1
|
Khodaee F, Zandie R, Edelman ER. Multimodal learning for mapping genotype-phenotype dynamics. NATURE COMPUTATIONAL SCIENCE 2025; 5:333-344. [PMID: 39875699 DOI: 10.1038/s43588-024-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously. We applied this approach to develop a multimodal foundation model to explore the genotype-phenotype relationship manifold for human transcriptomics at the cellular level. Analyzing this joint manifold showed a refined resolution of cellular heterogeneity, uncovered potential cross-tissue biomarkers and provided contextualized embeddings to investigate the polyfunctionality of genes shown for the von Willebrand factor (VWF) gene in endothelial cells. Overall, this study advances our understanding of the dynamic interplay between gene expression and phenotypic manifestation and demonstrates the potential of integrated genetics in uncovering new dimensions of cellular function and complexity.
Collapse
Affiliation(s)
- Farhan Khodaee
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Rohola Zandie
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine (Cardiovascular Medicine), Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Liu A, Zhou L, Huang Y, Peng D. Analysis of copy number variants detected by sequencing in spontaneous abortion. Mol Cytogenet 2024; 17:13. [PMID: 38764094 PMCID: PMC11103966 DOI: 10.1186/s13039-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The incidence of spontaneous abortion (SA), which affects approximately 15-20% of pregnancies, is the most common complication of early pregnancy. Pathogenic copy number variations (CNVs) are recognized as potential genetic causes of SA. However, CNVs of variants of uncertain significance (VOUS) have been identified in products of conceptions (POCs), and their correlation with SA remains uncertain. RESULTS Of 189 spontaneous abortion cases, trisomy 16 was the most common numerical chromosome abnormality, followed by monosomy X. CNVs most often occurred on chromosomes 4 and 8. Gene Ontology and signaling pathway analysis revealed significant enrichment of genes related to nervous system development, transmembrane transport, cell adhesion, and structural components of chromatin. Furthermore, genes within the VOUS CNVs were screened by integrating human placental expression profiles, PhyloP scores, and Residual Variance Intolerance Score (RVIS) percentiles to identify potential candidate genes associated with spontaneous abortion. Fourteen potential candidate genes (LZTR1, TSHZ1, AMIGO2, H1-4, H2BC4, H2AC7, H3C8, H4C3, H3C6, PHKG2, PRR14, RNF40, SRCAP, ZNF629) were identified. Variations in LZTR1, TSHZ1, and H4C3 may contribute to embryonic lethality. CONCLUSIONS CNV sequencing (CNV-seq) analysis is an effective technique for detecting chromosomal abnormalities in POCs and identifying potential candidate genes for SA.
Collapse
Affiliation(s)
- Anhui Liu
- Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Liyuan Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410000, China
| | - Yazhou Huang
- Department of Medical Genetics, Xiangya School of Medicine, Changde Hospital, Central South University (The First People's Hospital of Changde city), Changde, 415000, China.
| | - Dan Peng
- Hengyang Medical School, University of South China, Hengyang, 421000, China.
- Department of Medical Genetics, Xiangya School of Medicine, Changde Hospital, Central South University (The First People's Hospital of Changde city), Changde, 415000, China.
| |
Collapse
|
4
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
5
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
6
|
Galardi A, Stathopoulos C, Colletti M, Lavarello C, Russo I, Cozza R, Romanzo A, Carcaboso AM, Locatelli F, Petretto A, Munier FL, Di Giannatale A. Proteomics of Aqueous Humor as a Source of Disease Biomarkers in Retinoblastoma. Int J Mol Sci 2022; 23:ijms232113458. [PMID: 36362243 PMCID: PMC9659039 DOI: 10.3390/ijms232113458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Aqueous humor (AH) can be easily and safely used to evaluate disease-specific biomarkers in ocular disease. The aim of this study was to identify specific proteins biomarkers in the AH of retinoblastoma (RB) patients at various stages of the disease. We analyzed the proteome of 53 AH samples using high-resolution mass spectrometry. We grouped the samples according to active vitreous seeding (Group 1), active aqueous seeding (Group 2), naive RB (group 3), inactive RB (group 4), and congenital cataracts as the control (Group 5). We found a total of 889 proteins in all samples. Comparative parametric analyses among the different groups revealed three additional proteins expressed in the RB groups that were not expressed in the control group. These were histone H2B type 2-E (HISTH2B2E), InaD-like protein (PATJ), and ubiquitin conjugating enzyme E2 V1 (UBE2V1). Upon processing the data of our study with the OpenTarget Tool software, we found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and CD44 were more highly expressed in the RB groups. Our results provide a proteome database regarding AH related to RB disease that may be used as a source of biomarkers. Further prospective studies should validate our finding in a large cohort of RB patients.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Christina Stathopoulos
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Francis L. Munier
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Rashmi R, Majumdar S. Pan-Cancer Analysis Reveals the Prognostic Potential of the THAP9/THAP9-AS1 Sense-Antisense Gene Pair in Human Cancers. Noncoding RNA 2022; 8:51. [PMID: 35893234 PMCID: PMC9326536 DOI: 10.3390/ncrna8040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Human THAP9, which encodes a domesticated transposase of unknown function, and lncRNA THAP9-AS1 (THAP9-antisense1) are arranged head-to-head on opposite DNA strands, forming a sense and antisense gene pair. We predict that there is a bidirectional promoter that potentially regulates the expression of THAP9 and THAP9-AS1. Although both THAP9 and THAP9-AS1 are reported to be involved in various cancers, their correlative roles on each other's expression has not been explored. We analyzed the expression levels, prognosis, and predicted biological functions of the two genes across different cancer datasets (TCGA, GTEx). We observed that although the expression levels of the two genes, THAP9 and THAP9-AS1, varied in different tumors, the expression of the gene pair was strongly correlated with patient prognosis; higher expression of the gene pair was usually linked to poor overall and disease-free survival. Thus, THAP9 and THAP9-AS1 may serve as potential clinical biomarkers of tumor prognosis. Further, we performed a gene co-expression analysis (using WGCNA) followed by a differential gene correlation analysis (DGCA) across 22 cancers to identify genes that share the expression pattern of THAP9 and THAP9-AS1. Interestingly, in both normal and cancer samples, THAP9 and THAP9-AS1 often co-express; moreover, their expression is positively correlated in each cancer type, suggesting the coordinated regulation of this H2H gene pair.
Collapse
Affiliation(s)
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India;
| |
Collapse
|
8
|
Herchenröther A, Wunderlich TM, Lan J, Hake SB. Spotlight on histone H2A variants: From B to X to Z. Semin Cell Dev Biol 2022; 135:3-12. [PMID: 35365397 DOI: 10.1016/j.semcdb.2022.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Abstract
Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.
