the oil extract examined using the DPPH method). The results from the high-performance liquid chromatography (HPLC) analysis revealed that the flavonoid quercetin-3-ß-glucoside had the highest concentration in thyme (374.5 mg/100 g), while myricetin dominated in the cotton thistle (152.3 mg/100 g). The phenolic acid content analysis showed prevalence of rosmaric acid in the thyme (995 mg/100 g), whereas chlorogenic acid was detected in the highest concentration in the cotton thistle and hawthorn fruit (324 mg/100 g and 27.7 mg/100 g, respectively). The aqueous, methanolic, and ethanolic extracts showed moderate to high antibacterial potential but limited antifungal activity. None of the oil extracts inhibited the test microorganisms used in the study.
Collapse
Affiliation(s)
- Albena Parzhanova
- Department of Food Technologies, Institute of Food Preservation and Quality, Agricultural Academy, 154 Vasil Aprilov Blvd., 4003 Plovdiv, Bulgaria; (A.P.); (M.M.)
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Vasileva
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Maria Momchilova
- Department of Food Technologies, Institute of Food Preservation and Quality, Agricultural Academy, 154 Vasil Aprilov Blvd., 4003 Plovdiv, Bulgaria; (A.P.); (M.M.)
| | - Dimitar Dimitrov
- Department of Selection, Enology and Chemistry, Institute of Viticulture and Enology, Agricultural Academy, 1 Kala Tepe Str., 5800 Pleven, Bulgaria;
| | - Petya Ivanova
- Department of Biochemistry and Molecular Biology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| |
Collapse
|
42
|
Deng H, Yue H, Ruan R, Ye H, Li Z, Li C. Dietary Epigallocatechin-3-Gallate (EGCG) Improves Nonspecific Immune Response of Chinese Rice Field Eel ( Monopterus albus). AQUACULTURE NUTRITION 2023; 2023:6512136. [PMID: 38023985 PMCID: PMC10673671 DOI: 10.1155/2023/6512136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) has been recognized as a potential additive for aquafeeds due to its beneficial biological functions. In order to evaluate the potential application of EGCG in Chinese rice field eel (Monopterus albus), six isonitrogenous and isolipidic diets containing 0, 25, 50, 100, 200, and 400 mg/kg EGCG were formulated and were fed to Monopterus albus (M. albus) for 9 weeks. The results showed that M. albus fed diets containing 0 and 100 mg/kg EGCG presented higher weight again and specific growth rate than the other groups. Fish fed with 25, 50, and 400 mg/kg EGCG displayed lower whole-body lipid content. Serum aspartate aminotransferase (AST) concentration significantly decreased in EGCG treated groups with the exception of 100 mg/kg group. Hepatic catalase (CAT) activity and glutathione (GSH) concentration decreased as EGCG level increased while malondialdehyde (MDA) concentration showed an opposite trend. EGCG supplementation resulted in a promoted lysozyme (LZM) activity and immunoglobulin M (IgM) level in the liver of M. albus. Furthermore, transcription of three immune related genes including major histocompatibility complex (mhc-2α), hepcidin, and interleukin-8 (il-8) mRNAs was upregulated by EGCG treatment; while transcription of interleukin-6 (il-6) and nuclear factor kappa-B (nf-kb) genes was downregulated. Results also showed a linear relation between EGCG inclusion level and parameters of AST, CAT, GSH, MDA, LZM, IgM, and immune-related genes transcriptions. In summary, it could be suggested that EGCG supplementation enhanced the nonspecific immune response of the Chinese rice field eel. Based on the broken-line regression analysis of IgM, the optimal dietary EGCG supplementation for M. albus was estimated to be 109.81 mg/kg.
