1
|
Shi J, He C, Chen L, Xing X, Wei W, Zhang J. Targeting PD-1 post-translational modifications for improving cancer immunotherapy. CELL INSIGHT 2025; 4:100248. [PMID: 40336591 PMCID: PMC12056969 DOI: 10.1016/j.cellin.2025.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Programmed cell death protein 1 (PD-1) is a critical immune checkpoint receptor that suppresses immune responses largely through its interaction with PD-L1. Tumors exploit this mechanism to evade immune surveillance, positioning immune checkpoint inhibitors targeting the PD-1/PD-L1 axis as groundbreaking advancements in cancer therapy. However, the overall effectiveness of these therapies is often constrained by an incomplete understanding of the underlying mechanisms. Recent research has uncovered the pivotal role of various post-translational modifications (PTMs) of PD-1, including ubiquitination, UFMylation, phosphorylation, palmitoylation, and glycosylation, in regulating its protein stability, localization, and protein-protein interactions. As much, dysregulation of these PTMs can drive PD-1-mediated immune evasion and contribute to therapeutic resistance. Notably, targeting PD-1 PTMs with small-molecule inhibitors or monoclonal antibodies (MAbs) has shown potential to bolster anti-tumor immunity in both pre-clinical mouse models and clinical trials. This review highlights recent findings on PD-1's PTMs and explores emerging therapeutic strategies aimed at modulating these modifications. By integrating these mechanistic insights, the development of combination cancer immunotherapies can be further rationally advanced, offering new avenues for more effective and durable treatments.
Collapse
Affiliation(s)
- Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
2
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Sun Y, Wang H, Cui Z, Yu T, Song Y, Gao H, Tang R, Wang X, Li B, Li W, Wang Z. Lactylation in cancer progression and drug resistance. Drug Resist Updat 2025; 81:101248. [PMID: 40287994 DOI: 10.1016/j.drup.2025.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Lactate plays a crucial role as an energy substrate, metabolite, and signaling molecule in cancer. Lactate has long been considered a byproduct of glycolysis. Still, the lactate shuttle hypothesis has changed the lactate paradigm, revealing the implications of lactate in cellular metabolism and cellular communications that can transcend the compartment barrier and occur within and between different cells, tissues, and organs. Due to the Warburg effect, the tumor produces a large amount of lactate, thus creating a low-nutrition, hypoxic, and low-pH tumor microenvironment (TME). Consequently, immunosuppressive networks are built to acquire immune evasion potential and regulate tumor growth. Lactylation is a newly discovered post-translational modification of lysine residues with the capacity for transcriptional regulation via histone modification and modulation of non-histone protein functions, which links gene regulation to cellular metabolism by aberrant metabolism activity and epigenetic modification. There is growing evidence that lactylation plays a crucial role in cancer progression and drug resistance. Targeting lactylation enzymes or metabolic pathways has shown promising effects in suppressing cancer progression and drug resistance, highlighting the therapeutic potential of this modification. Therefore, in this review, we offer a systematic overview of lactate homeostasis in physiological and pathological processes as well as discuss the influence of lactylation in cancer progression and drug resistance and underlying molecular mechanisms, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Yuxiu Sun
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - He Wang
- Department of Breast Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhe Cui
- Laboratory Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Tingting Yu
- Department of Gynecology Surgery 4, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yuanming Song
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Haolai Gao
- First Clinical College, Liaoning University of Traditional Chinese Medicine Affiliated Hospital, Liaoning Provincial Traditional Chinese Medicine Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Ruihong Tang
- Medical Equipment Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Xinlei Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Binru Li
- Department of Thoracic Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Wenxin Li
- Second Ward of Hepatobiliary and Pancreatic Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
4
|
Wang Y, Wang Z, Liu M, Chen C, Xi Q, Tang J, Yu Z, Wang S, Yu L, Yu M. Nutrient transporter-oriented nanoinhibitor counteracts intracellular metabolic reprogramming for RT-resistant HCC treatment. Mater Today Bio 2025; 31:101608. [PMID: 40104639 PMCID: PMC11914751 DOI: 10.1016/j.mtbio.2025.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Radiotherapy (RT) is the primary treatment modality for hepatocellular carcinoma (HCC). Inevitably, the X-ray exposure also increases the metabolic stress and energy demands in surviving tumor cells, which leads to metabolic reprogramming that reduces the sensitivity of HCC to clinical treatments including RT. Nevertheless, the current research in tumor metabolic therapy predominantly focuses on inhibiting glycolytic pathways, and the consequent metabolic compensation behavior of tumor cells exacerbates the risks of drug resistance and recurrence. To address this challenge, we innovatively proposed a tumor-specific multi-metabolic pathway regulation strategy navigated by tumor cell surface nutrient transporter (2-DG/BP MRs), which can be triggered by X-ray radiation to achieve dual blockade of glycolysis and glutamine metabolism pathways. Thus, this nanosystem reconfigured metabolic pathways within tumor cells to counteract RT-induced metabolic reprogramming through dual metabolic inhibition (glycolysis and glutamine metabolism). This approach disrupted the essential energy supply required for cancer cell proliferation without causing metabolic disorders in normal cells, thereby sensitizing HCC to RT. This tumor cell-specific metabolic intervention strategy provides a safe and effective approach for combination therapy in clinically RT-resistant tumors.
