1
|
Terasawa A, Shimazu K, Nanjo H, Miura M, Shibata H. Diarylpentanoid, a curcumin analog, inhibits malignant meningioma growth in both in vitro and in vivo models. World J Exp Med 2025; 15:102897. [DOI: 10.5493/wjem.v15.i2.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malignant meningioma metastasizes systemically, primarily due to its role in epithelial-mesenchymal transition. Although the prognosis is extremely poor, drug development efforts have been limited, because this tumor is categorized as a rare form.
AIM To examine growth suppressive effect of GO-Y030, a diarylpentanoid curcumin analog, (1E,4E)-1,5-bis [3,5-bis (methoxymethoxy) phenyl] penta-1,4-dien-3-one against the malignant meningioma.
METHODS The growth suppression of malignant meningioma cells by GO-Y022 and GO-Y030 were examined, using IOMM-Lee and HKBMM cell lines. Male nude mice aged eight weeks, specifically BALB/cSlc-nu/nu mice received a subcutaneous inoculation of IOMM-Lee (107 cells/site) on their back and 30 μg/kg of recombinant hepatocellular growth factor (HGF) was injected into the tumor every three days. After confirmed the growth tumor mass, 500 μL of GO-Y030 diluted with PBS were administrated intraperitoneally daily at doses of 1 mg/kg and 2 mg/kg, respectively.
RESULTS GO-Y030 exhibits a growth inhibitory effect on malignant meningioma cell lines, IOMM-Lee and HKBMM ranging from 0.8-2.0 μM in vitro. Notably, GO-Y030’s inhibitory effect is about 10 to 16th times more potent than that of curcumin, which has previously demonstrated potential in combating malignant meningioma. In mouse models, the intraperitoneal administration of GO-Y030 effectively suppresses the growth of malignant meningioma tumors that have been inoculated in the back (P = 0.002). High-performance liquid chromatography analysis has confirmed the distribution of GO-Y030 in the bloodstream and brain tissue. Moreover, GO-Y030 demonstrates the ability to significantly suppress HGF (P < 0.01), nuclear factor kappa B (P < 0.001), and N-cadherin (P < 0.001), all of which contribute to the epithelial-mesenchymal transition.
CONCLUSION GO-Y030 holds promise as a potent compound for the systemic inhibition of malignant meningioma. GO-Y030 has higher tumor growth inhibitory effect against meningiomas than curcumin, which is known to have antitumor activity through multi-molecular target control resulting in apoptosis induction. GO-Y030 controls at least three molecules of HGF, nuclear factor kappa B, and N-cadherin.
Collapse
Affiliation(s)
- Anna Terasawa
- Department of Clinical Oncology, Akita University, Akita 010-8543, Japan
| | - Kazuhiro Shimazu
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University, Akita 010-8543, Japan
| | - Masatomo Miura
- Department of Pharmacokinetics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
2
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
3
|
Andersen MS, Kofoed MS, Paludan-Müller AS, Pedersen CB, Mathiesen T, Mawrin C, Wirenfeldt M, Kristensen BW, Olsen BB, Halle B, Poulsen FR. Meningioma animal models: a systematic review and meta-analysis. J Transl Med 2023; 21:764. [PMID: 37898750 PMCID: PMC10612271 DOI: 10.1186/s12967-023-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Animal models are widely used to study pathological processes and drug (side) effects in a controlled environment. There is a wide variety of methods available for establishing animal models depending on the research question. Commonly used methods in tumor research include xenografting cells (established/commercially available or primary patient-derived) or whole tumor pieces either orthotopically or heterotopically and the more recent genetically engineered models-each type with their own advantages and disadvantages. The current systematic review aimed to investigate the meningioma model types used, perform a meta-analysis on tumor take rate (TTR), and perform critical appraisal of the included studies. The study also aimed to assess reproducibility, reliability, means of validation and verification of models, alongside pros and cons and uses of the model types. METHODS We searched Medline, Embase, and Web of Science for all in vivo meningioma models. The primary outcome was tumor take rate. Meta-analysis was performed on tumor take rate followed by subgroup analyses on the number of cells and duration of incubation. The validity of the tumor models was assessed qualitatively. We performed critical appraisal of the methodological quality and quality of reporting for all included studies. RESULTS We included 114 unique records (78 using established cell line models (ECLM), 21 using primary patient-derived tumor models (PTM), 10 using genetically engineered models (GEM), and 11 using uncategorized models). TTRs for ECLM were 94% (95% CI 92-96) for orthotopic and 95% (93-96) for heterotopic. PTM showed lower TTRs [orthotopic 53% (33-72) and heterotopic 82% (73-89)] and finally GEM revealed a TTR of 34% (26-43). CONCLUSION This systematic review shows high consistent TTRs in established cell line models and varying TTRs in primary patient-derived models and genetically engineered models. However, we identified several issues regarding the quality of reporting and the methodological approach that reduce the validity, transparency, and reproducibility of studies and suggest a high risk of publication bias. Finally, each tumor model type has specific roles in research based on their advantages (and disadvantages). SYSTEMATIC REVIEW REGISTRATION PROSPERO-ID CRD42022308833.
