1
|
Nagayama M, Gogokhia L, Longman RS. Precision microbiota therapy for IBD: premise and promise. Gut Microbes 2025; 17:2489067. [PMID: 40190259 PMCID: PMC11980506 DOI: 10.1080/19490976.2025.2489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn's Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10-15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
Collapse
Affiliation(s)
- Manabu Nagayama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lasha Gogokhia
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Deleu S, Sabino J. Personalized Dietary Approaches to Optimizing Intestinal Microbial Health and Homeostasis. Gastroenterol Clin North Am 2025; 54:317-331. [PMID: 40348490 DOI: 10.1016/j.gtc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Diet has a profound impact in human health, which is partly driven by changes in the intestinal microbiota. Several associations between dietary intake and the intestinal microbiota composition and function have been described. Namely, the Mediterranean diet is associated with beneficial bacteria, while the intake of ultraprocessed foods is linked to dysbiosis. It is, therefore, very tempting to tailor dietary approaches to the individual needs of the microbiota; however, high-quality prospective data are lacking. Provisionally, a diet rich in fruits and vegetables and low in ultraprocessed foods is recommended to improve the intestinal microbiota composition and function.
Collapse
Affiliation(s)
- Sara Deleu
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| | - João Sabino
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2025; 38:143-170. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
7
|
Ye Z, Gao Y, Yuan J, Chen F, Xu P, Liu W. The role of gut microbiota in modulating brain structure and psychiatric disorders: A Mendelian randomization study. Neuroimage 2025; 315:121292. [PMID: 40425098 DOI: 10.1016/j.neuroimage.2025.121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
The influence of the gut microbiome on the human brain, especially its associations with psychiatric disorders, has emerged as a focal area in contemporary neuroscience and psychiatry research. In this study, we employed a mediation Mendelian randomization approach to delve into the potential causal relationships between gut microbiota and psychiatric disorders, with a focus on the mediating role of brain structural changes. We harnessed genetic data from large - scale genome - wide association studies to analyze how 196 gut microbiota taxa affect ten psychiatric disorders via alterations in 3143 brain structures. Our key findings revealed significant bidirectional causal relationships. In the gut microbiota - brain structure relationship, certain gut microbiota taxa, such as Bacteroides and Marvinbryantia, were associated with changes in brain activity and white matter integrity respectively. Conversely, brain structures like the right hippocampus and left superior cerebellar peduncle influenced gut microbiota composition. Regarding gut microbiota and psychiatric disorders, we identified numerous associations. For example, the genus Prevotellaceae was significantly associated with an increased risk of Autism Spectrum Disorder, while Ruminococcaceae UCG005 showed a protective effect. In Panic Disorder, Alistipes was positively associated, and for Schizophrenia, both protective (Barnesiella) and risk - associated (Phascolarctobacterium) genera were found. Moreover, through mediation analysis, we found that brain structures mediated the effects of gut microbiota on five psychiatric disorders, including bipolar disorder and anorexia nervosa. In these cases, the influence of gut microbiota on the disorders was fully transmitted through changes in brain structure. Overall, our research clarifies the role of the microbiota - gut - brain axis in mental health. It offers a new perspective on how intestinal microbes impact brain physiology and psychiatric pathology. These findings not only deepen our understanding of the biological interactions between the gut and brain but also suggest that targeted gut microbiota modifications could be novel therapeutic strategies for mental health disorders.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China; School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China.
| | - Yingying Gao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, China
| | - Jiaqi Yuan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Feng Chen
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China; School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China.
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
| |
Collapse
|
8
|
Lewis N, Lagopoulos J, Villani A. Gut-Brain Inflammatory Pathways in Attention-Deficit/Hyperactivity Disorder: The Role and Therapeutic Potential of Diet. Metabolites 2025; 15:335. [PMID: 40422911 DOI: 10.3390/metabo15050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder that often persists into adulthood, leading to various adverse outcomes. Its underlying pathology is multifactorial, involving neurotransmitter imbalances, gut microbiota alterations, and oxidative and inflammatory dysregulation. Diet, a key environmental modifier of gut ecology, is consistently poorer in individuals with ADHD, with multiple nutrients implicated in its pathophysiology. This review examines the role of specific nutrients such as omega-3 fatty acids, key micronutrients, and potentially harmful dietary components, as well as broader dietary patterns, particularly the Western diet and Mediterranean diet (MedDiet), in relation to ADHD symptoms. It also evaluates both whole-diet and supplement-based clinical interventions, supporting the growing recognition of nutrition as a safe and relatively affordable modifiable factor in ADHD management. Additionally, the biological mechanisms linking diet to ADHD are reviewed, highlighting strong evidence for the involvement of gut dysbiosis and inflammatory processes. Despite the well-documented antioxidant, anti-inflammatory, and microbiome benefits of the MedDiet, direct research investigating its role in ADHD remains limited. Most whole-diet approaches to date have focused on elimination diets, leaving a significant gap in understanding the potential role of the MedDiet in ADHD management. Therefore, this review outlines preliminary evidence supporting the MedDiet and its key components as modulators of ADHD-related biological pathways, indicating its potential as a therapeutic approach. However, further research is required to rigorously evaluate its clinical efficacy. Finally, the limitations of observational and interventional nutritional research in ADHD are discussed, along with recommendations for future research directions.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs, QLD 4556, Australia
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy., Birtinya, QLD 4575, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd., Birtinya, QLD 4575, Australia
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs, QLD 4556, Australia
| |
Collapse
|
9
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
10
|
Rytter H, Sturgeon H, Chassaing B. Diet-pathobiont interplay in health and inflammatory bowel disease. Trends Microbiol 2025:S0966-842X(25)00112-X. [PMID: 40379577 DOI: 10.1016/j.tim.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/19/2025]
Abstract
The intestinal microbiota plays a crucial role in maintaining host health by participating in various beneficial functions. However, under certain conditions, it can contribute to the development of inflammatory bowel disease (IBD) and other chronic inflammatory conditions. Importantly, not all commensal microbiota members are drivers of inflammation. A specific subset of commensal bacteria, known as pathobionts, can exhibit pathogenic potential under specific circumstances. Their inflammatory potential is modulated by several factors, including the host's genetic background and the surrounding microbiota. Furthermore, diet has emerged as a critical factor influencing the gut microbiota, with some studies highlighting its role in modulating pathobionts. This review will delve into the role played by pathobionts in chronic intestinal inflammation, in both mouse models as well as in humans, with a focus on the interplay between dietary factors and pathobiont members of the intestinal microbiota. Understanding the complex relationships between diet, pathobionts, and chronic inflammation could pave the way for diet-based therapeutic strategies aimed at managing chronic inflammatory conditions.
Collapse
Affiliation(s)
- Héloïse Rytter
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
| | - Hannah Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France; CHRU Nancy, IHU Infiny, F54000 Nancy, France.
| |
Collapse
|
11
|
Hunjan G, Shah SS, Kosey S, Aran KR. Gut microbiota and the tryptophan-kynurenine pathway in anxiety: new insights and treatment strategies. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02938-8. [PMID: 40369368 DOI: 10.1007/s00702-025-02938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Anxiety disorders are mental health disorders characterized by long-lasting fear, worry, nervousness, and alterations in gut microbiota (GM). The GM is a vital modulator of brain function through the gut-brain axis, which acts as the neural pathway between the central and peripheral nervous systems. Dysbiosis of GM plays an essential role in anxiety development because of alterations in the vagus nerve, increased intestinal permeability, and altered breakdown of tryptophan (TRP). The Kynurenine (KYN) pathway plays a crucial role in the pathogenesis of anxiety disorders, primarily through its neuroprotective (KYNA) and neurotoxic (QUIN) metabolites. Higher ratios of KYNA/QUIN result in neuroprotection, whereas higher KYN/TRP ratios indicate increased QUIN production causing neuroinflammation. Studies on germ-free models exhibit higher plasma TRP levels, which interrupt the metabolic balance of TRP-derived compounds, thus causing brain impairment. A key issue in anxiety disorders is the dysregulation of GM, which disrupts TRP metabolism and neuroinflammatory pathways, however, remains poorly understood. Hence, the proper understanding of these mechanisms is crucial for future therapeutic advancements. Here, we highlight the significance of the TRP-KYN pathway and the potential of modulating KYN pathway enzymes, such as kynurenine aminotransferases (KATs), to adjust KYNA levels and restore neurotransmitter balance. It further discusses new therapeutic methods with a particular focus on probiotics that may restore GM and modulate TRP metabolism. Advancing our understanding of the intricate relationship between GM and anxiety disorders may facilitate novel, microbiota-targeted interventions. This ultimately contributes to precision medicine approaches in mental health care, thereby enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Garry Hunjan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shiv Shankar Shah
- Krupanidhi College of Pharmacy, Carmelaram Gunjur Road, Hobli, off Sarjapur Road, Varthur, Bengaluru, 560035, Karnataka, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
12
|
Joseph YD, Ladd AL, Bhutani N. Hand Osteoarthritis: Molecular Mechanisms, Randomized Controlled Trials, and the Future of Targeted Treatment. Int J Mol Sci 2025; 26:4537. [PMID: 40429679 PMCID: PMC12110887 DOI: 10.3390/ijms26104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Hand osteoarthritis (OA) is a prevalent and disabling condition, yet its pathogenesis remains less studied than OA in large weight-bearing joints. Emerging genetic, epigenetic, and microbiome research suggests that hand OA might be biologically distinct, involving joint-specific pathways not shared by knee or hip OA. This review integrates genome-wide association studies specific to hand OA, highlighting key molecular contributors such as inflammatory cytokines. These genetic insights, together with emerging data on epigenetic alterations and gut microbial dysbiosis, point to broader systemic and regulatory influences on hand OA onset and progression. We also assess pharmacologic interventions tested in randomized controlled trials that have attempted to target these pathways. While agents such as TNF and IL-6 inhibitors, hydroxychloroquine, and corticosteroids have shown limited success, emerging evidence supports the potential of methotrexate in synovitis-positive general hand OA, platelet-rich plasma in thumb carpometacarpal (CMC) OA, and prolotherapy in interphalangeal (IP) OA. These findings illustrate the persistent gap between mechanistic understanding and therapeutic success. Future work must prioritize multifactorial strategies for addressing pain and translational frameworks that link molecular mechanisms to treatment response. In summary, this review offers an update on hand OA and identifies key opportunities for more targeted and effective therapy.