Collapse
Affiliation(s)
- Haichao Deng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
43
|
Kweon B, Kim DU, Oh JY, Park SJ, Bae GS. Catechin hydrate ameliorates cerulein‑induced chronic pancreatitis via the inactivation of TGF‑β/Smad2 signaling. Mol Med Rep 2023; 28:208. [PMID: 37732516 PMCID: PMC10539998 DOI: 10.3892/mmr.2023.13095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic pancreatitis (CP) is a pancreatic inflammatory disease associated with histological changes, including fibrosis, acinar cell loss and immune cell infiltration, and leads to damage of the pancreas, which results in pain, weight loss and loss of pancreas function. Catechin or catechin hydrate (CH) has antioxidant, anticancer and immune‑regulatory effects. However, unlike other catechins, the antifibrotic effects of (+)‑CH have not been widely studied in many diseases, including CP. Therefore, the anti‑fibrotic effects of (+)‑CH against CP were evaluated in the present study. To assess the prophylactic effects of CH, (+)‑CH (1, 5 or 10 mg/kg) or ethanol was administered 1 h before first cerulein (50 µg/kg) injection. To assess the therapeutic effects, (+)‑CH (5 mg/kg) or ethanol was administered after cerulein injection for one or two weeks. In both methods, cerulein was injected intraperitoneally into mice once every hour, six times a day, four times a week, for a total of three weeks, to induce CP. The data showed that (+)‑CH markedly inhibited glandular destruction and inflammation during CP. Moreover, (+)‑CH prevented pancreatic stellate cell (PSC) activation and the production of extracellular matrix components, such as fibronectin 1 and collagens, which suggested that it may act as a novel therapeutic agent. Furthermore, the mechanism and effectiveness of (+)‑CH on pancreatic fibrosis were investigated in isolated PSCs. (+)‑CH suppressed the activation of Smad2 and fibrosis factors that act through transforming growth factor‑β (TGF‑β) or platelet‑derived growth factor. These findings suggest that (+)‑CH exhibits antifibrotic effects in cerulein‑induced CP by inactivating TGF‑β/Smad2 signaling.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Jin-Young Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
44
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
45
|
Suo X, Yan X, Tan B, Pan S, Li T, Liu H, Huang W, Zhang S, Yang Y, Dong X. Effect of Tea Polyphenols, α-Lipoic Acid and Their Joint Use on the Antioxidant and Lipid Metabolism Performance of Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) Fed with High-Lipid Diets. AQUACULTURE NUTRITION 2023; 2023:1393994. [PMID: 37936718 PMCID: PMC10627718 DOI: 10.1155/2023/1393994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
This study investigated tea polyphenols (TP), α-lipoic acid (ALA) and their joint use on the antioxidant and lipid metabolic performance of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) took food with high-fat diets. Six high-lipid diets with isonitrogen (50% of dry matter) and isolipid (17% of dry value) were designed, in which a total content of 1,000 mg/kg additives were added to each group except for the control group (FL). The additives addition ratios in each group were ALA (AL), TP (PL), ALA : TP = 1 : 1 (EL), ALA : TP = 1 : 2 (OL), ALA : TP = 2 : 1 (TL). Each diet was divided into three repeat groups with 30 tails (6.84 ± 0.01 g) in each group and fed for 8 weeks. The consequences were as follows: (1) the highest weight gain rate, specific growth rate, as well as the lowest feed conversion ratio and ingestion rate were discovered in the OL team, which were opposite to the TL group. (2) The body fat content and muscle fat content in the fish oil group were the lowest (P < 0.05), while those of the TL group were the highest. (3) Serum catalase, glutathione peroxidase, total antioxidant capacity, and superoxide dismutase activities were the highest, and the content of reactive oxygen species was the lowest in the OL group. (4) The OL group has the highest hepatic lipase activity and the lowest very low-density lipoprotein content of the liver. In contrast, the TL group had the highest fatty acid synthetase (FAS) activity (P < 0.05). (5) The oil-red aspects of liver tissue displayed lipid particles in other groups were reduced to different degrees compared with FL group, and the OL group showed the best lipid-lowering effect. (6) Compared with the FL group, the relative expressions of FAS, acetyl-CoA carboxylase (acc), and apolipoprotein b-100 (apoB100) genes in the liver were decreased. The relative expressions of lipoprotein lipase (lpl) and peroxisome proliferators-activated receptors-α (pparα) genes related to lipid catabolism were increased, among which the OL group had the most significant change (P < 0.05). (7) According to the 7-day challenge test of Vibrio alginolyticus, the OL group had the highest survival rate. To sum up, both ALA and TP have positive effects on relieving the lipid metabolism disorder of hybrid grouper. If they are jointly used, adding ALA : TP in a ratio of 1 : 2 (OL) may have the best effect, and an addition ratio of 2 : 1 (TL) may inhibit the hybrid grouper growth and increase the feeding cost.