Collapse
Affiliation(s)
- Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mikkel Seremet Kofoed
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Asger Sand Paludan-Müller
- Nordic Cochrane Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Centre for Evidence-Based Medicine Odense (CEBMO) and NHTA: Market Access & Health Economics Consultancy, Copenhagen, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Martin Wirenfeldt
- Department of Pathology and Molecular Biology, Hospital South West Jutland, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern, Odense, Denmark
| | | | - Birgitte Brinkmann Olsen
- Clinical Physiology and Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Youngblood MW, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo JD, Miyagishima DF, Barak T, Nishimura S, Harmancı AS, Clark VE, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir MN, Özduman K, Kilic T, Knight JR, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger AB, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nat Commun 2023; 14:6279. [PMID: 37805627 PMCID: PMC10560290 DOI: 10.1038/s41467-023-41926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO. In this study, we find 35.6% of meningiomas that lack previously known drivers acquired various types of somatic structural variations affecting chromosomes 2q35 and 7q36.3. These cases exhibit ectopic expression of Hedgehog ligands, IHH and SHH, respectively, resulting in Hedgehog signaling activation. Recurrent tandem duplications involving IHH permit de novo chromatin interactions between super-enhancers within DIRC3 and a locus containing IHH. Our work expands the landscape of meningioma molecular drivers and demonstrates enhancer hijacking of Hedgehog ligands as a route to activate this pathway in neoplasia.
Collapse
Affiliation(s)
- Mark W Youngblood
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zeynep Erson-Omay
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Chang Li
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Hinda Najem
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Süleyman Coșkun
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Evgeniya Tyrtova
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Julio D Montejo
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Danielle F Miyagishima
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sayoko Nishimura
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria E Clark
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Duran
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Anita Huttner
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Timuçin Avşar
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, 34854, Istanbul, Turkey
| | | | - Julien Boetto
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Matthieu Peyre
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Angeliki Louvi
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
- Department of Medical Genetics Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - M Necmettin Pamir
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Koray Özduman
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Türker Kilic
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - James R Knight
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
| | - Matthias Simon
- University of Bonn Medical School, 53105, Bonn, Germany
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michel Kalamarides
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Marco Timmer
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ketu Mishra-Gorur
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Moliterno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
6
|
Cômes PC, Le Van T, Tran S, Huard S, Abi-Jaoude S, Venot Q, Marijon P, Boetto J, Blouin A, Bielle F, Ducos Y, Teranishi Y, Kalamarides M, Peyre M. Respective roles of Pik3ca mutations and cyproterone acetate impregnation in mouse meningioma tumorigenesis. Cancer Gene Ther 2023; 30:1114-1123. [PMID: 37188724 DOI: 10.1038/s41417-023-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Despite their rarity, PIK3CA mutations in meningiomas have raised interest as potentially targetable, ubiquitous mutations owing to their presence in sporadic benign and malignant tumors but also in hormone-related cases. Using new genetically engineered mouse models, we here demonstrate that Pik3ca mutations in postnatal meningeal cells are sufficient to promote meningioma formation but also tumor progression in mice. Conversely, hormone impregnation, whether alone or in association with Pik3ca and Nf2 mutations, fails to induce meningioma tumorigenesis while promoting breast tumor formation. We then confirm in vitro the effect of Pik3ca mutations but not hormone impregnation on the proliferation of primary cultures of mouse meningeal cells. Finally, we show by exome analysis of breast tumors and meninges that hormone impregnation promotes breast tumor formation without additional somatic oncogenic mutation but is associated with an increased mutational burden on Pik3ca-mutant background. Taken together, these results tend to suggest a prominent role of Pik3ca mutations over hormone impregnation in meningioma tumorigenesis, the exact effect of the latter is still to be discovered.
Collapse
Affiliation(s)
- Pierre-Cyril Cômes
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Tuan Le Van
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Suzanne Tran
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Solène Huard
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Samiya Abi-Jaoude
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Quitterie Venot
- Université de Paris, Paris, 75006, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, 75015, France
| | - Pauline Marijon
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Julien Boetto
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Antoine Blouin
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Franck Bielle
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Yohan Ducos
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Yu Teranishi
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Michel Kalamarides
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Matthieu Peyre
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France.
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
7
|
Khan M, Hanna C, Findlay M, Lucke-Wold B, Karsy M, Jensen RL. Modeling Meningiomas: Optimizing Treatment Approach. Neurosurg Clin N Am 2023; 34:479-492. [PMID: 37210136 DOI: 10.1016/j.nec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Preclinical meningioma models offer a setting to test molecular mechanisms of tumor development and targeted treatment options but historically have been challenging to generate. Few spontaneous tumor models in rodents have been established, but cell culture and in vivo rodent models have emerged along with artificial intelligence, radiomics, and neural networks to differentiate the clinical heterogeneity of meningiomas. We reviewed 127 studies using PRISMA guideline methodology, including laboratory and animal studies, that addressed preclinical modeling. Our evaluation identified that meningioma preclinical models provide valuable molecular insight into disease progression and effective chemotherapeutic and radiation approaches for specific tumor types.
Collapse
Affiliation(s)
- Majid Khan
- Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Chadwin Hanna
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Matthew Findlay
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA
| |
Collapse
|
8
|
Boetto J, Bielle F, Tran S, Marijon P, Peyre M, Rigau V, Kalamarides M. GAB1 as a Marker of Recurrence in Anterior Skull Base Meningioma. Neurosurgery 2023; 92:391-397. [PMID: 36637273 DOI: 10.1227/neu.0000000000002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND About one-third of anterior skull base meningiomas show Hedgehog pathway activation. We have recently identified GAB1 as a surrogate marker for Hedgehog pathway-activated meningiomas. OBJECTIVE To determine the reproducibility and prognostic value of GAB1 marker in anterior skull base meningiomas. METHODS A retrospective bicentric cohort of anterior skull base meningiomas, operated from 2005 to 2015, was constituted. GAB1 immunohistochemistry was performed in 2 centers, and the GAB1 score was assessed. Clinical and pathological data were reviewed to determine the prognostic value of the GAB1 score, along with classical factors of recurrence. RESULTS One hundred forty-eight patients were included (median follow-up of 72 ± 46 months). 78% of patients had gross total resection. Eighty-four percentage of patients harbored grade 1 meningiomas. GAB1 immunohistochemistry was positive (ie, GAB1 staining score was >250) in 53 cases (35%). GAB1-positive cases were mainly at olfactory groove, of meningothelial grade 1 subtype, and showed greater recurrence (36% vs 14%, P = .002), greater requirement for multiple surgeries (17% vs 4.2%, P = .014), and more likely evolution toward diffuse skull base infiltration (15% vs 3%, P = .0017). By multivariable Cox regression analysis, incomplete surgical resection (hazard ratios [HR] = 8.3, 95% IC [3.7-18.2], P < .001), male sex (HR = 5.4, 95% IC [2.2-13.5], P < .001), GAB1 positivity (HR = 3.2, 95% CI [1.5-6.9], P = .004), and Ki67 index >4 (HR = 2.2, 95% IC [1.2-4.6], P = .035) were independent prognostic factors for recurrence. CONCLUSION GAB1 marker is an independent prognostic factor for anterior skull base meningioma and could be useful for both prognostic evaluation and identification of Hedgehog-activated meningiomas.