Collapse
Affiliation(s)
- Yemisi D. Joseph
- Stanford University School of Medicine, Stanford University, Palo Alto, CA 94305, USA;
| | - Amy L. Ladd
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA;
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA;
| |
Collapse
|
13
|
Pickard JM, Porwollik S, Caballero-Flores G, Caruso R, Fukuda S, Soga T, Inohara N, McClelland M, Núñez G. Dietary amino acids regulate Salmonella colonization via microbiota-dependent mechanisms in the mouse gut. Nat Commun 2025; 16:4225. [PMID: 40335509 PMCID: PMC12058977 DOI: 10.1038/s41467-025-59706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
The gut microbiota confers host protection against pathogen colonization early after infection. Several mechanisms underlying the protection have been described, but the contributions of nutrient competition versus direct inhibition are controversial. Using an ex vivo model of Salmonella growth in the mouse cecum with its indigenous microbes, we find that nutrient limitation and typical inhibitory factors alone cannot prevent pathogen growth. However, the addition of certain amino acids markedly reverses the microbiota's ability to suppress pathogen growth. Enhanced Salmonella colonization after antibiotic treatment is ablated by exclusion of dietary protein, which requires the presence of the microbiota. Thus, dietary protein and amino acids are important regulators of colonization resistance.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Innovative Microbiome Therapy Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Bai J, Zhao Y, Wang Z, Qin P, Huang J, Cheng Y, Wang C, Chen Y, Liu L, Zhang Y, Wu B. Stroke-Associated Pneumonia and the Brain-Gut-Lung Axis: A Systematic Literature Review. Neurologist 2025:00127893-990000000-00191. [PMID: 40331253 DOI: 10.1097/nrl.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND Stroke-associated pneumonia (SAP), a highly lethal complication following stroke, is closely linked to dysregulation of the "brain-gut-lung axis." Accumulating evidence indicates that stroke triggers intestinal alterations through the brain-gut axis, while multiple studies confirm that gut-derived changes can mediate pneumonia through the gut-lung axis. However, the mechanisms connecting stroke-induced intestinal dyshomeostasis to SAP remain incompletely elucidated, and the multiorgan interaction mechanisms of the "brain-gut-lung axis" in SAP pathogenesis require further exploration. REVIEW SUMMARY This systematic literature review systematically searched databases, including PubMed, using the keywords "stroke," "gastrointestinal microbiome," and "bacterial pneumonia," incorporating 80 mechanistic studies. Key findings reveal that stroke initiates a cascade of "neuro-microbial-immune" pathway interactions along the brain-gut-lung axis, leading to intestinal dyshomeostasis characterized by microbiota and metabolite alterations, barrier disruption, immune dysregulation, inflammatory responses, and impaired gut motility. These intestinal perturbations ultimately disrupt pulmonary immune homeostasis, promoting SAP development. In addition, stroke directly induces vagus nerve injury through the brain-gut axis, resulting in impaired swallowing and cough reflexes that exacerbate aspiration-related pulmonary infection risks. CONCLUSIONS Elucidating the role of the brain-gut-lung axis in SAP pathogenesis provides critical insights into its underlying mechanisms. This paradigm highlights intestinal homeostasis modulation and vagus nerve stimulation as promising therapeutic strategies for SAP prevention and management, advancing a multitargeted approach to mitigate poststroke complications.
Collapse
Affiliation(s)
- Jing Bai
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yusheng Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zihe Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Longxiao Liu
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Zhang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Trakman GL, Russell EE, Hamilton AL, Wilson-O’Brien A, Thompson E, Simmance N, Niewiadomski O, Kamm MA. Practical Application of Evidence-Based Dietary Therapy in Inflammatory Bowel Disease: The DELECTABLE Program. Nutrients 2025; 17:1592. [PMID: 40362901 PMCID: PMC12073524 DOI: 10.3390/nu17091592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Exclusive Enteral Nutrition (EEN) and the Crohn's Disease Exclusion Diet (CDED) have been shown to induce remission in Crohn's disease. Low-sulphur, plant-based diets are being explored for ulcerative colitis, and wholefood, low-additive approaches are emerging as significant. Although Inflammatory Bowel Disease (IBD) patients modify their diet, evidence for tolerability and benefit outside clinical trials is limited. The DELECTABLE program aimed to assess satisfaction, adherence, and efficacy of dietary therapies as part of IBD care. METHODS In this dietitian-led, open-label, prospective study, patients with Crohn's disease were offered the CDED or a whole-food, additive-free diet (WFD), and patients with ulcerative colitis were offered a low-sulphur, plant-based diet (UCD) or WFD. Primary outcomes were 12-week diet satisfaction (modified DSAT-28) and diet adherence, including food additive intake. Secondary outcomes were quality of life (QoL) (IBDQ-9), disease activity (CDAI for Crohn's disease, partial Mayo score for ulcerative colitis), and biochemical markers (CRP, faecal calprotectin). Analyses were conducted within, rather than between, diet arms due to the non-random nature of the study. Diet adherence and disease activity change across time points (baseline, week 6, week 12) were assessed using repeated measures ANOVA or Friedman's test, with pairwise paired t-test or Wilcoxon Signed-Rank test. Diet satisfaction and quality of life changes across time (baseline/week 1, week 12) were assessed using a paired t-test or Wilcoxon Signed-Rank test. RESULTS Of 165 referrals, 76 patients enrolled, with 64 completing the 12-week program (CDED: n = 15, WFD: n = 42, UCD: n = 7). Diet satisfaction was initially high and remained stable over time on CDED (p = 0.212) and improved on WFD (p = 0.03). Patient- and dietitian-rated adherence was high at baseline and did not significantly decrease on any diet arm (p > 0.349). Food additive intake decreased on WFD (p = 0.009). QoL improved on CDED and WFD (p < 0.001). CRP, calprotectin, and CDAI were reduced on CDED (p < 0.045), and CDAI and partial Mayo were reduced on WFD (p < 0.027). CONCLUSIONS Well-balanced therapeutic diets are feasible and well-accepted by patients with IBD, with a promising impact on disease activity.
Collapse
Affiliation(s)
- Gina L. Trakman
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Science, La Trobe University, Melbourne 3086, Australia
| | - Erin E. Russell
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
| | - Amy L. Hamilton
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
| | - Amy Wilson-O’Brien
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
| | - Emily Thompson
- Department of Nutrition and Dietetics, St Vincent’s Hospital, Melbourne 3065, Australia; (E.T.); (N.S.)
| | - Natalie Simmance
- Department of Nutrition and Dietetics, St Vincent’s Hospital, Melbourne 3065, Australia; (E.T.); (N.S.)
| | - Ola Niewiadomski
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
| | - Michael A. Kamm
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne 3065, Australia; (G.L.T.); (E.E.R.); (A.L.H.); (O.N.)
- Department of Medicine, The University of Melbourne, Melbourne 3065, Australia
| |
Collapse
|
16
|
Gao P, Nie Y, Zhao L, Zhang J, Ge W. Lactococcus lactis Subsp. lactis LL-1 and Lacticaseibacillus paracasei LP-16 Influence the Gut Microbiota and Metabolites for Anti-Obesity and Hypolipidemic Effects in Mice. Antioxidants (Basel) 2025; 14:547. [PMID: 40427429 PMCID: PMC12108308 DOI: 10.3390/antiox14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
This study utilized a high-fat diet-induced obese male C57BL/6 mice model to investigate the anti-obesity and lipid-lowering effects of Lactococcus lactis subsp. lactis LL-1 and Lacticaseibacillus paracasei LP-16. A gut microbiota analysis via 16S rRNA sequencing, along with measurements of body weight, lipids, inflammation markers, and gut metabolites, revealed that lactic acid bacteria (LAB) significantly reduced body weight, blood lipid levels, and liver oxidative stress. They also enhanced gut microbiota diversity and evenness, potentially by modulating the Firmicutes/Bacteroidetes ratio to limit excess energy absorption. Malondialdehyde (MDA) showed extremely significant positive correlations with Lachnospiraceae, Blautia, and Colidextribacter, and a significant positive correlation with Helicobacter, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) exhibited opposite trends. Specifically, Muribaculaceae, Bacteroides, and Lactobacillus showed negative correlations with MDA levels and positive correlations with SOD and GSH-Px. Short-chain fatty acids (SCFAs) positively correlated with Muribaculaceae, Bacteroides, Mucispirillum, and Lactobacillus, but negatively correlated with Lachnospiraceae, Blautia, Colidextribacter, Alistipes, and Helicobacter. They increased SCFA levels by promoting beneficial bacteria and reducing pathogens, alleviating obesity and hyperlipidemia. Additionally, they regulated the gut microbiota, decreasing bile acids and long-chain fatty acids while increasing SCFAs, short peptides, and vitamins, thereby improving gut metabolic disorders and enhancing host gut health.
