1
|
Sønnichsen‐Dreehsen A, Fedder J, Wod M, Thorarinsson CT, Nørgård BM. The association between paternal diabetes mellitus and successful pregnancy-Examined in a nationwide population undergoing reproductive treatment. Andrology 2025; 13:485-493. [PMID: 39078246 PMCID: PMC11867921 DOI: 10.1111/andr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND About 15% of all pregnancies end in pregnancy loss. As most studies have focused on maternal factors little is known regarding the influence of paternal factors on the chance of successful pregnancy. OBJECTIVES This cohort study aims to assess the chance of biochemical pregnancy, clinical pregnancy, and live-born children in couples where the male partner has diabetes mellitus (DM). MATERIALS AND METHODS We performed a nationwide cohort study. Couples undergoing assisted reproductive technology treatment from 2006 to 2019 were included. The exposed cohorts comprised embryo transfers in couples with paternal type 1 DM (T1DM), type 2 DM (T2DM), or mixed type DM (TMDM). The unexposed cohort included embryo transfers in couples without paternal DM. RESULTS A total of 101,875 embryo transfers were included. Of these, 503 males had T1DM, 225 males had T2DM, 263 males had TMDM, and 100,884 did not have DM. For paternal T1DM, the adjusted OR for achieving a biochemical pregnancy, clinical pregnancy, and live-born child were 0.97 (95% CI 0.77-1.23), 1.08 (95% CI 0.65-1.79), and 0.75 (95% CI 0.49-1.14), respectively. For paternal T2DM, the adjusted OR for achieving a biochemical pregnancy, clinical pregnancy, and live-born child were 0.80 (95% CI 0.56;1.16), 0.67 (95% CI 0.32-1.41), and 1.03 (95% CI 0.48-2.20), respectively. For the paternal TMDM, the adjusted OR for achieving a biochemical pregnancy, clinical pregnancy and livebirth were 0.95 (95% CI 0.67-1.33), 1.31 (95% CI 0.56-2.92), and 1.19 (95% CI 0.59-2.38), respectively. CONCLUSION Paternal DM was not associated with a statistically significant decreased chance of biochemical pregnancy, clinical pregnancy, or live birth.
Collapse
Affiliation(s)
- Anne‐Sofie Sønnichsen‐Dreehsen
- Centre of Andrology & Fertility ClinicOdense University Hospital & University of Southern DenmarkOdenseDenmark
- Center for Clinical EpidemiologyOdense University HospitalOdenseDenmark
- Research Unit of Clinical EpidemiologyDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Jens Fedder
- Centre of Andrology & Fertility ClinicOdense University Hospital & University of Southern DenmarkOdenseDenmark
| | - Mette Wod
- Center for Clinical EpidemiologyOdense University HospitalOdenseDenmark
- Research Unit of Clinical EpidemiologyDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Caroline Thingholm Thorarinsson
- Center for Clinical EpidemiologyOdense University HospitalOdenseDenmark
- Research Unit of Clinical EpidemiologyDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Bente Mertz Nørgård
- Center for Clinical EpidemiologyOdense University HospitalOdenseDenmark
- Research Unit of Clinical EpidemiologyDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Newman C, Dunne FP. Treatment of Diabetes in Pregnancy With Metformin. Obstet Gynecol 2024; 144:660-669. [PMID: 39208454 DOI: 10.1097/aog.0000000000005705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024]
Abstract
Metformin is a commonly used drug in the treatment of type 2 diabetes and has been used to treat gestational diabetes since the 1970s. In pregnancy, its proven benefits include reduced gestational weight gain and reduced fetal size; some studies have shown reduced risk of cesarean delivery and lower rates of hypertension. Metformin can reduce the need for insulin therapy but does not eliminate such need in many patients. Despite these benefits, metformin crosses the placenta and has been associated with increases in the risk of giving birth to small-for-gestational-age neonates in some studies of individuals with type 2 diabetes in pregnancy. In addition, higher body mass index (BMI) z-scores have been observed among exposed offspring in some of the long-term follow-up studies. Nevertheless, metformin's low cost, ease of administration, and global reach make it a reasonable intervention in a population affected by rising rates of obesity and diabetes in pregnancy. Further follow-up studies are required to monitor the long-term health of exposed offspring.
Collapse
Affiliation(s)
- Christine Newman
- Institute for Clinical Trials, the HRB-Clinical Research Facility, and the College of Medicine, Nursing and Health Sciences, University of Galway, and Galway University Hospital, Galway, Ireland
| | | |
Collapse
|
3
|
Zeng Y, Lin W, Zhuang W. Safety concerns of paternal drug exposure on fertility, pregnancy and offspring: An analysis based on the FDA adverse event reporting system. Andrology 2024. [PMID: 39462155 DOI: 10.1111/andr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Growing evidence indicates that paternal condition significantly influences pregnancy outcomes and offspring health. However, assessing the safety of paternal drug exposure via randomized controlled trials poses ethical challenges, and relevant clinical studies consume a lot of resources to evaluate only a few drugs. Currently, safety data on paternal drug exposure are scarce. OBJECTIVES To investigate the impact of paternal drug exposure on fertility, pregnancy outcomes, and offspring health. MATERIALS AND METHODS Data from the FDA adverse event reporting system (FAERS) were analyzed (2010-2022). Disproportionality analyses were used to identify signals of each drug-adverse event pair associated with paternal drug exposure in a different hierarchical manner. RESULTS Out of the 16,180,533 reports, 3210 were related to paternal exposure, encompassing 7808 concomitant adverse events. Drugs used to treat rheumatoid arthritis, cancer, and infections were primary sources of paternal exposure. Analysis identified 115 signals concerning reproductive health. Notably, the signals of diazepam-small for dates baby and finasteride-cryptorchidism were particularly significant (reporting odds ratio, ROR > 800, N > 10). Moreover, spontaneous abortion signals occur frequently in biologics for the treatment of immune inflammation; the use of immunosuppressive drugs was associated with the highest number of congenital anomalies, with the strongest signals for belatacept-skeletal dysplasia, and tacrolimus-talipes. Only mycophenolic acid, estrogen and imatinib have signals on male fertility. Anti-tumor agents had high numbers of each reproductive toxicity, with the highest values of trisomy 13 signals associated with etoposide and cisplatin. CONCLUSIONS This is the first research to fully assess the safety of paternal exposure to the majority of medications in terms of reproduction. Clinical and scientific researchers should pay close attention to the list of risk medications included in this study, particularly the following association combinations: biologics used to treat inflammatory diseases-abortion, diazepam-small for date baby, finasteride-cryptorchidism, etoposide and cisplatin-13 trisomy.