Collapse
Affiliation(s)
- Julien Boetto
- Department of Neurosurgery, Montpellier University Medical Center, Montpellier, France.,Institute of Functional Genomics (IGF), Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Franck Bielle
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neuropathology, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Suzanne Tran
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neuropathology, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Pauline Marijon
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Matthieu Peyre
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| | - Valérie Rigau
- Department of Neurosurgery, Montpellier University Medical Center, Montpellier, France.,Department of Neuropathology, Montpellier University Medical Center, Montpellier, France
| | - Michel Kalamarides
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurosurgery, AP-HP, Hospital Pitié-Salpétriêre, Paris, France
| |
Collapse
|
9
|
Jungwirth G, Hanemann CO, Dunn IF, Herold-Mende C. Preclinical Models of Meningioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:199-211. [PMID: 37432629 DOI: 10.1007/978-3-031-29750-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The management of clinically aggressive meningiomas remains challenging due to limited treatment options aside from surgical removal and radiotherapy. High recurrence rates and lack of effective systemic therapies contribute to the unfavorable prognosis of these patients. Accurate in vitro and in vivo models are critical for understanding meningioma pathogenesis and to identify and test novel therapeutics. In this chapter, we review cell models, genetically engineered mouse models, and xenograft mouse models, with special emphasis on the field of application. Finally, promising preclinical 3D models such as organotypic tumor slices and patient-derived tumor organoids are discussed.
Collapse
Affiliation(s)
- Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - C Oliver Hanemann
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Lynes J, Flores-Milan G, Rubino S, Arrington J, Macaulay R, Liu JKC, Beer-Furlan A, Tran ND, Vogelbaum MA, Etame AB. Molecular determinants of outcomes in meningiomas. Front Oncol 2022; 12:962702. [PMID: 36033542 PMCID: PMC9413043 DOI: 10.3389/fonc.2022.962702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Meningiomas are the most common intracranial primary tumor in adults. Surgery is the predominant therapeutic modality for symptomatic meningiomas. Although the majority of meningiomas are benign, there exists a subset of meningiomas that are clinically aggressive. Recent advances in genetics and epigenetics have uncovered molecular alterations that drive tumor meningioma biology with prognostic and therapeutic implications. In this review, we will discuss the advances on molecular determinants of therapeutic response in meningiomas to date and discuss findings of targeted therapies in meningiomas.
Collapse
Affiliation(s)
- John Lynes
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Gabriel Flores-Milan
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Sebastian Rubino
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - John Arrington
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Robert Macaulay
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, United States
| | - James K. C. Liu
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Andre Beer-Furlan
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Nam D. Tran
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Michael A. Vogelbaum
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Arnold B. Etame
- Division of Neurosurgery, Moffitt Cancer Center, Tampa, FL, United States
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
- *Correspondence: Arnold B. Etame,
| |
Collapse
|
11
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
12
|
A systematic review and meta-analysis of the association between cyproterone acetate and intracranial meningiomas. Sci Rep 2022; 12:1942. [PMID: 35121790 PMCID: PMC8816922 DOI: 10.1038/s41598-022-05773-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The influence of exposure to hormonal treatments, particularly cyproterone acetate (CPA), has been posited to contribute to the growth of meningiomas. Given the widespread use of CPA, this systematic review and meta-analysis attempted to assess real-world evidence of the association between CPA and the occurrence of intracranial meningiomas. Systematic searches of Ovid MEDLINE, Embase and Cochrane Controlled Register of Controlled Trials, were performed from database inception to 18th December 2021. Four retrospective observational studies reporting 8,132,348 patients were included in the meta-analysis. There was a total of 165,988 subjects with usage of CPA. The age of patients at meningioma diagnosis was generally above 45 years in all studies. The dosage of CPA taken by the exposed group (n = 165,988) was specified in three of the four included studies. All studies that analyzed high versus low dose CPA found a significant association between high dose CPA usage and increased risk of meningioma. When high and low dose patients were grouped together, there was no statistically significant increase in risk of meningioma associated with use of CPA (RR = 3.78 [95% CI 0.31–46.39], p = 0.190). Usage of CPA is associated with increased risk of meningioma at high doses but not when low doses are also included. Routine screening and meningioma surveillance by brain MRI offered to patients prescribed with CPA is likely a reasonable clinical consideration if given at high doses for long periods of time. Our findings highlight the need for further research on this topic.