Collapse
Affiliation(s)
| | - Tim M Wunderlich
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus Liebig University, 35390 Giessen, Germany.
| |
Collapse
|
9
|
Bandiera R, Wagner RE, Britto-Borges T, Dieterich C, Dietmann S, Bornelöv S, Frye M. RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin. Nat Commun 2021; 12:5864. [PMID: 34620876 PMCID: PMC8497571 DOI: 10.1038/s41467-021-26083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis.
Collapse
Affiliation(s)
- Roberto Bandiera
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Rebecca E Wagner
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thiago Britto-Borges
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Michaela Frye
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Ye G, Wang L, Yang K, Wang C. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D. J Int Med Res 2021; 48:300060520964011. [PMID: 33086884 PMCID: PMC7585902 DOI: 10.1177/0300060520964011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective To investigate the role of fucoxanthin, reported to have significant anticancer effects, and histone Cluster 1 H3 Family Member D (HIST1H3D; implicated in tumorigenesis) in cervical cancer. Methods The half maximal inhibitory concentration (IC50) of fucoxanthin against HeLa and SiHa cervical cancer cells was determined. Differentially expressed genes (DEGs) in SiHa cells treated with IC50 fucoxanthin were screened by high-throughput techniques and subjected to signal enrichment. Following identification of HIST1H3D as a candidate gene, HIST1H3D-knockdown models were created via transfection with a short hairpin HIST1H3D payload. Impacts on cell proliferation, cell-cycle distribution, colony formation, and apoptosis were studied. Results The fucoxanthin IC50 was 1 445 and 1 641 µM (Hela and SiHa cells, respectively). Chip results revealed 2 255 DEGs, including 943 upregulated and 1 312 downregulated genes, in fucoxanthin-treated versus untreated SiHa cells. Disease and function analysis indicated that these DEGs are primarily associated with cancer and organismal injuries and abnormalities, and online integrated pathway analysis showed that the DEGs were mainly enriched in p53 signalling. HIST1H3D was significantly downregulated in response to fucoxanthin. Inhibition of HIST1H3D mRNA significantly reduced cell proliferation and colony formation, significantly augmented the percentage of apoptotic HeLa and SiHa cells, and cells were arrested in G0/G1 cell cycle phase. Conclusion The results suggest that HIST1H3D may be an oncogene in cervical carcinogenesis and a potential fucoxanthin target in treating cervical cancer.
Collapse
Affiliation(s)
- Guoliu Ye
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lingling Wang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Kang Yang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Caizhi Wang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Laan L, Klar J, Sobol M, Hoeber J, Shahsavani M, Kele M, Fatima A, Zakaria M, Annerén G, Falk A, Schuster J, Dahl N. DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors. Clin Epigenetics 2020; 12:9. [PMID: 31915063 PMCID: PMC6950999 DOI: 10.1186/s13148-019-0803-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. Results Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. Conclusions The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
Collapse
Affiliation(s)
- Loora Laan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | | | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Muhammad Zakaria
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
12
|
Arimura Y, Ikura M, Fujita R, Noda M, Kobayashi W, Horikoshi N, Sun J, Shi L, Kusakabe M, Harata M, Ohkawa Y, Tashiro S, Kimura H, Ikura T, Kurumizaka H. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. Nucleic Acids Res 2019; 46:10007-10018. [PMID: 30053102 PMCID: PMC6212774 DOI: 10.1093/nar/gky661] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Mutations of the Glu76 residue of canonical histone H2B are frequently found in cancer cells. However, it is quite mysterious how a single amino acid substitution in one of the multiple H2B genes affects cell fate. Here we found that the H2B E76K mutation, in which Glu76 is replaced by Lys (E76K), distorted the interface between H2B and H4 in the nucleosome, as revealed by the crystal structure and induced nucleosome instability in vivo and in vitro. Exogenous production of the H2B E76K mutant robustly enhanced the colony formation ability of the expressing cells, indicating that the H2B E76K mutant has the potential to promote oncogenic transformation in the presence of wild-type H2B. We found that other cancer-associated mutations of histones, H3.1 E97K and H2A.Z.1 R80C, also induced nucleosome instability. Interestingly, like the H2B E76K mutant, the H3.1 E97K mutant was minimally incorporated into chromatin in cells, but it enhanced the colony formation ability. In contrast, the H2A.Z.1 R80C mutant was incorporated into chromatin in cells, and had minor effects on the colony formation ability of the cells. These characteristics of histones with cancer-associated mutations may provide important information toward understanding how the mutations promote cancer progression.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of Genome Biology, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mamiko Noda
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Lin Shi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masayuki Kusakabe
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of Genome Biology, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Qureshi AA, Khan DA, Mushtaq S, Ye SQ, Xiong M, Qureshi N. δ-Tocotrienol feeding modulates gene expression of EIF2, mTOR, protein ubiquitination through multiple-signaling pathways in chronic hepatitis C patients. Lipids Health Dis 2018; 17:167. [PMID: 30031388 PMCID: PMC6054847 DOI: 10.1186/s12944-018-0804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background δ-Tocotrienol is a naturally occurring proteasome inhibitor, which has the capacity to inhibit proliferation and induce apoptosis in several cancer cells obtained from several organs of humans, and other cancer cell lines. Moreover, results of plasma total mRNAs after δ-tocotrienol feeding to hepatitis C patients revealed significant inhibition in the expression of pro-inflammatory cytokines (TNF-α, VCAM1, proteasome subunits) and induction in the expression of ICAM1 and IFN-γ after post-treatment. This down-regulation of proteasome subunits leads to autophagy, apoptosis of immune cells and several genes. The present study describes RNA-sequence analysis of plasma total mRNAs obtained from δ-tocotrienol treatment of hepatitis C patients on gene expression regulated by proteasome. Methods Pooled specimens of plasma total mRNAs of pre-dose versus post-dose of δ-tocotrienol treatment of hepatitis C patients were submitted to RNA-sequence analyses. The data based on > 1 and 8-fold expression changes of 2136 genes were uploaded into “Ingenuity Pathway Analyses (IPA)” for core analysis, which describes possible canonical pathways, upstream regulators, diseases and functional metabolic networks. Results The IPA of “molecules” indicated fold change in gene expression of 953 molecules, which covered several categories of biological biomarkers. Out of these, gene expression of 220 related to present study, 12 were up-regulated, and 208 down-regulated after δ-tocotrienol treatment. The gene