1
|
Wang Y, Sun Y, Jie T, Wang M, Zhang S, Yang H, Jian W, Dai D, Xu R, Yue B, Qu X. Association between serum Copper-Zinc-Selenium mixture and multiple health outcomes. Bioact Mater 2025; 50:432-442. [PMID: 40309256 PMCID: PMC12041763 DOI: 10.1016/j.bioactmat.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Background Metallic biomaterials have transformed modern medicine, with copper (Cu), zinc (Zn), and selenium (Se) emerging as critical components in medical applications. The study of the single and synergistic effects of serum metal concentrations on human health can provide valuable insights for future clinical transformation of biodegradable alloys. Methods We evaluated 2381 NHANES 2011-2016 participants to study individual and combined effects of these metals on health outcomes. Multivariable logistic regression, restricted cubic splines, and piecewise linear regression were used to examine linear, nonlinear, and threshold relationships. Overall metal mixture effects were assessed using weighted quantile sum (WQS) and Bayesian kernel-machine regression (BKMR). Results Elevated serum Cu levels were significantly associated with an increased risk of osteoarthritis. When Serum Cu ≥ 99.48 μg/dL, each 1-unit increase in Ln Cu raised diabetes risk 4.55-fold. For Se ≥ 122.74 μg/L, each 1-unit increase in Ln Se led to a 29.96-fold rise in diabetes prevalence, for Se < 157.56 μg/L it increased heart attack risk 165.19-fold. Furthermore, mixtures of Cu, Se, and Zn were positively associated with diabetes, hypertension, and heart attack risks; each unit increase in the mixture corresponded to a 23 % rise in diabetes and a 15 % rise in hypertension prevalence. Conclusions Serum Cu levels ≥99.48 μg/dL are significantly linked to diabetes risk, while serum Se levels ≥122.74 μg/L are associated with diabetes risk and levels <157.56 μg/L with elevated heart attack risk. Serum metal mixtures containing Cu, Se and Zn were significantly and positively associated with risk of diabetes, hypertension and heart attack.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Yiwen Sun
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China
| | - Tianyang Jie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Weiyan Jian
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China
| | - Dai Dai
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shan Dong Middle Road, Shanghai, 200001, China
| | - Ruida Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
2
|
Li H, Tang Y, Wang H, Liu X, Zeng Y, Zhang R, Yang C, Khan A, Wu B, Wang X, Zhang M. Nano-selenium alleviated immunoresponse, apoptosis and oxidative stress in Leydig cells of yak. Colloids Surf B Biointerfaces 2025; 252:114684. [PMID: 40222115 DOI: 10.1016/j.colsurfb.2025.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Nano-selenium(SENP) plays a crucial role in maintaining cellular redox homeostasis and serves as an antioxidant in cell culture medium. This study investigated the cytoprotective effects of SENP against lipopolysaccharide (LPS)-induced toxicity in yak Leydig cells. In this research, in vitro cultured Leydig cells were exposed to LPS to simulate Gram-negative bacterial infection. Following LPS induction, the cell apoptosis rate reached 28 %, with significant increases in inflammation and oxidative stress markers including IL-6, IL-8, MDA, and ROS. Concurrently, testosterone concentration decreased by nearly 60 %. Subsequently, SENP was introduced into the culture medium. We then evaluated apoptosis, oxidative stress, immune response, and testosterone concentration in Leydig cells. The results demonstrated that SENP effectively protected Leydig cells from LPS-induced damage.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujun Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyue Liu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Cuiting Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Arab Khan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bing Wu
- Sichuan Chelota Biotechnology Group Co., Ltd, Chengdu, Sichuan 618302, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
4
|
Ren H, Shen X. Multi-omics reveals the hepatic metabolic mechanism of neurological symptoms caused by selenium exposure in Przewalski's gazelle (Procapra przewalskii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126341. [PMID: 40316242 DOI: 10.1016/j.envpol.2025.126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neurological symptoms resulting from selenium(Se) exposure significantly impact the health and conservation of Przewalski's gazelle. In this study, we performed proteomic and metabolomic analyses of the liver in Przewalski's gazelle for the first time, aiming to reveal the hepatic metabolic mechanisms underlying the neurological symptoms caused by Se exposure. We identified 89 differentially expressed proteins and 30 metabolites with altered regulation. Using multi-omics integrated analysis, we identified a neurofunctional regulation network composed of three metabolic pathways, with (S)-3-amino-2-methylpropionate transaminase being the key enzyme in the regulatory network. Molecular docking revealed that the binding of selenocysteine to (S)-3-amino-2-methylpropionate transaminase may act as a key factor in activating this regulatory network. Consequently, these findings provide important insights into the molecular mechanisms of neurological symptoms caused by Se exposure and have significant implications for the conservation in Przewalski's gazelle.
Collapse
Affiliation(s)
- Hong Ren
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoyun Shen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; Rural Revitalization Project Center, Guizhou Department of Agriculture and Rural Affairs, Guiyang, 550000, China.
| |
Collapse
|
5
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025; 17:1038-1063. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
6
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2025; 62:6655-6682. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Nunes LGA, Ma C, Pitts MW, Hoffmann PR. Insights from selenoprotein I mouse models for understanding biological roles of this enzyme. Arch Biochem Biophys 2025; 768:110394. [PMID: 40107406 PMCID: PMC11994276 DOI: 10.1016/j.abb.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Selenoprotein I (selenoi) is a metabolic enzyme expressed in a wide variety of tissues that catalyzes the transfer of the ethanolamine phosphate group from CDP-ethanolamine to lipid acceptors to generate ethanolamine phospholipids. It is a member of the selenoprotein family, a class of proteins that mostly play fundamental roles in redox homeostasis and are defined by the co-translational incorporation of selenium in the form of selenocysteine. Loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a complex form of hereditary spastic paraplegia. Understanding the roles of this selenoprotein and its phospholipid products in different cell types has benefited from the development of mouse models. In particular, global and conditional knockout (KO) of the Selenoi gene in mice has enabled a more complete picture to emerge of how this important selenoprotein is integrated into metabolic pathways. These data have revealed how Selenoi loss-of-function affects embryogenesis, neurodevelopment, the immune system and liver physiology. This review summarizes the insights gained through mouse model experiments and the current understanding the different physiological roles played by this selenoprotein.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
8
|
Uytun M, Orbak R, Kızıltunç A. Potential Relationship Between Decreased Serum Selenium Levels and Oxidative Stress in Periodontitis Stage III-IV. Biol Trace Elem Res 2025:10.1007/s12011-025-04649-3. [PMID: 40325319 DOI: 10.1007/s12011-025-04649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
In this study, the relationships between periodontitis and total oxidant status (TOS), total antioxidant status (TAS), and selenium levels were investigated. A total of 122 participants, including 61 periodontitis patients and 61 periodontally healthy individuals, were included. Serum TOS, TAS, and selenium levels were measured, and the biochemical and clinical parameters were compared. The relationship between selenium levels and periodontitis was assessed through univariate analysis and multivariate logistic regression. Compared with the healthy group, the periodontitis group had significantly higher TOS and significantly lower TAS and selenium levels (p < 0.001). Logistic regression analysis also revealed a significant correlation between selenium levels and periodontitis (p < 0.001). Our study demonstrated that periodontitis was related to TOS, TAS, and selenium levels. The present study investigated the relationships of periodontitis with TOS, TAS, and selenium levels. Selenium levels could serve as an important biomarker for periodontal disease, as they are strongly correlated with the TOS value, the TAS value, and clinical parameters. Furthermore, lower selenium levels were observed in periodontitis patients than in healthy individuals.
Collapse
Affiliation(s)
- Mehmetcan Uytun
- Department of Periodontology, School of Dentistry, Muğla Sıtkı Koçman University, Muğla, 48000, Turkey.
| | - Recep Orbak
- Department of Periodontology, School of Dentistry, Atatürk University, Erzurum, 25100, Turkey
| | - Ahmet Kızıltunç
- Department of Medical Biochemistry, School of Medicine, Atatürk University, Erzurum, 25100, Turkey
| |
Collapse
|
9
|
Karunakaran V, Harding K, Sarnowski A, Walter E. Trace elements: Clinical perspectives in the critically ill. J Intensive Care Soc 2025; 26:223-236. [PMID: 39926387 PMCID: PMC11800230 DOI: 10.1177/17511437241305269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Trace elements are required in minute quantities in the diet but play a vital role in a wide variety of functions, such as co-factors in antioxidant reactions and normal immune function to DNA and protein synthesis and skeletal and tissue remodelling and repair. Critically ill patients are at risk of trace element deficiency or excess, due to changes in intake, absorption, metabolism or excretion. Deficiency or excess can lead to a wide range of cellular and organ dysfunction that may be seen in patients with an acute or critical illness, including cardiomyopathy, impaired glucose tolerance and reduced oxygen delivery. In addition, various diseases, such as systemic inflammation and renal and intestinal failure, and intensive care treatments, such as parenteral nutrition, renal replacement therapy and diuretics, can increase the likelihood of deficient or excessive amounts of micronutrient levels. This narrative review discusses sources and normal physiology of trace element handling and how this may be impaired in critically ill patients. It then discusses various conditions seen in critically ill patients that may be caused or exacerbated by abnormal trace element status and the current evidence around whether supplementation is of benefit in particular critical illnesses.
