1
|
Zhang Y, Wang S, Chen J, Zhou Y, Yu X, Peng R, Lu L, Li S, Tian Z, Zhang N, Yang H. Augmentation of antiviral immune response induced by perturbation of CD82 under microgravity condition. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110216. [PMID: 39986582 DOI: 10.1016/j.fsi.2025.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Exposure to microgravity has become the primary factor threatening astronauts' health. Immunity is dysregulated rapidly following spaceflight, and reactivation of latent virus has been observed. However, systematic studies and molecular mechanisms of the adverse impact of microgravity on the antiviral immune response are still elusive. As a member of the Tetraspanins family, CD82 participates in the biological process between the cell and the trafficking of cellular transmembrane proteins that interact with many viruses. Herein, we established a ground-based zebrafish model of microgravity to research the embryogenesis processes under space microgravity. In this study, we cloned and validated the open reading frame (ORF) sequence of CD82 homolog and explored the expression profile of CD82 homolog in various zebrafish tissues. Overexpression of zebrafish CD82a increased host IFN1 and vig1 transcription during the spring viremia of carp virus (SVCV) infection. Furthermore, a significant down-regulation of gene expression, including IFN1 and vig1, caused by knockdown of CD82a was observed. Additionally, the knockdown of CD82a significantly upregulated the SVCV replication in the EPC cells. Accordingly, CD82a positively induced the cellular antiviral responses triggered by the SVCV. Moreover, the mRNA level of CD82 homolog was upregulated in vivo and in vitro under simulated microgravity. Collectively, our studies further implied that the high expression of CD82a could modulate innate antiviral immunity in an IFN-independent manner during microgravity conditions.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Longfeng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
2
|
López Garzón NA, Pinzón-Fernández MV, Saavedra T. JS, Nati-Castillo HA, Arias-Intriago M, Salazar-Santoliva C, Izquierdo-Condoy JS. Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health. Int J Mol Sci 2025; 26:3058. [PMID: 40243850 PMCID: PMC11988870 DOI: 10.3390/ijms26073058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key mechanisms, such as T cell activation, cytokine production, and macrophage differentiation, leading to increased susceptibility to infections. In cancer biology, it promotes the formation of spheroids in cancer stem cells and thyroid cancer cells, which closely mimic in vivo tumor dynamics, providing novel insights for oncology research. Additionally, microgravity enhances tissue regeneration by modulating critical pathways, including Hippo and PI3K-Akt, thereby improving stem cell differentiation into hematopoietic and cardiomyocyte lineages. At the organ level, microgravity induces notable changes in hepatic metabolism, endothelial function, and bone mechanotransduction, contributing to lipid dysregulation, vascular remodeling, and accelerated bone loss. Notably, cardiomyocytes derived from human pluripotent stem cells and cultured under microgravity exhibit enhanced mitochondrial biogenesis, improved calcium handling, and advanced structural maturation, including increased sarcomere length and nuclear eccentricity. These advancements enable the development of functional cardiomyocytes, presenting promising therapeutic opportunities for treating cardiac diseases, such as myocardial infarctions. These findings underscore the dual implications of microgravity for space medicine and terrestrial health. They highlight its potential to drive advances in regenerative therapies, oncology, and immunological interventions. Continued research into the biological effects of microgravity is essential for protecting astronaut health during prolonged space missions and fostering biomedical innovations with transformative applications on Earth.
Collapse
Affiliation(s)
- Nelson Adolfo López Garzón
- Grupo de Investigación en Salud (GIS), Departamento de Medicina Interna, Universidad del Cauca, Popayan 190003, Colombia
| | | | - Jhan S. Saavedra T.
- Grupo de Investigación en Salud (GIS), Departamento de Medicina Interna, Universidad del Cauca, Popayan 190003, Colombia
| | - Humberto A. Nati-Castillo
- Interinstitutional Internal Medicine Group (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali 760031, Colombia
| | | | | | | |
Collapse
|
3
|
Veliz AL, Hughes L, Carrillo D, Pecaut MJ, Kearns-Jonker M. Immunization induces inflammation in the mouse heart during spaceflight. BMC Genomics 2025; 26:229. [PMID: 40065216 PMCID: PMC11892206 DOI: 10.1186/s12864-025-11426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Space travel is a growing area of interest and includes initiatives such as NASA's Moon-to-Mars Mission. Reports on the cardiovascular effects of space travel reveal changes in morphology, metabolism, and function of the cardiovascular system. In this study, the cardiovascular response to immunization in space was studied in mice which were housed and immunized while on the International Space Station (ISS). Mice were immunized with tetanus toxoid combined with the adjuvant CpG (TT + CpG) and the effects of vaccination in space were studied using transcriptomics. Analysis of the mouse heart transcriptome was performed on flight control and flight-immunized mice. The results show that immunization aboard the ISS stimulates heightened inflammation in the heart via induction of the nuclear factor kappa B (NF-κB) signaling pathway to promote the release of the pro-inflammatory cytokines IFNγ, IL-17 and IL-6. Additional transcriptomic changes included alterations in the cytoskeleton and in the expression of transcripts associated with protection from oxidative stress. In summary, inflammation in the heart can occur following immunization in space. This investigation explores the impact of immune challenges on the heart and lays the groundwork for future research into additional cardiac alterations which can occur during spaceflight.