Collapse
Affiliation(s)
- Peng Gao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (P.G.); (L.Z.); (J.Z.)
| | - Yuanyang Nie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (P.G.); (L.Z.); (J.Z.)
| | - Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (P.G.); (L.Z.); (J.Z.)
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (P.G.); (L.Z.); (J.Z.)
| |
Collapse
|
17
|
Yuan F, Jia G, Wen W, Xu S, Gunchick V, Deng K, Long J, Yu D, Shu XO, Zheng W. Blood metabolic biomarkers and colorectal cancer risk: results from large prospective cohort and Mendelian randomisation analyses. Br J Cancer 2025:10.1038/s41416-025-02997-4. [PMID: 40307439 DOI: 10.1038/s41416-025-02997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Emerging evidence suggests metabolic dysregulation may contribute to colorectal cancer (CRC) aetiology. We aimed to identify pre-diagnostic metabolic biomarkers for CRC risk in 230,420 UK Biobank participants. METHODS Nuclear magnetic resonance spectroscopy was used to quantify 249 metabolic biomarkers in plasma samples collected at baseline. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals (CIs) for associations of metabolic biomarkers with CRC risk after adjusting for potential confounders. To infer the potential causality of biomarkers that were associated with CRC independent of the others, we performed genome-wide association analyses among 199,732 UK Biobank participants of European ancestry to identify biomarker-associated genetic variants, followed by two-sample Mendelian randomization (MR) analyses using summary statistics of 78,473 CRC cases and 107,143 controls of European ancestry. RESULTS During a median follow-up time of 9.7 years, 2,410 incident primary CRC cases were identified. Among 43 CRC-associated (P-value < 0.001) metabolic biomarkers, ten biomarkers including fatty acids (FAs), inflammation, ketone bodies, and lipoprotein lipids were associated with CRC risk after mutual adjustment. MR analyses provided strong evidence for potential causal associations of CRC risk with percentages of linolic acid [odds ratio (OR) = 0.89, 95% CI = 0.83-0.96, P-value = 3 × 10-3] and saturated FAs (OR = 1.14, 95% CI = 1.03-1.25, P-value = 9 × 10-3) to total FAs. CONCLUSIONS We identified multiple CRC-associated metabolic biomarkers. Perturbed lipid and lipoprotein metabolism may promote colorectal carcinogenesis.
Collapse
Affiliation(s)
- Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valerie Gunchick
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
18
|
Koh YC, Liu CP, Leung SY, Lin WS, Ho PY, Ho CT, Pan MH. Nobiletin Enhances Skeletal Muscle Mass and Modulates Bile Acid Composition in Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9076-9087. [PMID: 40193085 PMCID: PMC12007094 DOI: 10.1021/acs.jafc.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Obesity and its associated metabolic disorders─including muscle atrophy─pose significant health challenges, particularly with the increasing prevalence of high-fat diets. This study investigates the effects of nobiletin, a citrus flavonoid, on high-fat-diet-induced obesity-related muscle atrophy and its regulatory role in bile acid metabolism, aiming to determine whether nobiletin supplementation can enhance muscle mass and improve metabolic health in a mouse model. Our findings revealed that nobiletin significantly upregulated CYP7A1 expression in the liver, promoting bile acid synthesis and modulating bile acid composition in the ileum and feces, potentially through microbiota-mediated mechanisms. Furthermore, nobiletin supplementation suppressed muscle atrophy-related proteins, including p-4EBP1, TRIM63, and FBXO32, while promoting the phosphorylation of mTOR/AKT/p70S6K and FOXO3a in skeletal muscle. The FGF15/FGFR4/ERK signaling pathway was notably activated in the skeletal muscle tissues of nobiletin-supplemented mice, suggesting a protective effect against muscle atrophy despite the pathway's inhibition in the liver to promote bile acid synthesis. These results indicate that nobiletin not only mitigates muscle atrophy in the context of obesity but also enhances glucose homeostasis, likely through improved skeletal muscle function. Overall, our study highlights the potential of nobiletin as a therapeutic agent for preventing obesity-related complications, regulating bile acid metabolism, and promoting skeletal muscle health.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chien-Ping Liu
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Siu-Yi Leung
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Food Science, National Quemoy University, Quemoy 89250, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung City 40402, Taiwan
| |
Collapse
|
19
|
Xue M, Xu P, Wen H, He J, Chen J, Kong C, Li X, Wang H, Guo X, Su Y, Li H, Song C. Gut Microbe Rikenellaceae_RC9_gut_group and Knoellia-Mediated Acetic Acid Regulates Glucose and Lipid Metabolism in the Muscle of Freshwater Drum ( Aplodinotus grunniens) Under High-Fat Diets. AQUACULTURE NUTRITION 2025; 2025:9667909. [PMID: 40271481 PMCID: PMC12017940 DOI: 10.1155/anu/9667909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Metabolic disorders and complications induced by high-fat diets (HFDs) are a hot research topic in aquatic animal nutrition and health, but the mechanism of gut microbes and their metabolites on muscle homeostasis is not yet clear. In this study, a 16-week HFD (Con, 6% fat and HFD, 12% fat) rearing experiment was conducted with a freshwater drum (20.88 ± 2.75 g, about 20,000 fish per pond) to investigate the underlying regulation of gut microbes on muscle nutrient and metabolism. Results revealed that HFD had no remarkable effect on proximate nutrients (moisture, ash, crude protein, and crude fat), total amino acids, and fatty acids contents in muscle. Moreover, decreased acetic acid content by HFD in the gut and muscle was confirmed to regulate lipid metabolism, as evidenced by the activation of fatty acid synthesis (acetyl-CoA carboxylase alpha [ACC1] and sterol regulatory element binding protein-1 [SREBP1]) and inhibition of fatty acid lipolysis (AMP-activated protein kinase [AMPK], adipose triglyceride lipase [ATGL], and carnitine palmitoyl transferase 2 [CPT2]). Interestingly, RNA-seq revealed glycolytic metabolism (glycolysis/gluconeogenesis and pyruvate metabolism) was active in the muscle under HFD, which was further confirmed to be the intermediate for acetic acid to regulate lipid metabolism. Strikingly, gut microbe Rikenellaceae_RC9_gut_group and Knoellia regulate muscle lipid and glucose metabolism through their derived metabolite acetic acid, which is the key target for gut microbe to regulate muscle. Taken together, these results reveal the regulatory mechanism of gut microbes and derived metabolites on muscle metabolism and development, providing a theoretical basis for the healthy regulation of HFD in aquatic animals.
Collapse
Affiliation(s)
- Miaomiao Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiyan He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jianxiang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changxin Kong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiaowei Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hang Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xinxin Guo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yi Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
20
|
Jena PK, Wakita D, Gomez AC, Carvalho TT, Atici AE, Aubuchon E, Narayanan M, Lee Y, Fishbein MC, Takasato Y, Kurashima Y, Kiyono H, Cani PD, de Vos WM, Underhill DM, Devkota S, Chen S, Shimada K, Crother TR, Arditi M, Rivas MN. Intestinal Microbiota Contributes to the Development of Cardiovascular Inflammation and Vasculitis in Mice. Circ Res 2025; 136:e53-e72. [PMID: 40026151 PMCID: PMC11985309 DOI: 10.1161/circresaha.124.325079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alterations in the intestinal microbiota contribute to the pathogenesis of various cardiovascular disorders, but how they affect the development of Kawasaki disease (KD) an acute pediatric vasculitis, remains unclear. METHODS We used the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis to assess the contribution of the intestinal microbiota to the development of vascular inflammation. We evaluated the severity of vasculitis in microbiota-depleted mice. 16S rRNA gene sequencing was used to characterize the fecal microbiome composition of LCWE-injected mice. Some groups of mice were orally treated with selected live or pasteurized bacteria, short-chain fatty acids, or Amuc_1100, the Toll-like receptor 2 signaling outer membrane protein from Akkermansia muciniphila, and their impact on vasculitis development was assessed. RESULTS We report that depleting the gut microbiota reduces the development of cardiovascular inflammation in a murine model mimicking KD vasculitis. The development of cardiovascular lesions was associated with alterations in the intestinal microbiota composition and, notably, a decreased abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii. Oral supplementation with either of these live or pasteurized individual bacteria or with short-chain fatty acids produced by them attenuated cardiovascular inflammation, as reflected by decreased local immune cell infiltrations. Treatment with Amuc_1100 also reduced the severity of vascular inflammation. CONCLUSIONS This study reveals an underappreciated gut microbiota-cardiovascular inflammation axis in KD vasculitis pathogenesis and identifies specific intestinal commensals that regulate vasculitis in mice by producing metabolites or via extracellular proteins capable of enhancing and supporting gut barrier function.