Collapse
Affiliation(s)
| | - Keri Harding
- Intensive Care Unit, Royal Surrey County Hospital, Surrey, UK
| | | | - Edward Walter
- Intensive Care Unit, Royal Surrey County Hospital, Surrey, UK
| |
Collapse
|
10
|
Shaikh RJ, Joshi TA, Mundada SM, Pawar SY, Khaire More PB. Oral Selenium as an Adjunct in the Treatment of Acute Lower Respiratory Tract Infections in Children: A Double-Blind Randomized Controlled Trial. Indian Pediatr 2025; 62:351-355. [PMID: 40202578 DOI: 10.1007/s13312-025-00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/01/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVE To evaluate the role of oral selenium in clinical recovery of acute lower respiratory tract infections (ALRTI) in under-five children. METHODS This double-blind, randomized controlled trial included children aged 6 months to 5 years hospitalised with ALRTI at a tertiary care hospital. Participants were randomized in 1:1 ratio to receive oral selenium (20-30 mcg/day) or placebo, once daily until discharge, along with standard treatment. The primary outcome was the time for clinical recovery. The secondary outcomes were the duration of hospital stay, modes of oxygen support required and side effects of selenium. RESULTS A total of 60 children were randomized to either groups. The median (IQR) time required for clinical recovery was 72 (54, 144) h in the selenium group and 96 (54, 120) h in the placebo group (P = 0.346). The median (IQR) duration of hospital stay was 6 (5, 7) days and 6 (6, 8) days in the selenium and placebo groups, respectively (P = 0.680). Mechanical ventilation was required in 10 (16.6%) and 21 (35%) children in the selenium and placebo groups, respectively (P = 0.020). No side effects were reported with the intervention. CONCLUSIONS Oral selenium administered as an adjunct in a daily dose of 20-30 mcg orally for 5-7 days, does not reduce the time needed for clinical recovery or the duration of hospitalization but reduces the need for mechanical ventilation in under-five children with ALRTI. TRIAL REGISTRY CTRI/2023/04/051842.
Collapse
Affiliation(s)
- Rubeena Jamir Shaikh
- Department of Pediatrics, Government Medical College Chhatrapati Sambhajinagar, Aurangabad, Maharashtra, India
| | - Trupti Amol Joshi
- Department of Pediatrics, Government Medical College Chhatrapati Sambhajinagar, Aurangabad, Maharashtra, India.
| | - Smita Madhusudan Mundada
- Department of Pediatrics, Government Medical College Chhatrapati Sambhajinagar, Aurangabad, Maharashtra, India
| | - Shilpa Yashwant Pawar
- Department of Pediatrics, Government Medical College Chhatrapati Sambhajinagar, Aurangabad, Maharashtra, India
| | - Prabha Bhaskar Khaire More
- Department of Pediatrics, Government Medical College Chhatrapati Sambhajinagar, Aurangabad, Maharashtra, India
| |
Collapse
|
11
|
Ye R, Guo J, Yang Z, Wang Z, Chen Y, Huang J, Dong Y. Somatostatin and Mannooligosaccharide Modified Selenium Nanoparticles with Dual-Targeting for Ulcerative Colitis Treatment. ACS NANO 2025; 19:14914-14930. [PMID: 40214514 DOI: 10.1021/acsnano.5c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Inflammatory bowel disease (IBD) is a prevalent condition worldwide, characterized by complex etiologies, limited efficacy of clinical drug treatments, and potential adverse effects. In this study, we designed 269 nm selenium nanoparticles with double-cell targeting for ulcerative colitis treatment. Somatostatin (SST) and mannooligosaccharide (MOS) were employed to functionalize an Eucommia ulmoides polysaccharide selenium nanoparticle (EUP-SeNP), resulting in the formulation of SST/MOS@EUP-SeNP. Nanoparticles were engineered to target intestinal epithelial cells and macrophages through specific cell surface receptors, enabling dual-targeted treatment. In addition, sodium alginate (SA) microspheres incorporating SST/MOS@EUP-SeNP were prepared for oral administration, protecting the nanoparticles from gastric fluid. The results showed that SA/SST/MOS@EUP-SeNP could preferentially target the inflamed colon tissue and adhere to the colon, enhance the intestinal barrier function, regulate the level of colon inflammation, enhance antioxidant capacity, and regulate the composition of intestinal microbes to effectively relieve the colitis induced by sodium glucan sulfate (DSS). Meanwhile, SA/SST/MOS@EUP-SeNP had excellent biocompatibility both in vivo and in vitro. To some extent, this study can provide a reference for the treatment of IBD.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianying Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhongjin Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Gong W, Liu Z, Wang Y, Huang W, Yang K, Gao Z, Guo K, Xiao Z, Zhao W. Reprogramming of Treg cell-derived small extracellular vesicles effectively prevents intestinal inflammation from PANoptosis by blocking mitochondrial oxidative stress. Trends Biotechnol 2025; 43:893-917. [PMID: 39689981 DOI: 10.1016/j.tibtech.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing immune-mediated inflammatory disorder of the alimentary tract without exact etiology. Mitochondrial reactive oxygen species (mtROS) derived from mitochondrial dysfunction impair intestinal barrier function, increase gut permeability, and facilitate immune cell invasion, and, therefore, are considered to have a pivotal role in the pathogenesis of IBD. Here, we reprogrammed regulatory T cell (Treg)-derived exosomes loaded with the antioxidant trace element selenium (Se) and decorated them with the synthetic mitochondria-targeting SS-31 tetrapeptide via a peptide linker. This linker can be cleaved by matrix metalloproteinases (MMPs) in inflammatory lesions. This actively targetable exosome-derived delivery system is protected from intestinal inflammation by scavenging excessive mtROS and preventing immunologically programmed cell death pyroptosis, necroptosis, and apoptosis, known as PANoptosis. Our results suggest that this engineered exosome delivery platform represents a promising targeted therapeutic strategy for the treatment of IBDs.
Collapse
Affiliation(s)
- Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenni Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuqiu Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenhai Gao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
13
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
14
|
Simon P, Török É, Szalontai K, Kari B, Neuperger P, Zavala N, Kanizsai I, Puskás LG, Török S, Szebeni GJ. Nutritional Support of Chronic Obstructive Pulmonary Disease. Nutrients 2025; 17:1149. [PMID: 40218907 PMCID: PMC11990120 DOI: 10.3390/nu17071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background: COPD is a heterogenous disease of the respiratory tract caused by diverse genetic factors along with environmental and lifestyle-related effects such as industrial dust inhalation and, most frequently, cigarette smoking. These factors lead to airflow obstruction and chronic respiratory symptoms. Additionally, the increased risk of infections exacerbates airway inflammation in COPD patients. As a consequence of the complex pathomechanisms and difficulty in treatment, COPD is among the leading causes of mortality both in the western countries and in the developing world. Results: The management of COPD is still a challenge for the clinicians; however, alternative interventions such as smoking cessation and lifestyle changes from a sedentary life to moderate physical activity with special attention to the diet may ameliorate patients' health. Here, we reviewed the effects of different dietary components and supplements on the conditions of COPD. Conclusions: COPD patients are continuously exposed to heavy metals, which are commonly present in cigarette smoke and polluted air. Meanwhile, they often experience significant nutrient deficiencies, which affect the detoxification of these toxic metals. This in turn can further disrupt nutritional balance by interfering with the absorption, metabolism, and utilization of essential micronutrients. Therefore, awareness and deliberate efforts should be made to check levels of micronutrients, with special attention to ensuring adequate levels of antioxidants, vitamin D, vitamin K2, magnesium, and iron, as these may be particularly important in reducing the risk of COPD development and limiting disease severity.
Collapse
Grants
- 2023-1.1.1-PIACI_FÓKUSZ-2024-00036 National Research, Development, and Innovation Office (NKFI), Hungary
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office (NKFI), Hungary
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary.
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Péter Simon
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Éva Török
- Gastroenterology Center Buda, 1117 Budapest, Hungary;
| | - Klára Szalontai
- Department of Pulmonology, Szent-Györgyi Albert Medical Center, University of Szeged, 6772 Deszk, Hungary;
| | - Beáta Kari
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Norma Zavala
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | | | - László G. Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Anthelos Ltd., 6726 Szeged, Hungary
| | - Szilvia Török
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
15
|
Li Y, Gu Y, Ao X. Nano selenium and plant extracts supplementation enhanced reproductive performance of parity-2 sows. Sci Rep 2025; 15:9678. [PMID: 40113837 PMCID: PMC11926131 DOI: 10.1038/s41598-025-92981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
To investigate the effects of nano selenium (nano-Se), curcumin (CUR), and glycyrrhiza extracts (GE) on reproductive performance, antioxidant and immune functions of primiparous sows and parity-2 sows, 54 primiparous sows (Landrace × Yorkshire) were randomly divided into three groups (18 sows per group): (1) CON group, basal diet (0.30 mg·kg-1 Se, sodium selenite); (2) CUR group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 300 mg·kg-1 CUR; (3) GE group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 500 mg·kg-1 GE. The trial lasted for approximately 180 days from day 90 of gestation of primiparous sows to parity-2 sows. There were no significant differences in reproductive performance among three groups (p > 0.05), but the litter weight gain of piglets from primiparous sows in the GE group was 16.49% higher than that in the CON group (p < 0.05). Compared with the CON group, the serum SOD and GSH-Px levels of primiparous sows in the GE group were significantly increased, and the MDA content was extremely decreased. The concentrations of serum IL-6 and IL-1β (p < 0.05) of primiparous sows in the GE group were significantly lower than those in the CON group, and the serum IL-10 and TNF-α concentrations (p < 0.05) was significantly higher. The combination of nano-Se and CUR decreased the serum IL-1β level and increased the TNF-α concentration (p < 0.05). In conclusion, the addition of nano-Se along with CUR or GE in the diet of primiparous sows significantly increased the antioxidant and immune levels in the serum of primiparous sows at parturition, enhanced their stress resistance, and thus improved growth performance of offspring piglets and reproductive performance of parity-2 sows.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yan Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, 644000, China.