expression of transcription regulators (ceramide synthase 3 and Mohawk homeobox) were up-regulated, and gene expression of 208 molecules were down-regulated, involved in several biological functions (HSP90AB1, PSMC3, CYB5R4, NDUFB1, CYP2R1, TNFRF1B, VEGFA, GPR65, PIAS1, SFPQ, GPS2, EIF3F, GTPBP8, EIF4A1, HSPA14, TLR8, TUSSC2). IPA of “causal network” indicated gene regulators (676), in which 76 down-regulated (26 s proteasomes, interleukin cytokines, and PPAR-ligand-PPA-Retinoic acid-RXRα, PPARγ-ligand-PPARγ-Retinoic acid-RARα, IL-21, IL-23) with significant P-values. The IPA of “diseases and functions” regulators (85) were involved with cAMP, STAT2, 26S proteasome, CSF1, IFNγ, LDL, TGFA, and microRNA-155-5p, miR-223, miR-21-5p. The IPA of “upstream analysis” (934) showed 57 up-regulated (mainly 38 microRNAs) and 64 gene regulators were down-regulated (IL-2, IL-5, IL-6, IL-12, IL-13, IL-15, IL-17, IL-18, IL-21, IL-24, IL-27, IL-32), interferon β-1a, interferon γ, TNF-α, STAT2, NOX1, prostaglandin J2, NF-κB, 1κB, TCF3, and also miRNA-15, miRNA-124, miRNA-218-5P with significant activation of Z-Score (P < 0.05). Conclusions This is first report describing RNA-sequence analysis of δ-tocotrienol treated plasma total mRNAs obtained from chronic hepatitis C patients, that acts via multiple-signaling pathways without any side-effects. These studies may lead to development of novel classes of drugs for treatment of chronic hepatitis C patients. Electronic supplementary material The online version of this article (10.1186/s12944-018-0804-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Dilshad A Khan
- Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP), National University of Medical Sciences, Rawalpindi, 64000, Pakistan
| | - Shahida Mushtaq
- Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP), National University of Medical Sciences, Rawalpindi, 64000, Pakistan
| | - Shui Qing Ye
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.,Division of Experimental and Translational Genetics, Department of Pediatrics, Childern's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA.,Department of Biomedical and Health Informatics, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Min Xiong
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.,Division of Experimental and Translational Genetics, Department of Pediatrics, Childern's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Nilofer Qureshi
- Department of Biomedical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.,Pharmacology/Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| |
Collapse
|
14
|
Low-dose ionizing radiation exposure represses the cell cycle and protein synthesis pathways in in vitro human primary keratinocytes and U937 cell lines. PLoS One 2018; 13:e0199117. [PMID: 29912936 PMCID: PMC6005503 DOI: 10.1371/journal.pone.0199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/03/2018] [Indexed: 01/21/2023] Open
Abstract
The effects of the high-dose ionizing radiation used in radiotherapy have been thoroughly demonstrated in vitro and in vivo. However, the effects of low-dose ionizing radiation (LDIR) such as computed tomography-guided biopsies and X-ray fluoroscopy on skin cells remain controversial. This study investigated the molecular effects of LDIR on the human primary keratinocytes (HPKs) and U937 cells, monocytes-like cell lines. These cells were exposed to 0.1 Gray (Gy) X-ray as LDIR. The modulation of transcription was assessed using a cDNA array, and the protein expression after LDIR exposure was investigated using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis at 24 hours. These effects were confirmed by immunoblotting analysis. The direct effects of LDIR on the U937 cells and HPKs and the bystander effects of irradiated HPKs on U937 cells were also investigated. LDIR downregulated c-Myc in both U937 cells and HPKs, and upregulated the p21WAF1/CIP1 protein expression in U937 cells along with the activation of TGFβ and protein phosphatase 2A (PP2A). In HPKs, LDIR downregulated the mTOR signaling with repression of S6 and 4EBP1 activation. Similar changes were observed as bystander effects of LDIR. Our findings suggest that LDIR inhibits protein synthesis and induces the cytokines activation associated with inflammation via direct and bystander effects, which might recapitulate the effects of LDIR in inflammated skin structures.
Collapse
|
15
|
Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, Cheng Y, Ma L, Yu X, Li S. Regulation of DNA replication-coupled histone gene expression. Oncotarget 2017; 8:95005-95022. [PMID: 29212286 PMCID: PMC5706932 DOI: 10.18632/oncotarget.21887] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict histone expression to S phase. Misregulation of histone gene expression leads to defects in cell cycle progression, genome stability, DNA damage response and transcriptional regulation. Here, we discussed the factors involved in histone gene regulation as well as the underlying mechanism. Understanding the histone regulation mechanism will shed lights on elucidating the side effects of certain cancer chemotherapeutic drugs and developing potential biomarkers for tumor cells.
Collapse
Affiliation(s)
- Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Junhua Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Cheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
16
|
Teng SW, Lo YS, Liu WT, Hsuan Y, Lin W. A genome-wide comparison of mesenchymal stem cells derived from human placenta and umbilical cord. Taiwan J Obstet Gynecol 2017; 56:664-671. [DOI: 10.1016/j.tjog.2017.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
|
17
|
Ponte I, Romero D, Yero D, Suau P, Roque A. Complex Evolutionary History of the Mammalian Histone H1.1-H1.5 Gene Family. Mol Biol Evol 2017; 34:545-558. [PMID: 28100789 PMCID: PMC5400378 DOI: 10.1093/molbev/msw241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
H1 is involved in chromatin higher-order structure and gene regulation. H1 has a tripartite structure. The central domain is stably folded in solution, while the N- and C-terminal domains are intrinsically disordered. The terminal domains are encoded by DNA of low sequence complexity, and are thus prone to short insertions/deletions (indels). We have examined the evolution of the H1.1-H1.5 gene family from 27 mammalian species. Multiple sequence alignment has revealed a strong preferential conservation of the number and position of basic residues among paralogs, suggesting that overall H1 basicity is under a strong purifying selection. The presence of a conserved pattern of indels, ancestral to the splitting of mammalian orders, in the N- and C-terminal domains of the paralogs, suggests that slippage may have favored the rapid divergence of the subtypes and that purifying selection has maintained this pattern because it is associated with function. Evolutionary analyses have found evidences of positive selection events in H1.1, both before and after the radiation of mammalian orders. Positive selection ancestral to mammalian radiation involved changes at specific sites that may have contributed to the low relative affinity of H1.1 for chromatin. More recent episodes of positive selection were detected at codon positions encoding amino acids of the C-terminal domain of H1.1, which may modulate the folding of the CTD. The detection of putative recombination points in H1.1-H1.5 subtypes suggests that this process may has been involved in the acquisition of the tripartite H1 structure.