Collapse
Affiliation(s)
- Prasant K. Jena
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daiko Wakita
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Angela C. Gomez
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emily Aubuchon
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Meena Narayanan
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Youngho Lee
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Yoshihiro Takasato
- Department of Allergy, Allergy and Immunology Center, Aichi Children’s Health and Medical Center, Obu, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Patrice D. Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David M. Underhill
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shuang Chen
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenichi Shimada
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025; 17:1323. [PMID: 40284188 PMCID: PMC12030176 DOI: 10.3390/nu17081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint inflammation and skin lesions. Recent research has underscored the critical role of gut microbiota-comprising bacteria, fungi, viruses, and archaea-in the pathogenesis and progression of PsA. This narrative review synthesizes the latest findings on the influence of gut microbiota on PsA, focusing on mechanisms such as immune modulation, microbial dysbiosis, the gut-joint axis, and its impact on treatment. Advances in high-throughput sequencing and metagenomics have revealed distinct microbial profiles associated with PsA. Studies show that individuals with PsA have a unique gut microbiota composition, differing significantly from healthy controls. Alterations in the abundance of specific bacterial taxa, including a decrease in beneficial bacteria and an increase in potentially pathogenic microbes, contribute to systemic inflammation by affecting the intestinal barrier and promoting immune responses. This review explores the impact of various factors on gut microbiota composition, including age, hygiene, comorbidities, and medication use. Additionally, it highlights the role of diet, probiotics, and fecal microbiota transplantation as promising strategies to modulate gut microbiota and alleviate PsA symptoms. The gut-skin-joint axis concept illustrates how gut microbiota influences not only gastrointestinal health but also skin and joint inflammation. Understanding the complex interplay between gut microbiota and PsA could lead to novel, microbiome-based therapeutic approaches. These insights offer hope for improved patient outcomes through targeted manipulation of the gut microbiota, enhancing both diagnosis and treatment strategies for PsA.
Collapse
Affiliation(s)
- Maria Grazia Bonomo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| | - Salvatore D’Angelo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Valentina Picerno
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Antonio Carriero
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Giovanni Salzano
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| |
Collapse
|
22
|
Du B, Yan R, Hu X, Lou J, Zhu Y, Shao Y, Jiang H, Hao Y, Lv L. Role of Bifidobacterium animalis subsp. lactis BB-12 in mice with acute pancreatitis. AMB Express 2025; 15:62. [PMID: 40186645 PMCID: PMC11972277 DOI: 10.1186/s13568-025-01867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Acute pancreatitis (AP) is a prevalent acute gastrointestinal disease, which may be prevented and alleviated by probiotics. Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is a widely studied probiotic strain; however, its specific effects in this context remain unexplored. In this study, we aimed to investigate the prophylactic and therapeutic effects of BB-12 in AP. Our findings revealed that BB-12 administration via gavage significantly reduced pathological pancreatic damage and serum amylase activity. Microbiome analysis showed that BB-12 treatment significantly increased the relative abundance of Ligilactobacillus and decreased that of Bilophila in the gut microbiota of mice with AP. Transcriptome analysis revealed that BB-12 mitigated the AP-induced dysregulation of several pathways, specifically attenuating the upregulation of the pancreatic secretion and ascorbate and aldarate metabolism pathways while reversing the downregulation of the ribosome, oxidative phosphorylation, and thermogenesis pathways. Spearman's correlation analysis revealed a positive correlation between the abundances of Bilophila and ASF356 and serum amylase activity. Furthermore, the abundances of Bilophila and ASF356 were significantly correlated with BB-12-regulated pancreatic genes and were predominantly enriched in the ribosome pathway. In conclusion, BB-12 pretreatment alleviated AP, likely by regulating the abundance of intestinal Lactobacillus, Bilophila, and ASF356, as well as the pancreatic secretion, ascorbate and aldarate metabolism, oxidative phosphorylation, ribosome, and thermogenesis pathways.
Collapse
Affiliation(s)
- Bingbing Du
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yixin Zhu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Yini Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Longxian Lv
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
23
|
Wang J, Wang X, Jiang M, Lang T, Wan L, Dai J. 5-aminosalicylic acid alleviates colitis and protects intestinal barrier function by modulating gut microbiota in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3681-3695. [PMID: 39352537 DOI: 10.1007/s00210-024-03485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2024] [Indexed: 04/10/2025]
Abstract
5-aminosalicylic acid (5-ASA) is widely used in the treatment of ulcerative colitis (UC), but its anti-inflammatory mechanism is complex and has not been fully understood. DSS model was used to test the effect of 5-ASA. Tight junction and Ki-67 were detected by western blot, immunofluorescence, and immunohistochemistry or qPCR. 16S rRNA gene sequencing of gut microbiota and subsequent bioinformatics and statistical analysis were performed to identify the specific bacteria which were associated with the treatment effect of 5-ASA. GC-MS was performed to test short-chain fatty acids (SCFAs). Antibiotic-treated mice were used to demonstrate the key role of endogenous gut microbiota. Here, we found that 5-ASA alleviated dextran sulfate sodium (DSS)-induced colitis in mice. Moreover, 5-ASA significantly repaired the intestinal barrier. At the molecular level, 5-ASA markedly raised the expression of tight junction proteins including JAM-A and occludin and cell proliferation marker Ki-67 in mice. In addition, bacterial 16S rRNA gene sequencing and bioinformatics analysis showed that 5-ASA significantly modulated the DSS-induced gut bacterial dysbiosis. In detail, it stimulated the growth of protective bacteria belonging to Faecalibaculum and Dubosiella, which were negatively correlated with colitis parameters, and blocked the expansion of pro-inflammatory bacteria such as Escherichia-Shigella and Oscillibacter, which were positively correlated with colitis in mice. Meanwhile, 5-ASA increased the cecal acetate level. Most notably, 5-ASA was no longer able to treat colitis and reverse gut barrier dysfunction in antibiotic-treated mice that lacked endogenous gut microbiota. Our data suggested that the anti-inflammatory activity of 5-ASA required the inherent intestinal flora, and the gut microbiota was a potential and effective target for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China.
| |
Collapse
|
24
|
Parekh Z, Xiao J, Mani A, Evans Q, Phung C, Barba HA, Xie B, Sidebottom AM, Sundararajan A, Lin H, Ramaswamy R, Dao D, Gonnah R, Yehia M, Hariprasad SM, D'Souza M, Sulakhe D, Chang EB, Skondra D. Fecal Microbial Profiles and Short-Chain Fatty Acid/Bile Acid Metabolomics in Patients With Age-Related Macular Degeneration: A Pilot Study. Invest Ophthalmol Vis Sci 2025; 66:21. [PMID: 40202735 PMCID: PMC11993127 DOI: 10.1167/iovs.66.4.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Age-related macular degeneration (AMD) is a multifactorial disease, and studies have implicated the role of gut microbiota in its pathogenesis. However, characterization of microbiome dysbiosis and associated microbial-derived metabolomic profiles across AMD stages remains unknown. In this pilot study, we explored how gut microbiome composition and gut-derived metabolites differ in AMD. Methods Our pilot study analyzed fasted stool samples that were collected from 22 patients at a tertiary academic center. Subjects were classified as control, intermediate AMD, or advanced AMD based on clinical presentation. 16S rRNA amplicon sequencing and standard chromatography-mass spectrometry methods were used to identify bacterial taxonomy composition and abundance of short-chain fatty acids (SCFAs) and bile acids (BAs), respectively. Genetic testing was used to investigate the frequency of 14 high-risk single nucleotide polymorphisms (SNPs) associated with AMD in the AMD cohort. Results Forty-three differentially abundant genera were present among the control, intermediate, and advanced groups. Taxa with known roles in immunologic pathways, such as Desulfovibrionales (q = 0.10) and Terrisporobacter (q = 1.16e-03), were in greater abundance in advanced AMD patients compared to intermediate. Advanced AMD patients had decreased abundance of 12 SCFAs, including acetate (P = 0.002), butyrate (P = 0.04), and propionate (P = 0.01), along with 12 BAs, including taurocholic acid (P = 0.02) and tauroursodeoxycholic acid (P = 0.04). Frequencies of high-risk SNPs were not significantly different between the intermediate and advanced AMD groups. Conclusions This pilot study identifies distinct gut microbiome compositions and metabolomic profiles associated with AMD and its stages, providing preliminary evidence of a potential link between gut microbiota and AMD pathogenesis. To validate these findings and elucidate the underlying mechanisms, future research with larger cohorts and more comprehensive sampling is strongly recommended.
Collapse
Affiliation(s)
- Zaid Parekh
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jason Xiao
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Amir Mani
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Quadis Evans
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Christopher Phung
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Hugo A. Barba
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Bingqing Xie
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Anitha Sundararajan
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Huaiying Lin
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Reem Gonnah
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Madeleine Yehia
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Mark D'Souza
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dinanath Sulakhe
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Eugene B. Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
25
|
Dai S, Long J, Han W, Zhang L, Chen B. Alleviative effect of probiotics and prebiotics on dry eye in type 2 diabetic mice through the gut-eye axis. Ocul Surf 2025; 36:244-260. [PMID: 39922458 DOI: 10.1016/j.jtos.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Diabetes Mellitus (DM) is a metabolic disease that manifests as a state of "chronic low-grade inflammation". Patients with DM have a disorder of intestinal flora. There is a discernible correlation between this disorder of intestinal flora and the onset and progression of eye diseases, which offers novel insights into treating eye diseases through the modulation of intestinal flora. Here, we demonstrated that a high-fat diet and streptozotocin injection-induced intestinal microbiota dysbiosis can lead to dry eye-like manifestations in T2DM mice. Probiotic and prebiotic treatments not only alleviated intestinal inflammation and barrier disruption, but also mitigated damage to the lacrimal barrier and suppressed immune cell infiltration and inflammatory responses. Additional mechanism investigation found that probiotics and prebiotics inhibited the TLR4/NF-κB signaling pathway and its downstream pro-inflammatory products both in the lacrimal gland and colon. 16S RNA sequencing identified a reduction in the bacterial genera Akkermansia and Lactobacillus in the fecal samples of DM mice. By contrast, treatment with probiotics and prebiotics led to a reshaping of the intestinal microbial community and a reduction in bile acid metabolites, such as taurocholic acid and deoxycholic acid. Our current study demonstrates that probiotic and prebiotic treatments can ameliorate dry eye-like symptoms and associated pathological changes in T2DM mice. Moreover, we proved that a high-fat diet and STZ-induced microbiota dysbiosis were involved in diabetic dry eye through the gut-eye axis.