| |
Collapse
|
16
|
Carreras-Gallo N, Dargham R, Thorpe SP, Warren S, Mendez TL, Smith R, Macpherson G, Dwaraka VB. Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial. Aging (Albany NY) 2025; 17:699-725. [PMID: 40096467 PMCID: PMC11984428 DOI: 10.18632/aging.206221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Aging interventions have progressed in recent years due to the growing curiosity about how lifestyle impacts longevity. This study assessed the effects of SRW Laboratories' Cel System nutraceutical range on epigenetic methylation patterns, inflammation, physical performance, body composition, and epigenetic biomarkers of aging. A 1-year study was conducted with 51 individuals, collecting data at baseline, 3 months, 6 months, and 12 months. Participants were encouraged to walk 10 minutes and practice 5 minutes of mindfulness daily. Significant improvements in muscle strength, body function, and body composition metrics were observed. Epigenetic clock analysis showed a decrease in biological age with significant reductions in stem cell division rates. Immune cell subset analysis indicated significant changes, with increases in eosinophils and CD8T cells and decreases in B memory, CD4T memory, and T-regulatory cells. Predicted epigenetic biomarker proxies (EBPs) showed significant changes in retinol/TTHY, a regulator of cell growth, proliferation, and differentiation, and deoxycholic acid glucuronide levels, a metabolite of deoxycholic acid generated in the liver. Gene ontology analysis revealed significant CpG methylation changes in genes involved in critical biological processes related to aging, such as oxidative stress-induced premature senescence, pyrimidine deoxyribonucleotide metabolic process, TRAIL binding, hyaluronan biosynthetic process, neurotransmitter loading into synaptic vesicles, pore complex assembly, collagen biosynthetic process, protein phosphatase 2A binding activity, and activation of transcription factor binding. Our findings suggest that the Cel System supplement range may effectively reduce biological age and improve health metrics, warranting further investigation into its mechanistic pathways and long-term efficacy.
Collapse
Affiliation(s)
| | - Rita Dargham
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | | | - Steve Warren
- Regenerative Wellness, 4698 Highland Dr. Millcreek, UT 84117, USA
| | - Tavis L. Mendez
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | - Ryan Smith
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | | | | |
Collapse
|
17
|
He Z, Su S, Zhang B, Chen D, Yuan S, Guan W, Zhang S. Selenium Yeast Attenuated Lipopolysaccharide-Induced Inflammation in Porcine Mammary Epithelial Cells by Modulating MAPK and NF-κB Signaling Pathways. Antioxidants (Basel) 2025; 14:334. [PMID: 40227414 PMCID: PMC11939497 DOI: 10.3390/antiox14030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Mastitis, a prevalent inflammatory disease in mammals, disrupts mammary gland function, compromises milk quality, and can contribute to increased offspring morbidity and mortality. Maintaining the health of porcine mammary epithelial cells (PMECs), the primary cell type in the mammary gland, is crucial for minimizing the adverse effects of this disease. Selenium yeast (SeY), an organic selenium compound known for its antioxidant and immune-enhancing properties, has yet to be fully understood in its role in modulating inflammation in mammary gland. In this study, lipopolysaccharide (LPS) (50 µg/mL, 24 h) significantly upregulated the expression of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) (p < 0.05). Pretreatment with 1 µM SeY significantly attenuated the LPS-induced inflammatory response by reducing the levels of TNF-α, IL-6, IL-8, and IL-1β (p < 0.05). Additionally, SeY enhanced cellular antioxidant defenses by increasing total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, glutathione (GSH) levels, and glutathione peroxidase (GSH-Px) activity, while concurrently decreasing malondialdehyde (MDA) accumulation (p < 0.05). SeY also restored both intracellular and extracellular triglyceride levels and rescued lipid droplet formation, which were disrupted by LPS treatment. Furthermore, SeY upregulated key regulators involved in milk synthesis (p < 0.05). These findings suggest that SeY effectively mitigates LPS-induced inflammation and oxidative stress while preserving critical pathways for milk fat and protein synthesis in PMECs.
Collapse
Affiliation(s)
- Zhenting He
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Senlin Su
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Bing Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Dongpang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Siyu Yuan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Singh A, Dey P, Mihara H, Prakash NT, Prakash R. Facile synthesis of selenium nanoparticles and stabilization using exopolysaccharide from endophytic fungus, Nigrospora gullinensis, and their bioactivity study. BIOMASS CONVERSION AND BIOREFINERY 2025; 15:9581-9598. [DOI: 10.1007/s13399-024-05870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 03/31/2025]
|
19
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
20
|
Iwata H, Ikeda A, Itoh M, Ketema RM, Tamura N, Yamaguchi T, Yamazaki K, Yamamoto R, Tojo M, Ait Bamai Y, Saijo Y, Ito Y, Kishi R. Association between prenatal exposure to maternal metal and trace elements and Streptococcus infection: A prospective birth cohort in the Japan Environment and Children's Study. PLoS One 2025; 20:e0319356. [PMID: 40014588 PMCID: PMC11867319 DOI: 10.1371/journal.pone.0319356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Streptococcus infection is a common and potentially severe bacterial infection which remains a global public health challenge, underscoring the necessity of investigating potential risk factors. AIMS The present study aims to assess the association between metal and trace element exposure and Streptococcus infection using a prospective nationwide birth cohort, the Japan Environment and Children's Study (JECS). METHODS The JECS obtained data from over 100,000 pregnancies through 15 Regional Centres across Japan. We assessed toxic metal and trace element levels among pregnant mothers and Streptococcus infection among their children, born between 2011 and 2014, at age three to four. Analysis was performed using univariable and multivariable logistic regressions, as well as Quantile g-computation. We also conducted quartile regressions to assess the effects of higher serum selenium levels and potential interactions between selenium and mercury. RESULTS Among 74,434 infants and their mothers, univariable and multivariable regression analyses found that selenium and mercury each had an inverse association with Streptococcus infection incidence. Quantile g-computation analysis yielded results consistent with the primary regression analyses. Quartile regression suggested that serum selenium levels above the third quartile were inversely associated with later Streptococcus infection incidence, but no interaction between selenium and mercury was found. CONCLUSIONS These findings imply that maternal selenium exposure may have protective effects on Streptococcus infection among children. Further studies should explore the role of pediatric selenium in immune responses to infectious diseases, especially Streptococcus infection.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Rieko Yamamoto
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Maki Tojo
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yasuaki Saijo
- Department of Social Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshiya Ito
- Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, Kitami, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | |
Collapse
|
21
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
22
|
Zeng W, Hu M, Ma L, Huang F, Jiang Z. Copper and iron as unique trace elements linked to fibromyalgia risk. Sci Rep 2025; 15:4019. [PMID: 39893184 PMCID: PMC11787290 DOI: 10.1038/s41598-025-86447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Fibromyalgia (FM) is a prevalent chronic pain condition with a complex and not fully understood etiology. Abnormal metabolism of trace elements is suspected to play a role in the pathogenesis of FM, though the exact relationships have yet to be clarified. This study employed Mendelian randomization (MR) to assess potential causal relationships between 15 major trace elements and the risk of FM, focusing on the specific roles of elements that show significant associations. Genetic instrumental variables (single nucleotide polymorphisms, SNPs), related to these trace elements and FM were extracted from genome-wide association studies (GWAS). Analyses were performed using various methods including inverse-variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode. Furthermore, multivariable analysis controlled for selenium as a potential confounder to evaluate the independent associations of copper (Cu) and iron (Fe) with FM risk. Two-sample MR analysis indicated a positive association between Cu and increased risk of FM (IVW: OR = 1.095, 95% CI: 1.015 to 1.181, P = 0.018), and a negative association between Fe and FM risk (IVW: OR = 0.440, 95% CI: 0.233 to 0.834, P = 0.011). These associations remained significant in the multivariable analysis, highlighting the independent effects of Cu and Fe. No significant correlations were observed with other trace elements such as selenium and zinc. This study provides new evidence of the roles of Cu and Fe in the pathophysiology of FM and underscores the importance of considering trace elements in the prevention and treatment strategies for FM. Future research should further validate these findings and explore the specific biological mechanisms through which Cu and Fe influence FM risk.
