1
|
Lampejo T. Can Adoptive Immunotherapy With Hepatitis E Virus (HEV)-Specific T Cells Address the Unmet Need in Refractory Chronic HEV Infection? Open Forum Infect Dis 2025; 12:ofaf231. [PMID: 40433189 PMCID: PMC12107242 DOI: 10.1093/ofid/ofaf231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Indexed: 05/29/2025] Open
Abstract
Chronic hepatitis E virus (HEV) infection, which primarily affects the immunocompromised, can rapidly progress to liver fibrosis and cirrhosis if untreated. However, current therapeutic options are extremely limited and have significant adverse effects. Over the past decade, virus-specific T-cell therapy has shown promise as an alternative safe and effective treatment strategy for other refractory viral infections such as cytomegalovirus, adenovirus, and polyomavirus infections in hematopoietic stem cell and solid organ transplant recipients. Given the key role of T lymphocytes in the control of HEV replication and the fact that HEV-specific T-cell responses are typically diminished in immunosuppressed patients with persistent HEV infection, adoptive immunotherapy with HEV-specific T cells could serve as a novel addition to the HEV treatment repertoire, which is in dire need of expansion.
Collapse
Affiliation(s)
- Temi Lampejo
- Faculty of Medicine and Life Sciences, King's College London, London, UK
- Department of Infection Sciences, King's College Hospital, London, UK
| |
Collapse
|
2
|
Pavlova A, Kocikova B, Dolinska MU, Jackova A. Hepatitis E Virus in the Role of an Emerging Food-Borne Pathogen. Microorganisms 2025; 13:885. [PMID: 40284721 PMCID: PMC12029509 DOI: 10.3390/microorganisms13040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Viral hepatitis E represents an important global health problem caused by the hepatitis E virus (HEV). Cases of HEV infection are increasingly associated with food-borne transmissions after the consumption of raw or undercooked food products from infected animals in high-income regions. Although most cases of infection are asymptomatic, severe courses of infection have been reported in specific groups of people, predominantly among pregnant women and immunocompromised patients. The viral nucleic acid of HEV is increasingly being reported in food-producing animals and different products of an animal origin. Even though the incubation period for HEV infection is long, several direct epidemiological links between human cases and the consumption of HEV-contaminated meat and meat products have been described. In this article, we review the current knowledge on human HEV infections, HEV in different food-producing animals and products of an animal origin, as well as the accumulation and resistance to HEV in farm and slaughterhouse environments. We also provide preventive measures to help eliminate HEV from animals, the human population, and the environment.
Collapse
Affiliation(s)
| | | | | | - Anna Jackova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (A.P.); (B.K.); (M.U.D.)
| |
Collapse
|
3
|
Gonzalez SA. Hepatitis E vaccination: the promise of prevention. Proc AMIA Symp 2025; 38:334-335. [PMID: 40291074 PMCID: PMC12026187 DOI: 10.1080/08998280.2025.2487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Affiliation(s)
- Stevan A Gonzalez
- Annette C. and Harold C. Simmons Transplant Institute, Baylor Scott & White All Saints Medical Center, and Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, Texas, USA
| |
Collapse
|
4
|
León-Janampa N, Brand D, Marlet J. [Hepatitis E: Epidemiology, pathology and prevention]. Med Sci (Paris) 2025; 41:346-354. [PMID: 40294294 DOI: 10.1051/medsci/2025047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis. HEV genotypes 1 and 2 are associated with oro-faecal epidemics and fulminant hepatitis in pregnant women. HEV genotypes 3 and 4 are a zoonosis transmitted by uncooked pork. Infection is usually spontaneously resolutive. Chronic hepatitis may occur in immunocompromised patients. Extrahepatic disease is also possible. Prevention is based on hygiene, especially in high-risk patients, and access to safe drinking water for all. A recombinant vaccine against HEV has been developed and is currently being validated by the WHO.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVHe, Université de Tours et CHRU de Tours, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVHe, Université de Tours et CHRU de Tours, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVHe, Université de Tours et CHRU de Tours, Tours, France
| |
Collapse
|
5
|
Binda B, Picchi G, Bruni R, Di Gasbarro A, Madonna E, Villano U, Pisani G, Carocci A, Marcantonio C, Montali F, Panarese A, Pisani F, Ciccaglione AR, Spada E. The Prevalence, Risk Factors, and Outcomes of Hepatitis E Virus Infection in Solid Organ Transplant Recipients in a Highly Endemic Area of Italy. Viruses 2025; 17:502. [PMID: 40284945 PMCID: PMC12031106 DOI: 10.3390/v17040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatitis E virus (HEV) infection can become chronic in immunocompromised patients, like solid organ transplant recipients (SOTRs). We evaluated HEV prevalence, risk factors, and outcomes among SOTRs in a hyperendemic HEV area. Three hundred SOTRs were enrolled from April to July 2019 and tested for anti-HEV IgM and IgG and HEV RNA. Sixty-three recipients (21%) were positive for any HEV marker. HEV infection was independently associated with older age and pork liver sausage consumption. Three viremic recipients harbored genotype 3e and 3f according to HEV RNA sequencing and phylogenetic analysis. Overall, 10 recipients had markers of active/recent infection (HEV RNA and/or anti-HEV IgM) and were followed up prospectively. Five of them spontaneously resolved their HEV infection. In two recipients, HEV clearance was achieved only through immunosuppression reduction, while three needed ribavirin therapy to achieve virologic resolution. We observed a chronic course in 30% of SOTRs with active/recent HEV infection. No association was found between tacrolimus assumption and chronicization. In conclusion, we found a high prevalence of infection among SOTRs attending a transplant center in a hyperendemic Italian HEV region. Systematic screening for all HEV markers and dietary education for infection control are needed for transplant recipients.
Collapse
Affiliation(s)
- Barbara Binda
- General and Transplant Surgery Department, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Giovanna Picchi
- Department of Clinical Medicine, Life, Health and Environmental Sciences-MESVA, University of L’Aquila, 67100 L’Aquila, Italy
- Infectious Diseases Department, ASL VT, PO Ospedale Belcolle Santa Rosa, 01100 Viterbo, Italy
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| | - Alessandro Di Gasbarro
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Elisabetta Madonna
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| | - Umbertina Villano
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| | - Giulio Pisani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanita, 00161 Rome, Italy; (G.P.); (A.C.)
| | - Alberto Carocci
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanita, 00161 Rome, Italy; (G.P.); (A.C.)
| | - Cinzia Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| | - Filippo Montali
- General and Transplant Surgery Department, Dipartimento di Scienze Cliniche Applicate e Biotecnologiche-DISCAB, University of L’Aquila, 67100 L’Aquila, Italy; (F.M.); (A.P.); (F.P.)
| | - Alessandra Panarese
- General and Transplant Surgery Department, Dipartimento di Scienze Cliniche Applicate e Biotecnologiche-DISCAB, University of L’Aquila, 67100 L’Aquila, Italy; (F.M.); (A.P.); (F.P.)
| | - Francesco Pisani
- General and Transplant Surgery Department, Dipartimento di Scienze Cliniche Applicate e Biotecnologiche-DISCAB, University of L’Aquila, 67100 L’Aquila, Italy; (F.M.); (A.P.); (F.P.)
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| | - Enea Spada
- Department of Infectious Diseases, Istituto Superiore di Sanita, 00161 Rome, Italy; (R.B.); (E.M.); (U.V.); (C.M.); (A.R.C.); (E.S.)
| |
Collapse
|
6
|
Haller IE, Reinwald M, Kah J, Eggert FAM, Schwarzlose-Schwarck S, Jahnke K, Lüth S, Dammermann W. Low Serological Agreement of Hepatitis E in Immunocompromised Cancer Patients: A Comparative Study of Three Anti-HEV Assays. Antibodies (Basel) 2025; 14:27. [PMID: 40265408 PMCID: PMC12015928 DOI: 10.3390/antib14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hepatitis E virus (HEV) is one of the leading causes of acute hepatitis, with immunosuppressed individuals, such as oncology patients, being particularly vulnerable to chronic infections that may progress to liver disease or fatal outcomes. Assay variability complicates HEV prevalence assessment in at-risk groups. This study aimed to compare the reliability and concordance of three HEV antibody assays-Wantai, Euroimmun, and Elecsys®-in immunosuppressed oncology patients. METHODS In this prospective pilot study, serum samples were obtained from oncology patients between September 2020 and October 2021. Samples were collected both at baseline (treatment-naive) and during ongoing treatment. A healthy control group was retrospectively included for comparative analysis. Anti-HEV IgM and IgG antibodies were tested in all samples using enzyme-linked immunosorbent assays (Wantai, Euroimmun) and an electrochemiluminescence immunoassay (Elecsys®). Demographic and clinical data, along with information on HEV risk factors, were extracted from medical records and patient questionnaires. RESULTS HEV IgM prevalence ranged from 0% (Wantai) to 6% (Elecsys®), while IgG prevalence was 12% (Euroimmun), 38% (Wantai), and 53% (Elecsys®). Concordance was poor, with Cohen's Kappa values indicating slight to moderate agreement (κ = 0.000-0.553). Patients with hematological malignancies exhibited the highest IgG seroprevalence. Risk factor analysis revealed the highest association between HEV exposure and the consumption of undercooked pork or crop-based agriculture. CONCLUSIONS Significant variability among HEV serological assays highlights the challenges of reliable HEV diagnostics in immunosuppressed oncology patients. Assay selection and improved testing strategies are critical for this high-risk group.