Collapse
|
13
|
Robert SM, Vetsa S, Nadar A, Vasandani S, Youngblood MW, Gorelick E, Jin L, Marianayagam N, Erson-Omay EZ, Günel M, Moliterno J. The integrated multiomic diagnosis of sporadic meningiomas: a review of its clinical implications. J Neurooncol 2022; 156:205-214. [PMID: 34846640 PMCID: PMC8816740 DOI: 10.1007/s11060-021-03874-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Meningiomas are generally considered "benign," however, these tumors can demonstrate variability in behavior and a surprising aggressiveness with elevated rates of recurrence. The advancement of next-generation molecular technologies have led to the understanding of the genomic and epigenomic landscape of meningiomas and more recent correlations with clinical characteristics and behavior. METHODS Based on a thorough review of recent peer-reviewed publications (PubMed) and edited texts, we provide a molecular overview of meningiomas with a focus on relevant clinical implications. RESULTS The identification of specific somatic driver mutations has led to the classification of several major genomic subgroups, which account for more than 80% of sporadic meningiomas, and can be distinguished using noninvasive clinical variables to help guide management decisions. Other somatic genomic modifications, including non-coding alterations and copy number variations, have also been correlated with tumor characteristics. Furthermore, epigenomic modifications in meningiomas have recently been described, with DNA methylation being the most widely studied and potentially most clinically relevant. Based on these molecular insights, several clinical trials are currently underway in an effort to establish effective medical therapeutic options for meningioma. CONCLUSION As we enhance our multiomic understanding of meningiomas, our ability to care for patients with these tumors will continue to improve. Further biological insights will lead to additional progress in precision medicine for meningiomas.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
| | - Shaurey Vetsa
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Arushii Nadar
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Sagar Vasandani
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Evan Gorelick
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Lan Jin
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
| | - Neelan Marianayagam
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA.
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA.
| |
Collapse
|
14
|
Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, Lerond J, Marijon P, Abi-Jaoude S, Le Van T, Labreche K, Houlston R, Faisant M, Clémenceau S, Boch AL, Nouet A, Carpentier A, Boetto J, Louvi A, Kalamarides M. Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. N Engl J Med 2021; 385:996-1004. [PMID: 34496175 PMCID: PMC8606022 DOI: 10.1056/nejmoa2100440] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are common sporadic and inherited vascular malformations of the central nervous system. Although familial CCMs are linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely understood. METHODS We developed two mouse models harboring mutations identified in human meningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We performed targeted DNA sequencing of surgically resected CCMs from patients and confirmed our findings by droplet digital polymerase-chain-reaction analysis. RESULTS We found that in mice expressing one of two common genetic drivers of meningioma - Pik3ca H1047R or AKT1 E17K - in PGDS-positive cells, a spectrum of typical CCMs develops (in 22% and 11% of the mice, respectively) instead of meningiomas, which prompted us to analyze tissue samples from sporadic CCMs from 88 patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored mutations in the CCM genes. We analyzed lesions induced by the activating mutations Pik3ca H1074R and AKT1 E17K in mice and identified the PGDS-expressing pericyte as the probable cell of origin. CONCLUSIONS In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to a greater extent than mutations in any other gene. The contribution of somatic mutations in the genes that cause familial CCMs was comparatively small. (Funded by the Fondation ARC pour la Recherche contre le Cancer and others.).
Collapse
Affiliation(s)
- Matthieu Peyre
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Danielle Miyagishima
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Franck Bielle
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Françoise Chapon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michael Sierant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Quitterie Venot
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julie Lerond
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Pauline Marijon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Samiya Abi-Jaoude
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Tuan Le Van
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Karim Labreche
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Richard Houlston
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Maxime Faisant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Stéphane Clémenceau
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Anne-Laure Boch
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Aurelien Nouet
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Alexandre Carpentier
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julien Boetto
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Angeliki Louvi
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michel Kalamarides
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| |
Collapse
|
15
|
Boetto J, Peyre M, Kalamarides M. Mouse Models in Meningioma Research: A Systematic Review. Cancers (Basel) 2021; 13:cancers13153712. [PMID: 34359639 PMCID: PMC8345085 DOI: 10.3390/cancers13153712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Meningiomas are the most frequent primitive central nervous system tumors found in adults. Mouse models of cancer have been instrumental in understanding disease mechanisms and establishing preclinical drug testing. Various mouse models of meningioma have been developed over time, evolving in light of new discoveries in our comprehension of meningioma biology and with improvements in genetic engineering techniques. We reviewed all mouse models of meningioma described in the literature, including xenograft models (orthotopic or heterotopic) with human cell lines or patient derived tumors, and genetically engineered mouse models (GEMMs). Xenograft models provided useful tools for preclinical testing of a huge range of innovative drugs and therapeutic options, which are summarized in this review. GEMMs offer the possibility of mimicking human meningiomas at the histological, anatomical, and genetic level and have been invaluable in enabling tumorigenesis mechanisms, including initiation and progression, to be dissected. Currently, researchers have a range of different mouse models that can be used depending on the scientific question to be answered.