Collapse
Affiliation(s)
- Wenxing Zeng
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minhua Hu
- Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Traditional ChineseMedicine, Zhongshan, China
| | - Luyao Ma
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
23
|
Lee TJ, Liao HC, Salim A, Nettleford SK, Kleinman KL, Carlson BA, Prabhu KS. Selenoproteome depletion enhances oxidative stress and alters neutrophil functions in Citrobacter rodentium infection leading to gastrointestinal inflammation. Free Radic Biol Med 2025; 227:499-507. [PMID: 39662689 PMCID: PMC11757042 DOI: 10.1016/j.freeradbiomed.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in modulating a range of proinflammatory functions in neutrophils, as well as regulating neutrophil apoptosis and facilitating the resolution of an inflammatory response. Selenoproteins with the 21st amino acid, selenocysteine (Sec), regulate immune mechanisms through the modulation of redox homeostasis aiding in the efficient resolution of inflammation, while their role in neutrophil functions during diseases remains unclear. To study the role of selenoproteins in neutrophils during infection, we challenged the granulocyte-specific tRNASec (Trsp) knockout mice (TrspN) with Citrobacter rodentium (C. rodentium), a murine pathogenic bacterium. Reduced bacterial shedding during the disease-clearing phase and increased tissue damage and neutrophil accumulation in the colon of the TrspN mice were observed following infection. TrspN neutrophils showed increased intracellular ROS accumulation during ex vivo C. rodentium stimulation and upregulated fMLP or Cx3cl1-induced chemotaxis. We also observed delayed neutrophil apoptosis, reduced efferocytosis of TrspN neutrophils, and increased abundance of apoptotic cells in the colon of TrspN mice. Together, these studies indicate that selenoprotein depletion results in increased neutrophil migration to the gut accompanied by ROS accumulation, while downregulating neutrophil apoptosis and subsequent efferocytosis by macrophages. Such an increase in inflammation followed by impaired resolution culminates in decreased bacterial load but with exacerbated host tissue damage.
Collapse
Affiliation(s)
- Tai-Jung Lee
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Hsiao-Chi Liao
- School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Agus Salim
- School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Kendall L Kleinman
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA.
| |
Collapse
|
24
|
Rokade A, Thorat ST, Chandramore K, Reddy KS, Kumar N. Integrating immunity, antioxidative status, and gene regulation against nickel and high-temperature stress in fish: selenium nanoparticles for mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3987-4003. [PMID: 39843820 DOI: 10.1007/s11356-025-35947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress. The fish were reared under different experimental conditions as follows: a control group (no exposure to Ni and T, and fed a control diet); a group concurrently exposed to Ni and T while fed a control diet; and groups concurrently exposed to Ni and T while being fed supplemented diets with Se-NPs at 0.5 mg kg-1 and 1.0 mg kg-1 for 38 days. The growth performance of fish exposed to nickel and high-temperature (Ni + T) stress was significantly improved by supplementation with selenium nanoparticles (Se-NPs) at 0.5 mg kg-1. This supplementation also upregulated the expression of growth hormone (GH) and growth hormone receptor (GHR1) genes, while considerably downregulating the myostatin (MYST) gene. Fish subjected to Ni + T stress exhibited markedly elevated cortisol levels, which were notably reduced by Se-NPs at 0.5 mg kg-1. Moreover, Se-NPs at 0.5 mg kg-1 significantly downregulated the expression of stress-related genes, including Caspase 3a (Cas 3a), CYP450, iNOS, and HSP70. Fish fed Se-NPs supplemented diet and exposed to Ni + T stress demonstrated enhanced levels of TNFα and total immunoglobulins, indicating an improved immune response. Dietary Se-NPs also led to a significant reduction in oxidative stress markers, such as glutathione-S-transferase, catalase, and superoxide dismutase, in stressed fish. While Ni + T stress reduced acetylcholine esterase activity, dietary Se-NPs restored these activities. Furthermore, the inclusion of Se-NPs in the diet markedly enhanced the detoxification of nickel in various fish tissues. In conclusion, the study demonstrates that dietary supplementation with Se-NPs at 0.5 mg kg-1 effectively mitigates the adverse effects of Ni + T stress in fish by modulating gene expression, alleviating cellular metabolic stress, and enhancing physiological functions.
Collapse
Affiliation(s)
- Anuja Rokade
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India
- Vidya Pratishthan's Arts, Commerce and Science College Baramati, Pune, 413 133, India
| | | | - Kalpana Chandramore
- Vidya Pratishthan's Arts, Commerce and Science College Baramati, Pune, 413 133, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India.
| |
Collapse
|
25
|
Tan H, Fu S, Shen L, Lin Q, Li W, Ran Y, Zhao Y, Tan L, Hao Y. Bioeliminable Pt@Bi 2Se 3-RGD Nanoassembly for Enhancing Photoacoustic Imaging-Guided Tumor Immuno-Radiotherapy by Inducing Apoptosis via the Areg Pathway. Theranostics 2025; 15:2720-2736. [PMID: 40083934 PMCID: PMC11898289 DOI: 10.7150/thno.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/19/2025] [Indexed: 03/16/2025] Open
Abstract
Background: Nanoradiosensitizers containing high Z-group elements have been reported widely as potential candidates for radiotherapy. However, the specific regulatory mechanism is unclear, and biodegradability needs to be addressed urgently. Methods: We synthesized a silk sericin-containing nano assembly, Pt@Bi2Se3-RGD (PBR). PBR's antitumor and bioeliminable effects were demonstrated in 4T1 tumor cells in vitro and in vivo. The immuno-radiotherapy effects of PBR were evaluated using a bilateral tumor model. Results: Combining photoacoustic imaging-guided PBR with radiotherapy improved the efficiency of anti-PD-L1 treatment, eliciting a robust immune response. Importantly, silk sericin-containing PBR could respond to the local intracellular environment in the tumor with acidic pH and overexpressed MMP-9, collapsing into Bi, Se, and scattered Pt nanoparticles (NPs) and finally be cleared from the body. The results also suggested that PBR may act on the Areg/Egfr/Bcl-2 pathway, inducing apoptosis for radiosensitization. Conclusion: The multifunctional, bioeliminable PBR nanoassembly synthesized in this study demonstrated radiosensitization, which, in conjunction with the PD-L1 immune blockade, could suppress primary and distal tumors. Thus, as a sensitizer for synergistic radiotherapy and immunotherapy, PBR could have wide-ranging clinical applications in oncology.
Collapse
Affiliation(s)
- Huanhuan Tan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Shiyan Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Qinyang Lin
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Wenrun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
26
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Wahl L, Samson Chillon T, Seemann P, Ohrndorf S, Ochwadt R, Becker W, Schomburg L, Hoff P. Serum selenium, selenoprotein P and glutathione peroxidase 3 in rheumatoid, psoriatic, juvenile idiopathic arthritis, and osteoarthritis. J Nutr Biochem 2025; 135:109776. [PMID: 39389271 DOI: 10.1016/j.jnutbio.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Selenoprotein P (SELENOP) controls selenium (Se) transport, and glutathione peroxidase 3 (GPx3) elicits antioxidant activity in blood. Inflammation associates with Se deficiency, but knowledge concerning selenoproteins in inflammatory rheumatic musculoskeletal diseases (iRMD) is limited. We compared three Se biomarkers in patients with rheumatoid (RA), psoriatic (PsA), and juvenile idiopathic arthritis (JIA) in comparison to osteoarthritis (OA) and healthy subjects, to improve the data base on selenoprotein expression in iRMD. The cross-sectional study enrolled n=272 patients with RA (n=131), PsA (n=67), JIA (n=22) and OA (n=52). Serum Se was quantified by total reflection X-ray fluorescence, SELENOP by ELISA and GPx3 by an enzymatic test. Data from the EPIC trial served as reference. Impairment of daily life was assessed by the Functional Ability Questionnaire (FfbH). Serum SELENOP and Se concentrations correlated linearly in all groups and were below the average measured in EPIC. Se concentration was not different between the patient groups. Compared to controls, SELENOP levels were low in iRMD patients. GPx3 activity was particularly low in JIA and PsA. Seropositive but not seronegative RA patients displayed a disrupted interaction between GPx3 and Se or SELENOP. SELENOP associated with the functional status measured by the FfbH, most pronounced in OA (R=0.76, P < .01). The data indicate selenoprotein deficiency in the majority of patients with iRMD, and a positive relation of SELENOP with functional status in OA. Since increased Se supply improves selenoprotein biosynthesis, a personalized correction of diagnosed deficiency merits consideration to improve Se transport and ameliorate disease burden.
Collapse
Affiliation(s)
- Lukas Wahl
- MVZ Endokrinologikum Berlin am Gendarmenmarkt, Berlin, Germany; Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Thilo Samson Chillon
- Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | | | - Sarah Ohrndorf
- Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Ragna Ochwadt
- MVZ für Laboratoriumsmedizin, Genetik und Mikrobiologie Hamburg GmbH, Hamburg, Germany
| | | | - Lutz Schomburg
- Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany.
| | - Paula Hoff
- MVZ Endokrinologikum Berlin am Gendarmenmarkt, Berlin, Germany; Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany.