Collapse
Affiliation(s)
- Isabel-Elena Haller
- Department of Gastroenterology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Mark Reinwald
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam,14469 Potsdam, Germany
- Department of Hematology and Oncology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Janine Kah
- Department of Gastroenterology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franz A. M. Eggert
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam,14469 Potsdam, Germany
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sandra Schwarzlose-Schwarck
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam,14469 Potsdam, Germany
- Department of Hematology and Oncology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Kristoph Jahnke
- Oncology Specialist Practice Brandenburg, 14772 Brandenburg an der Havel, Germany
| | - Stefan Lüth
- Department of Gastroenterology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Department of Gastroenterology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Center of Translational Medicine, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
7
|
Zhang F, Xu LD, Wu S, Wu Q, Wang A, Liu S, Zhang Q, Yu X, Wang B, Pan Y, Huang F, Neculai D, Xia B, Feng XH, Shen L, Zhang Q, Liang T, Huang YW, Xu P. Proteasomal processing of the viral replicase ORF1 facilitates HEV-induced liver fibrosis. Proc Natl Acad Sci U S A 2025; 122:e2419946122. [PMID: 40073055 PMCID: PMC11929459 DOI: 10.1073/pnas.2419946122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic infections with hepatitis E virus (HEV), especially those of genotype 3 (G3), frequently lead to liver fibrosis and cirrhosis in patients. However, the causation and mechanism of liver fibrosis triggered by chronic HEV infection remain poorly understood. Here, we found that the viral multiple-domain replicase (ORF1) undergoes unique ubiquitin-proteasomal processing leading to formation of the HEV-Derived SMAD Activator (HDSA), a viral polypeptide lacking putative helicase and RNA polymerase domains. The HDSA is stable, non-HSP90-bound, localizes to the nucleus, and is abundant in G3 HEV-infected hepatocytes of various origins. Markedly, the HDSA in hepatocytes potentiates the fibrogenic TGF-β/SMAD pathway by forming compact complexes with SMAD3 to facilitate its promoter binding and coactivator recruitment, leading to significant fibrosis in HEV-susceptible gerbils. Virus infection-induced liver fibrosis in HEV-susceptible gerbils could be prevented by mutating the residues P989C, A990C, and A991C (PAA-3C) within ORF1, which are required for proteasomal processing. Thus, we have identified a viral protein derived from host proteasomal processing, defined its notable role in liver fibrosis and highlighted the nature of an unanticipated host-HEV interaction that facilitates hepatitis E pathogenesis.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ling-Dong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
- Laboratory Animal Center, Zhejiang University, Hangzhou310058, China
| | - Shiying Wu
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou310018, China
| | - Qirou Wu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Shengduo Liu
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qian Zhang
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Xinyuan Yu
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou510642, China
| | - Yinghao Pan
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Fei Huang
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Dante Neculai
- Department of Cell Biology Zhejiang University School of Medicine, Hangzhou310058, China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, Westlake University, Hangzhou310030, China
| | - Xin-Hua Feng
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
- Cancer Center Zhejiang University, Hangzhou310058, China
| | - Li Shen
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Cancer Center Zhejiang University, Hangzhou310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Cancer Center Zhejiang University, Hangzhou310058, China
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou510642, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
- Cancer Center Zhejiang University, Hangzhou310058, China
| |
Collapse
|
8
|
Shafat Z, Ahmed M, Farooqui A, Khan N, Parveen S. Role of microRNAs in chronic hepatitis E viral infection. Bioinformation 2025; 21:240-252. [PMID: 40322700 PMCID: PMC12044181 DOI: 10.6026/973206300210240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 05/08/2025] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen and it is associated with chronic hepatitis E virus infection (CHE) in immuno-suppressed patients due to failure of viral clearance. A network of the CHE-associated-differentially expressed genes (DEGs) is known. Hence, a comprehensive assessment of the known protein-protein interaction (PPI) network is of interest. After network clustering, the hub gene-associated microRNAs (miRNAs) were explored and subsequently, these identified miRNAs (miR-129-2-3p, miR-130a-3p, miR-138-5p, miR-212-3p, miR-221-3p, miR-27b-3p and miR-29c-3p) were undertaken for enrichment analysis. It should be noted that these miRNAs are significantly associated with Hepatitis E virus infection for further validation and analysis.
Collapse
Affiliation(s)
- Zoya Shafat
- Department of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Murshad Ahmed
- Department of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anam Farooqui
- Department of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nazim Khan
- Department of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Department of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Zhuang C, Liu X, Huang X, Lu J, Zhu K, Liao M, Chen L, Jiang H, Zang X, Wang Y, Yang C, Liu D, Zheng Z, Zhang X, Huang S, Huang Y, Su Y, Wu T, Zhang J, Xia N. Effectiveness of a hepatitis E vaccine against medically-attended symptomatic infection in HBsAg-positive adults from a test-negative design study. Nat Commun 2025; 16:1699. [PMID: 39962038 PMCID: PMC11832733 DOI: 10.1038/s41467-025-57021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
The effectiveness of the hepatitis E vaccine in high-risk groups, such as chronic hepatitis B (CHB) patients, remains understudied. A key clinical manifestation of CHB is the persistent positivity of hepatitis B surface antigen (HBsAg). We conducted a test-negative design study involving 2,926 HBsAg-positive individuals (born 1941-1991; median age 49.0; male-to-female ratio of 1.4), identified through a hepatitis surveillance system, as part of the phase 3 trial (NCT01014845) of the recombinant hepatitis E vaccine HEV 239 (Hecolin). This system monitored suspected hepatitis cases and performed diagnoses across 11 townships in Dongtai, Jiangsu, China, from 2007 to 2017. Vaccine effectiveness of HEV 239 was assessed by comparing vaccination status between confirmed 96 hepatitis E cases and 2830 test-negative controls, using logistic regression adjusted for sex and age. We found that HEV 239 vaccination was associated with a reduced risk of hepatitis E among HBsAg-positive individuals, with an estimated effectiveness of 72.1% [95% confidence interval (CI) 11.2-91.2], and 81.5% (95% CI 35.9-94.6) among phase 3 trial participants. Our findings show that HEV 239 is highly effective in HBsAg-positive adults, supporting its future recommended use in this population.
Collapse
Affiliation(s)
- Chunlan Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xiaohui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xingcheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Jiaoxi Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Kongxin Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Mengjun Liao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Lu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Hanmin Jiang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Xia Zang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Yijun Wang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Changlin Yang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Donglin Liu
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Shoujie Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China.
| | - Yingying Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China.
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Haase JA, Schlienkamp S, Ring JJ, Steinmann E. Transmission patterns of hepatitis E virus. Curr Opin Virol 2025; 70:101451. [PMID: 39892085 DOI: 10.1016/j.coviro.2025.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Hepatitis E virus (HEV) causes sporadic cases in industrialized countries and endemic outbreaks in areas with lower sanitation standards. The wide host reservoir of HEV makes it a potential source of new zoonotic transmission and dissemination in humans. Thus, the perception of HEV as a confined ailment has shifted to one of global concern. Considering HEV's environmental stability and heterogeneity in the host range of HEV's genotypes, various transmission pathways and sources for HEV infections are plausible. Here, we provide an overview on HEV's transmission routes and discuss the role of HEV as a foodborne zoonosis, as well as preventive measures and open research questions.
Collapse
Affiliation(s)
- Jil A Haase
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Julian J Ring
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
11
|
Gomes CTDO, Mariz CA, Batista AD, Morais CNLD, Araújo L, Sá Barreto AVM, Gomes-Gouvêa MS, Domingues AL, Lopes EP. Seroprevalence of Hepatitis E Virus Among Schistosomiasis mansoni Patients Residing in Endemic Zone in Brazil. Trop Med Infect Dis 2024; 9:310. [PMID: 39728837 DOI: 10.3390/tropicalmed9120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The occurrence of hepatitis E virus (HEV) in patients with Schistosomiasis mansoni (SM) is still poorly understood in Brazil. The objective of this study was to estimate the seroprevalence of anti-HEV IgG in patients with SM and its association with the periportal fibrosis (PPF), assessed by serum markers and ultrasound criteria. This cross-sectional study was carried out in an endemic area in Pernambuco, Brazil, with schistosomal patients who underwent coproscopic survey. Anti-HEV antibody IgG were evaluated by using ELISA (Euroimmun®, Lübeck, Germmany). In positive cases, HEV-RNA was tested by using real-time PCR. Among the 286 patients (60.8% women; 56% 18-44 years), 116 (40.6%) had advanced PPF (Niamey pattern D/E/F). Anti-HEV IgG was positive in 15 (5.24%), and all were HEV-RNA negative. Anti-HEV IgG was more frequent in patients with an advanced PPF (D/E/F) pattern (p = 0.034) and those with the largest spleen diameter (p = 0.039). In this study, the occurrence of anti-HEV IgG in patients with SM was higher than described in the same region and more frequent among patients with evidence of advanced liver fibrosis.