Collapse
Affiliation(s)
- Yuehua Wang
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhenjie Wang
- Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Mengnan Liu
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Chaojie Chen
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Qiye Xi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Tang
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
| | - Shengtao Wang
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Wideman SK, Wali L, Kovtunyk V, Chou S, Gusel V, Telimaa H, Najmi C, Stoeva D, Stöckl J, Gualdoni GA, Gorki AD, Radivojev S. Nebulized 2-deoxylated glucose analogues inhibit respiratory viral infection in advanced in vitro airway models. Sci Rep 2025; 15:9515. [PMID: 40108297 PMCID: PMC11923073 DOI: 10.1038/s41598-025-94476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Respiratory viral infections, such as those caused by rhinoviruses (RVs) and human corona viruses (HCoV), result in a serious strain on healthcare systems and public health, underscoring an urgent need for inhaled broad-spectrum antiviral therapies. However, their development is challenging, as no standardized in vitro methodologies that can fully replicate the in vivo environment have been established. In this work, we aimed to investigate the antiviral and anti-inflammatory effect of three 2-deoxylated glucose analogues (2-DGA): 2-deoxy-D-glucose, 2-fluoro-2-deoxy-D-glucose and 2-fluoro-2-deoxy-D-mannose (2-FDM), by utilizing advanced in vitro air-liquid interface (ALI) airway models. We demonstrated that commonly used ALI models have variable susceptibility to RV, HCoV and influenza A virus (IAV) infection. Further, we showed that 2-DGA have an anti-inflammatory effect and suppress respiratory viral replication in models mimicking the upper and lower respiratory airways. Moreover, we confirmed that 2-DGA can be delivered via nebulization in vitro, highlighting their potential to be used as broad-spectrum inhaled antivirals. Finally, our results demonstrate the importance of incorporating complex in vitro methodologies, such as primary cell ALI cultures and aerosol exposure, at an early stage of drug development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Immunology & Infectiology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
6
|
Bischof T, Gsoellpointner M, Miljevic KDK, Moser MM, Dizdarevic AM, Gualdoni GA, Gorki AD, Nicolodi C, Chou S, Radivojev S, Haiden N, Mueller CA, Firbas C, Jilma B, Schoergenhofer C. Safety, tolerability, and pharmacokinetics of intranasal 2-deoxy-D-glucose in normal healthy volunteers: A randomized, double-blind, placebo-controlled, single and multiple ascending dose phase 1 study. Eur J Pharm Sci 2025; 209:107069. [PMID: 40101848 DOI: 10.1016/j.ejps.2025.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND 2-deoxy-D-glucose is a synthetic glucose analog and a potent inhibitor of glycolysis. Preclinical models demonstrated antiviral effects of 2-deoxy-D-glucose by inducing a glucose-deprived state in cells, which interferes with viral replication. METHODS This was a phase I, first-in-human, double-blind, randomized, placebo-controlled, dose-escalation trial of single (cohort 1: 100µl in one nostril, cohort 2: 200µl in one nostril, cohort 3: 200µl in both nostrils) and multiple (cohort 4: four-times 200µl/day in one nostril, cohort 5: four-times 200µl/day in both nostrils, cohort 6: six-times 200µl/day in both nostrils; all for seven days) ascending doses of intranasal 3.5% 2-deoxy-D-glucose in normal healthy volunteers with the primary objective of investigating safety and tolerability. Drug concentrations were measured in plasma and in nasal wash fluid. RESULTS Forty-five healthy volunteers participated in this study. Single and multiple doses of 2-deoxy-D-glucose were well-tolerated, with no safety signals or treatment-related serious or severe adverse events observed throughout the trial. Pharmacokinetics showed virtually absent systemic absorption of intranasal 2-deoxy-D-glucose, while intranasal maximum drug concentrations were comparable to those shown to have antiviral effects in vitro. CONCLUSION Intranasal 2-deoxy-D-glucose, a novel intranasal therapeutic treatment for acute viral infections was safe and well-tolerated in healthy volunteers. These data support the further clinical development of 2-deoxy-D-glucose for treating viral infections in the target population (NCT05314933).
Collapse
Affiliation(s)
- Thorsten Bischof
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | - Miriam M Moser
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | - Nadja Haiden
- Johannes Kepler University, Faculty of Medicine, Department of Neonatology, Austria
| | | | - Christa Firbas
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria.
| | | |
Collapse
|
7
|
Lee TA, Tsai EY, Liu SH, Chou WC, Hsu Hung SD, Chang CY, Chao CH, Yamaguchi H, Lai YJ, Chen HL, Li CW. Regulation of PD-L1 glycosylation and advances in cancer immunotherapy. Cancer Lett 2025; 612:217498. [PMID: 39855377 DOI: 10.1016/j.canlet.2025.217498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells. Glycosylation of PD-L1 at N35, N192, N200, and N219 stabilizes PD-L1 on the cancer cell surface, which contributes to immune evasion by inhibiting T cell activity. To date, at least six glycosyltransferases and four associate proteins are known to regulate PD-L1 glycosylation. Terminal modifications such as poly-N-acetyl-lactosamine (poly-LacNAC), sulfation, and sialylation are commonly found on PD-L1, acting as an immune recognition ligand and regulating certain immune responses. Studies have identified many mechanisms and potential therapeutic targets within the glycosylation pathways of PD-L1, revealing their involvement in cancer pathology, immune evasion, and resistance to immunotherapy. In this review, we covered the glycoforms, terminal moiety, binding lectin, glycosyltransferase, as well as sugar analogs focusing on glycosylated PD-L1. We present a mechanism that originates from the endoplasmic reticulum (ER)-Golgi apparatus (Golgi) and its subsequent translocation to the cell membrane. This pathway determines the immune suppression function of PD-L1 and therefore regulates the immune response such as T cells, monocytes, and macrophages. This collection of findings underscores the significance of glycosylation in the role of PD-L1 in cancer and highlights multiple potential targets and strategies for improving therapeutic intervention and diagnostic techniques.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Duo Hsu Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chen-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chao
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Graduate Institute of Cell Biology, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA, 01854, USA
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
8
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Gao X, Qiao K, Wilson DM, Chaumeil MM, Gordon JW. Deuterium Metabolic Imaging of the Brain Using 2-Deoxy-2-[ 2H 2]-d-glucose: A Non-ionizing [ 18F]FDG Alternative. JACS AU 2025; 5:571-577. [PMID: 40017751 PMCID: PMC11862922 DOI: 10.1021/jacsau.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 03/01/2025]
Abstract
The positron emission tomography (PET) tracer 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) is widely used to study diseases where glucose metabolism is dysregulated, including cancer and neurodegenerative disorders. Here we investigate the hypothesis that the 2-position deuterium-enriched analogue 2-deoxy-2-[2H2]-d-glucose (2-DG-d2) can also map glucose uptake using deuterium metabolic imaging (DMI) without ionizing radiation. To accomplish this, we used a spectrally selective multiband radiofrequency pulse and balanced steady-state free procession (bSSFP) technique, enabling rapid 2H imaging with high specificity and sensitivity to 2-DG-d2. Both in vitro and in vivo validations demonstrated the sequence's ability to suppress endogenous water signal. Mapping of 2-DG-d2 with high spatial resolution was achieved in healthy mouse brains, comparable to what might be obtained using [18F]FDG PET. The numerous applications of [18F]FDG PET, as well as recent clinical translation of the natural abundance 2-deoxy-d-glucose (2-DG) parent sugar, suggest that DMI using 2-DG-d2 may be applied to patients in the future.