| |
Collapse
|
29
|
Rong Z, He X, Fan T, Zhang H. Nano Delivery System for Atherosclerosis. J Funct Biomater 2024; 16:2. [PMID: 39852558 PMCID: PMC11766408 DOI: 10.3390/jfb16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Atherosclerosis, a pathological process propelled by inflammatory mediators and lipids, is a principal contributor to cardiovascular disease incidents. Currently, drug therapy, the primary therapeutic strategy for atherosclerosis, faces challenges such as poor stability and significant side effects. The advent of nanomaterials has garnered considerable attention from scientific researchers. Nanoparticles, such as liposomes and polymeric nanoparticles, have been developed for drug delivery in atherosclerosis treatment. This review will focus on how nanoparticles effectively improve drug safety and efficacy, as well as the continuous development and optimization of nanoparticles of the same material and further explore current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
30
|
Hall JA, Bobe G, Vorachek WR, Klopfenstein JJ, Thompson IO, Zurita Cruz CL, Dolan BP, Jin L, Davis TZ. Effects of Supranutritional Selenium Supplementation During Different Trimesters of Pregnancy on Humoral Immunity in Beef Cattle at Parturition. Biol Trace Elem Res 2024:10.1007/s12011-024-04457-1. [PMID: 39704955 DOI: 10.1007/s12011-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Supranutritional Se supplementation may improve immune responses in beef cattle. Immunity is compromised in beef cattle during the periparturient period. This study aims to determine the best time during pregnancy to supplement beef cows with Se-yeast to optimize humoral immunity at parturition. Multiparous, black Angus and Angus cross cows (n = 79) were used in the study. All cows had ad libitum access to a mineral supplement containing 120 mg/kg Se (US FDA regulations) from Na selenite. In addition, all cows except controls (CTR) received Se supplementation of 105 mg Se/week from Se-yeast boluses administered once weekly during their specific treatment trimester of gestation (TR1, TR2, or TR3) for 13 weeks. This dosage was supranutritional equaling 5 × the upper range of US FDA Se administration regulations. Blood was collected at parturition from all cows. Laboratory analyses studied to assess humoral immunity included measuring IBR, BVD types 1 and 2, PI3, and BRSV serum neutralization titers post vaccination, assessing total IgM and antigen-specific IgM concentrations, and determining complement-mediated bacterial killing percentages. Statistical analyses were performed using GraphPad Prism and SAS 9.4. Supranutritional Se-yeast supplementation increased whole-blood (WB) Se concentrations regardless of trimester of supplementation (all P < 0.0001). Supplementation during TR2 and TR3 was more effective in increasing WB-Se concentrations at parturition than during TR1 or CTR (all P < 0.0001). TR2 cows had higher serum neutralization titers for BRSV compared with CRT cows (P = 0.03). Total serum IgM and Vibrio coralliilyticus-specific IgM concentrations were highly correlated (r = 0.78; P < 0.0001). Compared with CTR cows, TR1, TR2, and TR3 cows had similar total IgM concentrations (all P ≥ 0.19) and similar Vibrio coralliilyticus-specific IgM concentrations (all P ≥ 0.47). Complement-mediated bacterial killing percentages were greater in TR2 and TR3 cows (> 99.6%) compared with TR1 (93.9%) and CTR (89.3%) cows, and all Se-supplemented TR groups were greater than CTR cows (all P ≤ 0.05). The significant group differences in the complement-mediated bacterial killing assay reflected WB-Se concentrations. Supranutritional Se-yeast supplementation during TR2 and TR3 is associated with higher serum neutralization titers for some viral antigens, as well as enhanced complement-mediated bacterial killing in cows at parturition. These findings suggest that Se supplementation during later trimesters of pregnancy may help combat infectious disease challenges during the periparturient period in beef cattle.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331-4802, USA
| | - William R Vorachek
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph J Klopfenstein
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Oregon State University, Corvallis, OR, 97331, USA
| | - Ian O Thompson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Cindy L Zurita Cruz
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - T Zane Davis
- Agricultural Research Service-Poisonous Plant Research Lab, USDA, Logan, UT, 84341, USA
| |
Collapse
|
31
|
Deng H, Chen Y, Xing J, Zhang N, Xu L. Systematic low-grade chronic inflammation and intrinsic mechanisms in polycystic ovary syndrome. Front Immunol 2024; 15:1470283. [PMID: 39749338 PMCID: PMC11693511 DOI: 10.3389/fimmu.2024.1470283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR), steroid hormones imbalance and intestinal microecological imbalance, deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia (HHcy) can induce systematic imbalance between pro-inflammatory and anti-inflammatory cells and molecules. The pro-inflammatory cells and cytokines also interact with obesity, steroid hormones imbalance and IR, leading to increased metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients. This review aims to summarize the dysregulation of immune response in PCOS organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide new insights for the systemic inflammatory treatment of PCOS in the future.
Collapse
Affiliation(s)
- Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jilong Xing
- Division of Renal and Endocrinology, Qin Huang Hospital, Xi’an, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Alexander J, Aaseth JO, Schomburg L, Chillon TS, Larsson A, Alehagen U. Circulating Glutathione Peroxidase-3 in Elderly-Association with Renal Function, Cardiovascular Mortality, and Impact of Selenium and Coenzyme Q 10 Supplementation. Antioxidants (Basel) 2024; 13:1566. [PMID: 39765894 PMCID: PMC11672870 DOI: 10.3390/antiox13121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Low-selenium status was associated with impaired renal function, which improved after selenium and coenzyme Q10 supplementation in an RCT. Here, we evaluated serum glutathione peroxidase-3 (GPx3) and its relation to serum selenium, selenoprotein P (SELENOP), renal function, mortality, and the impact of supplementation, which are all important, especially in elderly individuals. In total, 383 study participants (197 receiving selenium yeast and coenzyme Q10 and 186 on a placebo) were evaluated. We applied benchmark dose modelling to determine GPx3 saturation, ANCOVA, Kaplan-Meier, and multivariate Cox proportional regression analyses for mortality evaluations. Selenium and GPx3 activity were modestly correlated. In comparison with SELENOP, GPx3 levelled off at a much lower value, 100 vs. 150 µg Se/L. GPx3 was associated with renal function, but not SELENOP. Supplementation increased glomerular function by ≈23% with an increase in GPx3. Being low in GPx3 displayed twice the risks of mortality in both placebos and active treatments. At serum selenium <100 µg/L, GPx3 activity was dependent on both selenium status and renal function. As renal function is reduced in the elderly, GPx3 is not an appropriate marker of selenium status. Low GPx3 was associated with an increased risk of mortality dependent of selenium status and independent of renal function.
Collapse
Affiliation(s)
- Jan Alexander
- Norwegian Institute of Public Health, N-0213 Oslo, Norway
| | - Jan Olav Aaseth
- Research Department, Innlandet Hospital Trust, N-2381 Brumunddal, Norway;
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany; (L.S.); (T.S.C.)
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany; (L.S.); (T.S.C.)
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
33
|
Méndez López LF, González Llerena JL, Vázquez Rodríguez JA, Medellín Guerrero AB, González Martínez BE, Solís Pérez E, López-Cabanillas Lomelí M. Dietary Modulation of the Immune System. Nutrients 2024; 16:4363. [PMID: 39770983 PMCID: PMC11676904 DOI: 10.3390/nu16244363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Recent insights into the influence of nutrition on immune system components have driven the development of dietary strategies targeting the prevention and management of major metabolic-inflammatory diseases. This review summarizes the bidirectional relationship between nutrition and immunocompetence, beginning with an overview of immune system components and their functions. It examines the effects of nutritional status, dietary patterns, and food bioactives on systemic inflammation, immune cell populations, and lymphoid tissues, as well as their associations with infectious and chronic disease pathogenesis. The mechanisms by which key nutrients influence immune constituents are delineated, focusing on vitamins A, D, E, C, and B, as well as minerals including zinc, iron, and selenium. Also highlighted are the immunomodulatory effects of polyunsaturated fatty acids as well as bioactive phenolic compounds and probiotics, given their expanding relevance. Each section addresses the implications of nutritional and nutraceutical interventions involving these nutrients within the broader context of major infectious, metabolic, and inflammatory diseases. This review further underscores that, while targeted nutrient supplementation can effectively restore immune function to optimal levels, caution is necessary in certain cases, as it may increase morbidity in specific diseases. In other instances, dietary counseling should be integrated to ensure that therapeutic goals are achieved safely and effectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manuel López-Cabanillas Lomelí
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey 64460, México; (L.F.M.L.)
| |
Collapse
|
34
|
Letsiou S, Damigou E, Nomikos T, Pergantis SA, Pitsavos C, Panagiotakos D, Antonopoulou S. Deciphering the associations of selenium distribution in serum GPx-3 and selenoprotein P with cardiovascular risk factors in a healthy population with moderate levels of selenium: The ATTICA study. J Trace Elem Med Biol 2024; 86:127509. [PMID: 39190954 DOI: 10.1016/j.jtemb.2024.127509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient, important for human health. The relationship of Se with cardiovascular risk factors is still inconclusive, especially regarding the role of different selenoproteins. The present study evaluated the relation of total serum Se as well as its distribution in plasma selenoproteins, namely glutathione peroxidase 3 (GPx3) and selenoprotein P (SelP) with cardiovascular risk factors in a sex-specific manner, in a healthy population with moderate levels of Se. METHODS A sub-sample from the ATTICA Study's database, consisting of 398 participants (160 females and 238 males) with data on Se and selenoproteins levels, was considered. GPx3, SelP and the main non-specific serum selenium containing protein, selenoalbumin (SeAlb) were simultaneously determined in human plasma by high-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) at baseline. RESULTS Participants that belong to the highest tertiles of GPx3 and SelP presented the lowest blood pressure. Homocysteine was inversely associated with SelP and its ratio SelP/TSe in both sexes. In males, the lowest tertile of GPx3 showed lower adiponectin levels (0.66 ± 0.21 μg/mL) in comparison to the 2nd tertile of GPx3 (p=0.002), SelP was inversely associated with visceral adipose index (VAI) (-2.29 ± 0.81, p=0.005). Particularly, in males, the middle tertile of SelP had the lowest VAI values. Regarding females, lower Lp(a) concentration by 11.96 ± 5.84 mg/dL was observed in low SelP levels while higher leptin concentration by 2.30 ± 0.73 μg/L and lower fibrinogen concentration by 27.32 ± 13.30 mg/dL was detected in low GPx3 levels. CONCLUSION Circulating selenoproteins exert differentiated effects on cardiovascular risk factors, some of them in a sex-specific manner.
