1
|
Miller J, Perrier Q, Rengaraj A, Bowlby J, Byers L, Peveri E, Jeong W, Ritchey T, Gambelli AM, Rossi A, Calafiore R, Tomei A, Orlando G, Asthana A. State of the Art of Bioengineering Approaches in Beta-Cell Replacement. CURRENT TRANSPLANTATION REPORTS 2025; 12:17. [PMID: 40342868 PMCID: PMC12055624 DOI: 10.1007/s40472-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Purpose of the Review Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. Recent Findings First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. Summary These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
Collapse
Affiliation(s)
- Jake Miller
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Quentin Perrier
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
- Univ. Grenoble Alpes, Department of Pharmacy, Grenoble Alpes University Hospital, Grenoble, France
| | - Arunkumar Rengaraj
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Joshua Bowlby
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Lori Byers
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Emma Peveri
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Thomas Ritchey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | | | - Arianna Rossi
- Department of Engineering, University of Perugia, Perugia, Italy
| | | | - Alice Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| |
Collapse
|
2
|
Verschueren van Rees N, Ashwin P, McMullan C, Krogvold L, Dahl-Jørgensen K, Morgan NG, Leete P, Wedgwood KCA. Beyond the loss of beta cells: a quantitative analysis of islet architecture in adults with and without type 1 diabetes. Diabetologia 2025; 68:1031-1043. [PMID: 40011232 PMCID: PMC12021988 DOI: 10.1007/s00125-025-06376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/12/2024] [Indexed: 02/28/2025]
Abstract
AIMS/HYPOTHESIS The organisation and cellular architecture of islets of Langerhans are critical to the physiological regulation of hormone secretion but it is debated whether human islets adhere to the characteristic mantle-core (M-C) structure seen in rodents. It is also unclear whether inherent architectural changes contribute to islet dysfunction in type 1 diabetes, aside from the loss of beta cells. Therefore, we have exploited advances in immunostaining, spatial biology and machine learning to undertake a detailed, systematic analysis of adult human islet architecture in health and type 1 diabetes, by a quantitative analysis of a dataset of >250,000 endocrine cells in >3500 islets from ten individuals. METHODS Formalin-fixed paraffin-embedded pancreatic sections (4 μm) from organ donors without diabetes and living donors with recent-onset type 1 diabetes were stained for all five islet hormones and imaged prior to analysis, which employed a novel automated pipeline using QuPath software, capable of running on a standard laptop. Whole-slide image analysis involved segmentation classifiers, cell detection and phenotyping algorithms to identify islets, specific cell types and their locations as (x,y)-coordinates in regions of interest. Each endocrine cell was categorised into binary variables for cell type (i.e. beta or non-beta) and position (mantle or core). A χ2 test for independence of these properties was performed and the OR was considered to estimate the effect size of the potential association between position and cell type. A quantification of the M-C structure at islet level was performed by computing the probability, r, that the observed number of non-beta cells in the mantle is due to a random arrangement. The distribution of the r values for the islets in the study was contrasted against the r values of a digital population of equivalent randomly arranged islets, termed digital siblings. Both distributions of r values were compared using the earth mover's distance (EMD), a mathematical tool employed to describe differences in distribution patterns. The EMD was also used to contrast the distribution of islet size and beta cell fraction between type 1 diabetes and control islets. RESULTS The χ2 test supports the existence of a significant (p<0.001) relationship between cell position and type. The effect size was measured via the OR <0.8, showing that non-beta cells are more likely to be found at the mantle (and vice versa). At the islet level, the EMD between the distributions of r values of the observed islets and the digital siblings was emd-1d=0.10951 (0 CONCLUSIONS/INTERPRETATION Using a novel analysis pipeline, statistical evidence supports the existence of an M-C structure in human adult islets, irrespective of type 1 diabetes status. The methods presented in the current study offer potential applications in spatial biology, islet immunopathology, transplantation and organoid research, and developmental research.
Collapse
Affiliation(s)
- Nicolás Verschueren van Rees
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK.
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
| | - Peter Ashwin
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Conor McMullan
- Exeter Centre of Excellence for Diabetes Research, Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research, Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Pia Leete
- Exeter Centre of Excellence for Diabetes Research, Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK.
| | - Kyle C A Wedgwood
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
4
|
Sahu A, Mishra PR, Pragyandipta P, Rath S, Nanda A, Kanhar S, Sahoo DR, Naik E, Naik D, Naik PK. Elucidating the therapeutic efficacy of polyherbal formulation for the management of diabetes through endogenous pancreatic β-cell regeneration. Bioorg Chem 2025; 157:108270. [PMID: 39970755 DOI: 10.1016/j.bioorg.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Diabetes mellitus is characterized by the progressive loss of pancreatic β-cells. Owing to the adverse side effects of conventional antidiabetic, ethnopharmacological agents have emerged as adjunct therapies for their management. The present study aims to validate the antidiabetic activity of an aqueous polyherbal extract (APE) via in silico, in vitro, and in vivo models. UHPLC-Q-TOF-MS and HPLC analysis of APE were performed to identify bioactive secondary plant metabolites. In silico approaches implemented to predict the binding efficacy of the active phytoconstituents. Biochemical estimation, antioxidant activity, and in vitro and in vivo antidiabetic activities of APE were performed. Histomorphological and immunohistological studies of the pancreatic islets were carried out in diabetic animals for microarchitectural study. UHPLC-Q-TOF-MS identified a total of 60 compounds in APE, of which 39 were reported to have antidiabetic activity, and 16 marker compounds were identified via high-performance liquid chromatography (HPLC). An in silico study revealed a strong interaction of verbacoside B with the target proteins. APE is characterized by high flavonoid and phenolic contents with strong antioxidant properties. In an in vitro enzymatic assay, APE significantly inhibited α-amylase and α-glucosidase enzymes, with calculated IC50 values of 54.26 ± 0.14 and 26.47 ± 0.12 μg/ml, respectively. An in vitro glucose uptake assay revealed increased uptake with APE treatment in a dose-dependent manner. APE significantly decreased blood glucose and HbA1c levels and had no side effects on liver or kidney function, as measured from blood parameters. Immunohistological observation revealed 47% regeneration of pancreatic β-cells with APE treatment in diabetic animals.