Collapse
Affiliation(s)
- Xiao Gao
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California 94158, United States
- UC Berkeley−UCSF
Bioengineering Program, University of California
San Francisco, San Francisco, California 94158, United States
| | - Kai Qiao
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Myriam M. Chaumeil
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California 94158, United States
- UC Berkeley−UCSF
Bioengineering Program, University of California
San Francisco, San Francisco, California 94158, United States
| | - Jeremy W. Gordon
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
- UC Berkeley−UCSF
Bioengineering Program, University of California
San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Shen D, Yu X, Fan X, Liang Y, Lu D, Ke Z, Wang L, Xiang P, Xiao J. CDCA3-MYC positive feedback loop promotes bladder cancer progression via ENO1-mediated glycolysis. J Exp Clin Cancer Res 2025; 44:63. [PMID: 39980052 PMCID: PMC11841255 DOI: 10.1186/s13046-025-03325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Bladder cancer (BLCA) ranks among the most prevalent malignancies of the urinary system, with its clinical diagnosis predominantly reliant on invasive procedures. Traditional chemotherapy regimens exhibit significant limitations, underscoring the urgency of identifying novel diagnostic biomarkers and strategies to enhance chemotherapy efficacy. CDCA3 has been recognized as a facilitator of BLCA progression, activated by MYBL2. However, its precise regulatory mechanisms in BLCA pathogenesis remain incompletely elucidated. METHODS To investigate the functional role of CDCA3 in BLCA, MTT and colony formation assays were employed to assess cellular proliferation, while flow cytometry was utilized to evaluate apoptosis and intracellular ROS levels. The expression of CDCA3, ENO1, TRIM28, and MYC was analyzed through WB and qRT-PCR, and Co-IP assays were conducted to delineate interactions among CDCA3, TRIM28, and MYC. RESULTS CDCA3, a key regulator of the cell cycle, facilitates BLCA glycolysis by modulating the transcriptional expression of α-Enolase (ENO1), thereby enhancing BLCA progression. Mechanistically, CDCA3 recruits TRIM28, which stabilizes MYC, while MYC transcriptionally upregulates CDCA3, establishing a self-reinforcing CDCA3-MYC feedback loop. A risk prediction model incorporating the expression profiles of CDCA3 and ENO1 was developed to evaluate the overall survival of patients with BLCA. This model provides a prognostic tool to predict survival outcomes in patients with BLCA based on CDCA3 and ENO1 expression levels. CONCLUSIONS This study delineates a novel role for CDCA3 in the regulation of BLCA glycolysis and identifies its interaction with MYC as a critical positive feedback mechanism, providing fresh insights into the molecular mechanisms underlying BLCA progression.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiang Yu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuefeng Fan
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yu Liang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongmei Lu
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Zongpan Ke
- Department of Urology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ping Xiang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
11
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
12
|
Jeong DI, Hao Q, Lee SY, Kim S, Karmakar M, Chu S, Park M, Cho HJ. Cellulose nanocrystal-annealed hydrogel system for local chemo-metabolic therapy of melanoma. J Control Release 2025; 377:324-338. [PMID: 39536973 DOI: 10.1016/j.jconrel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
A cellulose nanocrystal (CNC)-annealed hydrogel (CAH) structure, including doxorubicin (DOX) and 2-deoxy-d-glucose (2DG), was developed for local chemo-metabolic therapy (LCMT) of melanoma. DOX has been used as a chemotherapeutic agent because of its intercalation into DNA and generation of free radicals. 2DG has been used as a glycolytic inhibitor in multiple metabolic therapies in combination with DOX. Covalent and non-covalent (i.e., ionic and hydrogen bonding) binding approaches between CNC and drug cargo (i.e., DOX and 2DG) were used to tune the rheological properties of the CAH structure to achieve sustained drug release. Reduction of reduced nicotinamide adenine dinucleotide phosphate, adenosine triphosphate, and mitochondrial membrane potential, and elevation of cellular reactive oxygen species and cleaved caspases 3 and 7 were observed following treatment with CNC/DOX/2DG in B16F10 cells. Glutathione depletion, enhanced lipid peroxidation, and decreased lactate levels were observed in the CNC/DOX/2DG group. After intratumoral injection of the CNC/DOX/2DG hydrogel into B16F10 tumor-bearing mice, stronger tumor growth suppression and anti-recurrence capabilities were observed. These findings imply that the viscoelastically modulated CAH system can be a strong candidate for LCMT of melanoma.
Collapse
Affiliation(s)
- Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Qiaojun Hao
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seongnam Chu
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Daehwa Pharmaceutical Co., Ltd., Seoul 06699, Republic of Korea
| | - Miso Park
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
13
|
Kaur R, Gupta S, Kulshrestha S, Khandelwal V, Pandey S, Kumar A, Sharma G, Kumar U, Parashar D, Das K. Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis. Cells 2024; 14:5. [PMID: 39791706 PMCID: PMC11720085 DOI: 10.3390/cells14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples. In the case of breast cancer, little is known about the regulatory pathways that could be resolved through metabolic reprogramming. Evidence related to the significant changes taking place during the onset and prognosis of breast cancer can be obtained using metabolomics. Innovative metabolomics approaches identify metabolites that lead to the discovery of biomarkers for breast cancer therapy, diagnosis, and early detection. The use of diverse analytical methods and instruments for metabolomics includes Magnetic Resonance Spectroscopy, LC/MS, UPLC/MS, etc., which, along with their high-throughput analysis, give insights into the metabolites and the molecular pathways involved. For instance, metabolome research has led to the discovery of the glutamate-to-glutamate ratio and aerobic glycolysis as biomarkers in breast cancer. The present review comprehends the updates in metabolomic research and its processes that contribute to breast cancer prognosis and metastasis. The metabolome holds a future, and this review is an attempt to amalgamate the present relevant literature that might yield crucial insights for creating innovative therapeutic strategies aimed at addressing metastatic breast cancer.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Sunanda Kulshrestha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Vishal Khandelwal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center (AIRC), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Ghaziabad 201015, Uttar Pradesh, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
14
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
15
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
16
|