Collapse
Affiliation(s)
- Sophia Letsiou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Evangelia Damigou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | | | - Christos Pitsavos
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece.
| |
Collapse
|
35
|
Alves HPDM, Duarte GBS, Souza Junior ACD, Pereira Batista LDS, Rogero MM, Barbosa F, Cozzolino SMF, Dantas-Komatsu RCS, Marinho Costa KZS, Reis BZ. Selenium biomarkers and miR-7-5p in overweight/obese women. J Trace Elem Med Biol 2024; 86:127499. [PMID: 39084121 DOI: 10.1016/j.jtemb.2024.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Chronic low-grade inflammation and oxidative stress are pivotal contributors to the metabolic complications associated with obesity. Selenoprotein P (SELENOP) and glutathione peroxidase 1 (GPx1) are selenoproteins involved in the reduction of reactive oxygen species and pro-inflammatory cytokines levels. Nutritional epigenomics revealed the interaction of microRNAs and nutrients with an important impact on metabolic pathways involved in obesity. However, the knowledge regarding the influence of microRNA on selenium biomarkers and its impact on metabolic pathways related to obesity remains scarce. Thus, the aim of this study was to investigate the association of plasma miR-7-5p expression with selenium and inflammatory biomarkers in women with overweight/obesity. MATERIAL AND METHODS Anthropometric evaluations were performed and blood samples were collected for the analysis of fasting glucose, insulin, inflammatory and selenium biomarkers, and miR-7-5p expression in 54 women with overweight/obesity. Gene expression of SELENOP and GPX1 were evaluated in peripheral mononuclear blood cells. RESULTS This study observed a negative correlation between SELENOP levels and miR-7-5p (rho = -0.350; p = 0.018). Additionally, it was observed that body fat (OR = 0.737; p = 0.011), age (OR = 1.214; p = 0.007), and miR-7-5p (OR = 0.990; p = 0.015) emerged as significant predictors of SELENOP levels. CONCLUSIONS In conclusion, we observed a significant inverse association between miR-7-5p expression and SELENOP concentration in overweight/obese women, suggesting that age and percentage of body fat are also associated. TRIAL REGISTRATION NUMBER Brazilian Registry of Clinical Trials (ReBEC) number RBR-2nfy5q.
Collapse
Affiliation(s)
- Higor Paiva de Mendonça Alves
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Graziela Biude Silva Duarte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Adriano Carlos de Souza Junior
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Leonam da Silva Pereira Batista
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715 - Cerqueira César, São Paulo, SP 01246-904, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Laboratory of Food Engineering, Semi Industrial Ed. - R. do Lago, 250 - Bloco C, São Paulo, SP 05468-140, Brazil.
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, SP 14040903, Brazil.
| | - Silvia Maria Franciscato Cozzolino
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Raquel Costa Silva Dantas-Komatsu
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Rua General Gustavo Cordeiro de Faria, s/nº - Petrópolis, Natal, RN 59012-570, Brazil.
| | - Karina Zaira Silva Marinho Costa
- Brazilian Company of Hospital Services (EBSERH), Onofre Lopes University Hospital, Av. Nilo Peçanha, 620 - Petrópolis, Natal, RN 59012-300, Brazil.
| | - Bruna Zavarize Reis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| |
Collapse
|
36
|
Kim J, Lee JH, Jang SH, Lee EY, Lee M, Park S, Moon JS. SBP1 contributes to mesangial proliferation and inflammation through mitochondrial respiration in glomerulus during IgA nephropathy. Free Radic Biol Med 2024; 225:711-725. [PMID: 39488256 DOI: 10.1016/j.freeradbiomed.2024.10.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Mesangial expansion and proliferation have been implicated in the pathogenesis of IgA nephropathy (IgAN). Mesangial cells in glomerulus are important contributors to commencement of IgAN. From minimal mesangial expansion to diffuse proliferation, the mesangial alteration is linked to clinical and pathological features of IgAN. Although selenium-binding protein 1 (SBP1) is associated with tissue injury, the roles of SBP1 in mesangial proliferation and inflammation in glomerulus during IgAN remains unclear. In the present study, we found that SBP1 gene levels were elevated in kidney tissues of patients with IgAN. Also, SBP1 protein levels were elevated in proliferative mesangial cells of glomerulus in kidney tissues from patients with IgAN. Urinary SBP1 protein levels were elevated in patients with IgAN. Elevated urinary SBP1 levels were positively correlated with segmental glomerulosclerosis of the Oxford classification related to mesangial proliferation in patients with IgAN. Over-expression of SBP1 induced cellular proliferation via mitochondrial respiration in human renal mesangial cells. Consistently, SBP1 knockdown and mitochondrial respiration inhibition suppressed cellular proliferation and induced mitochondrial oxidative stress in human renal mesangial cells. Furthermore, SBP1 induced pro-inflammatory phenotype by gene expression and production of pro-inflammatory cytokines and chemokines including IL-6, CXCL10, and CCL5 via NF-κB activation in human renal mesangial cells. These results suggest that SBP1 contributes to mesangial proliferation and inflammation via mitochondrial respiration during IgAN.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Ji-Hye Lee
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Si-Hyong Jang
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, South Korea
| | - Mihye Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea; Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea; Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
37
|
Zhang R, Xie X, Liu J, Pan R, Huang Y, Du Y. A novel selenoglycoside compound GlcSeCys alleviates diets-induced obesity and metabolic dysfunctions with the modulation of Galectin-1 and selenoproteins. Life Sci 2024:123259. [PMID: 39557393 DOI: 10.1016/j.lfs.2024.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium, an essential trace element in human, has been shown to play protective roles in obesity and metabolic disorders despite insufficient understanding of mechanisms. Moreover, it's well known that biological actions of selenium compounds differed greatly due to divergent chemical forms. Selenoglycoside is a type of organoselenium compounds with excellent hydrophilicity, but biological activity of which in vivo are almost unknown. We have designed and synthesized Se-β-d-glucopyranosyl-D-selenocysteine, a novel selenoglycoside compound named GlcSeCys. Herein, GlcSeCys was given to high fat high cholesterol (HFHC) fed mice to determine its actions as well as relevant molecular mechanisms using transcriptome and multiple molecular biological methods. It was revealed that GlcSeCys displayed pronounced anti-obesity effect and significantly alleviated hyperglycemia, hyperinsulinemia along with hepatic steatosis in HFHC diets-induced mice. Mechanistically, GlcSeCys was found to inhibit lipogenesis, lipid uptake and inflammation in liver, along with attenuation of Galectin-1 and induction of selenoprotein S (SELENOS). With regard to adipose tissues, GlcSeCys ameliorated hypertrophy of adipocytes, suppressed lipids biosynthesis and stimulated WAT browning along with abrogated WAT inflammation activation, which were in line with repression of Galectin-1 and increase of GPx3. Collectively, our results uncovered, for the first time, that selenoglycoside compound GlcSeCys possessed excellent protective effects against obesity and metabolic disorders, and the mechanisms were correlated with modulation of Galectin-1 and selenoproteins, shedding lights upon molecular biology of selenium and novel therapeutic for obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Ruhui Zhang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Zhu Z, Wang Y, Wang Y, Fu M, Luo X, Wang G, Zhang J, Yang X, Shan W, Li C, Liu T. The association of mixed multi-metal exposure with sleep duration and self-reported sleep disorder: A subgroup analysis from the National Health and Nutrition Examination Survey (NHANES). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124798. [PMID: 39197640 DOI: 10.1016/j.envpol.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Sleep disorders significantly affect sleep duration and constitute a major public health issue. However, the relationship between metal exposure and sleep is not fully elucidated. This study utilized publicly available data from the National Health and Nutrition Examination Survey (NHANES) to measure blood concentrations of seven metals-copper (Cu), zinc (Zn), selenium (Se), manganese (Mn), mercury (Hg), cadmium (Cd), and lead (Pb)-in a cohort of 4263 American adults. The relationship between metal exposure and self-reported sleep duration and sleep disorder risk was analyzed using single exposure models like logistic and linear regression and mixedexposure models such as weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). The results indicated an absence of statistically significant findings in the single exposure model. In contrast, the mixed exposure model revealed a positive correlation between selenium levels and the risk of sleep disorders across the entire population. A "U-shaped" association was identified between copper levels and the risk of sleep disorders in males, females, and individuals aged 60 and above. Moreover, a positive trend was observed between manganese levels and the risk of sleep disorders in individuals aged 60 and above. Additionally, elevated concentrations of metal mixtures were significantly associated with reduced sleep duration among females. Sensitivity analyses corroborated these findings. In conclusion, within the context of metal mixtures, selenium may be a risk factor for sleep disorders in the general population. Manganese may be a unique risk factor in older adults. Copper levels have a "U" shaped link to sleep disorder risk in specific population subgroups. Finally, the accumulation of blood metal mixtures in females, mainly due to lead and mercury, may reduce sleep duration. Further research is necessary to validate these findings.