Collapse
Affiliation(s)
- Julien Boetto
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier Universitary Hospital Center, 80 Avenue Augustin Fliche, 34090 Montpellier, France;
- Institut du Cerveau et de la Moelle Épinière, INSERM U1127 CNRS UMR 7225, F-75013 Paris, France;
| | - Matthieu Peyre
- Institut du Cerveau et de la Moelle Épinière, INSERM U1127 CNRS UMR 7225, F-75013 Paris, France;
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, F-75013 Paris, France
| | - Michel Kalamarides
- Institut du Cerveau et de la Moelle Épinière, INSERM U1127 CNRS UMR 7225, F-75013 Paris, France;
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
16
|
Boetto J, Lerond J, Peyre M, Tran S, Marijon P, Kalamarides M, Bielle F. GAB1 overexpression identifies hedgehog-activated anterior skull base meningiomas. Neuropathol Appl Neurobiol 2021; 47:748-755. [PMID: 34056767 DOI: 10.1111/nan.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS Mutations activating the hedgehog (Hh) signalling pathway have been described in anterior skull base meningiomas, raising hope for the use of targeted therapies. However, identification of Hh-activated tumours is hampered by the lack of a reliable immunohistochemical marker. We report the evaluation of GAB1, an immunohistochemical marker used to detect Hh pathway activation in medulloblastoma, as a potential marker of Hh-activated meningiomas. METHODS GAB1 staining was compared to SMO mutation detection with Sanger and NGS techniques as well as Hh pathway activation study through mRNA expression level analyses in a discovery set of 110 anterior skull base meningiomas and in a prospective validation set of 21 meningiomas. RESULTS Using an expression score ranging from 0 to 400, we show that a cut-off score of 250 lead to excellent detection of Hh pathway mutations (sensitivity 100%, specificity 86%). The prospective validation set confirmed the excellent negative predictive value of GAB1 to exclude Hh-independent meningiomas. We describe a large series of 32 SMO-mutant meningiomas and define multiple ways of Hh activation, either through somatic mutations or associated with mutually co-exclusive sonic hedgehog (SHH) or Indian hedgehog (IHH) overexpression independent of the mutations. CONCLUSION The assessment of GAB1 expression by an immunohistochemical score is a fast and cost-efficient tool to screen anterior skull base meningiomas for activation of the Hh pathway. It could facilitate the identification of selected cases amenable to sequencing for Hh pathway genes as predictive markers for targeted therapy.
Collapse
Affiliation(s)
- Julien Boetto
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital Center, Montpellier, France.,ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France
| | - Julie Lerond
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society) - site de recherche intégrée sur le cancer IUC - APHP.6 - Sorbonne Université, Paris, France
| | - Matthieu Peyre
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Suzanne Tran
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,Department of Neuropathology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Pauline Marijon
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michel Kalamarides
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Franck Bielle
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society) - site de recherche intégrée sur le cancer IUC - APHP.6 - Sorbonne Université, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France.,Department of Neuropathology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
Okano A, Miyawaki S, Hongo H, Dofuku S, Teranishi Y, Mitsui J, Tanaka M, Shin M, Nakatomi H, Saito N. Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges. Sci Rep 2021; 11:6987. [PMID: 33772057 PMCID: PMC7998008 DOI: 10.1038/s41598-021-86298-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Certain driver mutations and pathological diagnoses are associated with the anatomical site of meningioma, based on which the meninges have different embryological origins. We hypothesized that mutations and pathological diagnoses of meningiomas are associated with different embryological origins. We comprehensively evaluated associations among tumor location, pathological diagnosis (histological type), and genetic alterations including AKT1, KLF4, SMO, POLR2A, and NF2 mutations and 22q deletion in 269 meningioma cases. Based on the embryological origin of meninges, the tumor locations were as follows: neural crest, paraxial mesodermal, and dorsal mesodermal origins. Tumors originating from the dura of certain embryologic origin displayed a significantly different pathological diagnoses and genetic abnormality ratio. For instance, driver genetic mutations with AKT1, KLF4, SMO, and POLR2A, were significantly associated with the paraxial mesodermal origin (p = 1.7 × 10−10). However, meningiomas with NF2-associated mutations were significantly associated with neural crest origin (p = 3.9 × 10–12). On analysis of recurrence, no difference was observed in embryological origin. However, POLR2A mutation was a risk factor for the tumor recurrence (p = 1.7 × 10−2, Hazard Ratio 4.08, 95% Confidence Interval 1.28–13.0). Assessment of the embryological origin of the meninges may provide novel insights into the pathomechanism of meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Michihiro Tanaka
- Departments of Neuroendovascular Surgery, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To discuss recent advances in the meningioma biology and their clinical implications. RECENT FINDINGS Meningioma is the most common primary intracranial tumor. Mostly benign, 20% of cases display an aggressive behavior despite best standard of care. The genetic landscape of meningiomas is divided according to NF2 mutational status. Although about 60% of meningiomas display NF2 mutations, the other share is more heterogenous. Mutations in TRAF7, SMO, v-akt murine thymoma viral oncogene homolog 1 (AKT1), PI3KCA and KLF4 are seen mostly in WHO grade 1 meningiomas. In higher grade meningiomas, mutations of the TERT promoter and deletions of CDKN2A/B emerge and have prognostic value. Moreover, mutations in DMD, BAP1 and PBRM1 have recently been discovered and are being further explored. DNA methylation subgroups offer valuable insight into meningioma prognosis and its implementation in clinical setting is under evaluation. Moreover, the study of distinct meningioma populations such as radiation-induced meningioma and progestin-associated meningioma may provide further insight into meningioma oncogenesis and potential therapeutic targets. SUMMARY The mutational landscape of meningioma has expanded following the use of the new genetic sequencing approaches. Novel mutations have been characterized and reveal their prognostic and therapeutic applications. This improved understanding of meningioma biology has promising implications for novel treatment strategies.