Collapse
Affiliation(s)
- Alicia L Veliz
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Delia Carrillo
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
4
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
5
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
6
|
Okamura Y, Gochi K, Ishikawa T, Hayashi T, Fuseya S, Suzuki R, Kanai M, Inoue Y, Murakami Y, Sadaki S, Jeon H, Hayama M, Ishii H, Tsunakawa Y, Ochi H, Sato S, Hamada M, Abe C, Morita H, Okada R, Shiba D, Muratani M, Shinohara M, Akiyama T, Kudo T, Takahashi S. Impact of microgravity and lunar gravity on murine skeletal and immune systems during space travel. Sci Rep 2024; 14:28774. [PMID: 39567640 PMCID: PMC11579474 DOI: 10.1038/s41598-024-79315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25-35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
Collapse
Affiliation(s)
- Yui Okamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kei Gochi
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, 113-8549, Japan
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuka Murakami
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Yuki Tsunakawa
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
- Department of Nutrition Management, Tokai Gakuin University, Gifu, 504-8511, Japan
| | - Risa Okada
- Space Environment Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, 305-8505, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
- Space Environment Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Tsukuba, Japan.
| |
Collapse
|
7
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
8
|
De la Torre GG, Groemer G, Diaz-Artiles A, Pattyn N, Van Cutsem J, Musilova M, Kopec W, Schneider S, Abeln V, Larose T, Ferlazzo F, Zivi P, de Carvalho A, Sandal GM, Orzechowski L, Nicolas M, Billette de Villemeur R, Traon APL, Antunes I. Space Analogs and Behavioral Health Performance Research review and recommendations checklist from ESA Topical Team. NPJ Microgravity 2024; 10:98. [PMID: 39433767 PMCID: PMC11494059 DOI: 10.1038/s41526-024-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Space analog research has increased over the last few years with new analogs appearing every year. Research in this field is very important for future real mission planning, selection and training of astronauts. Analog environments offer specific characteristics that resemble to some extent the environment of a real space mission. These analog environments are especially interesting from the psychological point of view since they allow the investigation of mental and social variables in very similar conditions to those occurring during real space missions. Analog missions also represent an opportunity to test operational work and obtain information on which combination of processes and team dynamics are most optimal for completing specific aspects of the mission. A group of experts from a European Space Agency (ESA) funded topical team reviews the current situation of topic, potentialities, gaps, and recommendations for appropriate research. This review covers the different domains in space analog research including classification, main areas of behavioral health performance research in these environments and operational aspects. We also include at the end, a section with a list or tool of recommendations in the form of a checklist for the scientific community interested in doing research in this field. This checklist can be useful to maintain optimal standards of methodological and scientific quality, in addition to identifying topics and areas of special interest.
Collapse
Affiliation(s)
- Gabriel G De la Torre
- Neuropsychology and Experimental Psychology Lab. University of Cadiz, Cadiz, Spain.
- Institute of Biomedical Research and Innovation of Cadiz (INIBICA), Cadiz, Spain.
| | | | - Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab. Texas AM University, Houston, TX, USA
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
- Centre de Recherche Avancée en Médecine du Sommeil, Université de Montréal, Montreal, QC, Canada
| | - Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
| | - Michaela Musilova
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Wieslaw Kopec
- XR Center, Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Stefan Schneider
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Vera Abeln
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Tricia Larose
- Faculty of Medicine, Institute for Health and Community Medicine. University of Oslo, Oslo, Norway
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Anne Pavy-Le Traon
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Ines Antunes
- Directorate of Human and Robotic Exploration Programmes (HRE-RS). European Space Agency (ESA), Noordwijk, The Netherlands
| |
Collapse
|
9
|
Zhang Z, Wu H, Zhang A, Tan M, Yan S, Jiang D. Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135587. [PMID: 39186843 DOI: 10.1016/j.jhazmat.2024.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Forest conservation institute, Chinese Academy of Forestry, Harbin 150040, China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
11
|
Cowen D, Zhang R, Komorowski M. Infections in long-duration space missions. THE LANCET. MICROBE 2024; 5:100875. [PMID: 38861994 DOI: 10.1016/s2666-5247(24)00098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
As government space agencies and private companies announce plans for deep space exploration and colonisation, prioritisation of medical preparedness is becoming crucial. Among all medical conditions, infections pose one of the biggest threats to astronaut health and mission success. To gain a comprehensive understanding of these risks, we review the measured and estimated incidence of infections in space, effect of space environment on the human immune system and microbial behaviour, current preventive and management strategies for infections, and future perspectives for diagnosis and treatment. This information will enable space agencies to enhance their comprehension of the risk of infection in space, highlight gaps in knowledge, aid better crew preparation, and potentially contribute to sepsis management in terrestrial settings, including not only isolated or austere environments but also conventional clinical settings.