Collapse
Affiliation(s)
- Yanbin Zeng
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wanlong Lin
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Meng LC, van Gelder MMHJ, Chuang HM, Chen LK, Hsiao FY, Nordeng HME. Paternal metformin use and risk of congenital malformations in offspring in Norway and Taiwan: population based, cross national cohort study. BMJ 2024; 387:e080127. [PMID: 39414354 PMCID: PMC11480814 DOI: 10.1136/bmj-2024-080127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE To evaluate the association between paternal metformin use and risk of congenital malformations in offspring. DESIGN Population based, cross national cohort study. SETTING Norway and Taiwan. PARTICIPANTS 619 389 offspring with paternal data during the period of sperm development (three months before pregnancy) in the Norwegian cohort during 2010-21 and 2 563 812 in the Taiwanese cohort during 2004-18. MAIN OUTCOME MEASURES The primary outcome was any congenital malformation, and the secondary outcome was organ specific malformations, classified according to the European surveillance of congenital anomalies guidelines. Relative risks were estimated with an unadjusted analysis and with analyses restricted to the cohort of men with type 2 diabetes mellitus and those using overlap propensity score weighting to control for severity of diabetes and other potential confounders. Sibling matched comparisons were conducted to account for genetic and lifestyle factors. Relative risk estimates for Norwegian and Taiwanese data were pooled using a random effects meta-analytical approach. RESULTS Paternal data on metformin use during the period of sperm development was available for 2075 (0.3%) offspring in Norway and 15 276 (0.6%) offspring in Taiwan. Among these offspring, 104 (5.0%) in Norway and 512 (3.4%) in Taiwan had congenital malformations. Increased risks of any congenital malformation associated with paternal metformin use were observed in the unadjusted analysis and attenuated with increasing control of confounding. The relative risks of any malformations with paternal metformin use were 1.29 (95% confidence interval 1.07 to 1.55) in Norway and 1.08 (0.99 to 1.17) in Taiwan in the unadjusted analysis and 1.20 (0.94 to 1.53) and 0.93 (0.80 to 1.07), respectively, in the analysis restricted to fathers with type 2 diabetes mellitus. In the overlap propensity score weighting analysis restricted to fathers with type 2 diabetes mellitus, the relative risks were 0.98 (0.72 to 1.33) in Norway and 0.87 (0.74 to 1.02) in Taiwan, resulting in a pooled estimate of 0.89 (0.77 to 1.03). No associations were observed between paternal metformin use and any organ specific malformations. These findings were consistent in sibling matched comparisons and sensitivity analyses. CONCLUSIONS The findings suggest that paternal use of metformin during the period of sperm development is not associated with congenital malformations in offspring, including organ specific malformations. Metformin can therefore continue to be considered a suitable initial oral agent for managing glucose levels in men with type 2 diabetes mellitus who plan on having children.
Collapse
Affiliation(s)
- Lin-Chieh Meng
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Marleen M H J van Gelder
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Hui-Min Chuang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Kung Chen
- Centre for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Centre for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Fei-Yuan Hsiao
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Hedvig M E Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Child Health and Development, National Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Gordon H, Hastie R, Lindquist A. Paternal metformin use and congenital malformations in offspring. BMJ 2024; 387:q1792. [PMID: 39414351 DOI: 10.1136/bmj.q1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Affiliation(s)
- Hannah Gordon
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, VIC, Australia
| | - Roxanne Hastie
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, VIC, Australia
| | - Anthea Lindquist
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, VIC, Australia
| |
Collapse
|
6
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin's Enigma: Bridging Gaps in Research on Potential Benefits & Associated Risks - A Critical Plea for Comprehensive Investigation [Response to Letter]. Drug Des Devel Ther 2024; 18:4029-4031. [PMID: 39268391 PMCID: PMC11390828 DOI: 10.2147/dddt.s491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, India
| | - Sumit Bansal
- Department of Anesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Iqbal F, Khanzada ZH, Qasim Q. Metformin's Enigma: Bridging Gaps in Research on Potential Benefits & Associated Risks - A Critical Plea for Comprehensive Investigation [Letter]. Drug Des Devel Ther 2024; 18:3643-3644. [PMID: 39161683 PMCID: PMC11332420 DOI: 10.2147/dddt.s487044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Faiqa Iqbal
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| | | | - Qirat Qasim
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| |
Collapse
|
8
|
McEwen I, Huybrechts KF, Straub L, Hernández-Díaz S. Patterns of paternal medication dispensation around the time of conception. Paediatr Perinat Epidemiol 2024; 38:461-466. [PMID: 38949455 PMCID: PMC11365770 DOI: 10.1111/ppe.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Past research on the safety of prenatal exposure to medications has focused on maternal use during gestation, with limited research into the potential effects of paternal use during the spermatogenic period preceding conception. Knowing the most common medications used by fathers around the time of conception can inform research priorities in this field. OBJECTIVES To identify the most common medications dispensed to fathers in the preconception period. METHODS Within the MarketScan research database of commercially insured individuals in the United States from 2011 to 2020, we identified pregnancies, estimated the date of conception, linked each pregnancy to the father using family enrolment information and required minimum enrolment period and prescription benefits. Then, we described the use of prescription medications by the father during the 90 days before conception based on pharmacy dispensation claims. RESULTS Of 4,437,550 pregnancies, 51.6% were linked with a father. Among the 1,413,762 pregnancies connected with a father that also met the inclusion criteria, the most common classes of medications dispensed were psychotropics (8.66%), antibiotics (7.21%), and analgesics (6.82%). The most frequently dispensed medications were amoxicillin (3.75%), azithromycin (3.15%), fluticasone (2.70%) and acetaminophen/hydrocodone (2.70%). Some fathers filled prescriptions for medications associated with foetal embryopathy when used by the mother, including mycophenolate (0.04%), methotrexate (0.03%) and isotretinoin (0.02%). CONCLUSIONS More than a third of fathers filled at least one prescription medication in the preconception period, and several of them are known to be embryotoxic, emphasizing the necessity for further investigation into the potential teratogenicity of paternal exposure.