Collapse
Affiliation(s)
- Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Devani Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Instituto de Biotecnología y de Biomedicina (IBB) y Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 2017; 18:299-314. [DOI: 10.1038/nrm.2016.166] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Rui Y, Peng WJ, Wang M, Wang Q, Liu ZL, Chen YQ, Huang LN. HIST1H3D: A promising therapeutic target for lung cancer. Int J Oncol 2017; 50:815-822. [PMID: 28112369 DOI: 10.3892/ijo.2017.3856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
HIST1H3D gene encodes histone H3.1 and is involved in gene-silencing and heterochromatin formation. HIST1H3D expression is upregulated in primary gastric cancer tissue. In this study, we explored the effects of HIST1H3D expression on lung cancer, and its mechanisms. HIST1H3D expression was measured by immunohistochemistry and RT-PCR in lung cancer tissues and human lung cancer cell lines. Cell proliferation was assessed by MTT assay. Flow cytometric analysis was used to determine cell cycle distribution and apoptosis. Levels of related proteins were detected by western blotting. Bioinformatics analysis was performed to investigate related signaling pathways. cDNA microarray analysis was performed to identify differentially expressed genes following HIST1H3D knockdown. HIST1H3D expression was upregulated in lung cancer tissue samples and the H1299 human lung cancer cell line (P<0.01). Regulation of HIST1H3D expression in nucleus of cells in lung cancer tissues was significant associated with tumor stage (P=0.02) and lymph node metastases (P=0.04). Downregulation of HIST1H3D expression led to suppression of proliferation and colony forming ability, cell cycle arrest at the G0/G1 phase, and promotion of cell apoptosis. The microarray data revealed 522 genes that were differentially expressed after HIST1H3D knockdown in H1299 cells. These genes were shown to be linked to numerous pathways, including the cell cycle, p53 signaling, and MCM. Western blot analysis confirmed upregulated expression of the THBS1 and TP53I3 genes, and downregulated expression of the CDK6, CDKN1 and CCNE2 genes. In conclusion, our results suggest that HIST1H3D is highly expressed in lung cancer cell lines and tissues. Furthermore, HIST1H3D may be important in cell proliferation, apoptosis and cell cycle progression, and is implicated as a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yan Rui
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| | - Wen-Jia Peng
- Department of Epidemiology and Health Statistics, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ming Wang
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| | - Qian Wang
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| | - Zi-Li Liu
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| | - Li-Nian Huang
- Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
20
|
Ortiz JF, Rokas A. CTDGFinder: A Novel Homology-Based Algorithm for Identifying Closely Spaced Clusters of Tandemly Duplicated Genes. Mol Biol Evol 2016; 34:215-229. [DOI: 10.1093/molbev/msw227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
21
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Abstract
Epigenetic reprogramming is necessary in somatic cell nuclear transfer (SCNT) embryos in order to erase the differentiation-associated epigenetic marks of donor cells. However, such epigenetic memories often persist throughout the course of clonal development, thus decreasing cloning efficiency. Here, we explored reprogramming-refractory regions in bovine SCNT blastocyst transcriptomes. We observed that histone genes residing in the 1.5 Mb spanning the cow HIST1 cluster were coordinately downregulated in SCNT blastocysts. In contrast, both the nonhistone genes of this cluster, and histone genes elsewhere remained unaffected. This indicated that the downregulation was specific to HIST1 histone genes. We found that, after trichostatin A treatment, HIST1 histone genes were derepressed, and DNA methylation at their promoters was decreased to the level of in vitro fertilization embryos. Therefore, our results indicate that the reduced expression of HIST1 histone genes is a consequence of poor epigenetic reprogramming in SCNT blastocysts.
Collapse
|
23
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
24
|
Yin HK, Li XY, Jiang ZG, Zhou MD. Progress in neuregulin/ErbB signaling and chronic heart failure. World J Hypertens 2015; 5:63-73. [DOI: 10.5494/wjh.v5.i2.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure is one of the leading causes of death today. It is a complex clinical syndrome in which the heart has a reduced contraction ability and decreased viable myocytes. Novel approaches to the clinical management of heart failure have been achieved through an understanding of the molecular pathways necessary for normal heart development. Neuregulin-1 (NRG-1) has emerged as a potential therapeutic target based on the fact that mice null for NRG-1 or receptors mediating its activity, ErbB2 and ErbB4, are embryonic lethal and exhibit severe cardiac defects. Preclinical studies performed with animal models of heart failure demonstrate that treatment with NRG-1 significantly improves heart function and survival. Clinical data further support NRG-1 as a promising drug candidate for the treatment of cardiac dysfunction in patients. Recent studies have revealed the mechanism underlying the therapeutic effects of NRG-1/ErbB signaling in the treatment of heart failure. Through activation of upstream signaling molecules such as phosphoinositide 3-kinase, mitogen-activated protein kinase, and focal adhesion kinase, NRG-1/ErbB pathway activation results in increased cMLCK expression and enhanced intracellular calcium cycling. The former is a regulator of the contractile machinery, and the latter triggers cell contraction and relaxation. In addition, NRG-1/ErbB signaling also influences energy metabolism and induces epigenetic modification in cardiac myocytes in a way that more closely resembles healthy heart. These observations reveal potentially new treatment options for heart failure.
Collapse
|
25
|
Annunziato AT. Assembling chromatin: the long and winding road. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:196-210. [PMID: 24459722 DOI: 10.1016/j.bbagrm.2011.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been over 35 years since the acceptance of the "chromatin subunit" hypothesis, and the recognition that nucleosomes are the fundamental repeating units of chromatin fibers. Major subjects of inquiry in the intervening years have included the steps involved in chromatin assembly, and the chaperones that escort histones to DNA. The following commentary offers an historical perspective on inquiries into the processes by which nucleosomes are assembled on replicating and nonreplicating chromatin. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
26
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
27
|
Transcriptional events during the recovery from MRSA lung infection: a mouse pneumonia model. PLoS One 2013; 8:e70176. [PMID: 23936388 PMCID: PMC3731344 DOI: 10.1371/journal.pone.0070176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging threat to human health throughout the world. Rodent MRSA pneumonia models mainly focus on the early innate immune responses to MRSA lung infection. However, the molecular pattern and mechanisms of recovery from MRSA lung infection are largely unknown. In this study, a sublethal mouse MRSA pneumonia model was employed to investigate late events during the recovery from MRSA lung infection. We compared lung bacterial clearance, bronchoalveolar lavage fluid (BALF) characterization, lung histology, lung cell proliferation, lung vascular permeability and lung gene expression profiling between days 1 and 3 post MRSA lung infection. Compared to day 1 post infection, bacterial colony counts, BALF total cell number and BALF protein concentration significantly decreased at day 3 post infection. Lung cDNA microarray analysis identified 47 significantly up-regulated and 35 down-regulated genes (p<0.01, 1.5 fold change [up and down]). The pattern of gene expression suggests that lung recovery is characterized by enhanced cell division, vascularization, wound healing and adjustment of host adaptive immune responses. Proliferation assay by PCNA staining further confirmed that at day 3 lungs have significantly higher cell proliferation than at day 1. Furthermore, at day 3 lungs displayed significantly lower levels of vascular permeability to albumin, compared to day 1. Collectively, this data helps us elucidate the molecular mechanisms of the recovery after MRSA lung infection.