Collapse
Affiliation(s)
- Daniel Cowen
- School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Matthieu Komorowski
- Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Zhao M, Aintablian H, Satcher RL, Daneshjou R, Rosenbach M. Dermatologic Considerations for Spaceflight and Space Exploration. JID INNOVATIONS 2024; 4:100293. [PMID: 39104566 PMCID: PMC11298918 DOI: 10.1016/j.xjidi.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Affiliation(s)
- Megan Zhao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haig Aintablian
- Department of Emergency Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Robert L. Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roxana Daneshjou
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Murali A, Sarkar RR. Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s). BIOMICROFLUIDICS 2024; 18:054112. [PMID: 39445310 PMCID: PMC11495877 DOI: 10.1063/5.0216617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.
Collapse
Affiliation(s)
| | - Ram Rup Sarkar
- Author to whom correspondence should be addressed:. Telephone: +91-20-2590 3040; +91-20-2590 2161
| |
Collapse
|
14
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Ishii H, Endo R, Hamanaka S, Hidaka N, Miyauchi M, Hagiwara N, Miyao T, Yamamori T, Aiba T, Akiyama N, Akiyama T. Establishing a method for the cryopreservation of viable peripheral blood mononuclear cells in the International Space Station. NPJ Microgravity 2024; 10:84. [PMID: 39122696 PMCID: PMC11315897 DOI: 10.1038/s41526-024-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The analysis of cells frozen within the International Space Station (ISS) will provide crucial insights into the impact of the space environment on cellular functions and properties. The objective of this study was to develop a method for cryopreserving blood cells under the specific constraints of the ISS. In a ground experiment, mouse blood was directly mixed with a cryoprotectant and gradually frozen at -80 °C. Thawing the frozen blood sample resulted in the successful recovery of viable mononuclear cells when using a mixed solution of dimethylsulfoxide and hydroxyethyl starch as a cryoprotectant. In addition, we developed new freezing cases to minimize storage space utilization within the ISS freezer. Finally, we confirmed the recovery of major mononuclear immune cell subsets from the cryopreserved blood cells through a high dimensional analysis of flow cytometric data using 13 cell surface markers. Consequently, this ground study lays the foundation for the cryopreservation of viable blood cells on the ISS, enabling their analysis upon return to Earth. The application of this method in ISS studies will contribute to understanding the impact of space environments on human cells. Moreover, this method may find application in the cryopreservation of blood cells in situations where research facilities are inadequate.
Collapse
Affiliation(s)
- Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Sanae Hamanaka
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Nobuyuki Hidaka
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | | | - Tatsuya Aiba
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
16
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
17
|
Cope H, Elsborg J, Demharter S, McDonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Avci P, Zwart SR, Smith SM, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Chin CR, Park J, Schisler JC, Mason CE, Szewczyk NJ, Willis CRG, Salam A, Beheshti A. Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology. COMMUNICATIONS MEDICINE 2024; 4:106. [PMID: 38862781 PMCID: PMC11166967 DOI: 10.1038/s43856-024-00532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.
Collapse
Affiliation(s)
- Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonas Elsborg
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Abzu, Copenhagen, 2150, Denmark
| | | | - J Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington D.C., WA, 20057, USA
| | - Chiara Wernecke
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Aerospace and Geodesy, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hari Parthasarathy
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Engineering and Haas School of Business, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hriday Unadkat
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08540, USA
| | - Mira Chatrathi
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer Claudio
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Sigrid Reinsch
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Martina Heer
- IU International University of Applied Sciences, Erfurt and University of Bonn, Bonn, Germany
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jangkeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Amr Salam
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
An R, Blackwell VK, Harandi B, Gibbons AC, Siu O, Irby I, Rees A, Cornejal N, Sattler KM, Sheng T, Syracuse NC, Loftus D, Santa Maria SR, Cekanaviciute E, Reinsch SS, Ray HE, Paul AM. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024; 10:63. [PMID: 38862517 PMCID: PMC11166655 DOI: 10.1038/s41526-023-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2024] Open
Abstract
Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.