Collapse
|
19
|
Mooney MA, Abolfotoh M, Bi WL, Tavanaiepour D, Almefty RO, Bassiouni H, Pravdenkova S, Dunn IF, Al-Mefty O. Is Falcine Meningioma a Diffuse Disease of the Falx? Case Series and Analysis of a "Grade Zero" Resection. Neurosurgery 2021; 87:900-909. [PMID: 32294205 DOI: 10.1093/neuros/nyaa038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Falcine meningiomas have unique characteristics including their high rates of recurrence, association with high grade pathology, increased male prevalence, and potential for diffuse involvement of the falx. OBJECTIVE To address these issues in a substantial series of falcine meningiomas and report on the impact of extent of resection for this distinct meningioma entity. METHODS Retrospective analysis of characteristics and outcomes of 59 falcine meningioma patients who underwent surgery with the senior author. A "Grade Zero" category was used when an additional resection margin of 2 to 3 cm from the tumor insertion was achieved. RESULTS For de novo falcine meningiomas, gross total resection (GTR) was associated with significantly decreased recurrence incidence compared with subtotal resection (P ≤ .0001). For recurrent falcine meningiomas, median progression-free survival (PFS) was significantly improved for GTR cases (37 mo vs 12 mo; P = .017, hazard ratio (HR) .243 (.077-.774)). "Grade Zero" resection demonstrated excellent durability for both de novo and recurrent cases, and PFS was significantly improved with "Grade Zero" resection for recurrent cases (P = .003, HR 1.544 (1.156-2.062)). The PFS benefit of "Grade Zero" resection did not achieve statistical significance over Simpson grade 1 during the limited follow-up period (mean 2.8 yr) for these groups. CONCLUSION The recurrence of falcine meningiomas is related to the diffuse presence of tumor between the leaflets of the falx. Increased extent of resection including, when possible, a clear margin of falx surrounding the tumor base was associated with the best long-term outcomes in our series, particularly for recurrent tumors.
Collapse
Affiliation(s)
- Michael A Mooney
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mohammad Abolfotoh
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Neurosurgery, Ain Shams University, Cairo, Egypt
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daryoush Tavanaiepour
- Department of Neurosurgery, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida
| | - Rami O Almefty
- Department of Neurosurgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hischam Bassiouni
- Department of Neurosurgery, Klinikum Amberg, Amberg, Germany.,Department of Neurosurgery, Klinikum Weiden, Weiden, Germany
| | - Svetlana Pravdenkova
- Department of Neurosurgery, Arkansas Neuroscience Institute, Little Rock, Arkansas
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ossama Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Fountain DM, Smith MJ, O'Leary C, Pathmanaban ON, Roncaroli F, Bobola N, King AT, Evans DG. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021; 40:875-884. [PMID: 33262459 PMCID: PMC8440207 DOI: 10.1038/s41388-020-01568-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Meningiomas are the most common primary brain tumor and their incidence and prevalence is increasing. This review summarizes current evidence regarding the embryogenesis of the human meninges in the context of meningioma pathogenesis and anatomical distribution. Though not mutually exclusive, chromosomal instability and pathogenic variants affecting the long arm of chromosome 22 (22q) result in meningiomas in neural-crest cell-derived meninges, while variants affecting Hedgehog signaling, PI3K signaling, TRAF7, KLF4, and POLR2A result in meningiomas in the mesodermal-derived meninges of the midline and paramedian anterior, central, and ventral posterior skull base. Current evidence regarding the common pathways for genetic pathogenesis and the anatomical distribution of meningiomas is presented alongside existing understanding of the embryological origins for the meninges prior to proposing next steps for this work.
Collapse
Affiliation(s)
- Daniel M Fountain
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK.
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Claire O'Leary
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Samarut E, Lugat A, Amelot A, Scharbarg E, Hadjadj S, Primot C, Loussouarn D, Thillays F, Buffenoir K, Cariou B, Drui D, Roualdes V. Meningiomas and cyproterone acetate: a retrospective, monocentric cohort of 388 patients treated by surgery or radiotherapy for intracranial meningioma. J Neurooncol 2021; 152:115-123. [PMID: 33392938 DOI: 10.1007/s11060-020-03683-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Meningiomas are the most common intracranial tumors, accounting for 20-30% of central nervous system tumors. Recently, the European Medicines Agency issued an alert on cyproterone acetate (CPA) based on the results of a study that found an increased risk of meningioma 7 to 20 times higher when a patient is on CPA. The primary objective of this study was to determine the prevalence of CPA exposure in patients who had one or more intracranial meningiomas treated surgically or with radiation therapy. The secondary objectives were to establish a description of the patients who had intracranial meningioma in Nantes and to establish whether there was a difference in the intrinsic and tumoral characteristics of patients exposed to CPA compared with patients who had no hormonal exposure and patients who had been exposed to other hormones. METHODS Monocentric, retrospective study including all patients treated by surgery or radiotherapy for intracranial meningioma from 2014 to 2017 excluding those with a history of exposure to ionizing radiation or neurofibromatosis type 2. RESULTS 388 patients were included, 277 were treated by surgery and 111 by radiotherapy. 3.9% of the patients had a history or current use of CPA, 16.2% were taking other hormonal treatment. Compared with the group without hormonal exposure, the CPA-exposed group had significantly an earlier onset of meningiomas at 48.9 vs. 61.9 years (p = 0.0005) and had more multiple meningiomas, 26.7% vs. 6.1% (p = 0.0115). CONCLUSIONS In our study, patients with a history or current use of CPA had significantly more meningiomas and were significantly younger at the onset.