Collapse
Affiliation(s)
| | - Carolline Araujo Mariz
- Department of Parasitology, Aggeu Magalhães Institute, Fiocruz, Recife 50740-465, PE, Brazil
- Faculdade de Medicina de Olinda (FMO), Olinda 53030-030, PE, Brazil
| | - Andrea Dória Batista
- Gastroenterology Division, Hospital das Clínicas/EBSERH, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
- Department of Internal Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | | | - Lílian Araújo
- Gastroenterology Division, Hospital das Clínicas/EBSERH, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratory of Gastroenterology and Tropical Hepatology (LIM-07), Institute of Tropical Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Ana Lúcia Domingues
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Gastroenterology Division, Hospital das Clínicas/EBSERH, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Edmundo Pessoa Lopes
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Gastroenterology Division, Hospital das Clínicas/EBSERH, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
- Department of Internal Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
12
|
Zheng M, Zhou L, Huang Y, Zhang X, Yu Z, Yang C, Chen Y, Ying D, Wang H, Chen Z, Liu C, Tang Z, Wang S, Wang K, Yang K, Lin Y, Li T, Zheng Q, Zheng Z, Zhang J, Yu H, Li S, Gu Y, Xia N. Structural basis for the synergetic neutralization of hepatitis E virus by antibody-antibody interaction. Proc Natl Acad Sci U S A 2024; 121:e2408585121. [PMID: 39585981 PMCID: PMC11626150 DOI: 10.1073/pnas.2408585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/24/2024] [Indexed: 11/27/2024] Open
Abstract
Neutralizing antibodies (nAbs) play a crucial role in virology, antibody drug development, and vaccine research. In this study, we investigated the synergistic effect of two hepatitis E virus (HEV) nAbs, 8H3, and 8C11, which have exhibited enhanced neutralizing activity in a rhesus monkey model. We presented crystal structures of 8H3 Fab alone and a triple complex of 8C11 Fab and 8H3 Fab simultaneously binding to the HEV E2s protein (8C11:E2s:8H3). Through structural analysis, we identified critical binding sites and fully elucidated the binding footprints of nAb 8H3 in the 8C11:E2s:8H3 complex using site-directed mutagenesis, pinpointing Ile 529, Glu 549, Lys 554, and Ser 566 in the E2s domain, and K66H, S67H, D88H in the 8C11 heavy chain. Interestingly, the synergetic enhancement of 8C11 to 8H3 converted to an antagonistic effect when 8C11 bound to E2s with pretreatment of 8H3, indicating a unidirectional synergistic effect associated with the sequence of antibody involvement. We demonstrated this phenomenon through structural comparisons of E2s:8C11 vs. 8C11:E2s:8H3 crystal structures and molecular dynamics simulations, found that Ile 529 played a key role in the synergistic interplay between these two nAbs. The two-antibody combination showed a more potent antibody-imposed physical disruption mechanism and enhanced coneutralization in an authentic HEV-based cell model. Our study suggests a strategy for synergistic antibody cocktail design with antibody-antibody side-by-side interaction.
Collapse
Affiliation(s)
- Minghua Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Xiao Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Zihao Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Dong Ying
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Zhenqin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Chang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Zimin Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Siling Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Kaihang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Kaixiang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Yanqing Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, Xiamen University, Xiamen361102, China
| |
Collapse
|
13
|
Liu T, Cao Y, Weng J, Gao S, Jin Z, Zhang Y, Yang Y, Zhang H, Xia C, Yin X, Luo Y, He Q, Jiang H, Wang L, Zhang Z. Hepatitis E virus infects human testicular tissue and Sertoli cells. Emerg Microbes Infect 2024; 13:2332657. [PMID: 38517709 PMCID: PMC11057402 DOI: 10.1080/22221751.2024.2332657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Globally, hepatitis E virus (HEV) infections are prevalent. The finding of high viral loads and persistent viral shedding in ejaculate suggests that HEV replicates within the human male genital tract, but its target organ is unknown and appropriate models are lacking. We aimed to determine the HEV tropism in the human testis and its potential influence on male reproductive health. We conducted an ex vivo culture of human testis explants and in vitro culture of primary human Sertoli cells. Clinically derived HEV genotype 1 (HEV1) and HEV3 virions, as well as rat-derived HEV-C1, were used for inoculation. Transcriptomic analysis was performed on testis tissues collected from tacrolimus-treated rabbits with chronic HEV3 infection. Our findings reveal that HEV3, but not HEV1 or HEV-C1, can replicate in human testis explants and primary human Sertoli cells. Tacrolimus treatment significantly enhanced the replication efficiency of HEV3 in testis explants and enabled successful HEV1 infection in Sertoli cells. HEV3 infection disrupted the secretion of several soluble factors and altered the cytokine microenvironment within primary human Sertoli cells. Finally, intratesticular transcriptomic analysis of immunocompromised rabbits with chronic HEV infection indicated downregulation of genes associated with spermatogenesis. HEV can infect the human testicular tissues and Sertoli cells, with increased replication efficiency when exposed to tacrolimus treatment. These findings shed light on how HEV may persist in the ejaculate of patients with chronic hepatitis E and provide valuable ex vivo tools for studying countermeasures.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Yalei Cao
- Department of Urology, Peking University Third Hospital, Beijing, People’s Republic of China
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jiaming Weng
- Department of Urology, Peking University Third Hospital, Beijing, People’s Republic of China
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Songzhan Gao
- Department of Andrology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zirun Jin
- Department of Urology, Peking University Third Hospital, Beijing, People’s Republic of China
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Yun Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Yuzhuo Yang
- Department of Urology, Peking University First Hospital, Beijing, People’s Republic of China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yong Luo
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing, People’s Republic of China
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
15
|
He P, Li J, Wang C, Zhang J, Jiang Y, Liu H, Zhao Y, Li Z, Gao Y, Wang Y. Incidence and risk factors of de novo hepatitis E virus infection after receiving liver transplantation. J Med Virol 2024; 96:e29939. [PMID: 39360633 DOI: 10.1002/jmv.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Organ transplant recipients with hepatitis E virus (HEV) infection bears high risk to develop chronic hepatitis, which is generally associated with immunosuppressive therapies. This study aimed to identify the incidence and predictors of de novo HEV infection in patients after receiving transplantation. We performed a large retrospective study to investigate the prevalence of anti-HEV at baseline, incidence of de novo HEV infection after transplantation, and the risk factors of HEV infection among patients with liver transplant in China. A total of 407 liver transplant recipients were examined for the presence of anti-HEV immunoglobulin G, IgM antibodies, and HEV RNA in serum. Basal indexes in individuals with evidence of post-transplant HEV infection were compared with those without evidence of that, and risk factors associated with HEV infection were assessed. The prevalence of anti-HEV at pretransplant in liver transplant recipients was 25.8% (105/407). Serum-negative conversion occurred in 34 (32.38%) of 105 liver transplant patients. Sixty-five out of 302 patients had de novo HEV infection after transplantation, with a cumulative incidence of 42.74% during follow-up. After transplantation, HEV infection was associated with liver failure (p = 0.012), hypoproteinemia (p = 0.030) and higher level of r-glutamyl transferase (GGT) (p = 0.022) before transplantation. Graft rejection (OR = 0.075; p = 0.045) was negatively associated with serum-negative conversion in patients who had positive anti-HEV antibody before transplantation. The incidence of de novo HEV infection after transplantation were higher in China. Liver failure, hypoproteinemia, and GGT elevation may be associated with HEV infection after liver transplantation. This study suggests that prevention and control of HEV infection after liver transplantation should be paid attention in patients bearing these risk factors.
Collapse
Affiliation(s)
- Ping He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jialei Li
- Medical School of Nanjing University, Nanjing, China
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiayue Zhang
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Yiyun Jiang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongyang Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yao Zhao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiwei Li
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yinjie Gao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yijin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
17
|
Wang F, Zhou L, Wagner AL, Chen Z, Lu Y. Cost-Effectiveness of Hepatitis E Vaccination Strategies among Patients with Chronic Liver Diseases in China: A Model-Based Evaluation. Vaccines (Basel) 2024; 12:1101. [PMID: 39460268 PMCID: PMC11511531 DOI: 10.3390/vaccines12101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis worldwide, primarily transmitted through contaminated water and food. In patients with chronic liver disease (CLD), HEV infection might worsen the prognosis. This study aimed to evaluate the cost-effectiveness of hepatitis E vaccination strategies in CLD patients. A decision tree-Markov cohort model was used to assess the cost-effectiveness of universal-vaccination, vaccination-following-screening, and no-vaccination strategies in 100,000 CLD patients over their lifetimes, simulating cohorts aged ≥16 years, ≥40 years, and ≥60 years, based on the licensed vaccination ages and typical ages of CLD onset, from a societal perspective. Model parameters were retrieved and estimated from previous publications and government data. The outcomes included HEV-related cases, costs, and the incremental cost-effectiveness ratio (ICER). Compared to no-vaccination, universal-vaccination reduced HEV-related cases by 32.8% to 39.6%, while vaccination-following-screening reduced them by 38.1% to 49.3%. Furthermore, universal-vaccination showed ICERs of USD 6898.33, USD 6638.91, and USD 6582.69 per quality-adjusted life year (QALY) for cohorts aged ≥16, ≥40, and ≥60 years, respectively. Moreover, the vaccination-following-screening strategy significantly enhanced cost-effectiveness, with ICERs decreasing to USD 6201.55, USD 5199.46, and USD 4919.87 per QALY for the cohorts. Additionally, one-way sensitivity analysis identified the discount rate and utility for CLD patients as the key factors influencing ICER. Probabilistic sensitivity analysis indicated the vaccination-following-screening strategy was cost-effective with probabilities of 92.50%, 95.70%, and 95.90% for each cohort. Hepatitis E vaccination in CLD patients costs less than GDP per capita for each QALY gained in China. The vaccination-following-screening strategy may be the optimal option, especially in those over 60 years.
Collapse
Affiliation(s)
- Fengge Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (F.W.); (Z.C.)
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Abram L. Wagner
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
- Global Institute for Vaccine Equity, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zixiang Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (F.W.); (Z.C.)
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Yihan Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (F.W.); (Z.C.)