Collapse
|
28
|
Dhadi SR, Deshpande A, Driscoll K, Ramakrishna W. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5'-untranslated regions. Gene 2013; 526:400-10. [PMID: 23756196 DOI: 10.1016/j.gene.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Bidirectional promoters are defined as those that regulate adjacent genes organized in a divergent fashion (head to head orientation) and separated by <1 kb. In order to dissect bidirectional promoter activity in a model plant, deletion analysis was performed for seven rice promoters using promoter-reporter gene constructs, which identified three promoters to be bidirectional. Regulatory elements located in or close to the 5'-untranslated regions (UTR) of one of the genes (divergent gene pair) were found to be responsible for their bidirectional activity. DNA footprinting analysis identified unique protein binding sites in these promoters. Deletion/alteration of these motifs resulted in significant loss of expression of the reporter genes on either side of the promoter. Changes in the motifs at both the positions resulted in a remarkable decrease in bidirectional activity of the reporter genes flanking the promoter. Based on our results, we propose a novel mechanism for the bidirectionality of rice bidirectional promoters.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
29
|
H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 2012; 19:930-7. [PMID: 22885324 DOI: 10.1038/nsmb.2356] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
Histone gene transcription is actively downregulated after completion of DNA synthesis to avoid overproduction. However, the precise mechanistic details of the cessation of histone mRNA synthesis are not clear. We found that histone H2B phosphorylation at Tyr37 occurs upstream of histone cluster 1, Hist1, during the late S phase. We identified WEE1 as the kinase that phosphorylates H2B at Tyr37. Loss of expression or inhibition of WEE1 kinase abrogated H2B Tyr37 phosphorylation with a concomitant increase in histone transcription in yeast and mammalian cells. H2B Tyr37 phosphorylation excluded binding of the transcriptional coactivator NPAT and RNA polymerase II and recruited the histone chaperone HIRA upstream of the Hist1 cluster. Taken together, our data show a previously unknown and evolutionarily conserved function for WEE1 kinase as an epigenetic modulator that marks chromatin with H2B Tyr37 phosphorylation, thereby inhibiting the transcription of multiple histone genes to lower the burden on the histone mRNA turnover machinery.
Collapse
|
30
|
Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SWL, Cross GAM, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012; 5:7. [PMID: 22650316 PMCID: PMC3380720 DOI: 10.1186/1756-8935-5-7] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 12/02/2022] Open
Abstract
Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jung N, Won JK, Kim BH, Suh KS, Jang JJ, Kang GH. Pharmacological unmasking microarray approach-based discovery of novel DNA methylation markers for hepatocellular carcinoma. J Korean Med Sci 2012; 27:594-604. [PMID: 22690089 PMCID: PMC3369444 DOI: 10.3346/jkms.2012.27.6.594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/23/2012] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is one of the main epigenetic mechanisms and hypermethylation of CpG islands at tumor suppressor genes switches off these genes. To find novel DNA methylation markers in hepatocellular carcinoma (HCC), we performed pharmacological unmasking (treatment with 5-aza-2'-deoxycytidine or trichostatin A) followed by microarray analysis in HCC cell lines. Of the 239 promoter CpG island loci hypermethylated in HCC cell lines (as revealed by methylation-specific PCR), 221 loci were found to be hypermethylated in HCC or nonneoplastic liver tissues. Thirty-three loci showed a 20% higher methylation frequency in tumors than in adjacent nonneoplastic tissues. Correlation of individual cancer-related methylation markers with clinicopathological features of HCC patients (n = 95) revealed that the number of hypermethylated genes in HCC tumors was higher in older than in younger patients. Univariate and multivariate survival analysis revealed that the HIST1H2AE methylation status is closely correlated with the patient's overall survival (P = 0.022 and P = 0.010, respectively). In conclusion, we identified 221 novel DNA methylation markers for HCC. One promising prognostic marker, HIST1H2AE, should be further validated in the prognostication of HCC patients.
Collapse
Affiliation(s)
- Namhee Jung
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Baek-Hui Kim
- Department of General Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Suk Suh
- Department of Pathology, Korea University School of Medicine, Seoul, Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is mediated by heterochromatin. There is a plethora of information regarding the roles of histone residues in transcriptional silencing, but exactly how histone residues contribute to heterochromatin structure is not resolved. We address this question by testing the effects of a series of histone H3 and H4 mutations involving residues in their aminoterminal tails, on the solvent-accessible and lateral surfaces of the nucleosome, and at the interface of the H3/H4 tetramer and H2A/H2B dimer on heterochromatin structure and transcriptional silencing. The general state, stability, and conformational heterogeneity of chromatin are examined with a DNA topology-based assay, and the primary chromatin structure is probed by micrococcal nuclease. We demonstrate that the histone mutations differentially affect heterochromatin. Mutations of lysine 16 of histone H4 (H4-K16) and residues in the LRS (loss of rDNA silencing) domain of nucleosome surface markedly alter heterochromatin structure, supporting the notion that H4-K16 and LRS play key roles in heterochromatin formation. Deletion of the aminoterminal tail of H3 moderately alters heterochromatin structure. Interestingly, a group of mutations in the globular domains of H3 and H4 that abrogate or greatly reduce transcriptional silencing increase the conformational heterogeneity and/or reduce the stability of heterochromatin without affecting its overall structure. Surprisingly, yet another series of mutations abolish or reduce silencing without significantly affecting the structure, stability, or conformational heterogeneity of heterochromatin. Therefore, histone residues may contribute to the structure, stability, conformational heterogeneity, or other yet-to-be-characterized features of heterochromatin important for transcriptional silencing.
Collapse
|
33
|
Uwanogho DA, Yasin SA, Starling B, Price J. The intergenic region between the Mouse Recql4 and Lrrc14 genes functions as an evolutionary conserved bidirectional promoter. Gene 2009; 449:103-17. [PMID: 19720120 DOI: 10.1016/j.gene.2009.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
Mammalian genomes are highly complex, with neighbouring genes arranged in divergent, convergent, tandem, antisense, and interleaving fashions. Despite the vast genomic space, a substantial portion of human genes (approximately 10%) are arranged in a divergent, head-to-head fashion and controlled by bidirectional promoters. Here we define a small core bidirectional promoter that drives expression of the mouse genes Recql4, on one strand, and Lrrc14; a novel member of the LRR gene family, on the opposite strand. Regulation of Lrrc14 expression is highly complex, involving multiple promoters' and alternative splicing. Expression of this gene is predominately restricted to neural tissue during embryogenesis and is expressed in a wide range of tissues in the adult.
Collapse
Affiliation(s)
- D A Uwanogho
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour & MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
34
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions? Biol Chem 2008; 389:333-43. [PMID: 18208346 DOI: 10.1515/bc.2008.037] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails. These tails are moderately conserved among species, but differ among variants, suggesting a specific function for each H1 variant. Due to compensatory mechanisms and to the lack of proper tools, it has been very difficult to study the biological role of individual variants in chromatin-mediated processes. Our knowledge about H1 variants is indeed limited, and in vitro and in vivo observations have often been contradictory. Therefore, H1 variants were considered to be functionally redundant. However, recent knockout studies and biochemical analyses in different organisms have revealed exciting new insights into the specificity and mechanisms of actions of the H1 family members. Here, we collect and compare the available literature about H1 variants and discuss possible specific roles that challenge the concept of H1 being a mere structural component of chromatin and a general repressor of transcription.