Collapse
Affiliation(s)
- Edouard Samarut
- Neurotraumatology, Neurosurgery Department, Hotel-Dieu, CHU Nantes, Nantes, France
| | - Alexandre Lugat
- L'institut du thorax, Endocrinology, Diabetology and Nutrition Department, CHU Nantes, Nantes, France
- Inserm UMR 1232, CRCINA, Université d'Angers, Université de Nantes, Nantes, France
| | - Aymeric Amelot
- Neurosurgery Department, Bretonneau Hospital, CHRU Tours, Tours, France
- Inserm UMR 1253, Université de Tours, Tours, France
| | - Emeric Scharbarg
- L'institut du thorax, Endocrinology, Diabetology and Nutrition Department, CHU Nantes, Nantes, France
| | - Samy Hadjadj
- L'institut du thorax, Endocrinology, Diabetology and Nutrition Department, CHU Nantes, Nantes, France
| | - Claire Primot
- Inserm UMR 1413, CIC, Endocrinology, Diabetology and Nutrition, CHU Nantes, Nantes, France
| | | | - François Thillays
- Radiotherapy Department, Institut de Cancérologie de l'Ouest (ICO), Saint-Herblain, France
| | - Kevin Buffenoir
- Neurotraumatology, Neurosurgery Department, Hotel-Dieu, CHU Nantes, Nantes, France
| | - Bertrand Cariou
- L'institut du thorax, Endocrinology, Diabetology and Nutrition Department, CHU Nantes, Nantes, France
| | - Delphine Drui
- L'institut du thorax, Endocrinology, Diabetology and Nutrition Department, CHU Nantes, Nantes, France.
| | - Vincent Roualdes
- Neurotraumatology, Neurosurgery Department, Hotel-Dieu, CHU Nantes, Nantes, France.
| |
Collapse
|
22
|
Findakly S, Choudhury A, Daggubati V, Pekmezci M, Lang UE, Raleigh DR. Meningioma cells express primary cilia but do not transduce ciliary Hedgehog signals. Acta Neuropathol Commun 2020; 8:114. [PMID: 32690089 PMCID: PMC7370519 DOI: 10.1186/s40478-020-00994-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022] Open
Abstract
Meningiomas are the most common primary intracranial tumors, but treatment options for meningioma patients are limited due to incomplete understanding of tumor biology. A small percentage of meningiomas harbor somatic variants in the Hedgehog pathway, a conserved gene expression program that is essential for development and adult stem cell homeostasis. Hedgehog signals are transduced through primary cilia, and misactivation of the Hedgehog pathway is known to underlie cancer. Nevertheless, the mechanisms of Hedgehog signaling in meningioma are unknown. Here, we investigate mechanisms of ciliary Hedgehog signaling in meningioma using tissue microarrays containing 154 human meningioma samples, NanoString transcriptional profiling, primary meningioma cells, pharmacology, and CRISPR interference. Our results reveal that meningiomas of all grades can express primary cilia, but that cilia are less prevalent among anaplastic tumors. Moreover, we find that expression of Smoothened alleles that are oncogenic in other contexts fail to activate the Hedgehog transcriptional program or promote proliferation in primary meningioma cells. These data reveal that meningiomas can express the subcellular structure necessary for canonical Hedgehog signaling, but suggest that they do not transduce ciliary Hedgehog signals.
Collapse
|
23
|
Xu T, Yan Y, Evins AI, Gong Z, Jiang L, Sun H, Cai L, Wang H, Li W, Lu Y, Zhang M, Chen J. Anterior Clinoidal Meningiomas: Meningeal Anatomical Considerations and Surgical Implications. Front Oncol 2020; 10:634. [PMID: 32547937 PMCID: PMC7278713 DOI: 10.3389/fonc.2020.00634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/06/2020] [Indexed: 01/20/2023] Open
Abstract
Objective: Surgical removal of anterior clinoidal meningiomas (ACMs) remains a challenge because of its complicated relationship with surrounding meninges, major arteries and cranial nerves. This study aims to define the meningeal structures around the anterior clinoid process (ACP) and its surgical implications. Methods: Five dry skulls and 19 cadavers were used in the anatomical study. Cadavers were prepared as transverse, coronal, and sagittal plastinated sections, and the meningeal architecture around the ACP was studied with dissecting and confocal microscopies. The database of meningiomas in one single center was retrospectively reviewed, and the patients with ACMs were collected for clinical analysis. Results: The superior, lateral, medial surfaces, and the tip of ACP were covered by different layers and types of meninges. The ACMs were classified into four main types based on the sites of origin, possible extending pathways following meningeal dura. In the retrospective cohort of 131 ACMs, the percentage of types I, IIa, IIb, III, and IV were 42.0% (55/131), 19.8% (26/131), 9.2% (12/131), 16.8% (22/131), and 12.2% (16/131), respectively. We found that types IIa and I had higher chances for achieving Simpson grade 1–2 resection (92.3 and 85.4%, respectively), followed by type III (54.5%) and type IV (31.3%), while type IIb showed little chance of Simpson grade 1–2 resection. Univariate and multivariate analyses revealed ACM classification and tumor size (<3 cm) to be independent risk factors for achieving more extensive resection. Conclusion: The meningeal architecture around the ACP may guide and determine the origin and extension of ACMs. The classification based on the meningeal architecture helps to understand surgical anatomy as well as predicting surgical outcomes.
Collapse
Affiliation(s)
- Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Alexander I Evins
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Zhenyu Gong
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huaiyu Sun
- Department of Neurosurgery, Tiemei General Hospital, Liaoning, China
| | - Li Cai
- Arkansas Neuroscience Institute, St. Vincent Hospital, Little Rock, AR, United States
| | - Hongxiang Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weiqing Li
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yicheng Lu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ming Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Juxiang Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
AlSahlawi A, Aljelaify R, Magrashi A, AlSaeed M, Almutairi A, Alqubaishi F, Alturkistani A, AlObaid A, Abouelhoda M, AlMubarak L, AlTassan N, Abedalthagafi M. New insights into the genomic landscape of meningiomas identified FGFR3 in a subset of patients with favorable prognoses. Oncotarget 2019; 10:5549-5559. [PMID: 31565188 PMCID: PMC6756861 DOI: 10.18632/oncotarget.27178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: With a prevalence of 170 000 adults in the US alone, meningiomas are the most common primary intracranial tumors. The management of skull base meningiomas is challenging due to their complexity and proximity to crucial nearby structures. The identification of oncogenic mutations has provided further insights into the tumorigenesis of meningioma and the possibility of targeted therapy.