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China;
| |
Collapse
|
18
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
19
|
Berg T, Aehling NF, Bruns T, Welker MW, Weismüller T, Trebicka J, Tacke F, Strnad P, Sterneck M, Settmacher U, Seehofer D, Schott E, Schnitzbauer AA, Schmidt HH, Schlitt HJ, Pratschke J, Pascher A, Neumann U, Manekeller S, Lammert F, Klein I, Kirchner G, Guba M, Glanemann M, Engelmann C, Canbay AE, Braun F, Berg CP, Bechstein WO, Becker T, Trautwein C. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1397-1573. [PMID: 39250961 DOI: 10.1055/a-2255-7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Thomas Berg
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Niklas F Aehling
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Tony Bruns
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martin-Walter Welker
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin. Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Tobias Weismüller
- Klinik für Innere Medizin - Gastroenterologie und Hepatologie, Vivantes Humboldt-Klinikum, Berlin, Deutschland
| | - Jonel Trebicka
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Pavel Strnad
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martina Sterneck
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - Utz Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| | - Daniel Seehofer
- Klinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Eckart Schott
- Klinik für Innere Medizin II - Gastroenterologie, Hepatologie und Diabetolgie, Helios Klinikum Emil von Behring, Berlin, Deutschland
| | | | - Hartmut H Schmidt
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Johann Pratschke
- Chirurgische Klinik, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andreas Pascher
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - Ulf Neumann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| | - Steffen Manekeller
- Klinik und Poliklinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Frank Lammert
- Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Ingo Klein
- Chirurgische Klinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Gabriele Kirchner
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg und Innere Medizin I, Caritaskrankenhaus St. Josef Regensburg, Regensburg, Deutschland
| | - Markus Guba
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, München, Deutschland
| | - Matthias Glanemann
- Klinik für Allgemeine, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Cornelius Engelmann
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Ali E Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - Felix Braun
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | - Christoph P Berg
- Innere Medizin I Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Wolf O Bechstein
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Becker
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | | |
Collapse
|
20
|
Gu T, Zheng CY, Deng YQ, Yang XF, Bao WM, Tang YM. Systematic Evaluation of Guidelines for the Diagnosis and Treatment of Hepatitis E Virus Infection. J Clin Transl Hepatol 2024; 12:739-749. [PMID: 39130619 PMCID: PMC11310757 DOI: 10.14218/jcth.2023.00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims The hepatitis E virus (HEV) is a zoonotic disease, and infection with HEV in humans primarily causes acute infections and can progress to chronic manifestation in immunocompromised individuals. Over the past decade, guidelines for diagnosing and treating HEV infection have been developed. This study aimed to systematically assess the quality of current guidelines for diagnosing and treating HEV infection, and we analyzed the differences in guideline quality and primary recommendations and explored possible reasons for these differences. Methods Guidelines published between 2013 and 2022 were searched, and studies were identified using selection criteria. The study assessed the quality of the included guidelines using the Appraisal of Guidelines for Research and Evaluation tool, extracted the primary recommendations in the guidelines, determined the highest level of evidence supporting the recommendations, and reclassified the evidence using the Oxford Centre for Evidence-Based Medicine grading system. Results Seven guidelines were included in the final analysis. The quality of the guidelines varied widely. The discrepancies may have been caused by the lack of external experts, the failure to consider influencing factors in guideline application, and the lack of consideration of the public's opinion. Analysis of the heterogeneity in primary recommendations revealed differences in algorithms for managing chronic HEV infection, the dosage of ribavirin, and a low level of evidence supporting the primary recommendations. Conclusions Guideline quality and primary recommendations vary considerably. Refinement by guideline developers and researchers would facilitate updating and applying guidelines for diagnosing and treating HEV infection.
Collapse
Affiliation(s)
- Ting Gu
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Cai-Ying Zheng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Qin Deng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Feng Yang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Min Bao
- Department of Colorectal Surgery, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ying-Mei Tang
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
21
|
He Q, Liu T, Yang X, Yuan D, Lu Q, Li Y, Zhang H, Liu X, Xia C, Sridhar S, Tian L, Liu X, Meng L, Ning J, Lu F, Wang L, Yin X, Wang L. Optimization of immunosuppression strategies for the establishment of chronic hepatitis E virus infection in rabbits. J Virol 2024; 98:e0084624. [PMID: 38899900 PMCID: PMC11264948 DOI: 10.1128/jvi.00846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lili Tian
- Miyun District Center for Disease Control and Prevention, Beijing, China
| | - Xiaofeng Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lulu Meng
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
22
|
Bienz M, Renaud C, Liu JR, Wong P, Pelletier P. Hepatitis E Virus in the United States and Canada: Is It Time to Consider Blood Donation Screening? Transfus Med Rev 2024; 38:150835. [PMID: 39059853 DOI: 10.1016/j.tmrv.2024.150835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/28/2024]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in the world and can lead to severe complications in immunocompromised individuals. HEV is primarily transmitted through eating pork, which has led to an increased in anti-HEV IgG seropositivity in the general population of Europe in particular. However, it can also be transmitted intravenously, such as through transfusions. The growing evidence of HEV contamination of blood products and documented cases of transmission have given rise to practice changes and blood product screening of HEV in many European countries. This review covers the abundant European literature and focuses on the most recent data pertaining to the prevalence of HEV RNA positivity and IgG seropositivity in the North American general population and in blood products from Canada and the United States. Currently, Health Canada and the Food and Drug Administration do not require testing of HEV in blood products. For this reason, awareness among blood product prescribers about the possibility of HEV transmission through blood products is crucial. However, we also demonstrate that the province of Quebec has a prevalence of anti-HEV and HEV RNA positivity similar to some European countries. In light of this, we believe that HEV RNA blood donation screening be reevaluated with the availability of more cost-effective assays.
Collapse
Affiliation(s)
- Marc Bienz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Christian Renaud
- Department of Microbiology, Infectious diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada; Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Jia Ru Liu
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Philip Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Patricia Pelletier
- Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Nagoba BS, Rayate AS. Hepatitis E virus infections. World J Virol 2024; 13:90951. [PMID: 38984082 PMCID: PMC11229837 DOI: 10.5501/wjv.v13.i2.90951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/02/2024] [Accepted: 04/07/2024] [Indexed: 06/24/2024] Open
Abstract
Hepatitis E virus (HEV) infection is now endemic worldwide. Most patients with acute infection recover uneventfully. Outbreaks and sporadic cases, particularly in high-risk individuals are emerging increasingly. The patients with risk factors like pregnancy and pre-existing chronic liver disease, present with or progress rapidly to severe disease. Immuno-suppression in post-transplant patients is an additional risk factor. Standardized FDA-approved diagnostic tests are the need of the hour. Further studies are needed to establish guideline-based treatment regimen and outbreak preparedness for HEV to decrease global morbidity, mortality, and healthcare burden. Policies for screening donors and transplant cases are required.
Collapse
Affiliation(s)
- Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
24
|
Orosz L, Sárvári KP, Dernovics Á, Rosztóczy A, Megyeri K. Pathogenesis and clinical features of severe hepatitis E virus infection. World J Virol 2024; 13:91580. [PMID: 38984076 PMCID: PMC11229844 DOI: 10.5501/wjv.v13.i2.91580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024] Open
Abstract
The hepatitis E virus (HEV), a member of the Hepeviridae family, is a small, non-enveloped icosahedral virus divided into eight distinct genotypes (HEV-1 to HEV-8). Only genotypes 1 to 4 are known to cause diseases in humans. Genotypes 1 and 2 commonly spread via fecal-oral transmission, often through the consumption of contaminated water. Genotypes 3 and 4 are known to infect pigs, deer, and wild boars, often transferring to humans through inadequately cooked meat. Acute hepatitis caused by HEV in healthy individuals is mostly asymptomatic or associated with minor symptoms, such as jaundice. However, in immunosuppressed individuals, the disease can progress to chronic hepatitis and even escalate to cirrhosis. For pregnant women, an HEV infection can cause fulminant liver failure, with a potential mortality rate of 25%. Mortality rates also rise amongst cirrhotic patients when they contract an acute HEV infection, which can even trigger acute-on-chronic liver failure if layered onto pre-existing chronic liver disease. As the prevalence of HEV infection continues to rise worldwide, highlighting the particular risks associated with severe HEV infection is of major medical interest. This text offers a brief summary of the characteristics of hepatitis developed by patient groups at an elevated risk of severe HEV infection.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Károly Péter Sárvári
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - András Rosztóczy
- Department of Internal Medicine, Division of Gastroenterology, University of Szeged, Szeged 6725, Csongrád-Csanád, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| |
Collapse
|
25
|
Li JR, Xiang Z, Li SH, Li CX, Yan H, Wu J. Realm of hepatitis E: Challenges and opportunities. World J Exp Med 2024; 14:90481. [PMID: 38948414 PMCID: PMC11212739 DOI: 10.5493/wjem.v14.i2.90481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/19/2024] Open
Abstract
Hepatitis E virus (HEV), responsible for widespread viral hepatitis, infects approximately 2.3 billion individuals globally, with a significant mortality burden in Asia. The virus, primarily transmitted through contaminated water and undercooked meat, is often underdiagnosed, particularly in immunocompromised patients. Current HEV treatments, while effective, are limited by adverse effects, necessitating research into safer alternatives. Moreover, HEV's extrahepatic manifestations, impacting the nervous and renal systems, remain poorly understood. This study underscores the imperative for enhanced HEV research, improved diagnostic methods, and more effective treatments, coupled with increased public health awareness and preventive strategies.
Collapse
Affiliation(s)
- Jia-Rui Li
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shu-Hui Li
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chen-Xi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Hong Yan
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| |
Collapse
|
26
|
Zhao W, Xia Y, Li T, Liu H, Zhong G, Chen D, Yu W, Li Y, Huang F. Hepatitis E virus infection upregulates ING5 expression in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1365-1372. [PMID: 38877781 PMCID: PMC11532201 DOI: 10.3724/abbs.2024091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 06/16/2024] Open
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Yueping Xia
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Tengyuan Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Huichan Liu
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Guo Zhong
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Dongxue Chen
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Wenhai Yu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650038China
| | - Yunlong Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
- Yunnan Provincial Key Laboratory of Clinical VirologyKunming650032China
| | - Fen Huang
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
27
|
Solignac J, Boschi C, Pernin V, Fouilloux V, Motte A, Aherfi S, Fabre-Aubrespy M, Legris T, Brunet P, Colson P, Moal V. The question of screening organ donors for hepatitis e virus: a case report of transmission by kidney transplantation in France and a review of the literature. Virol J 2024; 21:136. [PMID: 38867299 PMCID: PMC11167830 DOI: 10.1186/s12985-024-02401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatitis E is a potentially serious infection in organ recipients, with an estimated two-thirds of cases becoming chronic, and with a subsequent risk of cirrhosis and death. In Europe, transmission occurs most often through the consumption of raw or undercooked pork, more rarely through blood transfusion, but also after solid organ transplantation. Here we describe a case of Hepatitis E virus (HEV) infection transmitted following kidney transplantation and review the literature describing cases of HEV infection transmitted by solid organ transplantation. CASE PRESENTATION Three weeks after kidney transplantation, the patient presented with an isolated minimal increase in GGT and hepatic cytolysis 6 months later, leading to the diagnosis of genotype 3c hepatitis E, with a plasma viral load of 6.5 log10IU/mL. In retrospect, HEV RNA was detected in the patient's serum from the onset of hepatitis, and in the donor's serum on the day of donation, with 100% identity between the viral sequences, confirming donor-derived HEV infection. Hepatitis E had a chronic course, was treated by ribavirin, and relapsed 10 months after the end of treatment. DISCUSSION Seven cases of transmission of HEV by solid organ transplantation have been described since 2012 without systematic screening for donors, all diagnosed at the chronic infection stage; two patients died. HEV organ donor transmission may be underestimated and there is insufficient focus on immunocompromised patients in whom mild liver function test impairment is potentially related to hepatitis E. However, since HEV infection is potentially severe in these patients, and as evidence accumulates, we believe that systematic screening of organ donors should be implemented for deceased and living donors regardless of liver function abnormalities, as is already the case in the UK and Spain. In January 2024, the French regulatory agency of transplantation has implemented mandatory screening of organ donors for HEV RNA.