Collapse
Affiliation(s)
- Annalisa Izzo
- Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | |
Collapse
|
36
|
Early Evolution of Histone Genes: Prevalence of an ‘Orphon’ H1 Lineage in Protostomes and Birth-and-Death Process in the H2A Family. J Mol Evol 2008; 66:505-18. [DOI: 10.1007/s00239-008-9109-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/17/2008] [Accepted: 04/10/2008] [Indexed: 11/26/2022]
|
37
|
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 2007; 8:424-36. [PMID: 17486122 DOI: 10.1038/nrg2026] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing that most mammalian genes do not conform to the simple model in which a TATA box directs transcription from a single defined nucleotide position. In fact, most genes have multiple promoters, within which there are multiple start sites, and alternative promoter usage generates diversity and complexity in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing and understanding transcriptional control networks.
Collapse
Affiliation(s)
- Albin Sandelin
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Su X, Jacob NK, Amunugama R, Lucas DM, Knapp AR, Ren C, Davis ME, Marcucci G, Parthun MR, Byrd JC, Fishel RA, Freitas MA. Liquid chromatography mass spectrometry profiling of histones. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850:440-54. [PMID: 17254850 PMCID: PMC2694509 DOI: 10.1016/j.jchromb.2006.12.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/08/2006] [Accepted: 12/17/2006] [Indexed: 11/25/2022]
Abstract
Here we describe the use of reverse-phase liquid chromatography mass spectrometry (RPLC-MS) to simultaneously characterize variants and post-translationally modified isoforms for each histone. The analysis of intact proteins significantly reduces the time of sample preparation and simplifies data interpretation. LC-MS analysis and peptide mass mapping have previously been applied to identify histone proteins and to characterize their post-translational modifications. However, these studies provided limited characterization of both linker histones and core histones. The current LC-MS analysis allows for the simultaneous observation of all histone PTMs and variants (both replacement and bulk histones) without further enrichment, which will be valuable in comparative studies. Protein identities were verified by the analysis of histone H2A species using RPLC fractionation, AU-PAGE separation and nano-LC-MS/MS.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Chemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Naduparambil K. Jacob
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Ravindra Amunugama
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - David M. Lucas
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Amy R. Knapp
- Department of Molecular and Cellular Biochemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Chen Ren
- Department of Chemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Melanie E. Davis
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Guido Marcucci
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Mark R. Parthun
- Department of Molecular and Cellular Biochemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - John C. Byrd
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Richard A. Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| |
Collapse
|
39
|
Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RCT, Shipp MA. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 2006; 26:5348-59. [PMID: 16809771 PMCID: PMC1592708 DOI: 10.1128/mcb.02351-05] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL1 is a transcription modulator that is overexpressed in chemoresistant, diffuse large B-cell lymphomas (DLBCLs). BAL1 complexes with a recently described DELTEX family member termed BBAP. Herein, we characterized BAL1 and BBAP expression in primary DLBCL subtypes defined by their comprehensive transcriptional profiles. BAL1 and BBAP were most abundant in lymphomas with a brisk host inflammatory response, designated host response (HR) tumors. Although these DLBCLs include significant numbers of tumor-infiltrating lymphocytes and interdigitating dendritic cells, BAL1 and BBAP were expressed primarily by malignant B cells, prompting speculation that the genes might be induced by host-derived inflammatory mediators such as gamma interferon (IFN-gamma). In fact, IFN-gamma induced BAL1 and BBAP expression in DLBCL cell lines; doxycycline-induced BAL1 also increased the expression of multiple IFN-stimulated genes, directly implicating BAL1 in an IFN signaling pathway. We show that BAL1 and BBAP are located on chromosome 3q21 in a head-to-head orientation and are regulated by a IFN-gamma-responsive bidirectional promoter. BBAP regulates the subcellular localization of BAL1 by a dynamic shuttling mechanism, highlighting the functional requirement for coordinated BBAP and BAL1 expression. IFN-gamma-induced BAL1/BBAP expression contributes to the molecular signature of HR DLBCLs and highlights the interplay between the inflammatory infiltrate and malignant B cells in these tumors.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 3/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Janus Kinase 2
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutation
- Neoplasm Proteins/genetics
- Poly(ADP-ribose) Polymerases
- Promoter Regions, Genetic
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Recombinant Proteins
- Subcellular Fractions/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
Collapse
|
40
|
Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL, Cook RG, Mizzen CA, Annunziato AT. Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 2006; 281:9287-96. [PMID: 16464854 DOI: 10.1074/jbc.m512956200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Histone posttranslational modifications that accompany DNA replication, nucleosome assembly, and H2A/H2B exchange were examined in human tissue culture cells. Through microsequencing analysis and chromatin immunoprecipitation, it was found that a subset of newly synthesized H3.2/H3.3 is modified by acetylation and methylation at sites that correlate with transcriptional competence. Immunoprecipitation experiments suggest that cytosolic predeposition complexes purified from cells expressing FLAG-H4 contain H3/H4 dimers, not tetramers. Studies of the deposition of newly synthesized H2A/H2B onto replicating and nonreplicating chromatin demonstrated that H2A/H2B exchange takes place in chromatin regions that contain acetylated H4; however, there is no single pattern of H4 acetylation that accompanies exchange. H2A/H2B exchange is also largely independent of the deposition of replacement histone variant, H3.3. Finally, immunoprecipitation of nucleosomes replicated in the absence of de novo nucleosome assembly showed that histone modifications do not prevent the transfer of parental histones to newly replicated DNA and thus have the potential to serve as means of epigenetic inheritance. Our experiments provide an in-depth analysis of the "histone code" associated with chromatin replication and dynamic histone exchange in human cells.
Collapse
Affiliation(s)
- Laura J Benson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Montes de Oca R, Lee KK, Wilson KL. Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J Biol Chem 2005; 280:42252-62. [PMID: 16203725 DOI: 10.1074/jbc.m509917200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barrier to autointegration factor (BAF) is an essential conserved double-stranded DNA-binding protein in metazoans. BAF binds directly to LEM domain nuclear proteins (e.g. LAP2, Emerin, and MAN1), lamin A, homeodomain transcription factors, and human immunodeficiency virus type 1-encoded proteins. BAF influences higher order chromatin structure and is required to assemble nuclei. BAF also facilitates retroviral preintegration complex insertion into target DNA in vitro, through unknown mechanisms. We report that BAF binds directly and selectively to linker histone H1.1 (among three subtypes tested) and core histone H3 with affinities of approximately 700 nm and approximately 100-200 nm, respectively, in vitro and in vivo. Mutations at the bottom and top surfaces of the BAF dimer disrupted or enhanced, respectively, this binding and affected H1 and H3 similarly. Biochemical studies showed that C-terminal residues 108-215 of histone H1.1 and the N-terminal tail plus helix alphaN in the core of histone H3.1 were each necessary and sufficient to bind BAF. Based on its interactions with histones and DNA, we propose BAF might bind nucleosomes in vivo.