This study aimed to further investigate the association of mutational profiles with anatomical distribution, histological subtype, WHO grade, and recurrence in patients with meningioma. Methods: Tissue samples were collected from 71 patients diagnosed with meningioma from 2008 to 2016. A total of 51 cases were skull based. Samples were subjected to targeted sequencing using a next generation customized cancer gene panel (n = 66 genes analyzed).
Results: We detected genomic alterations (GAs) in 68 tumors, averaging 1.56 ± 1.07 genomic alterations (GAs) per sample. NF2 was the most frequently altered gene (36/71 cases). Interestingly, we identified a number of mutations in non-NF2 genes, including a hotspot TERTp c.−124: G > A mutation that may be related to poor prognosis and FGFR3 mutations that may represent biomarkers of a favorable prognosis as reported in other cancers.
Conclusions: We demonstrate that comprehensive genomic profiling in our population can reveal a potential new prognostic biomarkers of skull base meningioma. These mutations can enhance diagnostic accuracy and clinical decision-making. Among our findings were the identification of a TERTp mutation and the first report of FGFR3 mutations that may represent biomarkers for the identification of skull base meningioma patients with a favorable prognosis.
Collapse
Affiliation(s)
- Aysha AlSahlawi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Montreal Neurological Institute, Montreal, Canada.,Neurosurgery Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rasha Aljelaify
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Amna Magrashi
- Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mariam AlSaeed
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Amal Almutairi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fatimah Alqubaishi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah AlObaid
- Neurosurgery Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Latifa AlMubarak
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Nada AlTassan
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Viaene AN, Zhang B, Martinez-Lage M, Xiang C, Tosi U, Thawani JP, Gungor B, Zhu Y, Roccograndi L, Zhang L, Bailey RL, Storm PB, O’Rourke DM, Resnick AC, Grady MS, Dahmane N. Transcriptome signatures associated with meningioma progression. Acta Neuropathol Commun 2019; 7:67. [PMID: 31039818 PMCID: PMC6489307 DOI: 10.1186/s40478-019-0690-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Meningiomas are the most common primary brain tumor of adults. The majority are benign (WHO grade I), with a mostly indolent course; 20% of them (WHO grade II and III) are, however, considered aggressive and require a more complex management. WHO grade II and III tumors are heterogeneous and, in some cases, can develop from a prior lower grade meningioma, although most arise de novo. Mechanisms leading to progression or implicated in de novo grade II and III tumorigenesis are poorly understood. RNA-seq was used to profile the transcriptome of grade I, II, and III meningiomas and to identify genes that may be involved in progression. Bioinformatic analyses showed that grade I meningiomas that progress to a higher grade are molecularly different from those that do not. As such, we identify GREM2, a regulator of the BMP pathway, and the snoRNAs SNORA46 and SNORA48, as being significantly reduced in meningioma progression. Additionally, our study has identified several novel fusion transcripts that are differentially present in meningiomas, with grade I tumors that did not progress presenting more fusion transcripts than all other tumors. Interestingly, our study also points to a difference in the tumor immune microenvironment that correlates with histopathological grade.
Collapse
|
26
|
Ferner RE, Bakker A, Elgersma Y, Evans DGR, Giovannini M, Legius E, Lloyd A, Messiaen LM, Plotkin S, Reilly KM, Schindeler A, Smith MJ, Ullrich NJ, Widemann B, Sherman LS. From process to progress-2017 International Conference on Neurofibromatosis 1, Neurofibromatosis 2 and Schwannomatosis. Am J Med Genet A 2019; 179:1098-1106. [PMID: 30908866 DOI: 10.1002/ajmg.a.61112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/09/2019] [Indexed: 12/19/2022]
Abstract
The neurofibromatoses are inherited, tumor suppressor disorders that are characterized by multiple, benign peripheral nerve sheath tumors and other nervous system tumors. Each disease is associated with a distinct genetic mutation and with a different pathogenesis and clinical course. Neurofibromatosis 1 (NF1) is common and epitomized by multiple neurofibromas with widespread complications. NF2 and schwannomatosis are rare diseases that are typified by multiple schwannomas that are particularly painful in people with schwannomatosis. Since 1985, the Children's Tumor Foundation (formerly the National Neurofibromatosis Foundation) has hosted an international Neurofibromatosis Conference, bringing together international participants who are focused on NF research and clinical care. The 2017 Conference, held in Washington, DC, was among the largest gatherings of NF researchers to date and included presentations from clinicians and basic scientists, highlighting new data regarding the molecular and cellular mechanisms underlying each of these diseases as well as results from clinical studies and clinical trials. This article summarizes the findings presented at the meeting and represents the current state-of-the art for NF research.
Collapse
Affiliation(s)
- Rosalie E Ferner
- Department of Neurology, Neurofibromatosis Centre, Guy's and St. Thomas' NHS Foundation Trust, and King's College London, London, UK
| | | | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D Gareth R Evans
- Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK.,Manchester Academic Health Sciences Centre (MAHSC), Division of Evolution and Genomic Science, University of Manchester, Manchester, UK
| | - Marco Giovannini
- Department of Head and Neck Surgery, University of California, Los Angeles
| | - Eric Legius
- Department of Human Genetics, University Hospital Leuven, Leuven, Herestraat, Belgium
| | - Alison Lloyd
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ludwine M Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama, Birmingham, Alabama
| | - Scott Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Miriam J Smith
- Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK.,Manchester Academic Health Sciences Centre (MAHSC), Division of Evolution and Genomic Science, University of Manchester, Manchester, UK
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brigitte Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, and Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
27
|
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 2019; 129:465-475. [PMID: 30707108 DOI: 10.1172/jci120850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery, and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|