Collapse
Affiliation(s)
- Justine Solignac
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France
| | - Celine Boschi
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Vincent Pernin
- Department of Nephrology Dialysis and Kidney Transplantation, Lapeyronie University Hospital, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Virginie Fouilloux
- Department of Congenital and Pediatric Cardiac Surgery, Timone Children's Hospital, Marseille, France
| | - Anne Motte
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Maxime Fabre-Aubrespy
- Department of Orthopaedic Surgery, Sainte-Marguerite University Hospital, Marseille, France
| | - Tristan Legris
- Centre de Néphrologie Et Transplantation Rénale, Publique Hôpitaux de Marseille, Hôpital Conception, Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Publique Hôpitaux de Marseille, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Valérie Moal
- Centre de Néphrologie Et Transplantation Rénale, Aix Marseille Université, Publique Hôpitaux de Marseille, Hôpital Conception, 147 Boulevard Baille, 13005, Marseille, France.
- Aix Marseille Université, Institut de Recherche Et Développement, Microbes Evolution Phylogeny and Infections, 27 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
28
|
Thorburn S, Majumdar A, Smibert O. Chronic hepatitis E masquerading as allograft rejection in a liver transplant recipient. Transpl Infect Dis 2024; 26:e14303. [PMID: 38775175 DOI: 10.1111/tid.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/19/2024]
Affiliation(s)
- Samuel Thorburn
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
| | - Avik Majumdar
- Victorian Liver Transplant Unit, Austin Health, Heidelberg, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | - Olivia Smibert
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
León-Janampa N, Boennec N, Le Tilly O, Ereh S, Herbet G, Moreau A, Gatault P, Longuet H, Barbet C, Büchler M, Baron C, Gaudy-Graffin C, Brand D, Marlet J. Relevance of Tacrolimus Trough Concentration and Hepatitis E virus Genetic Changes in Kidney Transplant Recipients With Chronic Hepatitis E. Kidney Int Rep 2024; 9:1333-1342. [PMID: 38707810 PMCID: PMC11069011 DOI: 10.1016/j.ekir.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Hepatitis E virus (HEV) can cause chronic infection (≥3 months) and cirrhosis in immunocompromised patients, especially kidney transplant recipients. Low alanine aminotransferase (ALT) levels and high HEV intrahost diversity have previously been associated with evolution toward chronicity in these patients. We hypothesized that additional clinical and viral factors could be associated with the risk of chronic HEV infection. Methods We investigated a series of 27 kidney transplant recipients with HEV infection, including 20 patients with chronic hepatitis E. Results High tacrolimus trough concentration at diagnosis was the most relevant marker associated with chronic hepatitis E (9.2 vs. 6.4 ng/ml, P = 0.04). Most HEV genetic changes selected during HEV infection were compartmentalized between plasma and feces. Conclusion This compartmentalization highlights the diversity and complexity of HEV replication compartments. Tacrolimus trough concentration at diagnosis of HEV infection could allow an early identification of patients at high risk of chronic hepatitis E and guide treatment initiation.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Natacha Boennec
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | | | - Simon Ereh
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Gabriel Herbet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Philippe Gatault
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Hélène Longuet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christelle Barbet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Mathias Büchler
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christophe Baron
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| |
Collapse
|
30
|
Klöhn M, Mohanasundaram S, Steinmann E. Be Aware of the Dog: Tacrolimus Usage and Chronic Hepatitis E Virus Infections. Kidney Int Rep 2024; 9:1160-1162. [PMID: 38707829 PMCID: PMC11069006 DOI: 10.1016/j.ekir.2024.02.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Affiliation(s)
- Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
31
|
Luo Q, Chen J, Zhang Y, Xu W, Liu Y, Xie C, Peng L. Viral hepatitis E: Clinical manifestations, treatment, and prevention. LIVER RESEARCH 2024; 8:11-21. [PMID: 39959034 PMCID: PMC11771268 DOI: 10.1016/j.livres.2024.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis E is a globally distributed infection that varies in seroprevalence between developed and developing regions. In the less developed regions of Asia and Africa, a high seropositivity rate has been reported for hepatitis E virus (HEV) antibodies. Although acute hepatitis E is often self-limited and has a favorable prognosis, some populations experience severe manifestations, which may progress to liver failure. Moreover, some immunocompromised patients are at risk of developing chronic HEV infection and cirrhosis. Proactive screening, reducing misdiagnosis, improving patient management, timely antiviral therapy for severe and chronic cases, and vaccination of high-risk groups are important measures to reduce the morbidity of hepatitis E. This review focused on the clinical presentation, management, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Qiumin Luo
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Chen
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yeqiong Zhang
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Liu
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Mohamed I, Sanders K, Hillebrand DJ. Chronic Hepatitis E Virus Manifesting as Elevated Transaminases in a Heart Transplant Patient. ACG Case Rep J 2024; 11:e01308. [PMID: 38524259 PMCID: PMC10959561 DOI: 10.14309/crj.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis worldwide. Genotypes 1 and 2 cause acute hepatitis in endemic regions (Asia and Africa), whereas genotypes 3 and 4 (America and Europe) result in sporadic acute or chronic hepatitis, specifically in certain groups. HEV infections are rising because of increased transplantation rates and immunosuppression. We report a 75-year-old heart transplant patient with nonspecific symptoms, diagnosed with HEV chronic hepatitis. Despite ribavirin-induced hemolytic anemia, the patient achieved sustained virological response and normalization of liver enzymes.
Collapse
Affiliation(s)
- Islam Mohamed
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Kimberly Sanders
- Department of Gastroenterology and Hepatology, University of Missouri-Kansas City, Kansas City, MO
| | - Donald J. Hillebrand
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS
| |
Collapse
|
33
|
de Araújo LRMG, Batista AD, Côelho MRCD, Santos JC, Cunha GG, Leal GRA, Pinho JRR, Domingues ALC, Lopes EP. Seroprevalence of hepatitis E virus in patients with chronic liver disease. Braz J Microbiol 2024; 55:357-364. [PMID: 38123902 PMCID: PMC10920483 DOI: 10.1007/s42770-023-01197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION The seroprevalence of hepatitis E virus (HEV) in patients with chronic liver disease (CLD) is little known in Brazil. Studies have suggested that HEV may harmfully influence the course of CLD, with a higher risk of progression to cirrhosis. OBJECTIVE To estimate the prevalence of the anti-HEV antibody (IgG) in patients with CLD and to describe demographic data and risk factors, as well as clinical-laboratory and ultrasound parameters. PATIENTS AND METHODS Cross-sectional study that included 227 patients with CLD followed at a referral outpatient clinic from June 2022 to March 2023. The patients were investigated clinically and tested for liver functions, anti-HEV IgG and, in positive cases, for HEV-RNA. Ultrasonography of the upper abdomen was also carried out. RESULTS Investigation of 227 patients (50 with hepatitis B, 49 with nonalcoholic fatty liver disease, 33 with hepatitis C, 17 with alcoholic liver disease, 16 with schistosomiasis and 62 with mixed disease), 55.5% were female, with an average age of 57 ± 13 years; 37.9% had liver cirrhosis. Seven patients (3.08%) presented anti-HEV positive and HEV-RNA negative. Ultrasound identified association between anti-HEV and contact with pigs, presence of gynecomastia or palmar erythema, lower platelet count, higher APRI and FIB-4 values, and splenomegaly. CONCLUSION Although the prevalence of anti-HEV in patients with CLD was low in this study, the antibody was observed more frequently in cases with a history of contact with pigs and with clinical-laboratory or imaging evidence of more advanced chronic liver disease.
Collapse
Affiliation(s)
- Lílian Rose Maia Gomes de Araújo
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.
- Gastroenterology Division, Hospital das Clínicas - Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, 135, Recife, Pernambuco, 50670-901, Brazil.
| | - Andrea Dória Batista
- Gastroenterology Division, Hospital das Clínicas - Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, 135, Recife, Pernambuco, 50670-901, Brazil
| | - Maria Rosângela Cunha Duarte Côelho
- Laboratory of Virology, Keizo Asami Institute (LIKA), Departament of Phisiology and Pharmacology, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | - Gabriel Galindo Cunha
- Laboratory of Virology, Keizo Asami Institute (LIKA), Departament of Phisiology and Pharmacology, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Gabriela Rodrigues Aguiar Leal
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
- Laboratory of Virology, Keizo Asami Institute (LIKA), Departament of Phisiology and Pharmacology, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - João Renato Rebello Pinho
- Laboratory of Gastroenterology and Tropical Hepatology, Institute of Tropical Medicine and Department of Gastroenterology, Faculty of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Lúcia Coutinho Domingues
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
- Gastroenterology Division, Hospital das Clínicas - Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, 135, Recife, Pernambuco, 50670-901, Brazil
| | - Edmundo Pessoa Lopes
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.