Collapse
Affiliation(s)
- Rocky An
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Cornell University, Department of Biological and Environmental Engineering and Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY, 14853, USA
| | - Virginia Katherine Blackwell
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, 02139, USA
| | - Bijan Harandi
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Tufts University, Department of Chemistry, Medford, MA, 02155, USA
| | - Alicia C Gibbons
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA, 92093, USA
| | - Olivia Siu
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Iris Irby
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amy Rees
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nadjet Cornejal
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Brooklyn College, Department of Natural and Behavioral Sciences, Brooklyn, NY, 11210, USA
| | - Kristina M Sattler
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Ohio State University, Department of Physiology and Cell Biology, Columbus, OH, 43210, USA
| | - Tao Sheng
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of Pittsburgh, Department of Computer Science, Pittsburgh, PA, 15260, USA
| | - Nicholas C Syracuse
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- North Carolina State University, Department of Molecular and Structural Biochemistry and Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - David Loftus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sergio R Santa Maria
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Egle Cekanaviciute
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sigrid S Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Hami E Ray
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
- ASRC Federal, Inc, Beltsville, MD, 20705, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
19
|
Kim J, Tierney BT, Overbey EG, Dantas E, Fuentealba M, Park J, Narayanan SA, Wu F, Najjar D, Chin CR, Meydan C, Loy C, Mathyk B, Klotz R, Ortiz V, Nguyen K, Ryon KA, Damle N, Houerbi N, Patras LI, Schanzer N, Hutchinson GA, Foox J, Bhattacharya C, Mackay M, Afshin EE, Hirschberg JW, Kleinman AS, Schmidt JC, Schmidt CM, Schmidt MA, Beheshti A, Matei I, Lyden D, Mullane S, Asadi A, Lenz JS, Mzava O, Yu M, Ganesan S, De Vlaminck I, Melnick AM, Barisic D, Winer DA, Zwart SR, Crucian BE, Smith SM, Mateus J, Furman D, Mason CE. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat Commun 2024; 15:4954. [PMID: 38862516 PMCID: PMC11166952 DOI: 10.1038/s41467-024-49211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Matias Fuentealba
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - S Anand Narayanan
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fei Wu
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Christopher R Chin
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Conor Loy
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Khiem Nguyen
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura I Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Gwyneth A Hutchinson
- NASA Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chandrima Bhattacharya
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matthew Mackay
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Irina Matei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Amran Asadi
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Joan S Lenz
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Omary Mzava
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saravanan Ganesan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Darko Barisic
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara R Zwart
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Jaime Mateus
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, 94306, USA.
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
20
|
Park J, Overbey EG, Narayanan SA, Kim J, Tierney BT, Damle N, Najjar D, Ryon KA, Proszynski J, Kleinman A, Hirschberg JW, MacKay M, Afshin EE, Granstein R, Gurvitch J, Hudson BM, Rininger A, Mullane S, Church SE, Meydan C, Church G, Beheshti A, Mateus J, Mason CE. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat Commun 2024; 15:4773. [PMID: 38862494 PMCID: PMC11166909 DOI: 10.1038/s41467-024-48625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.
Collapse
Affiliation(s)
- Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Ashley Kleinman
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Granstein
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Gurvitch
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Garcia-Medina JS, Sienkiewicz K, Narayanan SA, Overbey EG, Grigorev K, Ryon KA, Burke M, Proszynski J, Tierney B, Schmidt CM, Mencia-Trinchant N, Klotz R, Ortiz V, Foox J, Chin C, Najjar D, Matei I, Chan I, Cruchaga C, Kleinman A, Kim J, Lucaci A, Loy C, Mzava O, De Vlaminck I, Singaraju A, Taylor LE, Schmidt JC, Schmidt MA, Blease K, Moreno J, Boddicker A, Zhao J, Lajoie B, Altomare A, Kruglyak S, Levy S, Yu M, Hassane DC, Bailey SM, Bolton K, Mateus J, Mason CE. Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. PRECISION CLINICAL MEDICINE 2024; 7:pbae007. [PMID: 38634106 PMCID: PMC11022651 DOI: 10.1093/pcmedi/pbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Background The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.
Collapse
Affiliation(s)
- J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Marissa Burke
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuria Mencia-Trinchant
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Irenaeus Chan
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Carlos Cruchaga
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Anvita Singaraju
- Department of Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | | | - Juan Moreno
- Element Biosciences, San Diego, CA 10055, USA
| | | | - Junhua Zhao
- Element Biosciences, San Diego, CA 10055, USA
| | | | | | | | - Shawn Levy
- Element Biosciences, San Diego, CA 10055, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Duane C Hassane
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kelly Bolton
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA 90250, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
22
|
Leuti A, Fava M, Pellegrini N, Forte G, Fanti F, Della Valle F, De Dominicis N, Sergi M, Maccarrone M. Simulated Microgravity Affects Pro-Resolving Properties of Primary Human Monocytes. Cells 2024; 13:100. [PMID: 38201304 PMCID: PMC10778078 DOI: 10.3390/cells13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Space-related stressors such as microgravity are associated with cellular and molecular alterations of the immune and inflammatory homeostasis that have been linked to the disorders that astronauts suffer from during their missions. Most of the research of the past 30 years has consistently established that innate adaptive immune cells represent a target of microgravity, which leads to their defective or dysfunctional activation, as well as to an altered ability to produce soluble mediators-e.g., cytokines/chemokines and bioactive lipids-that altogether control tissue homeostasis. Bioactive lipids include a vast array of endogenous molecules of immune origin that control the induction, intensity and outcome of the inflammatory events. However, none of the papers published so far focus on a newly characterized class of lipid mediators called specialized pro-resolving mediators (SPMs), which orchestrate the "resolution of inflammation"-i.e., the active control and confinement of the inflammatory torrent mostly driven by eicosanoids. SPMs are emerging as crucial players in those processes that avoid acute inflammation to degenerate into a chronic event. Given that SPMs, along with their metabolism and signaling, are being increasingly linked to many inflammatory disorders, their study seems of the outmost importance in the research of pathological processes involved in space-related diseases, also with the perspective of developing therapeutic countermeasures. Here, we show that microgravity, simulated in the rotary cell culture system (RCCS) developed by NASA, rearranges SPM receptors both at the gene and protein level, in human monocytes but not in lymphocytes. Moreover, RCCS treatment reduces the biosynthesis of a prominent SPM like resolvin (Rv) D1. These findings strongly suggest that not only microgravity can impair the functioning of immune cells at the level of bioactive lipids directly involved in proper inflammation, but it does so in a cell-specific manner, possibly perturbing immune homeostasis with monocytes being primary targets.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Marina Fava
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
23
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
24
|
Fonte C, Jacob P, Vanet A, Ghislin S, Frippiat JP. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun Ageing 2023; 20:64. [PMID: 37986079 PMCID: PMC10659048 DOI: 10.1186/s12979-023-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.