Collapse
Affiliation(s)
- Isobel McEwen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health
| | - Krista F Huybrechts
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA
| | - Loreen Straub
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA
| | | |
Collapse
|
9
|
Toft JH, Økland I. Metformin use in pregnancy: What about long-term effects in offspring? Acta Obstet Gynecol Scand 2024; 103:1238-1241. [PMID: 38757307 PMCID: PMC11168263 DOI: 10.1111/aogs.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Metformin use in pregnancy is increasing worldwide. Unlike insulin, metformin crosses the placenta. Consequently, maternal and fetal concentrations are comparable. Teratogenic effects are not reported, nor are adverse pregnancy outcomes. Reduced risk of hypertensive disorders, hypoglycemia, and macrosomia are potential benefits, together with lower gestational weight gain. Although metformin has been prescribed for pregnant women during the last 40 years, long-term data regarding offspring outcomes are still lacking. Independent of maternal glycemic control, recent meta-analyses report lower birthweight but accelerated postnatal growth and higher body mass index in metformin-exposed children. The longest follow-up study of placebo-controlled metformin exposure in utero found an increased prevalence of central adiposity and obesity among children 5-10 years old. Recently, a Danish study reported a threefold increased risk of genital anomalies in boys, whose fathers used metformin around the time of conception. This commentary addresses the current controversies on metformin use in pregnancy.
Collapse
Affiliation(s)
- Johanne Holm Toft
- Department of Obstetrics and GynecologyStavanger University HospitalStavangerNorway
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Inger Økland
- Department of Caring and EthicsUniversity of StavangerStavangerNorway
| |
Collapse
|
10
|
Landgraf R, Aberle J, Birkenfeld AL, Gallwitz B, Kellerer M, Klein HH, Müller-Wieland D, Nauck MA, Wiesner T, Siegel E. Therapy of Type 2 Diabetes. Exp Clin Endocrinol Diabetes 2024; 132:340-388. [PMID: 38599610 DOI: 10.1055/a-2166-6755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
| | - Jens Aberle
- Division of Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | | | - Baptist Gallwitz
- Department of Internal Medicine IV, Diabetology, Endocrinology, Nephrology, University Hospital Tübingen, Germany
| | - Monika Kellerer
- Department of Internal Medicine I, Marienhospital, Stuttgart, Germany
| | - Harald H Klein
- MVZ for Diagnostics and Therapy Bochum, Bergstraße 26, 44791 Bochum, Germany
| | - Dirk Müller-Wieland
- Department of Internal Medicine I, Aachen University Hospital RWTH, Aachen, Germany
| | - Michael A Nauck
- Diabetology, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University, Bochum, Germany
| | | | - Erhard Siegel
- Department of Internal Medicine - Gastroenterology, Diabetology/Endocrinology and Nutritional Medicine, St. Josefkrankenhaus Heidelberg GmbH, Heidelberg, Germany
| |
Collapse
|
11
|
Martins da Silva S. Paternal and Maternal Metformin Use and the Risk for Major Congenital Malformations. Ann Intern Med 2024; 177:970-971. [PMID: 38885506 DOI: 10.7326/m24-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Affiliation(s)
- Sarah Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Rotem RS, Weisskopf MG, Huybrechts KF, Hernández-Díaz S. Paternal Use of Metformin During the Sperm Development Period Preceding Conception and Risk for Major Congenital Malformations in Newborns. Ann Intern Med 2024; 177:851-861. [PMID: 38885501 DOI: 10.7326/m23-1405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Metformin is the most used oral antidiabetic medication. Despite its established safety profile, it has known antiandrogenic and epigenetic modifying effects. This raised concerns about possible adverse developmental effects caused by genomic alterations related to paternal use of metformin during the spermatogenesis period preceding conception. OBJECTIVE To assess the potential adverse intergenerational effect of metformin by examining the association between paternal metformin use during spermatogenesis and major congenital malformations (MCMs) in newborns. DESIGN Nationally representative cohort study. SETTING A large Israeli health fund. PARTICIPANTS 383 851 live births linked to fathers and mothers that occurred in 1999 to 2020. MEASUREMENTS MCMs and parental cardiometabolic conditions were ascertained using clinical diagnoses, medication dispensing information, and laboratory test results. The effect of metformin use on MCMs was estimated using general estimating equations, accounting for concurrent use of other antidiabetic medications and parental cardiometabolic morbidity. RESULTS Compared with unexposed fathers, the prevalence of cardiometabolic morbidity was substantially higher among fathers who used metformin during spermatogenesis, and their spouses. Whereas the crude odds ratio (OR) for paternal metformin exposure in all formulations and MCMs was 1.28 (95% CI, 1.01 to 1.64), the adjusted OR was 1.00 (CI, 0.76 to 1.31). Within specific treatment regimens, the adjusted OR was 0.86 (CI, 0.60 to 1.23) for metformin in monotherapy and 1.36 (CI, 1.00 to 1.85) for metformin in polytherapy, a treatment that was more common in patients with more poorly controlled diabetes. LIMITATION Laboratory test results for hemoglobin A1c to assess underlying diabetes severity were available only for a subset of the cohort. CONCLUSION Paternal use of metformin in monotherapy does not increase the risk for MCMs. Association for metformin in polytherapy could potentially be explained by worse underlying parental cardiometabolic risk profile. PRIMARY FUNDING SOURCE None.