- Gastroenterology Division, Hospital das Clínicas - Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, 135, Recife, Pernambuco, 50670-901, Brazil.
- Department of Internal Medicine, Center of Medical Sciences, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.
| |
Collapse
|
34
|
Zicker M, Pinho JRR, Welter EAR, Guardia BD, da Silva PGTM, da Silveira LB, Camargo LFA. The Risk of Reinfection or Primary Hepatitis E Virus Infection at a Liver Transplant Center in Brazil: An Observational Cohort Study. Viruses 2024; 16:301. [PMID: 38400077 PMCID: PMC10893537 DOI: 10.3390/v16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The hepatitis E virus is a major etiological agent of chronic hepatitis in immunosuppressed individuals. Seroprevalence in the liver transplantation setting varies according to the seroprevalence of the general population in different countries. This was a prospective cohort study of liver transplant recipients in southeastern Brazil. Recipients were systematically followed for one year, with the objective of determining the prevalence, incidence, and natural history of HEV infection in this population. We included 107 liver transplant recipients and 83 deceased donors. Positivity for anti-HEV IgG was detected in 10.2% of the recipients and in 9.7% of the donors. None of the patients tested positive for HEV RNA at baseline or during follow-up. There were no episodes of reactivation or seroconversion, even in cases of serological donor-recipient mismatch or in recipients with acute hepatitis. Acute and chronic HEV infections seem to be rare events in the region studied. That could be attributable to social, economic, and environmental factors. Our data indicate that, among liver transplant recipients, hepatitis E should be investigated only when there are elevated levels of transaminases with no defined cause, as part of the differential diagnosis of seronegative hepatitis after transplantation.
Collapse
Affiliation(s)
- Michelle Zicker
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - João R. R. Pinho
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Eliane A. R. Welter
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Bianca D. Guardia
- Liver Transplant Program, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | | | | | - Luís F. A. Camargo
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, Brazil
| |
Collapse
|
35
|
Tanaka A, Matsubayashi K, Odajima T, Sakata H, Iida J, Kai K, Goto N, Satake M. Universal nucleic acid donor screening revealed epidemiological features of hepatitis E and prevented transfusion-transmitted infection in Japan. Transfusion 2024; 64:335-347. [PMID: 38152964 DOI: 10.1111/trf.17696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND More than 45 cases of transfusion-transmitted hepatitis E virus infection (TT-HEV) have been reported in Japan. Therefore, in 2020, universal individual donation nucleic acid amplification testing (ID-NAT) was implemented for HEV. STUDY DESIGN AND METHODS We characterized HEV NAT-positive blood donors. The number of new HEV infections and the asymptomatic infection rate were estimated using the HEV NAT-positive rate. HEV RNA quantitation, phylogenetic analysis, and antibody tests were performed, and the residual risk of TT-HEV was assessed based on the lookback study results. RESULTS A total of 5,075,100 blood donations were screened with ID-NAT during the first year of implementation, among which 2804 (0.055%; males: 0.060%, females: 0.043%) were NAT-positive with regional differences. Approximately 270,000 new HEV infection cases were estimated to occur annually in Japan, with an asymptomatic infection rate of 99.9%. The median HEV RNA concentration, excluding cases below the limit of quantification, was 205 IU/mL. Among the 1113 cases where the genotype could be determined, HEV-3 and HEV-4 accounted for 98.8% (1100) and 1.2% (13), respectively. The maximum duration of HEV viremia, including the pre- and post-ID-NAT window periods, was estimated to be 88.2 days. Within the 3 years since ID-NAT implementation, no confirmed cases of breakthrough TT-HEV were observed. DISCUSSION Multiple indigenous HEV strains are prevalent in Japan, infecting a significant number of individuals. However, since the implementation of ID-NAT, TT-HEV has been prevented due to the test's high sensitivity.
Collapse
Affiliation(s)
- Ami Tanaka
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Keiji Matsubayashi
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Takeshi Odajima
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | | | - Juri Iida
- Japanese Red Cross Hokkaido Block Blood Center, Sapporo, Japan
| | - Kazuhiro Kai
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Naoko Goto
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
36
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
37
|
Iqbal H, Mehmood BF, Sohal A, Roytman M. Hepatitis E infection: A review. World J Virol 2023; 12:262-271. [PMID: 38187497 PMCID: PMC10768387 DOI: 10.5501/wjv.v12.i5.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
Hepatitis E virus (HEV) is a small non-enveloped virus that is transmitted via the fecal-oral route. It is a highly common cause of acute hepatitis, particularly in low to middle income regions of Asia, Africa, and Central America. Most cases are self-limited, and symptomatic patients usually present with acute icteric hepatitis. A subset of patients including pregnant women, older men, those with pre-existing liver disease and immunocompromised patients however, may develop severe disease and hepatic failure. Immunocompromised patients are also at risk for chronic infection, and their immunosuppression should be decreased in order to facilitate viral clearance. HEV can also present with a variety of extra-intestinal manifestations including neurological, renal, hematological, and pancreatic derangements. The gold standard of diagnosis is HEV ribonucleic acid detection via nucleic acid amplification testing. Currently, there are no approved treatments for Hepatitis E, though ribavirin is the most commonly used agent to reduce viral load. Studies assessing the safety and efficacy of other antiviral agents for HEV are currently underway. HEV vaccination has been approved in China, and is currently being investigated in other regions as well. This review article aims to discuss the epidemiology, pathogenesis, presentation, diagnosis, complications, and treatment of Hepatitis E infection.
Collapse
Affiliation(s)
- Humzah Iqbal
- Department of Internal Medicine, University of California San Francisco, Fresno, CA 93701, United States
| | - Bilal Fazal Mehmood
- Department of Internal Medicine, University of California San Francisco, Fresno, CA 93701, United States
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, WA 98105, United States
| | - Marina Roytman
- Department of Gastroenterology and Hepatology, University of California San Francisco, Fresno, CA 93701, United States
| |
Collapse
|
38
|
Courjon J, Portillo V, Yerly S, Vetter P, Schibler M, Mappoura M, Morin S, Giannotti F, Mamez AC, van Delden C, Kaiser L, Chalandon Y, Masouridi-Levrat S, Neofytos D. Hepatitis E Virus Infection Epidemiology in Recipients of Allogeneic Hematopoietic Cell Transplant. Open Forum Infect Dis 2023; 10:ofad595. [PMID: 38094666 PMCID: PMC10716736 DOI: 10.1093/ofid/ofad595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Among 292 recipients of allogeneic hematopoietic cell transplant (2018-2022), 64 (21.9%) tested positive for anti-hepatitis E virus (HEV) immunoglobulin G. Among 208 recipients tested by plasma/serum HEV polymerase chain reaction (2012-2022), 3 (1.4%) primary HEV infections were diagnosed; in 1 patient, plasma HEV polymerase chain reaction relapsed positive for 100 days. HEV infection remains rare albeit associated with persistent viral replication.
Collapse
Affiliation(s)
- Johan Courjon
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
- Université Côte d’Azur, Inserm, C3M, Nice, France
| | - Vera Portillo
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Division of Laboratory Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Pauline Vetter
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, University Hospital of Geneva, Geneva, Switzerland
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Manuel Schibler
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Maria Mappoura
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah Morin
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Giannotti
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Anne-Claire Mamez
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Riveiro-Barciela M, Roade L, Martínez-Camprecios J, Vidal-González J, Rodríguez-Diez B, Perelló M, Ortí G, Robles-Alonso V, Berastegui C, Navarro J, Martínez-Valle F, Bilbao I, Castells L, Ventura-Cots M, Llaneras J, Rando-Segura A, Forns X, Lens S, Prieto M, García-Eliz M, Imaz A, Rodríguez-Frías F, Buti M, Esteban R. mTOR inhibitors a potential predisposing factor for chronic hepatitis E: Results from the prospective collaborative CHES study (Chronic Hepatitis EScreening in patients with immune impairment and increased transaminases levels). GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:764-773. [PMID: 36731726 DOI: 10.1016/j.gastrohep.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic hepatitis E virus (HEV) in persons with immune impairment has a progressive course leading to a rapid progression to liver cirrhosis. However, prospective data on chronic HEV is scarce. The aim of this study was to determine the prevalence and risk factors for chronic HEV infection in subjects with immune dysfunction and elevated liver enzymes. PATIENTS AND METHODS CHES is a multicenter prospective study that included adults with elevated transaminases values for at least 6 months and any of these conditions: transplant recipients, HIV infection, haemodialysis, liver cirrhosis, and immunosuppressant therapy. Anti-HEV IgG/IgM (Wantai ELISA) and HEV-RNA by an automated highly sensitive assay (Roche diagnostics) were performed in all subjects. In addition, all participants answered an epidemiological survey. RESULTS Three hundred and eighty-one patients were included: 131 transplant recipients, 115 cirrhosis, 51 HIV-infected subjects, 87 on immunosuppressants, 4 hemodialysis. Overall, 210 subjects were on immunosuppressants. Anti-HEV IgG was found in 94 (25.6%) subjects with similar rates regardless of the cause for immune impairment. HEV-RNA was positive in 6 (1.6%), all of them transplant recipients, yielding a rate of chronic HEV of 5.8% among solid-organ recipients. In the transplant population, only therapy with mTOR inhibitors was independently associated with risk of chronic HEV, whereas also ALT values impacted in the general model. CONCLUSIONS Despite previous abnormal transaminases values, chronic HEV was only observed among solid-organ recipients. In this population, the rate of chronic HEV was 5.8% and only therapy with mTOR inhibitors was independently associated with chronic hepatitis E.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Luisa Roade
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Joan Martínez-Camprecios
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Judit Vidal-González
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Basilio Rodríguez-Diez
- Rheumatology Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manel Perelló
- Nephrology Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Guillermo Ortí
- Department of Hematology, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Virginia Robles-Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Digestive System Research Unit, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Berastegui
- Pneumology Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Fernando Martínez-Valle
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Itxarone Bilbao
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Transplant Unit, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lluis Castells
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Jordi Llaneras
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| | - Ariadna Rando-Segura
- Microbiology Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Xavier Forns
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Hospital Clínic, Barcelona, IDIBAPS, Universidad de Barcelona, Spain
| | - Sabela Lens
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Hospital Clínic, Barcelona, IDIBAPS, Universidad de Barcelona, Spain
| | - Martín Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Transplantation and Hepatology Unit, La Fe Hospital, Valencia, Spain
| | - María García-Eliz
- Liver Transplantation and Hepatology Unit, La Fe Hospital, Valencia, Spain
| | - Arkaitz Imaz
- Infectious Diseases Department, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Clinical Laboratories, Vall d'Hebron University Hospital, Spain
| | - Maria Buti
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain.