Collapse
Affiliation(s)
- Rocío Montes de Oca
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
42
|
Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Ausió J, Sánchez L, Méndez J. Common evolutionary origin and birth-and-death process in the replication-independent histone H1 isoforms from vertebrate and invertebrate genomes. J Mol Evol 2005; 61:398-407. [PMID: 16082565 DOI: 10.1007/s00239-004-0328-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/12/2005] [Indexed: 12/01/2022]
Abstract
The H1 histone multigene family shows the greatest diversity of isoforms among the five histone gene families, including replication-dependent (RD) and replication-independent (RI) genes, according to their expression patterns along the cell cycle and their genomic organization. Although the molecular characterization of the RI isoforms has been well documented in vertebrates, similar information is lacking in invertebrates. In this work we provide evidence for a polyadenylation signature in the Mytilus "orphon" H1 genes similar to the polyadenylation characteristic of RI H1 genes. These mussel genes, together with the sea urchin H1delta genes, are part of a lineage of invertebrate "orphon" H1 genes that share several control elements with vertebrate RI H1 genes. These control elements include the UCE element, H1-box and H4-box. We provide evidence for a functional evolution of vertebrate and invertebrate RI H1 genes, which exhibit a clustering pattern by type instead of by species, with a marked difference from the somatic variants. In addition, these genes display an extensive silent divergence at the nucleotide level which is always significantly larger than the nonsilent. It thus appears that RI and RD H1 isoforms display similar long-term evolutionary patterns, best described by the birth-and-death model of evolution. Notably, this observation is in contrast with the theoretical belief that clustered RD H1 genes evolve in a concerted manner. The split of the RI group from the main RD group must therefore have occurred before the divergence between vertebrates and invertebrates about 815 million years ago. This was the result of the transposition of H1 genes to solitary locations in the genome.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Campus de A Zapateira s/n, E-15071, A Coruña, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Koessler H, Kahle J, Bode C, Doenecke D, Albig W. Human replication-dependent histone H3 genes are activated by a tandemly arranged pair of two CCAAT boxes. Biochem J 2005; 384:317-26. [PMID: 15320874 PMCID: PMC1134115 DOI: 10.1042/bj20040502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have analysed the transcriptional regulation of the human histone H3 genes using promoter deletion series, scanning mutagenesis, specific mutagenesis and electrophoretic mobility-shift assay experiments. The promoters of five of the six examined histone H3 genes showed near-maximal activity at lengths of 133-227 bp: H3/d 198 bp, H3/h 147 bp, H3/k 133 bp, H3/m 227 bp, H3/n 140 bp (exception H3/i). To search for functional cis-elements within these regions, we performed scanning mutagenesis of the two histone H3 promoters H3/k and H3/m. Mutagenesis revealed that the functional framework of the histone H3 promoters consists of a TATA box and two tandemly arranged CCAAT boxes in relatively fixed positions. Alterations of the distance between the CCAAT boxes and of the distance between the CCAAT boxes and the TATA box resulted in significant loss of activity. In electrophoretic mobility-shift assay experiments, the factor CBF (CCAAT-binding factor)/NF-Y (nuclear factor-Y) bound to isolated CCAAT boxes of the H3/k promoter. This suggests that an initiation complex is formed on the histone H3 promoter that has a defined structure and limited flexibility, consisting of two molecules of CBF/NF-Y and further (general or specific) transcription factors.
Collapse
Affiliation(s)
- Heiner Koessler
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Joerg Kahle
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Christa Bode
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Detlef Doenecke
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Werner Albig
- Institut für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Grigoryev SA, Nikitina T, Pehrson JR, Singh PB, Woodcock CL. Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence. J Cell Sci 2004; 117:6153-62. [PMID: 15564378 DOI: 10.1242/jcs.01537] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Quiescent lymphocytes have small nuclei, filled with masses of facultative heterochromatin. Upon receiving mitogenic signals, these cells undergo nuclear enlargement, chromatin decondensation, the reactivation of cell proliferation, and changes in the intranuclear positioning of key genes. We examined the levels and intranuclear localization of major histone modifications and non-histone heterochromatin proteins in quiescent and reactivated mouse spleen lymphocytes. Dramatic and selective changes in localization of two heterochromatin-associated proteins, the histone variant macroH2A and HP1α occurred during lymphocyte reactivation. Reciprocal changes in the locations of these two proteins were observed in activated lymphocytes and cultured mouse fibroblasts induced into quiescence. We also describe a new apocentric nuclear compartment with a unique set of histone modifications that occurs as a zone of chromatin surrounding centromeric heterochromatin in differentiated lymphocytes. It is within this zone that the most significant changes occur in the transition from proliferation to quiescence. Our results suggest that constitutive centromeric heterochromatin plays an active role in cell differentiation and reactivation.
Collapse
Affiliation(s)
- Sergei A Grigoryev
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
45
|
Eirín-López JM, Fernanda Ruiz M, González-Tizón AM, Martínez A, Sánchez L, Méndez J. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with "orphon" features. J Mol Evol 2004; 58:131-44. [PMID: 15042333 DOI: 10.1007/s00239-003-2531-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 07/21/2003] [Indexed: 11/30/2022]
Abstract
The present work represents the first characterization of a clustered histone repetitive unit containing an H1 gene in a bivalve mollusk. To complete the knowledge on the evolutionary history of the histone multigene family in invertebrates, we undertake its characterization in five mussel Mytilus species, as an extension of our previous work on the H1 gene family. We report the quintet H4-H2B-H2A-H3-H1 as the major organization unit in the genome of Mytilus galloprovincialis with two 5S rRNA genes with interspersed nontranscribed spacer segments linked to the unit, which is not justified by their cotranscription with histone genes. Surprisingly, 3' UTR regions of histone genes show two different mRNA termination signals, a stem-loop and a polyadenylation signal, both related to the evolution of histone gene expression patterns throughout the cell cycle. The clustered H1 histones characterized share essential features with "orphon" H1 genes, suggesting a common evolutionary origin for both histone subtypes which is supported by the reconstructed phylogeny for H1 genes. The characterization of histone genes in four additional Mytilus species revealed the presence of strong purifying selection acting among the members of the family. The chromosomal location of most of the core histone genes studied was identified by FISH close to telomeric regions in M. galloprovincialis. Further analysis on nucleotide variation would be necessary to assess if H1 proteins evolve according to the birth-and-death model of evolution and if the effect of the strong purifying selection maintaining protein homogeneity could account for the homologies detected between clustered and "orphon" variants.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Campus de A Zapateira s/n, E-15071-A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky A. Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 2004; 84:745-56. [PMID: 15475252 DOI: 10.1016/j.ygeno.2004.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Testis-specific histones are synthesized and accumulated at specific stages of mammalian spermatogenesis. Their proposed functions range from facilitation of the replacement of somatic histones by protamines to epigenetic control of gene transcription. Several testis histone variants were characterized in mouse and rat; however, few are known in humans. Here we report the identification and characterization of a novel human histone 2B gene (TH2B-175) located at Xq22.2, which encodes a highly divergent H2B variant. The TH2B-175 gene contains two introns and is transcribed exclusively in testis, where the spliced polyadenylated mRNA was detected. Genomic PCR, Southern blot analysis, and BLAST-based searches indicate that TH2B-175 evolved in the primate lineage or has been lost in rodents. In transfected Chinese hamster cells, GFP-tagged TH2B-175 targeted to large fluorescent bodies that partially colocalize with the interstitial telomeric blocks. Therefore, TH2B-175 may have telomere-associated functions and participate in the telomere-binding complex in the human sperm [1].