Collapse
Affiliation(s)
- Coralie Fonte
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Anne Vanet
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France.
| |
Collapse
|
25
|
Song C, Kang T, Gao K, Shi X, Zhang M, Zhao L, Zhou L, Guo J. Preparation for mice spaceflight: Indications for training C57BL/6J mice to adapt to microgravity effect with three-dimensional clinostat on the ground. Heliyon 2023; 9:e19355. [PMID: 37662714 PMCID: PMC10472007 DOI: 10.1016/j.heliyon.2023.e19355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Like astronauts, animals need to undergo training and screening before entering space. At present, pre-launch training for mice mainly focuses on adaptation to habitat system. Training for the weightless environment of space in mice has not received much attention. Three-dimensional (3D) clinostat is a method to simulate the effects of microgravity on Earth. However, few studies have used a 3D clinostat apparatus to simulate the effects of microgravity on animal models. Therefore, we conducted a study to evaluate the feasibility and effects of long-term treatment with three-dimensional clinostat in C57BL/6 J mice. Thirty 8-week-old male C57BL/6 J mice were randomly assigned to three groups: mice in individually ventilated cages (MC group, n = 6), mice in survival boxes (SB group, n = 12), and mice in survival boxes receiving 3D clinostat treatment (CS group, n = 12). The mice showed good tolerance after 12 weeks of alternate day training. To evaluate the biological effects of simulated microgravity, the changes in serum metabolites were monitored using untargeted metabolomics, whereas bone loss was assessed using microcomputed tomography of the left femur. Compared with the metabolome of the SB group, the metabolome of the CS group showed significant differences during the first three weeks and the last three weeks. The KEGG pathways in the late stages were mainly related to the nervous system, indicating the influence of long-term microgravity on the central nervous system. Besides, a marked reduction in the trabecular number (P < 0.05) and an increasing trend of trabecular spacing (P < 0.1) were observed to occur in a time-dependent manner in the CS group compared with the SB group. These results showed that mice tolerated well in a 3D clinostat and may provide a new strategy in pre-launch training for mice and conducting relevant ground-based modeling experiments.
Collapse
Affiliation(s)
- Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Taisheng Kang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Meng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lianlian Zhao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Gallardo-Dodd CJ, Oertlin C, Record J, Galvani RG, Sommerauer C, Kuznetsov NV, Doukoumopoulos E, Ali L, Oliveira MMS, Seitz C, Percipalle M, Nikić T, Sadova AA, Shulgina SM, Shmarov VA, Kutko OV, Vlasova DD, Orlova KD, Rykova MP, Andersson J, Percipalle P, Kutter C, Ponomarev SA, Westerberg LS. Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells. SCIENCE ADVANCES 2023; 9:eadg1610. [PMID: 37624890 PMCID: PMC10456848 DOI: 10.1126/sciadv.adg1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+ T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity.
Collapse
Affiliation(s)
- Carlos J. Gallardo-Dodd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Christian Oertlin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rômulo G. Galvani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Universidade Veiga de Almeida, Rio de Janeiro, Brazil
- Laboratory for Thymus Research (LPT), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Christian Sommerauer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V. Kuznetsov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | | | - Liaqat Ali
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Core Technology Platform, NYUAD, Abu Dhabi, United Arab Emirates
| | - Mariana M. S. Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Percipalle
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tijana Nikić
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia A. Sadova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Sofia M. Shulgina
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Vjacheslav A. Shmarov
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V. Kutko
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Daria D. Vlasova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Kseniya D. Orlova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Marina P. Rykova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYUAD, Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sergey A. Ponomarev
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Jacob P, Oertlin C, Baselet B, Westerberg LS, Frippiat JP, Baatout S. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. NPJ Microgravity 2023; 9:51. [PMID: 37380641 DOI: 10.1038/s41526-023-00294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.