| | - Rafael Esteban
- Liver Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebrón, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain
| |
Collapse
|
40
|
León-Janampa N, Caballero-Posadas I, Barc C, Darrouzain F, Moreau A, Guinoiseau T, Gatault P, Fleurot I, Riou M, Pinard A, Pezant J, Rossignol C, Gaudy-Graffin C, Brand D, Marlet J. A pig model of chronic hepatitis E displaying persistent viremia and a downregulation of innate immune responses in the liver. Hepatol Commun 2023; 7:e0274. [PMID: 37938097 PMCID: PMC10635601 DOI: 10.1097/hc9.0000000000000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | | | - Céline Barc
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - François Darrouzain
- Department of Pharmacology and Toxicology, Tours University Hospital, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | - Thibault Guinoiseau
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Philippe Gatault
- Department of Nephrology and Transplantation, Tours University Hospital, Tours, France
- EA4245, University of Tours, Tours, France
| | | | - Mickaël Riou
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Anne Pinard
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Jérémy Pezant
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | | | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| |
Collapse
|
41
|
Dumont C, Lanthier N, Dahlqvist G. Fibrosis and steatosis of the liver graft: Are non-invasive tests useful? A short review. Clin Res Hepatol Gastroenterol 2023; 47:102194. [PMID: 37567467 DOI: 10.1016/j.clinre.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
As life expectancy of liver transplanted patients improves, new questions are arising to avoid progressive graft loss. The spectrum of chronic inflammation and fibrosis are known to be important triggers in the alteration of graft function. Liver biopsy remains the gold standard to better understand progressive, normal, and abnormal histological modifications of the graft. In parallel, the interest for metabolic steatosis development in post-transplantation is also growing. Long-term survival of these patients involves the management of comorbidities including metabolic syndrome and cardiovascular diseases. Early detection of altered graft parenchyma, and monitoring of its evolution are undoubtedly essential. Non-invasive methods including transient elastography and fibrosis biomarkers are attractive tools to avoid drawbacks and complications of liver biopsy. Accuracy of these methods are well-known in a pre-transplantation setting, but evidence is lacking in post-transplantation setting. We review current knowledge of progressive liver fibrosis and steatosis development after transplantation and non-invasive methods of their assessment.
Collapse
Affiliation(s)
- Colin Dumont
- Department of Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Nicolas Lanthier
- Department of Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium; Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Géraldine Dahlqvist
- Department of Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| |
Collapse
|
42
|
Sequeira C, Coelho M, Costa Santos I, Ramos Lopes S, Mangualde J, Oliveira AP. Severe Hypercholesterolemia Mediated by Lipoprotein X in an Immunosuppressed Patient: A Case Report. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2023; 30:398-402. [PMID: 37868638 PMCID: PMC10586217 DOI: 10.1159/000526854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/10/2022] [Indexed: 10/24/2023]
Abstract
Cholestatic liver diseases may be associated with increased plasmatic cholesterol due to an abnormal lipoprotein - lipoprotein X (LpX). Correcting the underlying cause of cholestasis is the critical treatment of LpX-associated hypercholesterolemia without any proven benefit from conventional lipid-lowering agents. In some situations, plasma exchange may apply to prevent associated complications, such as hyperviscosity syndrome. The authors present the case of a 44-year-old man with orbital inflammatory pseudotumor on prednisolone, admitted due to hepatocellular and cholestatic lesion and severe hypercholesterolemia. Laboratory investigation established that hepatitis E virus was responsible for liver injury and showed that LpX mediated the severe hypercholesterolemia. Reduction of the immunosuppressive load contributed to virus clearance. The consequent resolution of cholestasis and cholesterol removal by plasmapheresis allowed lipid profile normalization. The authors report the first case of LpX-associated hypercholesterolemia in a patient with hepatitis E-induced cholestasis and revisit the role of the liver in lipid metabolism.
Collapse
Affiliation(s)
- Cristiana Sequeira
- Gastroenterology Department, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Namdeo D, Shrivastava P, Garg G, Vyas AK, Nema RK, Singhai A, Nema S, Biswas D. Role of real-time polymerase chain reaction in diagnosing Hepatitis E, the commonest cause of acute hepatitis in adult patients seeking institutional care. INDIAN J PATHOL MICR 2023; 66:810-814. [PMID: 38084537 DOI: 10.4103/ijpm.ijpm_693_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background This cross-sectional study was performed with the aim of determining the prevalence of hepatitis E virus (HEV) infection among acute hepatitis patients attending a tertiary care teaching hospital in a developing country and to determine the relative performance of prevalent diagnostic assays in establishing its diagnosis. Materials and Methods A total of 46 adult patients were included in this study, all of whom presented with jaundice of <4 weeks' duration and elevation of AST and ALT above 500 U/L. The prevalence of HEV among patients with acute hepatitis was calculated on the basis of the proportion of recruited patients reacting positively in serum anti-HEV immunoglobulin M (IgM) and real-time polymerase chain reaction (RT-PCR) assays. Results Among the recruited patients, 11 (23.91%) and 15 (32.6%) patients were positive for anti-HEV IgM and RT-PCR, respectively. The two tests demonstrated poor inter-test agreement, thereby implying the necessity of performing both tests for reliable diagnosis of acute HEV virus infection. We also observed a significant difference in the duration of illness between RT-PCR positive and negative patients (P = 0.008). The mean (±SD) duration of illness in the two groups was 8.6 (±3.50) and 11.66 (± 5.15) days, respectively. Combining the results of IgM ELISA and RT-PCR, we observed that 23 out of 46 patients (50%) had evidence of acute HEV virus infection among our patients. Conclusion Our study suggests that HEV is the commonest cause of acute hepatitis in adult patients attending a tertiary care teaching hospital and that the diagnostic algorithm for its confirmation should include both IgM ELISA and RT-PCR assays.
Collapse
Affiliation(s)
- Divya Namdeo
- Regional Virology Lab, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Pratima Shrivastava
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Garima Garg
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ashish K Vyas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ram K Nema
- Regional Virology Lab, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Abhishek Singhai
- Department of Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Shashwati Nema
- Regional Virology Lab; Departments of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Debasis Biswas
- Regional Virology Lab; Departments of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
44
|
Ushiro-Lumb I, Forsythe J, Haywood B, Geoghegan C, Maddox V, Ijaz S, Manas D, Thorburn D. Impact of Hepatitis E Virus Screening in the UK Deceased Organ Donor Population. Transpl Int 2023; 36:11673. [PMID: 37727381 PMCID: PMC10505649 DOI: 10.3389/ti.2023.11673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
Universal Hepatitis E Virus (HEV) screening of deceased organ donors was implemented by the UK national organ procurement organisation in October 2017. Donor testing for HEV infection is done post-transplant; detection of HEV ribonucleic acid (RNA) in donor plasma is therefore not a contra-indication for organ donation, with the result being used to inform recipient management. Immediate post-transplant detection of donor HEV viraemia triggers notification to transplant centres. Follow up of liver and kidney recipients has shown that transmission through solid organs is very efficient, particularly through liver grafts, as expected; no other organ types were transplanted in this cohort. Although donors with higher plasma viral load (VL > 103 IU/mL) were invariably associated with recipient infection, transmission was also documented at lower VL levels. Knowledge of donor HEV status has led to identification of transmission of infection via solid organ grafts followed by close patient monitoring and informed clinical management decisions. The purpose of this strategy is to allow early detection of infection and recurrence and treatment to circumvent the risk of accelerated liver damage from chronic HEV infection due to undiagnosed, inadvertent donor-derived transmission of infection.