Collapse
Affiliation(s)
- Ran S Rotem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, and Kahn-Sagol-Maccabi Research and Innovation Institute, Maccabi Healthcare Services, Tel Aviv, Israel (R.S.R.)
| | - Marc G Weisskopf
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (M.G.W.)
| | - Krista F Huybrechts
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (K.F.H.)
| | - Sonia Hernández-Díaz
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts (S.H.)
| |
Collapse
|
13
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
14
|
Shenoy MT, Mondal S, Fernandez CJ, Pappachan JM. Management of male obesity-related secondary hypogonadism: A clinical update. World J Exp Med 2024; 14:93689. [PMID: 38948417 PMCID: PMC11212738 DOI: 10.5493/wjem.v14.i2.93689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/19/2024] Open
Abstract
The global obesity pandemic has resulted in a rise in the prevalence of male obesity-related secondary hypogonadism (MOSH) with emerging evidence on the role of testosterone therapy. We aim to provide an updated and practical approach towards its management. We did a comprehensive literature search across MEDLINE (via PubMed), Scopus, and Google Scholar databases using the keywords "MOSH" OR "Obesity-related hypogonadism" OR "Testosterone replacement therapy" OR "Selective estrogen receptor modulator" OR "SERM" OR "Guidelines on male hypogonadism" as well as a manual search of references within the articles. A narrative review based on available evidence, recommendations and their practical implications was done. Although weight loss is the ideal therapeutic strategy for patients with MOSH, achievement of significant weight reduction is usually difficult with lifestyle changes alone in real-world practice. Therefore, androgen administration is often necessary in the management of hypogonadism in patients with MOSH which also improves many other comorbidities related to obesity. However, there is conflicting evidence for the appropriate use of testosterone replacement therapy (TRT), and it can also be associated with complications. This evidence-based review updates the available evidence including the very recently published results of the TRAVERSE trial and provides comprehensive clinical practice pearls for the management of patients with MOSH. Before starting testosterone replacement in functional hypogonadism of obesity, it would be desirable to initiate lifestyle modification to ensure weight reduction. TRT should be coupled with the management of other comorbidities related to obesity in MOSH patients. Balancing the risks and benefits of TRT should be considered in every patient before and during long-term management.
Collapse
Affiliation(s)
- Mohan T Shenoy
- Department of Endocrinology, Sree Gokulam Medical College, and Research Foundation, Trivandrum 695607, Kerala, India
| | - Sunetra Mondal
- Department of Endocrinology, NRS Medical College and Hospital, Kolkata 700014, West Bengal, India
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Brown J, Huybrechts K, Straub L, Heider D, Bateman B, Hernandez-Diaz S. Use of Real-World Data and Machine Learning to Screen for Maternal and Paternal Characteristics Associated with Cardiac Malformations. RESEARCH SQUARE 2024:rs.3.rs-4490534. [PMID: 38947037 PMCID: PMC11213223 DOI: 10.21203/rs.3.rs-4490534/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Effective prevention of cardiac malformations, a leading cause of infant morbidity, is constrained by limited understanding of etiology. The study objective was to screen for associations between maternal and paternal characteristics and cardiac malformations. We selected 720,381 pregnancies linked to live-born infants (n=9,076 cardiac malformations) in 2011-2021 MarketScan US insurance claims data. Odds ratios were estimated with clinical diagnostic and medication codes using logistic regression. Screening of 2,000 associations selected 81 associated codes at the 5% false discovery rate. Grouping of selected codes, using latent semantic analysis and the Apriori-SD algorithm, identified elevated risk with known risk factors, including maternal diabetes and chronic hypertension. Less recognized potential signals included maternal fingolimod or azathioprine use. Signals identified might be explained by confounding, measurement error, and selection bias and warrant further investigation. The screening methods employed identified known risk factors, suggesting potential utility for identifying novel risk factors for other pregnancy outcomes.
Collapse
|
16
|
Cao Y, Tian GG, Hong X, Lu Q, Wei T, Chen HF, Wu J. Reproductive chemical database: a curated database of chemicals that modulate protein targets regulating important reproductive biological processes. Cell Biosci 2024; 14:73. [PMID: 38845051 PMCID: PMC11157792 DOI: 10.1186/s13578-024-01261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Recent studies have shifted the spotlight from adult disease to gametogenesis and embryo developmental events, and these are greatly affected by various environmental chemicals, such as drugs, metabolites, pollutants, and others. Growing research has highlighted the critical importance of identifying and understanding the roles of chemicals in reproductive biology. However, the functions and mechanisms of chemicals in reproductive processes remain incomplete. We developed a comprehensive database called the Reproductive Chemical Database (RCDB) ( https://yu.life.sjtu.edu.cn/ChenLab/RCDB ) to facilitate research on chemicals in reproductive biology. This resource is founded on rigorous manual literature extraction and precise protein target prediction methodologies. This database focuses on the delineation of chemicals associated with phenotypes, diseases, or endpoints intricately associated with four important reproductive processes: female and male gamete generation, fertilization, and embryo development in human and mouse. The RCDB encompasses 93 sub-GO processes, and it revealed 1447 intricate chemical-biological process interactions. To date, the RCDB has meticulously cataloged and annotated 830 distinct chemicals, while also predicting 614 target proteins from a selection of 3800 potential candidates. Additionally, the RCDB offers an online predictive tool that empowers researchers to ascertain whether specific chemicals play discernible functional roles in these reproductive processes. The RCDB is an exhaustive, cross-platform, manually curated database, which provides a user-friendly interface to search, browse, and use reproductive processes modulators and their comprehensive related information. The RCDB will help researchers to understand the whole reproductive process and related diseases and it has the potential to promote reproduction research in the pharmacological and pathophysiological areas.