Collapse
Affiliation(s)
- Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Guangdong Engineering Technology, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
46
|
Mthembu SXH, Mazibuko-Mbeje SE, Moetlediwa MT, Muvhulawa N, Silvestri S, Orlando P, Nkambule BB, Muller CJF, Ndwandwe D, Basson AK, Tiano L, Dludla PV. Sulforaphane: A nutraceutical against diabetes-related complications. Pharmacol Res 2023; 196:106918. [PMID: 37703962 DOI: 10.1016/j.phrs.2023.106918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Marakiya T Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
47
|
Yang F, Chen C, Ni D, Yang Y, Tian J, Li Y, Chen S, Ye X, Wang L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023; 12:3315. [PMID: 37685247 PMCID: PMC10486714 DOI: 10.3390/foods12173315] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.
Collapse
Affiliation(s)
- Fan Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Chao Chen
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Derang Ni
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Yubo Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Jinhu Tian
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Yuanyi Li
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Wang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| |
Collapse
|
48
|
Jermjun K, Khumho R, Thongoiam M, Yousatit S, Yokoi T, Ngamcharussrivichai C, Nuntang S. Natural Rubber/Hexagonal Mesoporous Silica Nanocomposites as Efficient Adsorbents for the Selective Adsorption of (-)-Epigallocatechin Gallate and Caffeine from Green Tea. Molecules 2023; 28:6019. [PMID: 37630270 PMCID: PMC10458317 DOI: 10.3390/molecules28166019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) is a bioactive component of green tea that provides many health benefits. However, excessive intake of green tea may cause adverse effects of caffeine (CAF) since green tea (30-50 mg) has half the CAF content of coffee (80-100 mg). In this work, for enhancing the health benefits of green tea, natural rubber/hexagonal mesoporous silica (NR/HMS) nanocomposites with tunable textural properties were synthesized using different amine template sizes and applied as selective adsorbents to separate EGCG and CAF from green tea. The resulting adsorbents exhibited a wormhole-like silica framework, high specific surface area (528-578 m2 g-1), large pore volume (0.76-1.45 cm3 g-1), and hydrophobicity. The NR/HMS materials adsorbed EGCG more than CAF; the selectivity coefficient of EGCG adsorption was 3.6 times that of CAF adsorption. The EGCG adsorption capacity of the NR/HMS series was correlated with their pore size and surface hydrophobicity. Adsorption behavior was well described by a pseudo-second-order kinetic model, indicating that adsorption involved H-bonding interactions between the silanol groups of the mesoporous silica surfaces and the hydroxyl groups of EGCG and the carbonyl group of CAF. As for desorption, EGCG was more easily removed than CAF from the NR/HMS surface using an aqueous solution of ethanol. Moreover, the NR/HMS materials could be reused for EGCG adsorption at least three times. The results suggest the potential use of NR/HMS nanocomposites as selective adsorbents for the enrichment of EGCG in green tea. In addition, it could be applied as an adsorbent in the filter to reduce the CAF content in green tea by up to 81.92%.
Collapse
Affiliation(s)
- Kamolwan Jermjun
- Industrial Chemistry Innovation Program, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand;
| | - Rujeeluk Khumho
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Mookarin Thongoiam
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Satit Yousatit
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
| | - Toshiyuki Yokoi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Chawalit Ngamcharussrivichai
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (M.T.); (S.Y.); (C.N.)