Collapse
Affiliation(s)
- Ines Ushiro-Lumb
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, London, United Kingdom
- UK Health Security Agency (UKHSA), London, United Kingdom
- Microbiology Services Laboratory, NHS Blood and Transplant, London, United Kingdom
| | - John Forsythe
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, London, United Kingdom
| | - Becky Haywood
- UK Health Security Agency (UKHSA), London, United Kingdom
| | | | - Victoria Maddox
- Microbiology Services Laboratory, NHS Blood and Transplant, London, United Kingdom
| | - Samreen Ijaz
- UK Health Security Agency (UKHSA), London, United Kingdom
| | - Derek Manas
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, London, United Kingdom
| | - Douglas Thorburn
- Organ and Tissue Donation and Transplantation, NHS Blood and Transplant, London, United Kingdom
| |
Collapse
|
45
|
Subramaniam S, Fares-Gusmao R, Sato S, Cullen JM, Takeda K, Farci P, McGivern DR. Distinct disease features of acute and persistent genotype 3 hepatitis E virus infection in immunocompetent and immunosuppressed Mongolian gerbils. PLoS Pathog 2023; 19:e1011664. [PMID: 37703304 PMCID: PMC10519604 DOI: 10.1371/journal.ppat.1011664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Hepatitis E virus (HEV) causes self-limited acute hepatitis in immunocompetent individuals and can establish chronic infection in solid organ transplant recipients taking immunosuppressive drugs. A well characterized small animal model is needed to understand HEV pathogenesis. In this study, we established a robust model to study acute and persistent HEV infection using Mongolian gerbils (Meriones unguiculatus) with or without immunosuppression. Gerbils were implanted subcutaneously with continuous release tacrolimus pellet to induce immunosuppression. Gerbils with or without tacrolimus treatment were inoculated with HEV intraperitoneally. Viremia, fecal virus shedding, serum antibody and ALT levels, liver histopathological lesions, hepatocyte apoptosis, and liver macrophage distribution were assessed. Mild to moderate self-limited hepatitis and IgM and IgG antibody responses against HEV ORF2 were observed in immunocompetent gerbils. Levels of HEV-specific IgM responses were higher and lasted longer in immunocompetent gerbils with higher peak viremia. Persistent viremia and fecal virus shedding with either weak, or absent HEV antibody levels were seen in immunosuppressed gerbils. Following HEV infection, serum ALT levels were increased, with lower and delayed peaks observed in immunosuppressed compared to immunocompetent gerbils. In immunocompetent gerbils, foci of apoptotic hepatocytes were detected that were distributed with inflammatory infiltrates containing CD68+ macrophages. However, these foci were absent in immunosuppressed gerbils. The immunosuppressed gerbils showed no inflammation with no increase in CD68+ macrophages despite high virus replication in liver. Our findings suggest adaptive immune responses are necessary for inducing hepatocyte apoptosis, CD68+ macrophage recruitment, and inflammatory cell infiltration in response to HEV infection. Our studies show that Mongolian gerbils provide a promising model to study pathogenesis during acute and persistent HEV infection.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Rafaelle Fares-Gusmao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John M. Cullen
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. McGivern
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
46
|
Bansal SB, Ramasubramanian V, Prasad N, Saraf N, Soman R, Makharia G, Varughese S, Sahay M, Deswal V, Jeloka T, Gang S, Sharma A, Rupali P, Shah DS, Jha V, Kotton CN. South Asian Transplant Infectious Disease Guidelines for Solid Organ Transplant Candidates, Recipients, and Donors. Transplantation 2023; 107:1910-1934. [PMID: 36749281 DOI: 10.1097/tp.0000000000004521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
These guidelines discuss the epidemiology, screening, diagnosis, posttransplant prophylaxis, monitoring, and management of endemic infections in solid organ transplant (SOT) candidates, recipients, and donors in South Asia. The guidelines also provide recommendations for SOT recipients traveling to this region. These guidelines are based on literature review and expert opinion by transplant physicians, surgeons, and infectious diseases specialists, mostly from South Asian countries (India, Pakistan, Bangladesh, Nepal, and Sri Lanka) as well as transplant experts from other countries. These guidelines cover relevant endemic bacterial infections (tuberculosis, leptospirosis, melioidosis, typhoid, scrub typhus), viral infections (hepatitis A, B, C, D, and E; rabies; and the arboviruses including dengue, chikungunya, Zika, Japanese encephalitis), endemic fungal infections (mucormycosis, histoplasmosis, talaromycosis, sporotrichosis), and endemic parasitic infections (malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis, strongyloidiasis, and filariasis) as well as travelers' diarrhea and vaccination for SOT candidates and recipients including travelers visiting this region. These guidelines are intended to be an overview of each topic; more detailed reviews are being published as a special supplement in the Indian Journal of Transplantation .
Collapse
Affiliation(s)
- Shyam Bihari Bansal
- Department of Nephrology and Kidney Transplantation, Medanta Institute of Kidney and Urology Medanta-Medicity, Gurgaon, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Saraf
- Department of Hepatology, Medanta, Medicity, Gurgaon, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Santosh Varughese
- Department of Nephrology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Manisha Sahay
- Department of Nephrology, Osmania Medical College, and Hospital, Hyderabad, India
| | - Vikas Deswal
- Department of Infectious Diseases, Medanta, Medicity, Gurgaon, India
| | - Tarun Jeloka
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | - Sishir Gang
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, Gujrat, India
| | - Ashish Sharma
- Department of Renal Transplant Surgery, PGIMER, Chandigarh, India
| | - Priscilla Rupali
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dibya Singh Shah
- Department of Nephrology and Transplant Medicine, Institute of Medicine, Tribhuvan University of Teaching hospital, Kathmandu, Nepal
| | | | - Camille Nelson Kotton
- Transplant and Immunocompromised Host Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Kosuta I, Ostojic A, Vujaklija Brajkovic A, Babel J, Simunov B, Sremac M, Mrzljak A. Shifting perspectives in liver diseases after kidney transplantation. World J Hepatol 2023; 15:883-896. [PMID: 37547033 PMCID: PMC10401415 DOI: 10.4254/wjh.v15.i7.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Liver diseases after kidney transplantation range from mild biochemical abnormalities to severe hepatitis or cirrhosis. The causes are diverse and mainly associated with hepatotropic viruses, drug toxicity and metabolic disorders. Over the past decade, the aetiology of liver disease in kidney recipients has changed significantly. These relates to the use of direct-acting antiviral agents against hepatitis C virus, the increasing availability of vaccination against hepatitis B and a better understanding of drug-induced hepatotoxicity. In addition, the emergence of the severe acute respiratory syndrome coronavirus 2 pandemic has brought new challenges to kidney recipients. This review aims to provide healthcare professionals with a comprehensive understanding of recent advances in the management of liver complications in kidney recipients and to enable them to make informed decisions regarding the risks and impact of liver disease in this population.
Collapse
Affiliation(s)
- Iva Kosuta
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia.
| | - Ana Ostojic
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Ana Vujaklija Brajkovic
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Jaksa Babel
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Bojana Simunov
- Department of Nephrology, University Hospital Merkur, Zagreb 10000, Croatia
| | - Maja Sremac
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, Liver Transplant Center, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
48
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
49
|
Franz A, Reuken PA, Guliyeva S, Rose M, Boden K, Stallmach A, Bruns T. Early ribavirin for hepatitis E virus infection in patients receiving immunosuppressive therapy: a retrospective, observational study. J Int Med Res 2023; 51:3000605231187941. [PMID: 37523153 PMCID: PMC10392516 DOI: 10.1177/03000605231187941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Hepatitis E virus (HEV) infections are common, self-limiting causes of acute viral hepatitis. This study aimed to analyze hepatic injury, viremia, and chronicity rates in patients with acute HEV infection receiving immunosuppressive (IS) therapy taking into account ribavirin treatment. METHODS In this retrospective, single-center, observational study, we analyzed the disease course of 25 non-cirrhotic patients receiving IS therapy who were diagnosed with acute HEV viremia. Forty-four patients with acute HEV viremia without IS therapy were controls. RESULTS Demographics, symptoms at presentation, and extrahepatic manifestations were not different between patients with and without IS therapy, but liver injury at presentation was less severe in patients with IS therapy. Among the patients with IS therapy, 18 (72%) received ribavirin for a median of 56 days. Sustained viral clearance was observed in 21 patients with IS therapy, whereas 3 patients relapsed after ribavirin, and 1 patient had viral persistence. Among patients with sustained viral clearance, there was a longer duration of viremia in patients with IS therapy than in those without. CONCLUSIONS In this cohort of non-cirrhotic patient with IS, early treatment with ribavirin for acute HEV infection did not improve viral clearance rates, but may have shortened the duration of viremia.
Collapse
Affiliation(s)
- Anika Franz
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Sura Guliyeva
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Rose
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Katharina Boden
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
- Dianovis GmbH, Greiz, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
50
|
Wu E, Koch N, Bachmann F, Schulz M, Seelow E, Weber U, Waiser J, Halleck F, Faber M, Bock CT, Eckardt KU, Budde K, Hofmann J, Nickel P, Choi M. Risk Factors for Hepatitis E Virus Infection and Eating Habits in Kidney Transplant Recipients. Pathogens 2023; 12:850. [PMID: 37375540 PMCID: PMC10301935 DOI: 10.3390/pathogens12060850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
There is a significant risk for ongoing and treatment-resistant courses of hepatitis E virus (HEV) infection in patients after solid organ transplantation. The aim of this study was to identify risk factors for the development of hepatitis E, including the dietary habits of patients. We conducted a retrospective single-center study with 59 adult kidney and combined kidney transplant recipients who were diagnosed with HEV infection between 2013 and 2020. The outcomes of HEV infections were analyzed during a median follow-up of 4.3 years. Patients were compared with a control cohort of 251 transplant patients with elevated liver enzymes but without evidence of an HEV infection. Patients' alimentary exposures during the time before disease onset or diagnosis were assessed. Previous intense immunosuppression, especially treatment with high-dose steroids and rituximab, was a significant risk factor to acquire hepatitis E after solid organ transplantation. Only 11 out of 59 (18.6%) patients reached remission without further ribavirin (RBV) treatment. A total of 48 patients were treated with RBV, of which 19 patients (39.6%) had either viral rebounds after the end of treatment or did not reach viral clearance at all. Higher age (>60 years) and a BMI ≤ 20 kg/m2 were risk factors for RBV treatment failure. Deterioration in kidney function with a drop in eGFR (p = 0.046) and a rise in proteinuria was more common in patients with persistent hepatitis E viremia. HEV infection was associated with the consumption of undercooked pork or pork products prior to infection. Patients also reported processing raw meat with bare hands at home more frequently than the controls. Overall, we showed that the intensity of immunosuppression, higher age, a low BMI and the consumption of undercooked pork meat correlated with the development of hepatitis E.
Collapse
Affiliation(s)
- Eva Wu
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Nadine Koch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Friederike Bachmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
| | - Evelyn Seelow
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Ulrike Weber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Johannes Waiser
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Mirko Faber
- Department of Infectious Disease Epidemiology, Robert Koch-Institute, 13353 Berlin, Germany;
| | - Claus-Thomas Bock
- Department of Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany;
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Jörg Hofmann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, and German Centre for Infection Research (DZIF), Partner Site Charité, 13353 Berlin, Germany;
- Labor Berlin, Charité-Vivantes GmbH, 13353 Berlin, Germany
| | - Peter Nickel
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (E.W.); (N.K.); (F.B.); (E.S.); (U.W.); (J.W.); (F.H.); (K.-U.E.); (K.B.); (P.N.)
| |
Collapse
|