Collapse
Affiliation(s)
- Yuedi Cao
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Lu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
17
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
18
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
19
|
Pouriayevali F, Tavalaee M, Kazeminasab F, Dattilo M, Nasr-Esfahani MH. Effects of Streptozotocin Induced Diabetes on One-Carbon Cycle and Sperm Function. CELL JOURNAL 2024; 26:81-90. [PMID: 38351732 PMCID: PMC10864770 DOI: 10.22074/cellj.2023.2010652.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Diabetic men suffer an increased risk of infertility associated with signs of oxidative damage and decreased methylation in sperm pointing to a deficit of the one-carbon cycle (1CC). We aimed to investigate this deficit using mice models (type 1 and 2) of streptozotocin-induced diabetes. MATERIALS AND METHODS In this experimental study, 50 male mice, aged eight weeks, were divided randomly into four groups: sham, control, type 1 diabetes mellitus (DM1), and DM2. The DM1 group was fed a normal diet (ND) for eight weeks, followed by five consecutive days of intraperitoneal administration of Streptozotocin (STZ, 50 mg/kg body weight). The DM2 group was fed a high-fat diet (HFD) for eight weeks, followed by a single intraperitoneal injection of STZ (100 mg/kg). After twelve weeks, all the mice were euthanized, and study parameters assessed. In the sham group, citrate buffer as an STZ solvent was injected. RESULTS Both types of diabetic animals had serious impairment of spermatogenesis backed by increased DNA damage (P=0.000) and decreased chromatin methylation (percent: P=0.019; intensity: P=0.001) and maturation (P=0.000). The 1CC was deeply disturbed with increased homocysteine (P=0.000) and decreased availability of carbon units [methionine (P=0.000), serine (P=0.088), folate (P=0.016), B12 (P=0.025)] to feed methylations. CONCLUSION We have observed a distinct impairment of 1CC within the testes of individuals with diabetes. We speculate that this impairment may be linked to inadequate intracellular glucose and diminished carbon unit supply associated with diabetes. As a result, interventions focusing on enhancing glucose uptake into sperm cells and providing supplementary methyl donors have the potential to improve fertility issues in diabetic patients. However, additional clinical testing is required to validate these hypotheses.
Collapse
Affiliation(s)
- Farnaz Pouriayevali
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran.
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran. mh.nasresfahani@ royaninstitute.org
| |
Collapse
|
20
|
Du Y, Zhu J, Guo Z, Wang Z, Wang Y, Hu M, Zhang L, Yang Y, Wang J, Huang Y, Huang P, Chen M, Chen B, Yang C. Metformin adverse event profile: a pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS) from 2004 to 2022. Expert Rev Clin Pharmacol 2024; 17:189-201. [PMID: 38269492 DOI: 10.1080/17512433.2024.2306223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metformin has the potential for treating numerous diseases, but there are still many unrecognized and unreported adverse events (AEs). METHODS We selected data from the United States FDA Adverse Event Reporting System (FAERS) database from the first quarter (Q1) of 2004 to the fourth quarter (Q4) of 2022 for disproportionality analysis to assess the association between metformin and related adverse events. RESULTS In this study 10,500,295 case reports were collected from the FAERS database, of which 56,674 adverse events related to metformin were reported. A total of 643 preferred terms (PTs) and 27 system organ classes (SOCs) that were significant disproportionality conforming to the four algorithms simultaneously were included. The SOCs included metabolic and nutritional disorders (p = 0.00E + 00), gastrointestinal disorders (p = 0.00E + 00) and others. PT levels were screened for adverse drug reaction (ADR) signals such as acute pancreatitis (p = 0.00E + 00), melas syndrome, pemphigoid (p = 0.00E + 00), skin eruption (p = 0.00E + 00) and drug exposure during pregnancy (p = 0.00E + 00). CONCLUSION Most of our results were consistent with the specification, but some new signals of adverse reactions such as acute pancreatitis were not included. Therefore, further studies are needed to validate unlabeled adverse reactions and provide important support for clinical monitoring and risk identification of metformin.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, People's Republic of China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Zhuoming Guo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yuni Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mianda Hu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Lingzhi Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yurong Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Jinjin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Peiying Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mianhai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Bo Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| |
Collapse
|
21
|
Miller D, Weber A, Loloi J, Reddy R, Ramasamy R. Temporal Trends of Semen Quality and Fertility Rates Over the Course of a Decade: Data From King County, Washington. Urology 2024; 183:93-99. [PMID: 37716452 DOI: 10.1016/j.urology.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE There has been a widely reported decline in both semen quality and fertility rate, however to date these studies have not looked at a decline of both in the same time period within the same geographical area. The objective of this study was to determine if there existed a temporal trend in both semen parameters and fertility rates for the same geographic area (King County, WA) over time. MATERIALS AND METHODS Semen parameters from sperm donors at Seattle sperm bank were obtained from 2008 to 2021. Sperm donations occurred in King County, WA. Donors were from within 50 miles of the donation site. Fertility rates were calculated for King County, WA using census data from SEER to find number of women aged 15-49 and the number of births were found using CDC Wonder data from 2006 to 2017. RESULTS There were a total of 76,622 sperm donor semen analyses from King County, WA included in our study from 2008 to 2021. The fertility rate for King County, WA was calculated from 2006 to 2017. From 2008 to 2021, there was a statistically significant decline in semen quality over time for both sperm count (P < .01), total motile sperm count (P < .01), sperm concentration (P < .01), and progressive motility (P < .01). Additionally, from 2006 to 2017 there was a statistically significant decline in fertility rate (P < .01). CONCLUSION We report a statistically significant decline in sperm parameters among donors and a corresponding decline in fertility rates from the same geographic area that warrants further investigation given the serious societal and economic impacts a shrinking population presents. While certainly not the sole contributing factor, declining sperm parameters likely need to be accounted for when accounting for declining fertility rates.