Collapse
Affiliation(s)
- Zifan Zhu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Yongjun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Yuanlong Wang
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Maoling Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xinxin Luo
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Guojun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Jian Zhang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Xiujuan Yang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wei Shan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Cunxue Li
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Tiebang Liu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
39
|
Berg Y, Gabay E, Božić D, Shibli JA, Ginesin O, Asbi T, Takakura L, Mayer Y. The Impact of Nutritional Components on Periodontal Health: A Literature Review. Nutrients 2024; 16:3901. [PMID: 39599688 PMCID: PMC11597335 DOI: 10.3390/nu16223901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease driven by the accumulation of bacterial plaque and the host's immune response, leading to the destruction of periodontal tissues. Nutrition, particularly the intake of micronutrients with anti-inflammatory and antioxidant properties, plays a crucial role in maintaining periodontal health. This review explores the impact of various micronutrients-vitamins (A, B, C, D, E), minerals (calcium, iron, zinc, potassium, copper, manganese, selenium), and omega-3 fatty acids-on periodontal disease prevention and management. Deficiencies in these nutrients can exacerbate periodontal tissue damage by impairing immune responses, promoting oxidative stress, and reducing bone and tissue regeneration capabilities. While certain populations may be more vulnerable to these deficiencies, such as those following Western diets or living in low- and middle-income countries, even in developed nations, suboptimal nutrient intake is associated with worse periodontal outcomes. Although some studies suggest that supplementation of specific micronutrients may benefit periodontal therapy, the evidence remains inconclusive, necessitating further randomized clinical trials. This review underscores the importance of considering nutritional guidance in periodontal treatment protocols and highlights the need for tailored recommendations based on recent findings.
Collapse
Affiliation(s)
- Yarden Berg
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa P.O. Box 9602, Israel
| | - Eran Gabay
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa P.O. Box 9602, Israel
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3101101, Israel
| | - Darko Božić
- Department of Periodontology, School of Dental Medicine, HR-10000 Zagreb, Croatia
- Department of Periodontology, University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 12245-000, SP, Brazil
| | - Ofir Ginesin
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa P.O. Box 9602, Israel
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3101101, Israel
| | - Thabet Asbi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa P.O. Box 9602, Israel
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 12245-000, SP, Brazil
| | - Leila Takakura
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 12245-000, SP, Brazil
| | - Yaniv Mayer
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa P.O. Box 9602, Israel
- Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3101101, Israel
| |
Collapse
|
40
|
Wang J, Wang X, Xiu W, Li C, Yu S, Zhu H, Shi X, Zhou K, Ma Y. Selenium polysaccharide form sweet corn cob mediated hypoglycemic effects in vitro and untargeted metabolomics study on type 2 diabetes. Int J Biol Macromol 2024; 281:136388. [PMID: 39389509 DOI: 10.1016/j.ijbiomac.2024.136388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Type 2 diabetes mellitus (T2D) causes complications due to metabolic disorders besides increasing blood glucose. Sweet corn cob selenium polysaccharide (SeSCP) is a complex of Se with Sweet corn cob polysaccharide that has good hypoglycemic efficacy, but its effect on T2D metabolism has not been determined. In this study, the hypoglycemic effect of SeSCP was investigated by in vitro and in vivo experiments, and the levels of metabolites in feces were analyzed in a high-fat diet and STZ-induced T2D mouse model by Liquid chromatography-mass spectrometry (LC-MS). The results indicated that SeSCP regulates α-amylase and α-glucosidase through competitive reversible inhibition, and the reaction is spontaneous, driven by van der Waals forces and hydrogen bonding. In vivo, SeSCP modulates glucose transport decreasing glucose entry into the bloodstream. The metabolites mainly affected by SeSCP-MC were adenine, LysoPA (0:0/18:2(9Z, 12Z)), cysteine-S-sulfate, and demeclocycline (hydrochloride) metabolites. SeSCP interfered with β-alanine metabolism, starch and sucrose metabolism, ether lipid metabolism, glycerophospholipid metabolism, glyoxylate and dicarboxylate metabolism, pantothenate and CoA biosynthesis, etc. Additionally, SeSCP exhibited more effective metabolic interventions than metformin and SCP. Therefore, SeSCP can reduce complications while improving T2D blood glucose.
Collapse
Affiliation(s)
- Jingyang Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Weiye Xiu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chenchen Li
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Shiyou Yu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Haobin Zhu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xinhong Shi
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan 161601, Heilongjiang, China
| | - Yongqiang Ma
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
41
|
Liu Y, Zhang J, Bu L, Huo W, Pei C, Liu Q. Effects of nanoselenium supplementation on lactation performance, nutrient digestion and mammary gland development in dairy cows. Anim Biotechnol 2024; 35:2290526. [PMID: 38085574 DOI: 10.1080/10495398.2023.2290526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.
Collapse
Affiliation(s)
- Yapeng Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Lijun Bu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
42
|
Saadat SH, Goodarzi R, Elahi Z, Ameri A. Impact of neonatal sepsis on serum selenium levels: Evidence of decreased selenium in sepsis-affected neonates. J Clin Transl Sci 2024; 8:e183. [PMID: 39655034 PMCID: PMC11626566 DOI: 10.1017/cts.2024.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Essential trace elements and micronutrients are critical in eliciting an effective immune response to combat sepsis, with selenium being particularly noteworthy. The objective of this investigation is to analyze and the levels of serum selenium in neonates within sepsis and control groups. Methodology In 2023, a case-control study was carried out involving 66 hospitalized infants - 33 diagnosed with sepsis forming the case group and 33 free from sepsis constituting the control group - along with their mothers, at Children's and Shariati Hospitals in Bandar Abbas. The serum selenium concentrations (expressed in micrograms per deciliter) were quantified utilizing atomic absorption spectrometry. Subsequently, the data were processed and analyzed using IBM SPSS statistical software, version 22. Results The average serum selenium level in neonates with sepsis (42.06 ± 20.40 µg/dL) was notably lower compared to the control group (55.61 ± 20.33 µg/dL), a difference that was statistically significant (p-value = 0.009). The levels of serum selenium were comparable between neonates and mothers across both study groups. Conclusion The findings of this research indicate that selenium levels in the sepsis group were reduced compared to the control group, despite similar selenium levels in the mothers and neonates in both groups, suggesting that sepsis could be associated with a decrease in selenium levels.
Collapse
Affiliation(s)
- Seyed Hossein Saadat
- Department of Neonatology, Clinical Research Development Center of Children’s Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rakhshaneh Goodarzi
- Department of Neonatology, Clinical Research Development Center of Children’s Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zeynab Elahi
- Department of Neonatology, Clinical Research Development Center of Children’s Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aref Ameri
- Department of Pediatrics, Clinical Research Development Center of Children’s Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
43
|
Sousa JA, McKay DM, Raman M. Selenium, Immunity, and Inflammatory Bowel Disease. Nutrients 2024; 16:3620. [PMID: 39519453 PMCID: PMC11547411 DOI: 10.3390/nu16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Dietary intervention is a subject of growing interest in the management of inflammatory bowel disease (IBD), as new incident cases across the globe are rapidly rising, suggesting environmental factors as contributing elements. Dietary components and micronutrients have been associated with IBD pathogenesis or reductions in disease severity. Selenium, a diet-derived essential micronutrient that is important for proper immune system function, has received limited attention in the context of IBD. Selenium deficiency is a common finding in patients with IBD, but few clinical trials have been published to address the consequences of this deficiency. Here, we review the physiological and immunological roles of selenium and its putative role in IBD, and draw attention to knowledge gaps and unresolved issues, with the goal of stimulating more research on selenium in IBD.
Collapse
Affiliation(s)
- James A. Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
44
|
Liang Y, Yang X, Jin J, Huang J, Wang Z, Zuo C, Wang S, Wang Q, Zhang X. Dietary selenium intake, hypertension and cognitive function among US adults, NHANES 2011-2014. Sci Rep 2024; 14:25346. [PMID: 39455607 PMCID: PMC11512037 DOI: 10.1038/s41598-024-75652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Dietary selenium intake and hypertension were associated with cognitive function, but it was limitedly understood whether the effect of selenium intake on cognitive function in older adults was modified by hypertension status. A total of 2416 participants aged ≥ 60 years old from the National Health and Nutrition Examination Survey in 2011-2014 were involved in this study. Selenium intake from foods was estimated using two non-consecutive 24-hour dietary recalls. Blood pressure was measured by trained personnel or physicians at a mobile testing center. Cognitive function was measured by Registry for Alzheimer's disease (CERAD), the Animal Fluency test (AFT), and Digit Symbol Substitution Test (DSST). Among 2,416 participants, we found that higher dietary intake of selenium was associated with higher score on most tests (CERAD: Total Score: P for trend = 0.01; AFT: P for trend = 0.01; DSST: P for trend = 0.02) and hypertension was associated with lower score on each test (CEARD: Total Score (β = - 0.87, P = 0.03), CERAD: Delayed Recall Score (β = - 0.37, P = 0.04), AFT (β = - 0.88, P = 0.03), and DSST (β = - 2.72, P = 0.02). The interaction of hypertension status and dietary selenium intake on CERAD-immediate (P for interaction = 0.02) and DSST (P for interaction = 0.04) were statistical significance. In addition, hypertension did not mediate the association between dietary selenium intake and the four dimensions of cognition. The findings suggest that in older adults with hypertension, higher dietary selenium intake is associated with improved cognitive function, implying a potential nutritional strategy for preventing cognitive impairment in this population.