Collapse
Affiliation(s)
- Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christian Oertlin
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Lisa S Westerberg
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
- Department of Molecular Biotechnology, Gent University, Gent, Belgium.
| |
Collapse
|
28
|
Patel OV, Partridge C, Plaut K. Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes. Biomolecules 2023; 13:biom13050872. [PMID: 37238741 DOI: 10.3390/biom13050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane transporters and ion channels that play an indispensable role in metabolite trafficking have evolved to operate in Earth's gravity. Dysregulation of the transportome expression profile at normogravity not only affects homeostasis along with drug uptake and distribution but also plays a key role in the pathogenesis of diverse localized to systemic diseases including cancer. The profound physiological and biochemical perturbations experienced by astronauts during space expeditions are well-documented. However, there is a paucity of information on the effect of the space environment on the transportome profile at an organ level. Thus, the goal of this study was to analyze the effect of spaceflight on ion channels and membrane substrate transporter genes in the periparturient rat mammary gland. Comparative gene expression analysis revealed an upregulation (p < 0.01) of amino acid, Ca2+, K+, Na+, Zn2+, Cl-, PO43-, glucose, citrate, pyruvate, succinate, cholesterol, and water transporter genes in rats exposed to spaceflight. Genes associated with the trafficking of proton-coupled amino acids, Mg2+, Fe2+, voltage-gated K+-Na+, cation-coupled chloride, as well as Na+/Ca2+ and ATP-Mg/Pi exchangers were suppressed (p < 0.01) in these spaceflight-exposed rats. These findings suggest that an altered transportome profile contributes to the metabolic modulations observed in the rats exposed to the space environment.
Collapse
Affiliation(s)
- Osman V Patel
- Cell and Molecular Biology Department, Grand Valley State University, Allendale, MI 49401, USA
| | - Charlyn Partridge
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
29
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
30
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
31
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
32
|
Han Y, Shi S, Liu S, Gu X. Effects of spaceflight on the spleen and thymus of mice: Gene pathway analysis and immune infiltration analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8531-8545. [PMID: 37161210 DOI: 10.3934/mbe.2023374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During space flight, the immune system function of the body is disrupted due to continuous weightlessness, radiation and other factors, resulting in an increased incidence of infectious diseases in astronauts. However, the effect of space flight on the immune system at the molecular level is unknown. The aim of this study was to identify key genes and pathways of spatial environmental effects on the spleen and thymus using bioinformatics analysis of the GEO dataset. Differentially expressed genes (DEGs) in the spleen and thymus of mice preflight and postflight were screened by comprehensive analysis of gene expression profile data. Then, GO enrichment analysis of DEGs was performed to determine the biological role of DEGs. A protein-protein interaction network was used to identify hub genes. In addition, transcription factors in DEGs were screened, and a TF-target regulatory network was constructed. Finally, immune infiltration analysis was performed on spleen and thymus samples from mice. The results showed that DEGs in the spleen and thymus are mainly involved in immune responses and in biological processes related to platelets. Six hub genes were identified in the spleen and 13 in the thymus, of which Ttr, Aldob, Gc and Fabp1 were common to both tissues. In addition, 5 transcription factors were present in the DEGs of the spleen, and 9 transcription factors were present in the DEGs of the thymus. The spatial environment can influence the degree of immune cell infiltration in the spleen and thymus. Our study bioinformatically analyzed the GEO dataset of spacefaring mice to identify the effects of the space environment on the immune system and the genes that play key roles, providing insights for the treatment of spaceflight-induced immune system disorders.
Collapse
Affiliation(s)
- Yuru Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Shuang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
33
|
Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel) 2023; 13:life13020576. [PMID: 36836933 PMCID: PMC9964234 DOI: 10.3390/life13020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Space exploration and extraterrestrial civilization have fascinated humankind since the earliest days of human history. It was only in the last century that humankind finally began taking significant steps towards these goals by sending astronauts into space, landing on the moon, and building the International Space Station. However, space voyage is very challenging and dangerous, and astronauts are under constant space radiation and microgravity. It has been shown that astronauts are at a high risk of developing a broad range of diseases/disorders. Thus, it is critical to develop a rapid and effective assay to monitor astronauts' health in space. In this study, gene expression and correlation patterns were analyzed for 10 astronauts (8 male and 2 female) using the publicly available microarray dataset E-GEOD-74708. We identified 218 differentially expressed genes between In-flight and Pre-flight and noticed that space travel decreased genome regulation and gene correlations across the entire genome, as well as individual signaling pathways. Furthermore, we systematically developed a shortlist of 32 genes that could be used to monitor astronauts' health during space travel. Further studies, including microgravity experiments, are warranted to optimize and validate the proposed assay.