Collapse
Affiliation(s)
- Shirui Dai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Jianfeng Long
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Wentao Han
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Song Z, Qiao Z, Liu J, Han L, Chen X, Wang Y. Sea buckthorn berries alleviate ulcerative colitis via regulating gut Faecalibaculum rodentium-mediated butyrate biosynthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156490. [PMID: 40010029 DOI: 10.1016/j.phymed.2025.156490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The gut microbiota is firmly associated with the progression of ulcerative colitis (UC). Beneficial microbial metabolites, such as butyrate, exert vital roles in maintaining intestinal homeostasis. The Sea buckthorn berry is a traditional Chinese medicine homologous to food and medicine which is widely applied in the prevention and treatment of UC in clinic practice. Recent studies have exhibited the potential function of Sea buckthorn on regulating the gut microbiota, however, the mechanism underlying its anti-colitis effects and the key gut microbes mediating its efficacy are still unclear. PURPOSE This study is intended to explore the pharmacological mechanism of the efficacy of Sea buckthorn berries extract (SBE) in alleviating UC from the perspective of the gut microbial regulation. METHODS The effect of SBE on UC was evaluated on dextran sulfate sodium (DSS)-induced murine model by assessing the body weight change, colon length, disease activity index (DAI), histopathological staining and the transcriptional expression of genes associated with inflammation and mucosal integrity. The dependence of the gut microbiota in the therapeutical effects of SBE on UC was confirmed by pseudo-germ-free mice and the co-housing experiment. The differential gut microbes altered by SBE were discovered by 16S rRNA sequencing and qPCR. The levels of short chain fatty acids (SCFAs) in bacterial medium and colonic contents were determined by GC-MS/MS. Bacterial colonization was conducted to estimate the effects of the bacteria on UC and to verify the involvement of the functional bacteria in the efficacy of SBE. A butyrate receptor G protein-coupled receptor (GPR)109A antagonist mepenzolate bromide (MPN) was used to validate the important role of butyrate and GPR109A in the anti-colitis effects of SBE and functional bacteria on UC. Two-way ANOVA was employed for multiple curve comparison and One-way ANOVA and Brown-Forsythe ANOVA test were used for multiple group comparison. Statistical significance was defined as p< 0.05. RESULTS SBE treatment significantly alleviated DSS-induced UC and its therapeutical effects was impaired in pseudo-germ-free mice. Moreover, the co-housing experiment exhibited that SBE-altered microbiota could effectively ameliorate UC. Further research demonstrated that Faecalibaculum rodentium was obviously increased by SBE and could be transferable by co-housing. Moreover, butyrate, a product of F. rodentium, dramatically decreased in UC mice while could be recovered by SBE administration. Abolishment of F. rodentium using vancomycin deprived the efficacy of SBE, but this could be reversed by recolonization of F. rodentium. Finally, blockage of the butyrate's receptor GPR109A weakened the effects of F. rodentium, indicating the indispensability of butyrate and GPR109A in the anti-colitis effects of F. rodentium. CONCLUSION SBE has potent therapeutical efficacy on UC including relieving inflammation and enhancing intestinal epithelial integrity, which is mediated by the gut F. rodentium-regulated butyrate-GPR109A axis.
Collapse
Affiliation(s)
- Zhe Song
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, PR China.
| | - Zhou Qiao
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, PR China.
| | - Jia Liu
- The Animal Experimental Center, China Pharmaceutical University, Nanjing, PR China.
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, PR China.
| | - Xi Chen
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, PR China.
| | - Yun Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
27
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Su R, Wen W, Jin Y, Cao Z, Feng Z, Chen J, Lu Y, Zhou G, Dong C, Gao S, Li X, Zhang H, Chao K, Lan P, Wu X, Philips A, Li K, Gao X, Zhang F, Zuo T. Dietary whey protein protects against Crohn's disease by orchestrating cross-kingdom interaction between the gut phageome and bacteriome. Gut 2025:gutjnl-2024-334516. [PMID: 40122597 DOI: 10.1136/gutjnl-2024-334516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The gut microbiome and diet are important factors in the pathogenesis and management of Crohn's disease (CD). However, the role of the gut phageome under dietary influences is unknown. OBJECTIVE We aim to explore the effect of diet on the gut phageome-bacteriome interaction linking to CD protection. DESIGN We recruited CD patients and healthy subjects (n=140) and conducted a multiomics investigation, including paired ileal mucosa phageome and bacteriome profiling, dietary survey and phenome interrogation. We screened for the effect of diet on the gut phageome and bacteriome, as well as its epidemiological association with CD risks. The underlying mechanisms were explored in target phage-bacteria monocultures and cocultures in vitro and in two mouse models in vivo. RESULTS On dietary screening in humans, whey protein (WP) consumption was found to profoundly impact the gut phageome and bacteriome (more pronounced on the phageome) and was associated with a lower CD risk. Indeed, the WP reshaped gut phageome can causally attenuate intestinal inflammation, as shown by faecal phageome versus bacteriome transplantation from WP-consuming versus WP-non-consuming mice to recipient mice. Mechanistically, WP induced phage (a newly isolated phage AkkZT003P herein) lysis of the mucin-foraging bacterium Akkermansia muciniphila, which unleashed the symbiotic bacterium Streptococcus thermophilus to counteract intestinal inflammation. CONCLUSION Our study charted the importance of cross-kingdom interaction between gut phage and bacteria in mediating the dietary effect on CD protection. Importantly, we uncovered a beneficial dietary WP, a keystone phage AkkZT003P, and a probiotic S. thermophilus that can be used in CD management in the future.
Collapse
Affiliation(s)
- Runping Su
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijie Wen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Jin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyang Feng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Lu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University College of Life Science and Technology, Guangzhou, Guangdong, China
| | - Chao Dong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shanshan Gao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anna Philips
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiang Gao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University College of Life Science and Technology, Guangzhou, Guangdong, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Paßlack N, Büttner K, Vahjen W, Zentek J. Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats. Metabolites 2025; 15:215. [PMID: 40278344 PMCID: PMC12028789 DOI: 10.3390/metabo15040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The dietary fat supply might interact with the intestinal microbiota via different mechanisms. Research on this topic, however, remains scarce in cats. For this reason, the present study was conducted to evaluate the impact of the fat concentration and fatty acid profile in the diet on the fecal microbiota of healthy cats. METHODS A low-fat basal diet was fed to ten healthy adult cats. The diet was offered without or with the daily addition of 0.5 g or 1 g of sunflower oil, fish oil or lard per kg body weight of the cats, using a randomized cross-over design. Each feeding period lasted for 21 days, and the fecal samples were collected on the last days of each period. The fecal microbiota was analyzed by 16S rDNA sequencing. Additionally, microbial metabolites (short-chain fatty acids, lactate, ammonium, biogenic amines) were measured in the fecal samples. RESULTS The dietary treatment had no impact on the alpha-diversity of the fecal microbiota or on the relative abundance of bacterial phyla in the samples. Only a few changes were observed in the relative abundance of bacterial genera and the concentrations of microbial metabolites in the feces, probably being of minor physiological relevance. CONCLUSIONS The balanced intestinal microbiota of cats seems to be relatively resistant to moderate variations in the dietary fat supply over a short feeding period. Longer-term treatments and higher dietary fat levels should be evaluated in future studies to further clarify the relevance of fat intake for the feline gut microbiome.
Collapse
Affiliation(s)
- Nadine Paßlack
- Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Kathrin Büttner
- Unit for Biomathematics and Data Processing, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany; (W.V.); (J.Z.)