Collapse
Affiliation(s)
- Yekun Liang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyu Yang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingyu Jin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingda Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, Chin, China
| | - Zihao Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Cheng Zuo
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Quanwei Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
45
|
Wang B, Yuan X, Wang G, Zhu YN, Zhou RC, Feng HM, Li HB. Preharvest sodium selenite treatments affect the growth and enhance nutritional quality of purple leaf mustard with abundant anthocyanin. Front Nutr 2024; 11:1447084. [PMID: 39507903 PMCID: PMC11537877 DOI: 10.3389/fnut.2024.1447084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Both selenium (Se) and anthocyanins are crucial for maintaining human health. Preharvest Se treatments could promote anthocyanin biosynthesis and augment Se levels in vegetables, helping to combat Se deficiencies in dietary intake. However, it remains unknown whether preharvest Se treatment could balance growth and anthocyanin biosynthesis in plants and what the appropriate treatment concentration is. In this study, preharvest treatments with sodium selenite at varying concentrations (0, 5, 10, and 30 mg/kg) affect the growth and nutritional quality of purple leaf mustard (Brassica juncea) with abundant anthocyanins. Lower Se concentrations (≤10 mg/kg) of preharvest treatments enhanced photosynthesis, facilitated root system development, consequently elevated the biomass. Conversely, higher Se levels (≥30 mg/kg) reduced photosynthesis and biomass. The dosage-dependent effects of Se treatments were corroborated through seedlings cultivated in hydroponic conditions. Moreover, nearly all Se treatments elevated the contents of various nutrients in leaf mustard, particularly anthocyanin and organic se. These results suggest an overall enhancement in nutritional quality of leaf mustard plants. Furthermore, the application of 10 mg/kg Se significantly enhanced the activity of phenylalanine ammonia-lyase and upregulated the expression of 12 genes pivotal for anthocyanin biosynthesis, further demonstrating the fortified effects of Se enrichment on anthocyanins in leaf mustard. Low-level Se treatments resulted in heightened antioxidant activity (APX, CAT, and POD), mitigating reactive oxygen species induced by increasing Se content in tissues. The enhanced antioxidant activities may be beneficial for the normal growth of leaf mustard under Se stress conditions. In conclusion, our study demonstrated preharvest Se treatment at 10 mg/kg could balance the growth and anthocyanin biosynthesis in purple leaf mustard. This study offers valuable insights into anthocyanin fortification through Se enrichment methods in agricultural practices, ensuring that such fortification does not compromise leafy vegetable yield.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan University, Shaoguan, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yun-na Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| | - Run-chang Zhou
- Mordern Seed Industry Research Institute of Renhua Danxia, Shaoguan, China
| | - Hui-min Feng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| | - Hai-bo Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| |
Collapse
|
46
|
Kurata H, Meguro S, Abe Y, Sasaki T, Arai Y, Hayashi K. Association of fish intake with all-cause mortality according to CRP levels or inflammation in older adults: a prospective cohort study. BMC Public Health 2024; 24:2822. [PMID: 39407192 PMCID: PMC11481737 DOI: 10.1186/s12889-024-20162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The relationship between inflammatory response, fish consumption, and mortality risk in older individuals is unclear. We investigated whether C-reactive protein (CRP) levels ≥ 0.1 mg/dL, fish intake, and inflammatory responses are associated with all-cause mortality risk in older adults. METHODS This prospective cohort study included older adults aged 85-89 years from the Kawasaki Aging and Wellbeing Project, who did not require daily care. Cohort was recruited from March 2017 to December 2018 (follow-up ended on December 31, 2021). Dietary assessment was conducted using the Brief Self-Administered Diet History Questionnaire. Multivariate Cox proportional hazards regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for all-cause mortality in the CRP ≥ 0.1 mg/dL group; the CRP < 0.1 mg/dL group was used for reference. Within CRP ≥ 0.1 and < 0.1 mg/dL groups, participants were categorized into tertiles of fish intake. HRs and 95% CIs for all-cause mortality in the other groups were estimated using the lower tertile group as a reference. RESULTS The study included 996 participants (mean [standard deviation] age, 86.5 [1.37] years; 497 [49.9%] women) with a median CRP level of 0.08 (interquartile range [IQR] = 0.04-0.16). There were 162 deaths during 4,161 person-years of observation; the multivariable-adjusted HR for all-cause mortality in the CRP ≥ 0.1 mg/dL group was 1.86 (95% CI, 1.32-2.62); P < 0.001. In 577 individuals with median (IQR) fish intake of 39.3 g/1000 kcal (23.6-57.6) and CRP level of < 0.1 mg/dL, the multivariable-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 1.15 (0.67-1.97); P = 0.59, non-linear P = 0.84. In 419 individuals with median (IQR) fish intake of 40.7 g/1000 kcal (25.0-60.1) and CRP level of ≥ 0.1 mg/dL, the multivariate-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 0.49 (0.26-0.92); P = 0.026, non-linear P = 0.38, P-value for interaction = 0.040. CONCLUSIONS A negative association between fish intake and all-cause mortality was seen in older adults with elevated CRP levels, which is a mortality risk factor. While the results may be limited owing to stringent methods ensuring impartiality, they offer valuable insights for future research. TRIAL REGISTRATION UMIN000026053. Registered February 24, 2017.
Collapse
Affiliation(s)
- Hideaki Kurata
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Yukiko Abe
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Takashi Sasaki
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yasumichi Arai
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
47
|
Yang H, Wang Z, Li L, Wang X, Wei X, Gou S, Ding Z, Cai Z, Ling Q, Hoffmann PR, He J, Liu F, Huang Z. Mannose coated selenium nanoparticles normalize intestinal homeostasis in mice and mitigate colitis by inhibiting NF-κB activation and enhancing glutathione peroxidase expression. J Nanobiotechnology 2024; 22:613. [PMID: 39385176 PMCID: PMC11465824 DOI: 10.1186/s12951-024-02861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
Impaired intestinal homeostasis is a major pathological feature of inflammatory bowel diseases (IBD). Mannose and selenium (Se) both demonstrate potential anti-inflammatory and anti-oxidative properties. However, most lectin receptors bind free monosaccharide ligands with relatively low affinity and most Se species induce side effects beyond a very narrow range of dosage. This has contributed to a poorly explored therapies for IBD that combine mannose and Se to target intestinal epithelial cells (IECs) for normalization gut homeostasis. Herein, a facile and safe strategy for ulcerative colitis (UC) treatment was developed using optimized, mannose-functionalized Se nanoparticles (M-SeNPs) encapsulated within a colon-targeted hydrogel delivery system containing alginate (SA) and chitosan (CS). This biocompatible nanosystem was efficiently taken up by IECs and led to increased expression of Se-dependent glutathione peroxidases (GPXs), thereby modulating IECs' immune response. Using a mouse model of DSS-induced colitis, (CS/SA)-embedding M-SeNPs (C/S-MSe) were found to mitigate oxidative stress and inflammation through the inhibition of the NF-kB pathway in the colon. This stabilized mucosal homeostasis of IECs and ameliorated colitis-related symptoms, thereby providing a potential new approach for treatment of IBD.
Collapse
Affiliation(s)
- Hui Yang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhiyao Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lixin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xing Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xian Wei
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shan Gou
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zimo Ding
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhihui Cai
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qinjie Ling
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, U.S.A
| | - Jingjun He
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Fei Liu
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhi Huang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine, Jinan University, Guangzhou, 510632, China.
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
48
|
Zhang Z, De X, Sun W, Liu R, Li Y, Yang Z, Liu N, Wu J, Miao Y, Wang J, Wang F, Ge J. Biogenic Selenium Nanoparticles Synthesized by L. brevis 23017 Enhance Aluminum Adjuvanticity and Make Up for its Disadvantage in Mice. Biol Trace Elem Res 2024; 202:4640-4653. [PMID: 38273184 DOI: 10.1007/s12011-023-04042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/27/2024]
Abstract
The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runhang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyi Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yaxin Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
49
|
Dominik N, Balcar L, Semmler G, Simbrunner B, Schwarz M, Hofer BS, Hartl L, Jachs M, Scheiner B, Pinter M, Trauner M, Mandorfer M, Pilger A, Reiberger T. Prevalence and prognostic value of zinc and selenium deficiency in advanced chronic liver disease. Aliment Pharmacol Ther 2024; 60:876-887. [PMID: 39072822 DOI: 10.1111/apt.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Zinc and selenium are essential trace elements involved in important (patho)physiological processes. The prevalence and prognostic implications of zinc and selenium deficiency in patients with advanced chronic liver disease (ACLD) remain unknown. METHODS We determined serum zinc and selenium concentrations in 309 patients with ACLD undergoing hepatic venous pressure gradient (HVPG) measurement between 2019 and 2022. We evaluated the prevalence of zinc/selenium deficiency and assessed its association with severity of ACLD and liver-related events (LRE, i.e. first/further hepatic decompensation/liver-related death). RESULTS Among 309 ACLD patients (median: age: 57 [IQR: 50-64], MELD: 11 [IQR: 9-16], HVPG: 17 [IQR: 11-20]), 73% (227) and 63% (195) were deficient in zinc and selenium, respectively. Decompensated (dACLD) patients showed significantly lower serum zinc (median: 48 [IQR: 38-59] vs. compensated, cACLD: 65 [IQR: 54-78], p < 0.001) and selenium levels (median: 4.9 [IQR 4.0-6.2] vs. cACLD: 6.1 [IQR 5.1-7.3], p < 0.001). Significant correlations of zinc/selenium levels were found with MELD (zinc: ρ = -0.498, p < 0.001; selenium: ρ = -0.295, p < 0.001), HVPG (zinc: ρ = -0.400, p < 0.001; selenium: ρ = -0.157, p = 0.006) and liver disease-driving mechanisms (IL6, bile-acid homeostasis). On multivariable analysis, low zinc/selenium levels, age and MELD remained independently associated with LRE. CONCLUSION Zinc and selenium deficiencies are common in ACLD patients especially with higher MELD and HVPG. Low zinc and selenium levels independently predicted hepatic decompensation and liver-related death. The effect of zinc/selenium supplementation in ACLD should be investigated in future trials.
Collapse
Affiliation(s)
- Nina Dominik
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander Pilger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|