Collapse
Affiliation(s)
| | - Alex Weber
- Desai Sethi Urology Institute, University of Miami, Miami, FL
| | - Justin Loloi
- Department of Urology, Montefiore Health System, New York City, NY
| | - Rohit Reddy
- Desai Sethi Urology Institute, University of Miami, Miami, FL
| | | |
Collapse
|
22
|
Chen M, Shin M, Ware TB, Donvito G, Muchhala KH, Mischel R, Mustafa MA, Serbulea V, Upchurch CM, Leitinger N, Akbarali HI, Lichtman AH, Hsu KL. Endocannabinoid biosynthetic enzymes regulate pain response via LKB1-AMPK signaling. Proc Natl Acad Sci U S A 2023; 120:e2304900120. [PMID: 38109529 PMCID: PMC10756258 DOI: 10.1073/pnas.2304900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Diacylglycerol lipase-beta (DAGLβ) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLβ ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLβ in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLβ blockade, thereby directly supporting DAGLβ-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Timothy B. Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Ryan Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA23298
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22908
- University of Virginia Cancer Center, Cancer Biology Program, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
23
|
Yu B, Zhang CA, Chen T, Mulloy E, Shaw GM, Eisenberg ML. Congenital male genital malformations and paternal health: An analysis of the US claims data. Andrology 2023; 11:1114-1120. [PMID: 36727635 DOI: 10.1111/andr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the potential association between paternal health and male genital malformations in the offspring. MATERIALS AND METHODS We analyzed data from 2007 to 2016 derived from the IBM MarketScan Research database, which reports on reimbursed private healthcare claims in the United States. The association between paternal comorbidities (defined as individual and combined measures) and genital malformations in male offspring was analyzed. RESULTS Of 376,362 male births, 22% of fathers had at least one component of metabolic syndrome (≥1) prior to conception. Totals of 2880 cases of cryptorchidism (0.77%) and 2651 cases of hypospadias (0.70%) were identified at birth. While 0.76% of sons born to fathers with no metabolic syndrome components were diagnosed with cryptorchidism, 0.82% of sons with fathers with multiple metabolic syndrome components had cryptorchidism. Similarly, 0.69% versus 0.88% of sons had hypospadias when fathers had 0 or 2+ components of metabolic syndrome. After adjusting for maternal and paternal factors, the odds of a son being diagnosed with hypospadias increased with two or more paternal metabolic syndrome components (Odds ratio [95% confidence interval]: 1.27 [1.10-1.47]). Specific components of paternal metabolic syndrome were not generally more associated with a son's genital malformations. When we performed a subgroup analysis where genital malformations were defined based on surgical correction, the association with hypospadias persisted. CONCLUSIONS Fathers with multiple components of metabolic syndrome in the preconception period were observed to be at increased risk for having sons born with hypospadias. The results support the association between a man's andrological and overall health.
Collapse
Affiliation(s)
- Bo Yu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Chiyuan Amy Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Tony Chen
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Evan Mulloy
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Michael L Eisenberg
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Ceraolo C, Rubano A, Gabrielsen JS. Obesity and Male Infertility: True, True, and Unrelated? Semin Reprod Med 2023; 41:70-79. [PMID: 38198791 DOI: 10.1055/s-0043-1777725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
While the prevalence of obesity has rapidly increased worldwide, there has also been a notable decline in semen parameters over the last several decades. While obesity can negatively impact reproductive hormones, many studies have sought a link between rising obesity and decreased male fertility potential. Nonetheless, few data support a direct link between the two. The focus on obesity as a causative factor in male infertility can potentially result in patient harm through delayed fertility treatment and missed diagnoses. This review investigates the associations between obesity and male infertility and why a potential direct link has been elusive and may not exist. Additionally, indirect mechanisms that may link the two will be reviewed and treatment options for obese infertile men presenting for evaluation will briefly be discussed.
Collapse
Affiliation(s)
- Carl Ceraolo
- Department of Urology, University of Rochester, Rochester, New York
| | - Amanda Rubano
- School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | | |
Collapse
|
25
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
26
|
Santilli F, Boskovic A. Mechanisms of transgenerational epigenetic inheritance: lessons from animal model organisms. Curr Opin Genet Dev 2023; 79:102024. [PMID: 36893483 DOI: 10.1016/j.gde.2023.102024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
Epigenetic inheritance is a phenomenon whereby stochastic or signal-induced changes to parental germline epigenome modulate phenotypic output in one or more subsequent generations, independently of mutations in the genomic DNA. While the number of reported epigenetic inheritance phenomena across phyla is exponentially growing, much remains to be elucidated about their mechanistic underpinnings, and their significance for organismal homeostasis and adaptation. Here, we review the most recent epigenetic inheritance examples in animal models, outlining molecular details behind environmental sensing by the germline, and the functional relationships connecting epigenetic mechanisms and phenotypic traits after fertilization. We touch upon the experimental challenges associated with studying the scope of environmental input on phenotypic outcomes between generations. Finally, we discuss the implications of mechanistic findings from model organisms for the emergent examples of parental effects in human populations.
Collapse
Affiliation(s)
- Flavio Santilli
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy. https://twitter.com/@santilli_flavio
| | - Ana Boskovic
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy.
| |
Collapse
|
27
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
28
|
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia 2023; 66:986-1002. [PMID: 36897358 PMCID: PMC10163139 DOI: 10.1007/s00125-023-05891-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
The prevalence of type 2 diabetes mellitus is increasing in both sexes, but men are usually diagnosed at a younger age and lower body fat mass than women. Worldwide, an estimated 17.7 million more men than women have diabetes mellitus. Women appear to bear a greater risk factor burden at the time of their type 2 diabetes diagnosis, especially obesity. Moreover, psychosocial stress might play a more prominent role in diabetes risk in women. Across their lifespan, women experience greater hormone fluctuations and body changes due to reproductive factors than men. Pregnancies can unmask pre-existing metabolic abnormalities, resulting in the diagnosis of gestational diabetes, which appears to be the most prominent risk factor for progression to type 2 diabetes in women. Additionally, menopause increases women's cardiometabolic risk profile. Due to the progressive rise in obesity, there is a global increase in women with pregestational type 2 diabetes, often with inadequate preconceptual care. There are differences between men and women regarding type 2 diabetes and other cardiovascular risk factors with respect to comorbidities, the manifestation of complications and the initiation of and adherence to therapy. Women with type 2 diabetes show greater relative risk of CVD and mortality than men. Moreover, young women with type 2 diabetes are currently less likely than men to receive the treatment and CVD risk reduction recommended by guidelines. Current medical recommendations do not provide information on sex-specific or gender-sensitive prevention strategies and management. Thus, more research on sex differences, including the underlying mechanisms, is necessary to increase the evidence in the future. Nonetheless, intensified efforts to screen for glucose metabolism disorders and other cardiovascular risk factors, as well as the early establishment of prophylactic measures and aggressive risk management strategies, are still required for both men and women at increased risk of type 2 diabetes. In this narrative review we aim to summarise sex-specific clinical features and differences between women and men with type 2 diabetes into risk factors, screening, diagnosis, complications and treatment.
Collapse
Affiliation(s)
- Alexandra Kautzky-Willer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.