Collapse
Affiliation(s)
- Dmitri Churikov
- The Jones Institute for Reproductive Medicine, EVMS, Norfolk, VA 23507, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Orchel J, Slowinski J, Mazurek U, Wilczok T. H3 mRNA level as a new proliferative marker in astrocytomas. Biochim Biophys Acta Mol Basis Dis 2004; 1689:42-6. [PMID: 15158912 DOI: 10.1016/j.bbadis.2004.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/25/2003] [Accepted: 01/22/2004] [Indexed: 11/29/2022]
Abstract
Replication-dependent H3.1 and H3.2 histones are encoded by 11 genes. The H3 mRNA levels in brain astrocytomas using real-time RT-PCR assay was examined. The sequence of primers and probe used in amplification was designed basing on the reference sequence GenBank accession no. The H3 mRNA levels correlated with tumor grade (R=0.56, P=0.0012), Ki-67 proliferative antigen labeling index (R=0.58, P=0.0008) and patient survival time (R=-0.50, P=0.005), discriminating low-grade and high-grade tumors. Quantification of H3 mRNA with real-time RT-PCR using the proposed pair of primers may supplement classic proliferative tests and predictive factors in brain astrocytomas.
Collapse
Affiliation(s)
- Joanna Orchel
- Department of Molecular Biology, Medical University of Silesia, Narcyzow 1, 41-206, Sosnowiec, Poland
| | | | | | | |
Collapse
|
48
|
Eirín-López JM, González-Tizón AM, Martínez A, Méndez J. Birth-and-Death Evolution with Strong Purifying Selection in the Histone H1 Multigene Family and the Origin of orphon H1 Genes. Mol Biol Evol 2004; 21:1992-2003. [PMID: 15254261 DOI: 10.1093/molbev/msh213] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histones are small basic nuclear proteins with critical structural and functional roles in eukaryotic genomes. The H1 multigene family constitutes a very interesting histone class gathering the greatest number of isoforms, with many different arrangements in the genome, including clustered and solitary genes, and showing replication-dependent (RD) or replication-independent (RI) expression patterns. The evolution of H1 histones has been classically explained by concerted evolution through a rapid process of interlocus recombination or gene conversion. Given such intriguing features, we have analyzed the long-term evolutionary pattern of the H1 multigene family through the evaluation of the relative importance of gene conversion, point mutation, and selection in generating and maintaining the different H1 subtypes. We have found the presence of an extensive silent nucleotide divergence, both within and between species, which is always significantly greater than the nonsilent variation, indicating that purifying selection is the major factor maintaining H1 protein homogeneity. The results obtained from phylogenetic analysis reveal that different H1 subtypes are no more closely related within than between species, as they cluster by type in the topologies, and that both RD and RI H1 variants follow the same evolutionary pattern. These findings suggest that H1 histones have not been subject to any significant effect of interlocus recombination or concerted evolution. However, the diversification of the H1 isoforms seems to be enhanced primarily by mutation and selection, where genes are subject to birth-and-death evolution with strong purifying selection at the protein level. This model is able to explain not only the generation and diversification of RD H1 isoforms but also the origin and long-term persistence of orphon RI H1 subtypes in the genome, something that is still unclear, assuming concerted evolution.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Campus de A Zapateira, A Coruña, Spain
| | | | | | | |
Collapse
|
49
|
Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM. An abundance of bidirectional promoters in the human genome. Genome Res 2004; 14:62-6. [PMID: 14707170 PMCID: PMC314279 DOI: 10.1101/gr.1982804] [Citation(s) in RCA: 470] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alignment of full-length human cDNA sequences to the finished sequence of the human genome provides a unique opportunity to study the distribution of genes throughout the genome. By analyzing the distances between 23,752 genes, we identified a class of divergently transcribed gene pairs, representing more than 10% of the genes in the genome, whose transcription start sites are separated by less than 1000 base pairs. Although this bidirectional arrangement has been previously described in humans and other species, the prevalence of bidirectional gene pairs in the human genome is striking, and the mechanisms of regulation of all but a few bidirectional genes are unknown. Our work shows that the transcripts of many bidirectional pairs are coexpressed, but some are antiregulated. Further, we show that many of the promoter segments between two bidirectional genes initiate transcription in both directions and contain shared elements that regulate both genes. We also show that the bidirectional arrangement is often conserved among mouse orthologs. These findings demonstrate that a bidirectional arrangement provides a unique mechanism of regulation for a significant number of mammalian genes.
Collapse
Affiliation(s)
- Nathan D Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | |
Collapse
|
50
|
Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides 2003; 24:1763-70. [PMID: 15019208 DOI: 10.1016/j.peptides.2003.07.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2003] [Accepted: 07/17/2003] [Indexed: 01/02/2023]
Abstract
The lumen of the human colon is heavily colonized with microbes, but infections across its epithelial surface are infrequent. To address the hypothesis that antimicrobial polypeptides contribute to the barrier function of colonic epithelial cells, we examined cellular extracts from non-inflamed colonic mucosa using an antimicrobial assay. This approach yielded five polypeptides: three antimicrobials were previously identified as ribosomal polypeptides (L30, S19 and ubiquicidin), and two were members of the histone family (H1.5 and H2B). All exhibited bactericidal activity against Escherichia coli, and with the exception of S19, had been isolated by others based on their potent antimicrobial activity in other cells and tissues. These polypeptides normally reside inside cells and are proposed to contribute to the formation of the functional antimicrobial barrier of the colonic epithelium.
Collapse
Affiliation(s)
- Scott J Howell
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|