Donia T, Ali EMM, Kalantan AA, Alzahrani FA, Eid TM, Khamis AA. Synergistic anticancer efficacy of polydatin and sorafenib against the MCF-7 breast cancer cell line via inhibiting of PI3K/AKT/mTOR pathway and reducing resistance to treatment. Biochem Biophys Res Commun 2024; 739:150972. [PMID: 39541924 DOI: 10.1016/j.bbrc.2024.150972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol, has been investigated for its potential to mitigate sorafenib (SOF) side effects and combat multidrug resistance in cancer treatment. The study evaluated its mechanism of action for inhibiting the protein kinase B/mTOR pathway in promoting breast cancer proliferation. The combined PD and SOF have synergistic effects with a combination index (CI) < 1 in the liver (HepG2) and breast (MCF-7) cancer cell lines. Molecular docking studies were conducted to analyze interactions of PD& SOF with protein kinases as well as apoptotic and multidrug resistance proteins, including AKT1, PI3K, mTOR, Apaf-1, and ABCB1 in MCF-7 cells. Experimental validation through real-time PCR confirmed. PD has a strong binding affinity, particularly with AKT1 (-56 kcal/mol) and ABCB1 (-27.16 kcal/mol), a gene associated with multidrug resistance. These interactions were linked to anti-proliferative anti-angiogenic effects and reduced resistance to treatment, demonstrating PD has potential therapeutic benefits. Furthermore, PD combined with SOF induced apoptosis, inhibited cell growth, and arrested MCF-7 cells in the sub-G1 phase with increased intracellular ROS. This was accompanied by reduced expression of AKT1 and ABCB1 genes, reinforcing the anticancer efficacy of PD/SOF combination therapy. In conclusion, the findings suggest that PD/SOF could serve as a promising anticancer treatment strategy, warranting further investigation for potential clinical applications and mechanistic studies in vivo.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ehab M M Ali
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Thamir M Eid
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abeer A Khamis
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
17
|
Gan M, Liu N, Li W, Chen M, Bai Z, Liu D, Liu S. Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: new horizons in immunotherapy. Mol Cancer 2024; 23:273. [PMID: 39696340 DOI: 10.1186/s12943-024-02193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent oral malignancy, which poses significant health risks with a high mortality rate. Regulatory T cells (Tregs), characterized by their immunosuppressive capabilities, are intricately linked to OSCC progression and patient outcomes. The metabolic reprogramming of Tregs within the OSCC tumor microenvironment (TME) underpins their function, with key pathways such as the tryptophan-kynurenine-aryl hydrocarbon receptor, PI3K-Akt-mTOR and nucleotide metabolism significantly contributing to their suppressive activities. Targeting these metabolic pathways offers a novel therapeutic approach to reduce Treg-mediated immunosuppression and enhance anti-tumor responses. This review explores the metabolic dependencies and pathways that sustain Treg function in OSCC, highlighting key metabolic adaptations such as glycolysis, fatty acid oxidation, amino acid metabolism and PI3K-Akt-mTOR signaling pathway that enable Tregs to thrive in the challenging conditions of the TME. Additionally, the review discusses the influence of the oral microbiome on Treg metabolism and evaluates potential therapeutic strategies targeting these metabolic pathways. Despite the promising potential of these interventions, challenges such as selectivity, toxicity, tumor heterogeneity, and resistance mechanisms remain. The review concludes with perspectives on personalized medicine and integrative approaches, emphasizing the need for continued research to translate these findings into effective clinical applications for OSCC treatment.
Collapse
Affiliation(s)
- Menglai Gan
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Zhongyu Bai
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
18
|
Liu C, Shen M, Liu Y, Manhas A, Zhao SR, Zhang M, Belbachir N, Ren L, Zhang JZ, Caudal A, Nishiga M, Thomas D, Zhang A, Yang H, Zhou Y, Ameen M, Sayed N, Rhee JW, Qi LS, Wu JC. CRISPRi/a screens in human iPSC-cardiomyocytes identify glycolytic activation as a druggable target for doxorubicin-induced cardiotoxicity. Cell Stem Cell 2024; 31:1760-1776.e9. [PMID: 39515331 PMCID: PMC11646563 DOI: 10.1016/j.stem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Doxorubicin is limited in its therapeutic utility due to its life-threatening cardiovascular side effects. Here, we present an integrated drug discovery pipeline combining human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs), CRISPR interference and activation (CRISPRi/a) bidirectional pooled screens, and a small-molecule screening to identify therapeutic targets mitigating doxorubicin-induced cardiotoxicity (DIC) without compromising its oncological effects. The screens revealed several previously unreported candidate genes contributing to DIC, including carbonic anhydrase 12 (CA12). Genetic inhibition of CA12 protected iCMs against DIC by improving cell survival, sarcomere structural integrity, contractile function, and calcium handling. Indisulam, a CA12 antagonist, can effectively attenuate DIC in iCMs, engineered heart tissue, and animal models. Mechanistically, doxorubicin-induced CA12 potentiated a glycolytic activation in cardiomyocytes, contributing to DIC by interfering with cellular metabolism and functions. Collectively, our study provides a roadmap for future drug discovery efforts, potentially leading to more targeted therapies with minimal off-target toxicity.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Physiology and Cancer Center, Milwaukee, WI, USA; Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amit Manhas
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Mao Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Nadjet Belbachir
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Greentstone Biosciences, Palo Alto, CA, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yang Zhou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA; Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA.
| |
Collapse
|
19
|
Modica-Napolitano JS, Murray M, Thibault J, Haley-Read JP, Nixdorf L, Shanahan B, Iacovella N, Reyes C. The In Vitro Cytotoxic Effect of Elesclomol on Breast Adenocarcinoma Cells Is Enhanced by Concurrent Treatment with Glycolytic Inhibitors. Cancers (Basel) 2024; 16:4054. [PMID: 39682240 DOI: 10.3390/cancers16234054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Glycolysis and mitochondrial oxidative phosphorylation are the two major metabolic pathways for cellular ATP production. The metabolic plasticity displayed by cancer cells allows them to effectively shift between each of these pathways as a means of adapting to various growth conditions, thus ensuring their survival, proliferation and disease progression. Metabolic plasticity also provides cancer cells with the ability to circumvent many traditional monotherapies aimed at only one or the other of the major ATP-producing pathways. The purpose of this study was to determine the effectiveness of a dual treatment strategy aimed simultaneously at both pathways of ATP production in human breast cancer cells. It was hypothesized that concurrent exposure of these cells to the mitochondria-targeting chemotherapeutic agent, elesclomol, in combination with either of two glycolytic inhibitors, 2-deoxy-D-glucose or 3-bromopyruvate, would yield greater in vitro anticancer effects than those observed for any of the compounds used as a single agent. Methods: Cytotoxicity and clonogenic assays were employed to assess the survival and proliferation of MCF7 and MDA-MB-231 human breast adenocarcinoma cells exposed to the compounds alone and in combination. Results: The data obtained show that the cancer-cell-killing and antiproliferative effects of the dual treatment were significantly enhanced compared to those observed for any of the compounds alone. Conclusions: The results of this study are important in that they suggest the possibility of a novel and effective chemotherapeutic strategy for breast cancer cell killing.