Collapse
Affiliation(s)
- Anurag Sakharkar
- College of Arts and Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
34
|
Veliz AL, Mamoun L, Hughes L, Vega R, Holmes B, Monteon A, Bray J, Pecaut MJ, Kearns-Jonker M. Transcriptomic Effects on the Mouse Heart Following 30 Days on the International Space Station. Biomolecules 2023; 13:biom13020371. [PMID: 36830740 PMCID: PMC9953463 DOI: 10.3390/biom13020371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Efforts to understand the impact of spaceflight on the human body stem from growing interest in long-term space travel. Multiple organ systems are affected by microgravity and radiation, including the cardiovascular system. Previous transcriptomic studies have sought to reveal the changes in gene expression after spaceflight. However, little is known about the impact of long-term spaceflight on the mouse heart in vivo. This study focuses on the transcriptomic changes in the hearts of female C57BL/6J mice flown on the International Space Station (ISS) for 30 days. RNA was isolated from the hearts of three flight and three comparable ground control mice and RNA sequencing was performed. Our analyses showed that 1147 transcripts were significantly regulated after spaceflight. The MAPK, PI3K-Akt, and GPCR signaling pathways were predicted to be activated. Transcripts related to cytoskeleton breakdown and organization were upregulated, but no significant change in the expression of extracellular matrix (ECM) components or oxidative stress pathway-associated transcripts occurred. Our results indicate an absence of cellular senescence, and a significant upregulation of transcripts associated with the cell cycle. Transcripts related to cellular maintenance and survival were most affected by spaceflight, suggesting that cardiovascular transcriptome initiates an adaptive response to long-term spaceflight.
Collapse
Affiliation(s)
- Alicia L. Veliz
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lana Mamoun
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Richard Vega
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Bailey Holmes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Andrea Monteon
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jillian Bray
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence:
| |
Collapse
|
35
|
Cope H, Elsborg J, Demharter S, Mcdonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Zwart S, Smith S, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Park J, Schisler J, Mason C, Szewczyk N, Willis C, Salam A, Beheshti A. More than a Feeling: Dermatological Changes Impacted by Spaceflight. RESEARCH SQUARE 2023:rs.3.rs-2367727. [PMID: 36798347 PMCID: PMC9934743 DOI: 10.21203/rs.3.rs-2367727/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Spaceflight poses a unique set of challenges to humans and the hostile Spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on spaceflown murine transcriptomic datasets focused on the skin, biomedical profiles from fifty NASA astronauts, and confirmation via transcriptomic data from JAXA astronauts, the NASA Twins Study, and the first civilian commercial mission, Inspiration4. Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation were determined to be involved with skin health risks during Spaceflight. Additionally, a machine learning model was utilized to determine key genes driving Spaceflight response in the skin. These results can be used for determining potential countermeasures to mitigate Spaceflight damage to the skin.
Collapse
|
36
|
The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing Process. Cells 2023; 12:cells12020246. [PMID: 36672184 PMCID: PMC9857207 DOI: 10.3390/cells12020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.
Collapse
|
37
|
Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, Giacomello S. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. CELL REPORTS METHODS 2022; 2:100325. [PMID: 36452864 PMCID: PMC9701605 DOI: 10.1016/j.crmeth.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Pedro Madrigal
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca Klotz
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, German
- yuri GmbH, Meckenbeuren, Germany
| | | | - Ryan T. Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher E. Mason
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid 28040, Spain
| | - Nathaniel J. Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
38
|
Jacob P, Bonnefoy J, Ghislin S, Frippiat JP. Long-duration head-down tilt bed rest confirms the relevance of the neutrophil to lymphocyte ratio and suggests coupling it with the platelet to lymphocyte ratio to monitor the immune health of astronauts. Front Immunol 2022; 13:952928. [PMID: 36311805 PMCID: PMC9606754 DOI: 10.3389/fimmu.2022.952928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of safe and easily-determined-inflight biomarkers to monitor the immune system of astronauts is mandatory to ensure their well-being and the success of the missions. In this report, we evaluated the relevance of two biomarkers whose determination could be easily implemented in a spacecraft in the near future by using bedridden volunteers as a ground-based model of the microgravity of spaceflight. Our data confirm the relevance of the neutrophil to lymphocyte ratio (NLR) and suggest platelet to lymphocyte ratio (PLR) monitoring to assess long-lasting immune diseases. We recommend coupling these ratios to other biomarkers, such as the quantification of cytokines and viral load measurements, to efficiently detect immune dysfunction, determine when countermeasures should be applied to promote immune recovery, prevent the development of disease, and track responses to treatment.
Collapse
Affiliation(s)
- Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Julie Bonnefoy
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
39
|
ElGindi M, Sapudom J, Laws P, Garcia-Sabaté A, Daqaq MF, Teo J. 3D microenvironment attenuates simulated microgravity-mediated changes in T cell transcriptome. Cell Mol Life Sci 2022; 79:508. [PMID: 36063234 PMCID: PMC11803002 DOI: 10.1007/s00018-022-04531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed F Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
40
|
Tran QD, Tran V, Toh LS, Williams PM, Tran NN, Hessel V. Space Medicines for Space Health. ACS Med Chem Lett 2022; 13:1231-1247. [PMID: 35978686 PMCID: PMC9377000 DOI: 10.1021/acsmedchemlett.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.