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany; (W.V.); (J.Z.)
| |
Collapse
|
30
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
31
|
Li F, Armet AM, Korpela K, Liu J, Quevedo RM, Asnicar F, Seethaler B, Rusnak TBS, Cole JL, Zhang Z, Zhao S, Wang X, Gagnon A, Deehan EC, Mota JF, Bakal JA, Greiner R, Knights D, Segata N, Bischoff SC, Mereu L, Haqq AM, Field CJ, Li L, Prado CM, Walter J. Cardiometabolic benefits of a non-industrialized-type diet are linked to gut microbiome modulation. Cell 2025; 188:1226-1247.e18. [PMID: 39855197 DOI: 10.1016/j.cell.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Industrialization adversely affects the gut microbiome and predisposes individuals to chronic non-communicable diseases. We tested a microbiome restoration strategy comprising a diet that recapitulated key characteristics of non-industrialized dietary patterns (restore diet) and a bacterium rarely found in industrialized microbiomes (Limosilactobacillus reuteri) in a randomized controlled feeding trial in healthy Canadian adults. The restore diet, despite reducing gut microbiome diversity, enhanced the persistence of L. reuteri strain from rural Papua New Guinea (PB-W1) and redressed several microbiome features altered by industrialization. The diet also beneficially altered microbiota-derived plasma metabolites implicated in the etiology of chronic non-communicable diseases. Considerable cardiometabolic benefits were observed independently of L. reuteri administration, several of which could be accurately predicted by baseline and diet-responsive microbiome features. The findings suggest that a dietary intervention targeted toward restoring the gut microbiome can improve host-microbiome interactions that likely underpin chronic pathologies, which can guide dietary recommendations and the development of therapeutic and nutritional strategies.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Anissa M Armet
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Katri Korpela
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Uusimaa, Finland
| | - Junhong Liu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rodrigo Margain Quevedo
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Tianna B S Rusnak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Janis L Cole
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zhihong Zhang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Shuang Zhao
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Xiaohang Wang
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Adele Gagnon
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edward C Deehan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - João F Mota
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; Faculty of Nutrition, Federal University of Goiás, Goiânia, Goiás 74605-080, Brazil
| | - Jeffrey A Bakal
- Division of General Internal Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Machine Intelligence Institute, Edmonton, AB T5J 3B1, Canada
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Laurie Mereu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Carla M Prado
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Medicine, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
32
|
Mason B, Sahoo DK, Iennarella‐Servantez CA, Kathrani A, Morgan SM, Bourgois‐Mochel A, Bray AM, Gabriel V, Zdyrski C, Groeltz JM, Cassmann E, Ackermann MR, Suchodolski JS, Mochel JP, Allenspach K, Jergens AE. Effects of a Western Diet on Colonic Dysbiosis, Bile Acid Dysmetabolism and Intestinal Inflammation in Clinically Healthy Dogs. J Vet Intern Med 2025; 39:e70035. [PMID: 40110597 PMCID: PMC11923555 DOI: 10.1111/jvim.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Consumption of a high-fat, high-carbohydrate Western-style diet (WD) associated with obesity and inflammation in humans has not been investigated in dogs. AIMS To determine the effects of WD on inflammatory indices, microbiome, and fecal bile acids (BAs) in dogs. ANIMALS Ten adult clinically healthy dogs. METHODS A dietary trial compared the effects of two home-prepared diets: a high-fiber, low-fat control diet (CD) to a diet containing the macronutrient composition of WD (low-fiber, high fat). Dietary treatments were given sequentially for three feeding periods, each lasting 1 month. Outcome measures included molecular/microbiologic testing of colonic biopsies, histopathology, inflammatory biomarkers, and quantification of fecal BA following each feeding period. RESULTS Cell markers of apoptosis (TUNEL-positive cells: CD1, 0.36% ± 0.2%; WD, 0.79% ± 0.5%; CD2, 0.42% ± 0.3%; 95% CI) and inflammation (NF-ĸB area: CD1, 8.09% ± 3.3%; WD, 11.58% ± 3.4%; CD2 7.25% ± 3.8%; 95% CI), as well as serum high-sensitivity C-reactive protein (CD1, 2.0 ± 0.4 ng/mL; WD, 2.76 ± 0.23 ng/mL; CD2, 2.29 ± 0.25 ng/mL; 95% CI), were increased (p < 0.05) in dogs fed WD versus CD. Other perturbations seen with WD ingestion included altered (p < 0.05) colonic mucosal bacteria (bacterial counts: CD1, 301.5 ± 188.5; WD, 769.8 ± 431.9; CD2, 542.1 ± 273.9; 95% CI) and increased (p < 0.05) fecal cholic acid (median and interquartile range/IQR: CD1, 9505 [2384-33 788] peak heights; WD, 34 131 [10 113-175 909] peak heights) and serum myeloperoxidase (CD1, 46.98 ± 16.6 ng/mL; WD, 82.93 ± 33.6 ng/mL; CD2, 63.52 ± 29.5 ng/mL; 95% CI). CONCLUSIONS AND CLINICAL IMPORTANCE WD fed to clinically healthy dogs promotes colonic dysbiosis, altered fecal BA, and low-grade inflammation independent of obesity.
Collapse
Affiliation(s)
- Brandon Mason
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | | | - Aarti Kathrani
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHertfordshireUK
| | - Shannon M. Morgan
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Agnes Bourgois‐Mochel
- Department of Pathology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Alex M. Bray
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Christopher Zdyrski
- Department of Biomedical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Jennifer M. Groeltz
- Department of Biomedical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | | | | | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Jonathan P. Mochel
- Department of Pathology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Karin Allenspach
- Department of Pathology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
33
|
Wolf PG, Welsh C, Binion B, Dai H, Oliveira ML, Hamm A, Goldberg S, Buobu PS, Schering T, Vergis S, Kessee N, Gomez SL, Yazici C, Maienschein-Cline M, Byrd DA, Gaskins HR, Ridlon JM, Mutlu E, Greening C, Tussing-Humphreys L. Secondary Bile Acid Derivatives Are Contributors to the Fecal Bile Acid Pool and Associated With Bile Acid-Modulating Nutrients. J Nutr 2025; 155:826-838. [PMID: 39805403 PMCID: PMC11934243 DOI: 10.1016/j.tjnut.2024.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Accumulation of hydrophobic bile acids (BAs) is linked with cancer development. However, derivatives of deoxycholic acid (DCA) and lithocholic acid (LCA) produced via bacterial metabolism may mitigate the proinflammatory and cytotoxic effects of hydrophobic BAs. The impact of diet on secondary BA derivative production has not been determined. OBJECTIVES This study aimed to study the associations between BA-modulating nutrients and the composition of secondary BAs and their derivatives. METHODS Stool and blood were collected from 138 participants aged 45-75 y that self-identified as Black or non-Hispanic White. BAs were extracted from stool and serum and quantified using LC/ESI-MS/MS. Energy, macronutrients, micronutrients, and specific dietary nutrients were estimated from two 24-h diet recalls. The abundance of genes for microbial BA metabolism was assessed from stool metagenomes. Kendall τ correlation and regression-based modeling were performed to determine associations between BA categories, microbial genes, and select energy-adjusted dietary variables (alcohol, calcium, coffee, fiber, fat, and protein). RESULTS Participants had a mean age of 60 y and a mean BMI of 31 kg/m2. BA derivatives were present in all participant stools, with lagodeoxycholic acid being the most abundant derivative quantified. Analysis of stool microbial metagenomes revealed the presence of genes for secondary BA derivative production in all participants. Protein is positively associated with the accumulation of secondary BAs. monounsaturated fatty acids (MUFA)s were negatively associated with high abundant derivatives of DCA in regression models. Total fiber and coffee intake were positively correlated with increased conversion of BAs to derivatives. Race and smoking status were significant predictors of associations between dietary variables and BA derivatives. CONCLUSION Protein, MUFAs, total fiber and coffee are significantly associated with concentrations of secondary BAs and their derivatives. Future work should account for social and structural influences on dietary intake and its relationship with BA-elicited cancer risk.
Collapse
Affiliation(s)
- Patricia G Wolf
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Institute for Cancer Research, Purdue University, West Lafayette, IN, United States.
| | - Caitlin Welsh
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Briawna Binion
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Hanchu Dai
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Alyshia Hamm
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Sarah Goldberg
- Department of Clinical Nutrition, Rush University, Chicago, IL, United States
| | - Pius Sarfo Buobu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Teresa Schering
- University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Sevasti Vergis
- University of Illinois Cancer Center, Chicago, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nicollette Kessee
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| | - Sandra L Gomez
- Department of Clinical Nutrition, Rush University, Chicago, IL, United States
| | - Cemal Yazici
- Department of Medicine, University of Illinois Chicago, Chicago, IL
| | | | - Doratha A Byrd
- Department of Cancer Epidemiology, Division of Population Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Ece Mutlu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States.
| |
Collapse
|
34
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
35
|
Mak JWY, Lo ATW, Ng SC. Early life factors, diet and microbiome, and risk of inflammatory bowel disease. J Can Assoc Gastroenterol 2025; 8:S44-S50. [PMID: 39990509 PMCID: PMC11842909 DOI: 10.1093/jcag/gwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), result from a loss of immune tolerance to gut microbiota, leading to inflammation. Their incidence is increasing, especially in newly industrialized countries. The etiology is multifactorial, involving genetic, immune, microbiota, and environmental factors. Maternal microbiome changes during pregnancy can elevate IBD risk in offspring, influenced by diet, smoking, and antibiotic exposure. Early life microbiota manipulation shows promise for preventing IBD. Epidemiological and pre-clinical studies highlight diet's significant role in IBD development. High-inflammatory dietary patterns correlate with increased CD risk, while Mediterranean-like diets promote beneficial gut microbiome changes and reduce inflammation. Certain food additives, such as emulsifiers and artificial sweeteners, may exacerbate IBD by altering gut microbiota. A systematic review indicates that higher ultra-processed food consumption significantly increases CD risk. Lifestyle modifications, including healthy dietary adherence, could substantially reduce IBD risk, with studies showing that favorable choices can halve the risk in genetically predisposed individuals. Additionally, maternal diet impacts offspring IBD risk, as seen in mouse models where high-fat diets led to increased inflammation. Evidence suggests that maternal probiotics and specific dietary patterns may mitigate these risks. Overall, these findings emphasize the potential for dietary interventions to modulate gut microbiota and immune responses, offering promising avenues for IBD prevention and management. Further large-scale studies are needed to explore the impact of dietary strategies on IBD risk and gut health.