Collapse
Affiliation(s)
| | - Morgan Murray
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | - Jacob Thibault
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | | | - Lauren Nixdorf
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | - Bridget Shanahan
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | | | - Carlos Reyes
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| |
Collapse
|
20
|
Boletta A. Targeting Metabolic Reprogramming in Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:1768-1770. [PMID: 39226339 PMCID: PMC11617481 DOI: 10.1681/asn.0000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Legge DN, Collard TJ, Stanko E, Hoskin AJ, Holt AK, Bull CJ, Kollareddy M, Bellamy J, Groves S, Ma EH, Hazelwood E, Qualtrough D, Amulic B, Malik K, Williams AC, Jones N, Vincent EE. Identifying targetable metabolic dependencies across colorectal cancer progression. Mol Metab 2024; 90:102037. [PMID: 39332495 PMCID: PMC11490841 DOI: 10.1016/j.molmet.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Colorectal cancer (CRC) is a multi-stage process initiated through the formation of a benign adenoma, progressing to an invasive carcinoma and finally metastatic spread. Tumour cells must adapt their metabolism to support the energetic and biosynthetic demands associated with disease progression. As such, targeting cancer cell metabolism is a promising therapeutic avenue in CRC. However, to identify tractable nodes of metabolic vulnerability specific to CRC stage, we must understand how metabolism changes during CRC development. Here, we use a unique model system - comprising human early adenoma to late adenocarcinoma. We show that adenoma cells transition to elevated glycolysis at the early stages of tumour progression but maintain oxidative metabolism. Progressed adenocarcinoma cells rely more on glutamine-derived carbon to fuel the TCA cycle, whereas glycolysis and TCA cycle activity remain tightly coupled in early adenoma cells. Adenocarcinoma cells are more flexible with respect to fuel source, enabling them to proliferate in nutrient-poor environments. Despite this plasticity, we identify asparagine (ASN) synthesis as a node of metabolic vulnerability in late-stage adenocarcinoma cells. We show that loss of asparagine synthetase (ASNS) blocks their proliferation, whereas early adenoma cells are largely resistant to ASN deprivation. Mechanistically, we show that late-stage adenocarcinoma cells are dependent on ASNS to support mTORC1 signalling and maximal glycolytic and oxidative capacity. Resistance to ASNS loss in early adenoma cells is likely due to a feedback loop, absent in late-stage cells, allowing them to sense and regulate ASN levels and supplement ASN by autophagy. Together, our study defines metabolic changes during CRC development and highlights ASN synthesis as a targetable metabolic vulnerability in later stage disease.
Collapse
Affiliation(s)
- Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Tracey J Collard
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Ewelina Stanko
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Ashley J Hoskin
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Amy K Holt
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Caroline J Bull
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK
| | | | - Jake Bellamy
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Sarah Groves
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Eric H Ma
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, USA
| | - Emma Hazelwood
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK
| | - David Qualtrough
- Faculty of Health and Life Sciences, University of the West of England, UK
| | - Borko Amulic
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Karim Malik
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Ann C Williams
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Emma E Vincent
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, UK.
| |
Collapse
|
22
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
23
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
24
|
Park D, Boo H. Fatty Acid Synthase (FASN) Inhibitors Suppress Metformin-Induced Fat Accumulation and Apoptosis in H4IIE Hepatocellular Carcinoma Cells. Dev Reprod 2024; 28:163-174. [PMID: 39845516 PMCID: PMC11750162 DOI: 10.12717/dr.2024.28.4.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 01/24/2025]
Abstract
We previously reported that metformin, a widely prescribed antidiabetic drug, induces the accumulation of triglyceride (TG) together with the apoptotic death of H4IIE via AMP-activated protein kinase (AMPK) in hepatocellular carcinoma (HCC) cells. However, the effect of cytoplasmic fat accumulation on the growth of HCCs remains controversial. Herein, we investigated the effect of fatty acid synthase (FASN) inhibitors on the basal- or metformin-induced changes including the content of cytoplasmic TG and the viability of HCC cells. Cerulenin and C75, inhibitors of FASN, did not significantly affect the basal TG content but dose-dependently suppressed the metformin-induced increase in the cytoplasmic TG content. Metformin-induced apoptosis of H4IIE cells was also significantly reduced by cerulenin and C75. Metformin enhanced the generation of reactive oxygen species which was suppressed by adding cerulenin or T75. Cerulenin also stimulated cell migration, which was suppressed by metformin. However, the degree of suppressive effect of metformin on TG synthesis, apoptosis, and cell migration was much more prominent by the inhibition of AMPK by compound C than cerulenin. In conclusion, our study found that excess fat accumulation is responsible for the apoptosis of H4IIE HCC cells and is informative for designing anti-tumor reagents, especially in HCC.
Collapse
Affiliation(s)
- Deokbae Park
- Department of Histology, Jeju National
University College of Medicine, Jeju 63243,
Korea
| | - Hyejin Boo
- Department of Histology, Jeju National
University College of Medicine, Jeju 63243,
Korea
| |
Collapse
|
25
|
Liu J, Zhou F, Tang Y, Li L, Li L. Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs. Molecules 2024; 29:5656. [PMID: 39683818 DOI: 10.3390/molecules29235656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linghui Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
26
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
27
|
Sánchez-Castillo A, Kampen KR. Understanding serine and glycine metabolism in cancer: a path towards precision medicine to improve patient's outcomes. Discov Oncol 2024; 15:652. [PMID: 39538085 PMCID: PMC11561223 DOI: 10.1007/s12672-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In this perspective, we highlight and reflect on the current knowledge with respect to serine/glycine metabolism in cancer, therapeutic resistance, and precision medicine opportunities for therapeutic targeting and treatment follow-up. Cancer subtypes with high mortality rates include lung cancer and glioblastomas. In order to improve future therapeutic opportunities, patient stratification need to be performed to select patients that might benefit from adjuvant serine/glycine targeting compounds. In an effort to identify the group of patients for stratification purposes, we analyzed publicly available TCGA patient datasets to test associations between serine/glycine metabolism enzyme expression and important cancer drivers in lung cancer and glioblastoma. These patients presenting serine/glycine pathway overexpression might benefit from adjuvant sertraline treatment in the future.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Louvain, Belgium.