Collapse
Affiliation(s)
- Quy Don Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
| | - Vienna Tran
- Adelaide
Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Li Shean Toh
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Philip M. Williams
- Faculty
of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nam Nghiep Tran
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- Department
of Chemical Engineering, Can Tho University, Can Tho 900000, Vietnam
| | - Volker Hessel
- School
of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- Andy
Thomas Centre for Space Resources, University
of Adelaide, Adelaide 5005, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Mian A, Aamir Mian M. Space Medicine: Inspiring a new generation of physicians. Postgrad Med J 2022:7150864. [PMID: 37137531 DOI: 10.1136/pmj-2022-141875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Space medicine is critical in enabling safe human exploration of space. The discipline focuses on supporting human survival, health, and performance in the austere environment of space. It is set to grow ever more important as significant transitions in the standard of space operations in the suborbital, low earth orbit (LEO) and beyond LEO domains will take place in the coming years. NASA along with their international and commercial partners have committed to returning to the Moon through the Artemis missions in this decade with the aim of achieving a permanent sustainable human presence on the lunar surface. Additionally, the development of reusable rockets is set to increase the number and frequency of humans going to space by making space travel more accessible. Commercial spaceflight and missions beyond LEO present many new challenges which space medicine physicians and researchers will need to address. Space medicine operates at the frontier of exploration, engineering, science and medicine. Aviation and Space Medicine (ASM) is the latest specialty to be recognised by the Royal College of Physicians and the General Medical Council in the UK. In this paper, we provide an introduction to space medicine, review the effects of spaceflight on human physiology and health along with countermeasures, medical and surgical issues in space, the varied roles of the ASM physician, challenges to UK space medicine practice and related research, and finally we explore the current representation of space medicine within the undergraduate curriculum.
Collapse
Affiliation(s)
- Areeb Mian
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
42
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease.
Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
43
|
Silvani G, Bradbury P, Basirun C, Mehner C, Zalli D, Poole K, Chou J. Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. NPJ Microgravity 2022; 8:19. [PMID: 35662260 PMCID: PMC9166742 DOI: 10.1038/s41526-022-00207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Collapse
Affiliation(s)
- Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Detina Zalli
- Institute of Continuing Education, University of Cambridge, Camridge, UK
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
44
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
45
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
46
|
Radstake WE, Baselet B, Baatout S, Verslegers M. Spaceflight Stressors and Skin Health. Biomedicines 2022; 10:364. [PMID: 35203572 PMCID: PMC8962330 DOI: 10.3390/biomedicines10020364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Traveling to space puts astronauts at risk of developing serious health problems. Of particular interest is the skin, which is vitally important in protecting the body from harmful environmental factors. Although data obtained from long-duration spaceflight studies are inconsistent, there have been indications of increased skin sensitivity and signs of dermal atrophy in astronauts. To better understand the effects of spaceflight stressors including microgravity, ionizing radiation and psychological stress on the skin, researchers have turned to in vitro and in vivo simulation models mimicking certain aspects of the spaceflight environment. In this review, we provide an overview of these simulation models and highlight studies that have improved our understanding on the effect of simulation spaceflight stressors on skin function. Data show that all aforementioned spaceflight stressors can affect skin health. Nevertheless, there remains a knowledge gap regarding how different spaceflight stressors in combination may interact and affect skin health. In future, efforts should be made to better simulate the spaceflight environment and reduce uncertainties related to long-duration spaceflight health effects.
Collapse
Affiliation(s)
- Wilhelmina E. Radstake
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| |
Collapse
|
47
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
48
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
49
|
Cucinotta FA, Schimmerling W, Blakely EA, Hei TK. A proposed change to astronaut exposures limits is a giant leap backwards for radiation protection. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:59-70. [PMID: 34689951 DOI: 10.1016/j.lssr.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Addressing the uncertainties in assessing health risks from cosmic ray heavy ions is a major scientific challenge recognized by many previous reports by the National Academy of Sciences (NAS) and the National Council on Radiation Protection and Measurements (NCRP) advising the National Aeronautics and Space Administration (NASA). These reports suggested a series of steps to pursue the scientific basis for space radiation protection, including the implementation of age and sex dependent risk assessments and exposure limits appropriate for a small population of radiation workers, the evaluation of uncertainties in risk projections, and developing a vigorous research program in heavy ion radiobiology to reduce uncertainties and discover effective countermeasures. The assessment of uncertainties in assessing risk provides protection against changing assessments of risk, reveals limitations in information used in space mission operations, and provides the impetus to reduce uncertainties and discover the true level of risk and possible effectiveness of countermeasures through research. However, recommendations of a recent NAS report, in an effort to minimize differences in age and sex on flight opportunities, suggest a 600 mSv career effective dose limit based on a median estimate to reach 3% cancer fatality for 35-year old females. The NAS report does not call out examples where females would be excluded from space missions planned in the current decade using the current radiation limits at NASA. In addition, there are minimal considerations of the level of risk to be encountered at this exposure level with respect to the uncertainties of heavy ion radiobiology, and risks of cancer, as well as cognitive detriments and circulatory diseases. Furthermore, their recommendation to limit Sieverts and not risk in conjunction with a waiver process is essentially a recommendation to remove radiation limits for astronauts. We discuss issues with several of the NAS recommendations with the conclusion that the recommendations could have negative impacts on crew health and safety, and violate the three principles of radiation protection (to prevent clinically significant deterministic effects, limit stochastic effects, and practice ALARA), which would be a giant leap backwards for radiation protection.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | | | | | - Tom K Hei
- Center for Radiological Research, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|