Collapse
Affiliation(s)
- Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Aaron Tsz Wang Lo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Microbiota I-Center (MagIC), Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
36
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
37
|
Saigal K, Salama JE, Pardo AA, Lopez SE, Gregori NZ. Modifiable Lifestyle Risk Factors and Strategies for Slowing the Progression of Age-Related Macular Degeneration. Vision (Basel) 2025; 9:16. [PMID: 40137928 PMCID: PMC11946629 DOI: 10.3390/vision9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disorder influenced by genetic, lifestyle, nutritional, and systemic health factors that contribute to increased oxidative stress and chronic inflammation in the retina. This article reviews the recent literature on modifiable lifestyle risk factors for the development and progression of AMD. Smoking (current and former), physical inactivity, prolonged sunlight exposure, as well as conditions such as diabetes, hypertension, cardiovascular disease, and obesity have all been associated with an increased risk of early AMD and its progression. The Age-Related Eye Disease Studies (AREDS and AREDS2) have shown that a specific combination of vitamins E and C, zinc, copper, lutein, and zeaxanthin can significantly reduce the risk of AMD progressing from dry to wet form. Additionally, adherence to a Mediterranean diet, rich in vegetables, fruits, legumes, whole grains, and nuts, has been linked to a lower risk of both early and late AMD. Emerging evidence suggests that these benefits may be influenced by the gut microbiota, as well as genetic and epigenetic factors. Further research into the interactions between these risk factors could pave the way for targeted therapies aimed at preventing or slowing AMD progression.
Collapse
Affiliation(s)
- Khushi Saigal
- College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA;
| | - Joshua E. Salama
- Division of Internal Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Alfredo A. Pardo
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Works, Florida International University, Miami, FL 33174, USA;
| | | | - Ninel Z. Gregori
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA;
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Suthisintong T, Changklungmoa N, Kueakhai P. Microbial effects of cold-pressed Sacha inchi oil supplementation in rats. PLoS One 2025; 20:e0319066. [PMID: 39977445 PMCID: PMC11841868 DOI: 10.1371/journal.pone.0319066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Oil supplements have various benefits for metabolism, particularly Sacha inchi oil (SI), which is rich in polyunsaturated fatty acids (PUFAs) such as ω-3 and fat-soluble vitamins. However, the impacts of oil supplements on gut health remain unclear. The aim of this study was to compare the effects of an SI supplement with those of lard oil (LO), known for its high saturated fatty acid content, and a normal diet on gut health in male Sprague Dawley rats for 12 consecutive weeks. Fecal DNA was used to assess gut microbiota diversity and species abundance, diversity, and function prediction. Colon tissue from each rat was examined for colon crypt depth and histology. Rats administered the LO supplement exhibited higher dysbiosis than those administered the SI supplement, with the LO supplement influencing the relative abundance of various bacteria at the genus level. A KEGG analysis was conducted to examine the effects on metabolic pathways, revealing that the SI supplement promoted carbohydrate metabolism while reducing immune system activity. In contrast, the LO supplement increased replication, repair, and translation activities. A histological analysis of the colon tissues showed no significant alterations in crypt depth or lesions in all groups, indicating that neither supplement induced adverse structural changes in the gut. The results of this study suggest that SI supplementation modulates the gut microbiota, thereby enhancing gut health and metabolic function.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Thitikul Suthisintong
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit and Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
39
|
Wang X, Han L, Jiang J, Fan Z, Hua Y, He L, Li Y. Alterations in bile acid metabolites associated with pathogenicity and IVIG resistance in Kawasaki disease. Front Cardiovasc Med 2025; 12:1549900. [PMID: 40051431 PMCID: PMC11882569 DOI: 10.3389/fcvm.2025.1549900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Background Kawasaki disease (KD) primarily affects children as an acute systemic vasculitis. Numerous studies indicated an elevated risk of cardiovascular disease due to metabolic disturbances. Despite this knowledge, the specific metabolic modes involved in KD remain unclear. Methods We examined the metabolome of individuals with 108 KD and 52 non-KD controls (KD vs. nKD) by ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS). Results Differential analysis uncovered the disturbed production of bile acids and lipids in KD. Furthermore, we investigated the impact of treatment, intravenous immunoglobulin (IVIG) resistance, and coronary artery (CA) occurrence on the metabolome. Our findings suggested that IVIG treatment alters the lipid and amino acid metabolism of KD patients. By orthogonal projections to latent structures discriminant analysis (OPLS-DA), there was no significant difference between the coronary injury groups and non-coronary injury groups, and IVIG resistance didn't appear to cause the metabolic change in KD patients. Conclusions Patients with KD exhibit metabolic abnormalities, particularly in bile acids and lipids. IVIG interventions may partially ameliorate these lipid abnormalities.
Collapse
Affiliation(s)
- Xinqi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Linli Han
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
41
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
42
|
Enache RM, Roşu OA, Profir M, Pavelescu LA, Creţoiu SM, Gaspar BS. Correlations Between Gut Microbiota Composition, Medical Nutrition Therapy, and Insulin Resistance in Pregnancy-A Narrative Review. Int J Mol Sci 2025; 26:1372. [PMID: 39941139 PMCID: PMC11818759 DOI: 10.3390/ijms26031372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Many physiological changes accompany pregnancy, most of them involving metabolic perturbations. Alterations in microbiota composition occur both before and during pregnancy and have recently been correlated with an important role in the development of metabolic complications, such as insulin resistance and gestational diabetes mellitus (GDM). These changes may be influenced by physiological adaptations to pregnancy itself, as well as by dietary modifications during gestation. Medical nutritional therapy (MNT) applied to pregnant women at risk stands out as one of the most important factors in increasing the microbiota's diversity at both the species and genus levels. In this review, we discuss the physiological changes during pregnancy and their impact on the composition of the intestinal microbiota, which may contribute to GDM. We also discuss findings from previous studies regarding the effectiveness of MNT in reducing insulin resistance. In the future, additional studies should aim to identify specific gut microbial profiles that serve as early indicators of insulin resistance during gestation. Early diagnosis, achievable through stool analysis or metabolite profiling, may facilitate the timely implementation of dietary or pharmaceutical modifications, thereby mitigating the development of insulin resistance and its associated sequelae.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (O.A.R.); (M.P.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (O.A.R.); (M.P.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (O.A.R.); (M.P.); (L.A.P.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (O.A.R.); (M.P.); (L.A.P.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
43
|
Si W, Zhao X, Li R, Li Y, Ma C, Zhao X, Bugno J, Qin Y, Zhang J, Liu H, Wang L. Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice. J Clin Invest 2025; 135:e174910. [PMID: 39895628 PMCID: PMC11785918 DOI: 10.1172/jci174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Preclinical and clinical observations indicate that the probiotic Lactobacillus rhamnosus GG (LGG) can modulate colonic inflammation. However, the underlying mechanisms have not been explored in depth. Here, we demonstrate that oral administration of live LGG alleviated inflammatory colitis by increasing IL-10 expression in intestinal Ly6C+ monocytes. Mechanistically, LGG induced IL-10 production via the stimulator of IFN genes (STING)/TBK1/NF-κB (RELA) signaling pathway in intestinal Ly6C+ monocytes, enhancing their immune-suppressive function. Elevated IL-10 subsequently activated IL-10 signaling in Ly6C+ monocytes, resulting in an IL-10-based autocrine regulatory loop and inhibition of proinflammatory cytokine production. Furthermore, LGG shifted the gut microbial community and its metabolic functions, leading to intestinal immune responses against colitis. Fecal microbiota transplantation from LGG-colonized mice alleviated immune checkpoint blockade-associated colitis. Our findings highlight the importance of STING signaling in IL-10-dependent antiinflammatory immunity and establish an empirical basis for developing oral administration of live LGG as an efficient and safe therapeutic strategy against inflammatory colitis.
Collapse
Affiliation(s)
- Wei Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Ruitong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaopeng Li
- Pritzker School of Molecular Engineering and
| | - Cui Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohan Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Liu
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liangliang Wang
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Aqeel A, Kay MC, Zeng J, Petrone BL, Yang C, Truong T, Brown CB, Jiang S, Carrion VM, Bryant S, Kirtley MC, Neshteruk CD, Armstrong SC, David LA. Grocery intervention and DNA-based assessment to improve diet quality in pediatric obesity: a pilot randomized controlled study. Obesity (Silver Spring) 2025; 33:331-345. [PMID: 39843249 PMCID: PMC11977789 DOI: 10.1002/oby.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE We assessed the impact of a food-provisioning intervention on diet quality in children with obesity. METHODS Participants (n = 33, aged 6-11 years) were randomly assigned to either usual care (intensive health behavior and lifestyle treatment) or intervention (usual care + food provisioning; high-fiber, low-dairy diet) for 4 weeks. The primary outcome was a change in child diet quality at Week 4. Secondary outcomes were changes in weight, food insecurity, gut microbiome composition (16S ribosomal RNA), and dietary intake, measured via an objective DNA-based biomarker (i.e., FoodSeq). Genomic dietary data were analyzed against a larger pediatric adolescent obesity cohort (n = 195, aged 10-18 years) from similar households. RESULTS Intervention demonstrated changes across all assessed diet components and was more effective than usual care in increasing whole grain (β = 0.20, 95% CI: 0.05 to 0.34; p = 0.013) and fiber (β = 2.52, 95% CI: 1.28 to 3.76; p < 0.001) and decreasing dairy (β = -1.31, 95% CI: -2.02 to -0.60; p = 0.001). FoodSeq results, highly concordant with grocery orders (adjusted R2 = 0.65; p < 0.001), indicated a dietary shift toward low-energy-density plant taxa in the intervention relative to a prior survey of diet in a related cohort (β = 8.64, 95% CI: 5.18 to 12.14; p < 0.001). No significant changes were observed in microbiome, weight, or food insecurity. CONCLUSIONS Our study supports the potential of dietitian-guided food provisioning for improving diet quality in children with obesity and demonstrates an objective genomic approach for evaluating dietary shifts.