| |
Collapse
|
28
|
Sandepogu TS, Dara C, Mallamgunta S, Jogi S, Sree Podila K, Chandrasekhar J, N V, Sivakumar S. Role of 2-Deoxy-D-Glucose in Enhancing the Efficacy of Standard of Care for Moderate to Severe COVID-19: A Comparative Analysis of Clinical Outcomes. Cureus 2024; 16:e73993. [PMID: 39703288 PMCID: PMC11658899 DOI: 10.7759/cureus.73993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Objective This study aimed to evaluate the role of 2-Deoxy-D-Glucose (2-DG) in moderate to severe Coronavirus Disease 2019 (COVID-19) cases. Methodology This study retrospectively analyzed the effects of 2-DG alongside Standard of Care (SOC) for moderate to severe COVID-19 in 150 patients. Eligible patients were aged 18-65, with confirmed COVID-19, who met clinical criteria for moderate or severe illness. Data collected included demographics, clinical status, treatment details, and outcomes, evaluated using the WHO's 10-point scale. The primary outcome measured was time to clinical improvement, with secondary outcomes including duration of oxygen supplementation, length of hospital stay, and viral clearance. Data analysis employed the Cox proportional hazard model, with significance at p < 0.05. Results In the study, initial oxygen saturation levels upon admission were similar between groups, averaging 92.6% in the 2-DG with SOC group and 91.8% in the SOC-only group (p = 0.97). The WHO ordinal scores, pulse, and respiratory rates improved significantly in the 2-DG group across multiple intervals. Oxygen supplementation needs to be decreased notably, with 2-DG patients requiring an average of 5.1 L/min by Day 5, showing significant reductions compared to the SOC group. The time to clinical improvement and length of hospital stay were also shorter in the 2-DG group (5.2 days vs. 7.5 days; 8.5 days vs. 10.5 days, respectively; p < 0.001). Adverse events were less frequent in the 2-DG group (6.7% vs. 13.3%, p = 0.03). Conclusion In conclusion, 2-DG demonstrates significant efficacy as an adjunct therapy for moderate to severe COVID-19, reducing both time to clinical improvement (5.2 vs. 7.5 days, p < 0.001) and hospital stay duration. Additionally, fewer adverse events were reported, and viral clearance rates were higher in the 2-DG group. These findings highlight 2-DG's potential to improve clinical outcomes in COVID-19 care.
Collapse
Affiliation(s)
- Triven Sagar Sandepogu
- Department of General Medicine, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Sanathnagar, Hyderabad, IND
| | - Chennakesavulu Dara
- Department of Medicine, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Sanathnagar, Hyderabad, IND
| | | | - Suneeth Jogi
- Department of Radiology, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Sanathnagar, Hyderabad, IND
| | - Karuna Sree Podila
- Department of Pharmacology, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Jwala Chandrasekhar
- Department of Radiology, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Sanathnagar, Hyderabad, IND
| | - Vijayalakshmi N
- Department of General Medicine, Yashoda Hospital, Ghaziabad, IND
| | - Swetha Sivakumar
- Department of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, IND
| |
Collapse
|
29
|
Masuyama S, Mizui M, Morita M, Shigeki T, Kato H, Yamamoto T, Sakaguchi Y, Inoue K, Namba-Hamano T, Matsui I, Okuno T, Yamamoto R, Takashima S, Isaka Y. Enhanced fatty acid oxidation by selective activation of PPARα alleviates autoimmunity through metabolic transformation in T-cells. Clin Immunol 2024; 268:110357. [PMID: 39243921 DOI: 10.1016/j.clim.2024.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Nephrology, NHO Osaka Minami Medical Center, Japan
| | - Takatomo Shigeki
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Yamamoto
- Department of Health Promotion Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
30
|
Chandra H, Yadav A, Prasad R, Sagar K, Bhardwaj N, Kumar Gupta K, Singh Thakur G, Nigam M, Pezzani R, Paulo Martins de Lima J, Douglas Melo Coutinho H, Prakash Mishra A. COVID 19: Prevention and treatment through the Indian perspective. Cytokine 2024; 183:156756. [PMID: 39284260 DOI: 10.1016/j.cyto.2024.156756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024]
Abstract
The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India; School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Archana Yadav
- Department of Microbiology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur 208024, Uttar Pradesh, India.
| | - Rajendra Prasad
- School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kalpana Sagar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Ghanshyam Singh Thakur
- Department of Naturopathy & Yoga, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | | | | | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
31
|
Huang ZM, Wei J, Pan XW, Chen XB, Lu ZY. A novel risk score model of lactate metabolism for predicting outcomes and immune signatures in acute myeloid leukemia. Sci Rep 2024; 14:25742. [PMID: 39468216 PMCID: PMC11519446 DOI: 10.1038/s41598-024-76919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor with high recurrence and refractory rates and low survival rates. Increased glycolysis is characteristic of metabolism in AML blast cells and is also associated with chemotherapy resistance. The purpose of this study was to use gene expression and clinical information from The Cancer Genome Atlas (TCGA) database to identify subtypes of AML associated with lactate metabolism. Two different subtypes linked to lactate metabolism, each with specific immunological features and consequences for prognosis, were identified in this study. Using the TCGA and International Cancer Genome Consortium (GEO) cohorts, a prognostic model composed of genes (LMNA, RETN and HK1) for the prognostic value of the lactate metabolism-related risk score prognostic model was created and validated, suggesting possible therapeutic uses. Additionally, the diagnostic value of the prognostic model genes was explored. LMNA and HK1 were ultimately identified as hub genes, and their roles in AML were determined through immune infiltration, GeneMANIA, GSEA, methylation analysis and single-cell analysis. LMNA was upregulated in AML associating with a poor prognosis while HK1 was downregulated in AML associating with a favorable prognosis. The findings underscore the noteworthy impact of genes linked to lactate metabolism in AML and illustrate the possible therapeutic usefulness of the lactate metabolism-related risk score and the hub lactate metabolism-related genes in guiding AML patients' treatment choices.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Wei
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Wen Pan
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xing-Biao Chen
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Yuan Lu
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Kral M, van der Vorst EPC, Weber C, Döring Y. (Multi-) omics studies of ILC2s in inflammation and metabolic diseases. Front Cell Dev Biol 2024; 12:1473616. [PMID: 39529633 PMCID: PMC11551558 DOI: 10.3389/fcell.2024.1473616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) have emerged as pivotal regulators in the pathogenesis of diseases, with their roles in inflammation, metabolism, and tissue homeostasis becoming increasingly recognized. This review provides an overview of the current understanding of ILC2s in inflammation and metabolic disorders, including their functional contributions. Moreover, we will discuss how these cells adapt their metabolic processes to support their function and survival and how their metabolic requirements change under different physiological and pathological conditions. Lastly, we will review recent omics studies that have provided insights into the molecular and cellular characteristics of ILC2s. This includes transcriptomic, proteomic, and metabolomic analyses that have elucidated the gene expression profiles, protein interactions, and metabolic networks, respectively, associated with ILC2s. These studies have advanced our understanding of the functional diversity of ILC2s and their involvement in metabolic disease.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
34
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
35
|
Sołtyka-Krajewska M, Ziemniak M, Zawadzka-Kazimierczuk A, Skrzypczyk P, Siwiak-Niedbalska E, Jaśkiewicz A, Zieliński R, Fokt I, Skóra S, Koźmiński W, Woźniak K, Priebe W, Pająk-Tarnacka B. Potent Biological Activity of Fluorinated Derivatives of 2-Deoxy-d-Glucose in a Glioblastoma Model. Biomedicines 2024; 12:2240. [PMID: 39457553 PMCID: PMC11504489 DOI: 10.3390/biomedicines12102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND One defining feature of various aggressive cancers, including glioblastoma multiforme (GBM), is glycolysis upregulation, making its inhibition a promising therapeutic approach. One promising compound is 2-deoxy-d-glucose (2-DG), a d-glucose analog with high clinical potential due to its ability to inhibit glycolysis. Upon uptake, 2-DG is phosphorylated by hexokinase to 2-DG-6-phosphate, which inhibits hexokinase and downstream glycolytic enzymes. Unfortunately, therapeutic use of 2-DG is limited by poor pharmacokinetics, suppressing its efficacy. METHODS To address these issues, we synthesized novel halogenated 2-DG analogs (2-FG, 2,2-diFG, 2-CG, and 2-BG) and evaluated their glycolytic inhibition in GBM cells. Our in vitro and computational studies suggest that these derivatives modulate hexokinase activity differently. RESULTS Fluorinated compounds show the most potent cytotoxic effects, indicated by the lowest IC50 values. These effects were more pronounced in hypoxic conditions. 19F NMR experiments and molecular docking confirmed that fluorinated derivatives bind hexokinase comparably to glucose. Enzymatic assays demonstrated that all halogenated derivatives are more effective HKII inhibitors than 2-DG, particularly through their 6-phosphates. By modifying the C-2 position with halogens, these compounds may overcome the poor pharmacokinetics of 2-DG. The modifications seem to enhance the stability and uptake of the compounds, making them effective at lower doses and over prolonged periods. CONCLUSIONS This research has the potential to reshape the treatment landscape for GBM and possibly other cancers by offering a more targeted, effective, and metabolically focused therapeutic approach. The application of halogenated 2-DG analogs represents a promising advancement in cancer metabolism-targeted therapies, with the potential to overcome current treatment limitations.