- Gender Institute, Lapura Women's Health Resort, Gars am Kamp, Austria.
| | - Michael Leutner
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Pascual-Gilabert M, Artero R, López-Castel A. The myotonic dystrophy type 1 drug development pipeline: 2022 edition. Drug Discov Today 2023; 28:103489. [PMID: 36634841 DOI: 10.1016/j.drudis.2023.103489] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The beginning of the 20th decade has witnessed an increase in drug development programs for myotonic dystrophy type 1 (DM1). We have collected nearly 20 candidate drugs with accomplished preclinical and clinical phases, updating our previous drug development pipeline review with new entries and relevant milestones for pre-existing candidates. Three interventional first-in-human clinical trials got underway with distinct drug classes, namely AOC 1001 and DYNE-101 nucleic acid-based therapies, and the small molecule pitolisant, which joins the race toward market authorization with other repurposed drugs, including tideglusib, metformin, or mexiletine, already in clinical evaluation. Furthermore, newly disclosed promising preclinical data for several additional nucleic-acid therapeutic candidates and a CRISPR-based approach, as well as the advent into the pipeline of novel therapeutic programs, increase the plausibility of success in the demanding task of providing valid treatments to patients with DM1.
Collapse
Affiliation(s)
| | - Ruben Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain; Translational Genomics Group, Incliva Biomedical Research Institute, Valencia, Spain.
| | - Arturo López-Castel
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain; Translational Genomics Group, Incliva Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
30
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
31
|
Bagateliya ZA, Grekov DN, Komarova AG, Kulushev VM, Sokolov NY, Kuts IN, Lebedko MS. [Integral scales in assessing the risk of postoperative morbidity and mortality]. Khirurgiia (Mosk) 2023:25-33. [PMID: 38010015 DOI: 10.17116/hirurgia202311125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Annual number of surgeries exceeds 10 million In Russia, and this number is increasing every year. Searching for a scale or index determining the risk of postoperative complications and mortality is an important issue all over the world. The authors analyzed all available risk assessment scales for postoperative morbidity and mortality. The most significant ones in historical aspect and modern perspective grading systems were highlighted. We compared these indices with clinical recommendations and necessary preoperative preparation. Thus, these scales are valuable for surgeons and anesthesiologists to assess the risk, volume of surgical intervention and methods of preoperative management. However, they are not perfect and require improvement. Therefore, development of such scales is a priority objective of medicine in the foreseeable future.
Collapse
Affiliation(s)
| | - D N Grekov
- Botkin Clinical Hospital, Moscow, Russia
| | | | | | | | - I N Kuts
- Botkin Clinical Hospital, Moscow, Russia
| | | |
Collapse
|
32
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Sharif A. Interventions Against Posttransplantation Diabetes: A Scientific Rationale for Treatment Hierarchy Based on Literature Review. Transplantation 2022; 106:2301-2313. [PMID: 35696695 DOI: 10.1097/tp.0000000000004198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Posttransplant diabetes (PTD) is a common medical complication after solid organ transplantation. Because of adverse outcomes associated with its development and detrimental impact on long-term survival, strategies to prevent or manage PTD are critically important but remain underresearched. Treatment hierarchies of antidiabetic therapies in the general population are currently being revolutionized based on cardiovascular outcome trials, providing evidence-based rationale for optimization of medical management. However, opportunities for improving medical management of PTD are challenged by 2 important considerations: (1) translating clinical evidence data from the general population to underresearched solid organ transplant cohorts and (2) targeting treatment based on primary underlying PTD pathophysiology. In this article, the aim is to provide an overview of PTD treatment options from a new angle. Rationalized by a consideration of underlying PTD pathophysiological defects, which are heterogeneous among diverse transplant patient cohorts, a critical appraisal of the published literature and summary of current research in progress will be reviewed. The aim is to update transplant professionals regarding medical management of PTD from a new perspective tailored therapeutic intervention based on individualized characteristics. As the gap in clinical evidence between management of PTD versus type 2 diabetes widens, it is imperative for the transplant community to bridge this gap with targeted clinical trials to ensure we optimize outcomes for solid organ transplant recipients who are at risk or develop PTD. This necessary clinical research should help efforts to improve long-term outcomes for solid transplant patients from both a patient and graft survival perspective.
Collapse
Affiliation(s)
- Adnan Sharif
- Department of Nephrology and Transplantation, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Chaignaud P, Gruffaz C, Borreca A, Fouteau S, Kuhn L, Masbou J, Rouy Z, Hammann P, Imfeld G, Roche D, Vuilleumier S. A Methylotrophic Bacterium Growing with the Antidiabetic Drug Metformin as Its Sole Carbon, Nitrogen and Energy Source. Microorganisms 2022; 10:2302. [PMID: 36422372 PMCID: PMC9699525 DOI: 10.3390/microorganisms10112302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/31/2023] Open
Abstract
Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Christelle Gruffaz
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Adrien Borreca
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FR 1589 CNRS, CEDEX, 67084 Strasbourg, France
| | - Jérémy Masbou
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - Zoé Rouy
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FR 1589 CNRS, CEDEX, 67084 Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000 Strasbourg, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université d’Evry, Université Paris-Saclay, CEDEX, 91057 Evry, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
35
|
Liu H, Luo W, Liu J, Kang X, Yan J, Zhang T, Yang L, Shen L, Liu D. The glucotoxicity protecting effect of honokiol in human hepatocytes via directly activating AMPK. Front Nutr 2022; 9:1043009. [DOI: 10.3389/fnut.2022.1043009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
IntroductionSustained hyperglycemia causes glucotoxicity, which has been regarded as a contributor to hepatocyte damage in type 2 diabetes (T2D) and its metabolic comorbidities. Honokiol is a natural biphenolic component derived from the dietary supplement Magnolia officinalis extract. This study aimed to investigate the effects of honokiol on glucose metabolism disorders and oxidative stress in hepatocytes and the underlying mechanisms.MethodsHepG2 cells were treated with glucosamines (18 mM) to induce glucotoxicity as a diabetic complication model in vitro.Results and discussionHonokiol significantly increased glucose consumption, elevated 2-NBDG uptake, and promoted GLUT2 translocation to the plasma membrane in glucosamine-treated HepG2 cells, indicating that honokiol ameliorates glucose metabolism disorders. Furthermore, glucosamine-induced ROS accumulation and loss of mitochondrial membrane potential were markedly reduced by honokiol, suggesting that honokiol alleviated glucotoxicity-induced oxidative stress. These effects were largely abolished by compound C, an AMPK inhibitor, suggesting an AMPK activation-dependent manner of honokiol function in promoting glucose metabolism and mitigating oxidative stress. Molecular docking results revealed that honokiol could interact with the amino acid residues (His151, Arg152, Lys243, Arg70, Lys170, and His298) in the active site of AMPK. These findings provide new insights into the antidiabetic effect of honokiol, which may be a promising agent for the prevention and treatment of T2D and associated metabolic comorbidities.