Collapse
Affiliation(s)
- Ammara Aqeel
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa C Kay
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jun Zeng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brianna L Petrone
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chengxin Yang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tracy Truong
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Childhood Obesity Research, Duke University School of Medicine, Durham, North Carolina, USA
| | - Covington B Brown
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Veronica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie Bryant
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michelle C Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cody D Neshteruk
- Duke Center for Childhood Obesity Research, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah C Armstrong
- Duke Center for Childhood Obesity Research, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Microbiome Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
45
|
Qiang X, Wang X, Liang S, Li S, Lv Y, Zhan J. Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids. Food Res Int 2025; 201:115543. [PMID: 39849698 DOI: 10.1016/j.foodres.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks. No significant changes were observed at 12 weeks, but CML exposure significantly increased intestinal permeability at 14 and 16 weeks, accompanied by elevated serum LPS levels, colonic histological damage, and reduced tight junction protein expression at 16 weeks. CML exposure also altered gut microbiota composition and intestinal bile acid (BA) profiles, specifically reducing TDCA, GDCA, and GCDCA levels. Given the important role of colonic BA receptor signaling in maintaining the intestinal barrier integrity, the impact of CML on BA receptor signaling was assessed. CML exposure significantly downregulated BA receptor TGR5-YAP signaling in mice, while no significant effects were observed in vitro, suggesting that the changes observed in TGR5-YAP signaling in vivo may not result from the direct effects of CML. Spearman's correlation analysis revealed strong associations between altered gut microbiota, BA levels, TGR5-YAP signaling, and intestinal barrier injury. This study highlighted the chronic health risks of long-term CML intake and provided new insights into the links between CML-induced intestinal toxicity, gut microbiota, BA profiles, and BA receptor signaling.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shaogang Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
46
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
47
|
Carter MM, Zeng X, Ward CP, Landry M, Perelman D, Hennings T, Meng X, Weakley AM, Cabrera AV, Robinson JL, Nguyen T, Higginbottom S, Maecker HT, Sonnenburg ED, Fischbach MA, Gardner CD, Sonnenburg JL. A gut pathobiont regulates circulating glycine and host metabolism in a twin study comparing vegan and omnivorous diets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320192. [PMID: 39830242 PMCID: PMC11741504 DOI: 10.1101/2025.01.08.25320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Metabolic diseases including type 2 diabetes and obesity pose a significant global health burden. Plant-based diets, including vegan diets, are linked to favorable metabolic outcomes, yet the underlying mechanisms remain unclear. In a randomized trial involving 21 pairs of identical twins, we investigated the effects of vegan and omnivorous diets on the host metabolome, immune system, and gut microbiome. Vegan diets induced significant shifts in serum and stool metabolomes, cytokine profiles, and gut microbial composition. Despite lower dietary glycine intake, vegan diet subjects exhibited elevated serum glycine levels linked to reduced abundance of the gut pathobiont Bilophila wadsworthia. Functional studies demonstrated that B. wadsworthia metabolizes glycine via the glycine reductase pathway and modulates host glycine availability. Removing B. wadsworthia from a complex microbiota in mice elevated glycine levels and improved metabolic markers. These findings reveal a previously underappreciated mechanism by which diet regulates host metabolic status via the gut microbiota.
Collapse
Affiliation(s)
- Matthew M. Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine P. Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Matthew Landry
- Department of Population Health and Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, Irvine, CA, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tayler Hennings
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Xiandong Meng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Allison M. Weakley
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashley V. Cabrera
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tran Nguyen
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A. Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
Caprara G, Pallavi R, Sanyal S, Pelicci PG. Dietary Restrictions and Cancer Prevention: State of the Art. Nutrients 2025; 17:503. [PMID: 39940361 PMCID: PMC11820753 DOI: 10.3390/nu17030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Worldwide, almost 10 million cancer deaths occurred in 2022, a number that is expected to rise to 16.3 million by 2040. Primary prevention has long been acknowledged as a crucial approach to reducing cancer incidence. In fact, between 30 and 50 percent of all tumors are known to be preventable by eating a healthy diet, staying active, avoiding alcohol, smoking, and being overweight. Accordingly, many international organizations have created tumor prevention guidelines, which underlie the importance of following a diet that emphasizes eating plant-based foods while minimizing the consumption of red/processed meat, sugars, processed foods, and alcohol. However, further research is needed to define the relationship between the effect of specific diets or nutritional components on cancer prevention. Interestingly, reductions in food intake and dietetic restrictions can extend the lifespan of yeast, nematodes, flies, and rodents. Despite controversial results in humans, those approaches have the potential to ameliorate health via direct and indirect effects on specific signaling pathways involved in cancer onset. Here, we describe the latest knowledge on the cancer-preventive potential of dietary restrictions and the biochemical processes involved. Molecular, preclinical, and clinical studies evaluating the effects of different fasting strategies will also be reviewed.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Shalini Sanyal
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| |
Collapse
|
49
|
Gray SM, Wood MC, Mulkeen SC, Ahmed S, Thaker SD, Chen B, Sander WR, Bibeva V, Zhang X, Yang J, Herzog JW, Zhang S, Dogan B, Simpson KW, Balfour Sartor R, Montrose DC. Dietary protein source mediates colitis pathogenesis through bacterial modulation of bile acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634824. [PMID: 39896483 PMCID: PMC11785241 DOI: 10.1101/2025.01.24.634824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Evidence-based dietary recommendations for individuals with inflammatory bowel diseases (IBD) are limited. Red meat consumption is associated with increased IBD incidence and relapse in patients, suggesting that switching to a plant-based diet may limit gut inflammation. However, the mechanisms underlying the differential effects of these diets remain poorly understood. Feeding diets containing plant- or animal-derived proteins to murine colitis models revealed that mice given a beef protein (BP) diet exhibited the most severe colitis, while mice fed pea protein (PP) developed mild inflammation. The colitis-promoting effects of BP were microbially-mediated as determined by bacterial elimination or depletion and microbiota transplant studies. In the absence of colitis, BP-feeding reduced abundance of Lactobacillus johnsonii and Turicibacter sanguinis and expanded Akkermansia muciniphila, which localized to the mucus in association with decreased mucus thickness and quality. BP-fed mice had elevated primary and conjugated fecal bile acids (BAs), and taurocholic acid administration to PP-fed mice worsened colitis. Dietary psyllium protected against BP-mediated inflammation, restored BA-modulating commensals and normalized BA ratios. Collectively, these data suggest that the protein component of red meat may be responsible, in part, for the colitis-promoting effects of this food source and provide insight into dietary factors that may influence IBD severity.
Collapse
Affiliation(s)
- Simon M. Gray
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Michael C. Wood
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Samantha C. Mulkeen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Sunjida Ahmed
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Shrey D. Thaker
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Bo Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - William R. Sander
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Vladimira Bibeva
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Xiaoyue Zhang
- Biostatistical Consulting Core, Renaissance School of Medicine, Stony Brook University
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY
| | - Jeremy W. Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Shiying Zhang
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | | | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
- National Gnotobiotic Rodent Resource Center, University of North Carolina, Chapel Hill, NC
| | - David C. Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
- Stony Brook Cancer Center, Stony Brook, NY
| |
Collapse
|
50
|
Ahmad F, Ahmed SH, Choucair F, Chouliaras S, Awwad J, Terranegra A. A disturbed communication between hypothalamic-pituitary-ovary axis and gut microbiota in female infertility: is diet to blame? J Transl Med 2025; 23:92. [PMID: 39838491 PMCID: PMC11749209 DOI: 10.1186/s12967-025-06117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Female infertility is a multifactorial condition influenced by various genetic, environmental, and lifestyle factors. Recent research has investigated the significant impact of gut microbiome dysbiosis on systemic inflammation, metabolic dysfunction, and hormonal imbalances, which can potentially impair fertility. The gut-brain axis, a bidirectional communication system between the gut and the brain, also plays a significant role in regulating reproductive functions. Emerging evidence suggests that the gut microbiome can influence brain functions and behavior, further emphasizing the importance of the microbiota-gut-brain axis in reproduction. Given their role as a major modulator of the gut microbiome, diet and dietary factors, including dietary patterns and nutrient intake, have been implicated in the development and management of female infertility. Hence, this review aims to highlight the impact of dietary patterns, such as the Western diet (WD) and Mediterranean diet (MD), and to decipher their modulatory action on the microbiota-gut-brain axis in infertile women. By contrasting the detrimental effects of WD with the therapeutic potential of MD, we emphasize the pivotal role of a balanced diet rich in nutrients in promoting a healthy gut microbiome. These insights underscore the potential of targeted dietary interventions and lifestyle modifications as promising strategies to enhance reproductive outcomes in subfertile women.
Collapse
Affiliation(s)
- Fatima Ahmad
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Salma H Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Fadi Choucair
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Spyridon Chouliaras
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Ar-Rayyan, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Boston, MA, USA
| | - Annalisa Terranegra
- Translational Medicine Department, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.
| |
Collapse
|