Collapse
Affiliation(s)
- Maja Sołtyka-Krajewska
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Marcin Ziemniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Paulina Skrzypczyk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Ewelina Siwiak-Niedbalska
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Anna Jaśkiewicz
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Izabela Fokt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Stanisław Skóra
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Beata Pająk-Tarnacka
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
- WPD Pharmaceuticals, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
36
|
Yu H, Zhu T, Ma D, Cheng X, Wang S, Yao Y. The role of nonhistone lactylation in disease. Heliyon 2024; 10:e36296. [PMID: 39315193 PMCID: PMC11417196 DOI: 10.1016/j.heliyon.2024.e36296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
In 2019, a novel post-translational modification termed lactylation was identified, which established a connection among lactate, transcriptional regulation and epigenetics. Lactate, which is traditionally viewed as a metabolic byproduct, is now recognized for its significant functional role, including modulating the tumor microenvironment, engaging in signaling and interfering in immune regulation. While research on lactylation (KLA) is advancing, the focus has primarily been on histone lactylation. This paper aims to explore the less-studied area of nonhistone lactylation, highlighting its involvement in certain diseases and physiological processes. Additionally, the clinical relevance and potential implications of nonhistone lactylation will be discussed.
Collapse
Affiliation(s)
- Hao Yu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Zhu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Dongwen Ma
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Xiaohan Cheng
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Shengjia Wang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
38
|
Repas J, Frlic T, Snedec T, Kopitar AN, Sourij H, Janež A, Pavlin M. Physiologically Achievable Concentration of 2-Deoxy-D-Glucose Stimulates IFN-γ Secretion in Activated T Cells In Vitro. Int J Mol Sci 2024; 25:10384. [PMID: 39408714 PMCID: PMC11476708 DOI: 10.3390/ijms251910384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
2-deoxy-D-glucose (2DG) is a glycolysis and protein N-glycosylation inhibitor with promising anti-tumor and immunomodulatory effects. However, 2DG can also suppress T cell function, including IFN-γ secretion. Few human T cell studies have studied low-dose 2DG, which can increase IFN-γ in a Jurkat clone. We therefore investigated 2DG's effect on IFN-γ in activated human T cells from PBMCs, with 2DG treatment commenced either concurrently with activation or 48 h after activation. Concurrent 2DG treatment decreased IFN-γ secretion in a dose-dependent manner. However, 2DG treatment of pre-activated T cells had a hormetic effect on IFN-γ, with 0.15-0.6 mM 2DG (achievable in vivo) increasing and >2.4 mM 2DG reducing its secretion. In contrast, IL-2 levels declined monotonously with increasing 2DG concentration. Lower 2DG concentrations reduced PD-1 and increased CD69 expression regardless of treatment timing. The absence of increased T-bet or Eomes expression or IFNG transcription suggests another downstream mechanism. 2DG dose-dependently induced the unfolded protein response, suggesting a possible role in increased IFN-γ secretion, possibly by increasing the ER folding capacity for IFN-γ via increased chaperone expression. Overall, low-dose, short-term 2DG exposure could potentially improve the T cell anti-tumor response.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tjaša Frlic
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tadeja Snedec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria;
| | - Andrej Janež
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
39
|
Shen M, Zhou L, Fan X, Wu R, Liu S, Deng Q, Zheng Y, Liu J, Yang L. Metabolic Reprogramming of CD4 + T Cells by Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuates Autoimmune Hepatitis Through Mitochondrial Protein Transfer. Int J Nanomedicine 2024; 19:9799-9819. [PMID: 39345912 PMCID: PMC11430536 DOI: 10.2147/ijn.s472086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background Autoimmune hepatitis (AIH) is a serious liver disease characterized by immune disorders, particularly effector T-cell overactivation. This study aimed to explore the therapeutic effect and underlying mechanism of mesenchymal stem cell-derived extracellular vesicle (MSC-EV) treatment on CD4+ T-cell overactivation and liver injury in AIH. Methods The metabolic changes of CD4+ T cells were assayed in human AIH and mouse hepatitis models. The liver protective effect of MSC-EVs was evaluated by transaminase levels, liver histopathology and inflammation. The effect of MSC-EVs on the metabolic state of CD4+ T cells was also explored. Results Enhanced glycolysis (eg, ~1.5-fold increase in hexokinase 2 levels) was detected in the CD4+ T cells of AIH patient samples and mouse hepatitis models, whereas the inhibition of glycolysis decreased CD4+ T-cell activation (~1.8-fold decrease in CD69 levels) and AIH liver injury (~6-fold decrease in aminotransferase levels). MSC-EV treatment reduced CD4+ T-cell activation (~1.5-fold decrease in CD69 levels) and cytokine release (~5-fold decrease in IFN-γ levels) by reducing glycolysis (~3-fold decrease) while enhancing mitochondrial oxidative phosphorylation (~2-fold increase in maximal respiration) in such cells. The degree of liver damage in AIH mice was ameliorated after MSC-EV treatment (~5-fold decrease in aminotransferase levels). MSC-EVs carried abundant mitochondrial proteins and might transfer them to metabolically reprogram CD4+ T cells, whereas disrupting mitochondrial transfer impaired the therapeutic potency of MSC-EVs in activated CD4+ T cells. Conclusion Disordered glucose metabolism promotes CD4+ T-cell activation and associated inflammatory liver injury in AIH models, which can be reversed by MSC-EV therapy, and this effect is at least partially dependent on EV-mediated mitochondrial protein transfer between cells. This study highlights that MSC-EV therapy may represent a new avenue for treating autoimmune diseases such as AIH.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Leyu Zhou
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruiqi Wu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Xiao W, Zhu Z, Yu Z, Pan Y, Xue Q, Zhou Y, Shi J. A composite patch loaded with 2-Deoxy Glucose facilitates cardiac recovery after myocardial infarction via attenuating local inflammatory response. Sci Rep 2024; 14:20368. [PMID: 39223206 PMCID: PMC11369268 DOI: 10.1038/s41598-024-71473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Local inflammatory microenvironment in the early stage of myocardial infarction (MI) severely impaired cardiac recovery post-MI. Macrophages play a pivotal role in this process. A classical glycolytic inhibitor, 2-Deoxy-Glucose (2-DG), has been found to regulate the excessive pro-inflammatory macrophage polarization in the infarcted myocardium. This study investigated the effect of 2-DG-loaded chitosan/gelatin composite patch on the infarct microenvironment post-MI and its impact on cardiac repair. The results showed that the 2-DG patch significantly inhibited the expression of inflammatory cytokines, alleviated reactive oxygen species (ROS) accumulation, repressed the proinflammatory polarization of macrophages, attenuated local inflammatory microenvironment in the ischemic hearts, as well as improved cardiac function, reduced scar size, and promoted angiogenesis post-MI. In terms of mechanism, 2-DG exerts anti-inflammatory effects through inhibiting the NF-κB signaling pathway and reducing the assembly and activation of the NLRP3 inflammasome. These findings suggest that 2-DG composite patch may represent a promising therapeutic strategy for cardiac repair after MI.