Collapse
|
36
|
Wen J, Yi Z, Chen Y, Huang J, Mao X, Zhang L, Zeng Y, Cheng Q, Ye W, Liu Z, Liu F, Liu J. Efficacy of metformin therapy in patients with cancer: a meta-analysis of 22 randomised controlled trials. BMC Med 2022; 20:402. [PMID: 36280839 PMCID: PMC9594974 DOI: 10.1186/s12916-022-02599-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate whether metformin monotherapy or adjunctive therapy improves the prognosis in patients with any type of cancer compared to non-metformin users (age ≥18). METHODS Databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) and clinical trial registries ( ClinicalTrials.gov ; the World Health Organization International Clinical Trials Registry Platform) were screened for randomized, controlled trials (RCT) reporting at least progression-free survival (PFS) and/or overall survival (OS). Main outcome measures included hazard ratios (HR), and combined HRs and 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Of the 8419 records screened, 22 RCTs comprising 5943 participants were included. Pooled HRs were not statistically significant in both PFS (HR 0.97, 95% CI 0.82-1.15, I2 = 50%) and OS (HR 0.98, 95% CI 0.86-1.13, I2 = 33%) for patients with cancer between the metformin and control groups. Subgroup analyses demonstrated that metformin treatment was associated with a marginally significant improvement in PFS in reproductive system cancers (HR 0.86, 95% CI 0.74-1.00) and a significantly worse PFS in digestive system cancers (HR 1.45, 95% CI 1.03-2.04). The PFS or OS was observed consistently across maintenance dose, diabetes exclusion, median follow-up, risk of bias, and combined antitumoral therapies. CONCLUSION Metformin treatment was not associated with cancer-related mortality in adults compared with placebo or no treatment. However, metformin implied beneficial effects in the PFS of the patients with reproductive system cancers but was related to a worse PFS in digestive system cancers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42022324672.
Collapse
Affiliation(s)
- Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueyi Mao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
38
|
Rossing P, Gwilt M. Preconception Antidiabetic Drugs in Men and Birth Defects in Offspring. Ann Intern Med 2022; 175:W106. [PMID: 36122400 DOI: 10.7326/l22-0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Erhöht Antidiabetikabehandlung
des Vaters das
Fehlbildungsrisiko des
Kindes? Z Geburtshilfe Neonatol 2022. [DOI: 10.1055/a-1869-8308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Immer mehr junge Männer erkranken an einem behandlungsbedürftigen
Diabetes mellitus. Viele Pharmaka beeinflussen allerdings das männliche
Reproduktionssystem: Metformin verbessert beispielsweise die
Samenqualität, senkt aber das Serumtestosteron. Kommen Kinder von
Vätern, die präkonzeptionell Antidiabetika angewandt haben,
häufiger fehlgebildet zur Welt? Dieser Frage ging ein dänisches
Forscherteam mithilfe einer Registerstudie nach.
Collapse
|
40
|
Louis GMB. Paternal Preconception Diabetes Drugs and Birth Defects in Offspring: A Call for More Conclusive Study. Ann Intern Med 2022; 175:751-752. [PMID: 35344373 DOI: 10.7326/m22-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Tavlo M, Skakkebæk NE, Mathiesen ER, Kristensen DM, Kjær KH, Andersson AM, Lindahl-Jacobsen R. Hypothesis: Metformin is a potential reproductive toxicant. Front Endocrinol (Lausanne) 2022; 13:1000872. [PMID: 36339411 PMCID: PMC9627511 DOI: 10.3389/fendo.2022.1000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Metformin is the first-line oral treatment for type 2 diabetes mellitus and is prescribed to more than 150 million people worldwide. Metformin's effect as a glucose-lowering drug is well documented but the precise mechanism of action is unknown. A recent finding of an association between paternal metformin treatment and increased numbers of genital birth defects in sons and a tendency towards a skewed secondary sex ratio with less male offspring prompted us to focus on other evidence of reproductive side effects of this drug. Metformin in humans is documented to reduce the circulating level of testosterone in both men and women. In experimental animal models, metformin exposure in utero induced sex-specific reproductive changes in adult rat male offspring with reduced fertility manifested as a 30% decrease in litter size and metformin exposure to fish, induced intersex documented in testicular tissue. Metformin is excreted unchanged into urine and feces and is present in wastewater and even in the effluent of wastewater treatment plants from where it spreads to rivers, lakes, and drinking water. It is documented to be present in numerous freshwater samples throughout the world - and even in drinking water. We here present the hypothesis that metformin needs to be considered a potential reproductive toxicant for humans, and probably also for wildlife. There is an urgent need for studies exploring the association between metformin exposure and reproductive outcomes in humans, experimental animals, and aquatic wildlife.
Collapse
Affiliation(s)
- Maja Tavlo
- Faculty of Health Sciences, Department of Epidemiology, Biostatistics, and Biodemography, University of Southern Denmark, Odense C, Denmark
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense C, Denmark
- *Correspondence: Maja Tavlo,
| | - Niels E. Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital — Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth R. Mathiesen
- Centre for Pregnant Women with Diabetes, Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David M. Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
- University of Rennes, Inserm, École des hautes études en santé publique (EHESP), Irset (Institut de recherche en santé environment et travail) UMR_S, Rennes, France
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kurt H. Kjær
- Globe Institute, Section for GeoGenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital — Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rune Lindahl-Jacobsen
- Faculty of Health Sciences, Department of Epidemiology, Biostatistics, and Biodemography, University of Southern Denmark, Odense C, Denmark
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|