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakdinun Nuntang
- Industrial Chemistry Innovation Program, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand;
| |
Collapse
|
49
|
Hassan HF, Tashani H, Ballouk F, Daou R, El Khoury A, Abiad MG, AlKhatib A, Hassan M, El Khatib S, Dimassi H. Aflatoxins and Ochratoxin A in Tea Sold in Lebanon: Effects of Type, Packaging, and Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6556. [PMID: 37623142 PMCID: PMC10454378 DOI: 10.3390/ijerph20166556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023]
Abstract
Tea is among the oldest and most-known beverages around the world, and it has many flavors and types. Tea can be easily contaminated in any of its production steps, especially with mycotoxins that are produced particularly in humid and warm environments. This study aims to examine the level of ochratoxin A (OTA) and total aflatoxin (AF) contamination in black and green tea sold in Lebanon, evaluate its safety compared to international standards, and assess the effect of different variables on the levels of OTA and AFs. For this, the Lebanese market was screened and all tea brands (n = 37; 24 black and 13 green) were collected twice. The Enzyme-Linked Immunoassay (ELISA) method was used to determine OTA and AFs in the samples. AFs and OTA were detected in 28 (75.7%) and 31 (88.6%) samples, respectively. The average of AFs in the positive (above detection limit: 1.75 μg/kg) samples was 2.66 ± 0.15 μg/kg, while the average of OTA in the positive (above detection limit: 1.6 μg/kg) samples was 3.74 ± 0.72 μg/kg. The mean AFs in black and green tea were 2.65 ± 0.55 and 2.54 ± 0.40 μg/kg, respectively, while for OTA, the mean levels were 3.67 ± 0.96 and 3.46 ± 1.09 μg/kg in black and green tea samples, respectively. Four brands (10.8%) contained total aflatoxin levels above the EU limit (4 μg/kg). As for OTA, all samples had OTA levels below the Chinese limit (5 μg/kg). No significant association (p > 0.05) was found between OTA and tea type, level of packaging, country of origin, country of packing, and country of distribution. However, AF contamination was significantly (p < 0.05) higher in unpacked tea, and in brands where the country of origin, packing, and distributor was in Asia. The results showed that the tea brands in Lebanon are relatively safe in terms of AFs and OTA.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Hadeel Tashani
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Farah Ballouk
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Rouaa Daou
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Mahdi Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Sami El Khatib
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon;
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Hani Dimassi
- School of Pharmacy, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
50
|
Abdelgaied MY, Abd El-Aziz MK, Amin NS, El Tayebi HM. What's your cup of tea? The role of herbal compounds in the management of multiple sclerosis. Mult Scler Relat Disord 2023; 76:104799. [PMID: 37300922 DOI: 10.1016/j.msard.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease that is characterized by a complex etiology. Efforts towards the management of MS have long been directed towards symptomatic relief, as well as the use of immune-modulatory, disease modifying therapies; however, inconsistent treatment responses still prevail, increasing the risk for disease progression. While a great deal of research attempted to unravel the complexity of treatment responses in light of epigenetic variability, parallel efforts in the direction of alternative medicine may be as paramount. Herbal compounds have long been regarded as safe and versatile options for aiding in various disorders, including neurodegenerative conditions like MS. Numerous studies have taken interest in a myriad of herbal plants for their potential benefit in alleviating some of the most common MS symptoms such as spasticity and fatigue, delaying the progression of the disease, as well as influencing the overall quality of life for MS patients. This review aims to provide a comprehensive overview of recent clinical studies examining the effects of various herbal plants on different aspects of MS, in an attempt to shed light on an important tool for aiding in the management of this complex and multifactorial disease.
Collapse
Affiliation(s)
- Mohamed Y Abdelgaied
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Nada Sherif Amin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|