Collapse
Affiliation(s)
- Weizhang Xiao
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China.
| | - Zhen Zhu
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Zhiming Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Yue Pan
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
42
|
Tang Q, Wu S, Zhao B, Li Z, Zhou Q, Yu Y, Yang X, Wang R, Wang X, Wu W, Wang S. Reprogramming of glucose metabolism: The hallmark of malignant transformation and target for advanced diagnostics and treatments. Biomed Pharmacother 2024; 178:117257. [PMID: 39137648 DOI: 10.1016/j.biopha.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Reprogramming of cancer metabolism has become increasingly concerned over the last decade, particularly the reprogramming of glucose metabolism, also known as the "Warburg effect". The reprogramming of glucose metabolism is considered a novel hallmark of human cancers. A growing number of studies have shown that reprogramming of glucose metabolism can regulate many biological processes of cancers, including carcinogenesis, progression, metastasis, and drug resistance. In this review, we summarize the major biological functions, clinical significance, potential targets and signaling pathways of glucose metabolic reprogramming in human cancers. Moreover, the applications of natural products and small molecule inhibitors targeting glucose metabolic reprogramming are analyzed, some clinical agents targeting glucose metabolic reprogramming and trial statuses are summarized, as well as the pros and cons of targeting glucose metabolic reprogramming for cancer therapy are analyzed. Overall, the reprogramming of glucose metabolism plays an important role in the prediction, prevention, diagnosis and treatment of human cancers. Glucose metabolic reprogramming-related targets have great potential to serve as biomarkers for improving individual outcomes and prognosis in cancer patients. The clinical innovations related to targeting the reprogramming of glucose metabolism will be a hotspot for cancer therapy research in the future. We suggest that more high-quality clinical trials with more abundant drug formulations and toxicology experiments would be beneficial for the development and clinical application of drugs targeting reprogramming of glucose metabolism.This review will provide the researchers with the broader perspective and comprehensive understanding about the important significance of glucose metabolic reprogramming in human cancers.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine;Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Baiming Zhao
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhanyang Li
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qichun Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Yaya Yu
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xiaobing Yang
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Rui Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Sumei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
43
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol 2024; 201:104438. [PMID: 38977145 DOI: 10.1016/j.critrevonc.2024.104438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, UK
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
44
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
45
|
Chen M, Liu Y, Li Y, Liu X. Tumor-targeted nano-assemblies for energy-blocking cocktail therapy in cancer. Acta Biomater 2024; 184:368-382. [PMID: 38908417 DOI: 10.1016/j.actbio.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".
Collapse
Affiliation(s)
- Manling Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China
| | - Yidu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China.
| | - Xue Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, PR Singapore.
| |
Collapse
|
46
|
Sun W, Cai B, Zhao Z, Li S, He Y, Xie S. Redirecting Tumor Evolution with Nanocompiler Precision for Enhanced Therapeutic Outcomes. Adv Healthc Mater 2024:e2400366. [PMID: 39039965 DOI: 10.1002/adhm.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/16/2024] [Indexed: 07/24/2024]
Abstract
Precisely programming the highly plastic tumor expression profile to render it devoid of drug resistance and metastatic potential presents immense challenges. Here, a transformative nanocompiler designed to reprogram and stabilize the mutable state of tumor cells is introduced. This nanocompiler features a trio of components: 2-deoxy-d-glucose-modified lipid nanoparticles to inhibit glucose uptake, iron oxide nanoparticles to induce oxidative stress, and a deubiquitinase inhibitor to block adaptive protein profile changes in tumor cells. By specifically targeting the hypermetabolic nature of tumors, this approach disrupted their energy production, ultimately fostering a state of vulnerability and impeding their ability to adapt and resist. The results of this study indicate a substantial reduction in tumor growth and metastasis, thus demonstrating the potential of this strategy to manipulate tumor protein expression and fate. This proactive nanocompiler approach promises to steer cancer therapy toward more effective and lasting outcomes.
Collapse
Affiliation(s)
- Wenshe Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, 250117, China
| | - Biao Cai
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zejun Zhao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shilun Li
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yutian He
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
47
|
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, Jin H, Tuo B. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 2024; 54:59. [PMID: 38785162 PMCID: PMC11188982 DOI: 10.3892/ijmm.2024.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.
Collapse
Affiliation(s)
- Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ting Tao
- Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
48
|
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q, Zhu Y. Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 2024; 30:131. [PMID: 38818815 PMCID: PMC11148525 DOI: 10.3892/mmr.2024.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Jing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Yuting Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Hongbo Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Sitong Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116000, P.R China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| |
Collapse
|
49
|
Liu R, Li J, Liu L, Wang W, Jia J. Tumor-associated macrophages (TAMs): Constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC). CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
50
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|