Collapse
Affiliation(s)
- Abhijit Sahu
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Pravash Ranjan Mishra
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Pratyush Pragyandipta
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Srichandan Rath
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Ashirbad Nanda
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, Khurda, Odisha, India
| | - Satish Kanhar
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, Khurda, Odisha, India
| | - Dibya Ranjan Sahoo
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Eeshara Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Deepali Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Pradeep K Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India.
| |
Collapse
|
5
|
Collins J, Farnsworth NL. Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers. Diabetologia 2025; 68:692-703. [PMID: 39847085 DOI: 10.1007/s00125-024-06356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects. Targeted drug delivery using nanocarriers has demonstrated potential for overcoming these limitations. The critical bottleneck limiting the development of beta cell-targeted therapies is a lack of highly specific beta cell markers. This review provides an overview of the use of nanocarriers for cell-targeted delivery and the current state of the field of beta cell targeting. Technologies such as systematic evolution of ligands by exponential enrichment (SELEX) aptamer selection, phage display screening, and omics datasets from human samples are highlighted as tools to identify novel beta cell-specific targets that can be combined with nanocarriers for targeted delivery of therapeutics. Ultimately, beta cell-targeted therapies using nanocarriers present a unique opportunity to develop tailored treatments for each stage of type 1 diabetes with the goal of providing individuals with treatment options that prevent further progression or reverse the course of the disease.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
6
|
Yang L, Yu XX, Wang X, Jin CT, Xu CR. The expression order determines the pioneer functions of NGN3 and NEUROD1 in pancreatic endocrine differentiation. SCIENCE ADVANCES 2025; 11:eadt4770. [PMID: 40138419 PMCID: PMC11939047 DOI: 10.1126/sciadv.adt4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Pioneer transcription factors (TFs) initiate chromatin remodeling, which is crucial for gene regulation and cell differentiation. In this study, we investigated how the sequential expression of neurogenin 3 (NGN3) and NEUROD1 affects their pioneering functions during pancreatic endocrine differentiation. Using a genetically engineered mouse model, we mapped NGN3-binding sites, confirming the pivotal role of this molecule in regulating chromatin accessibility. The pioneering function of NGN3 involves dose tolerance, and low doses are sufficient. Although NEUROD1 generally acts as a conventional TF, it can assume a pioneering role in the absence of NGN3. The sequential expression of NeuroD1 and Ngn3 predominantly drives α cell generation, which may explain the inefficient β cell induction observed in vitro. Our findings demonstrate that pioneer activity is dynamically shaped by temporal TF expression and inter-TF interactions, providing insights into transcriptional regulation and its implications for disease mechanisms and therapeutic targeting and enhancing in vitro differentiation strategies.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Xin Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chen-Tao Jin
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Meier RPH, Ben Nasr M, Fife BT, Finger EB, Fiorina P, Luo X, Bromberg JS. Best practices in islet transplantation in mice. Am J Transplant 2025:S1600-6135(25)00137-6. [PMID: 40089068 DOI: 10.1016/j.ajt.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Islet transplantation in mice serves as a crucial preclinical model for understanding alloimmune and autoimmune mechanisms, optimizing immunosuppressive strategies, and developing novel therapies for diabetes. This review provides a comprehensive overview of best practices in murine islet transplantation, including diabetes induction models, technical aspects of islet transplantation, and criteria for transplant graft and rejection. We discuss the immunological challenges posed by major histocompatibility complex disparities, the impact of various transplantation sites, and the limitations of murine models in translating findings to clinical settings. Special emphasis is placed on emerging strategies such as stem cell-derived insulin-producing cells, immune tolerance induction, and alternative transplantation sites. Although mouse models have significantly advanced our understanding of diabetes and β-cell replacement, their inherent differences from human physiology necessitate careful interpretation of findings. The review also highlights novel imaging modalities, immunosuppressive protocols, and biomarkers for graft monitoring, underscoring the need for further refinement of these models to bridge the gap between experimental research and clinical application. By standardizing methodologies and addressing translational limitations, murine islet transplantation studies remain a key model in transplantation and can continue to shape the future of β-cell replacement therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian T Fife
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Hahm J, Kumar D, Andrade JAF, Arany E, Hill DJ. Bi-Hormonal Endocrine Cell Presence Within the Islets of Langerhans of the Human Pancreas Throughout Life. Cells 2025; 14:34. [PMID: 39791735 PMCID: PMC11719505 DOI: 10.3390/cells14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of bi-hormonal islet endocrine cell populations throughout the human lifespan. Immunofluorescence microscopy was performed for insulin, glucagon, and somatostatin presence on paraffin-embedded sections of pancreata from 20 donors without diabetes aged between 11 days and 79 years of age. The mean proportional presence of glucagon-, insulin-, and somatostatin-immunoreactive cells within islets was 27.5%, 62.1%, and 12.1%, respectively. There was no change in the relative presence of alpha- or beta-cells with advancing age, but delta-cell presence showed a decline with age (R2 = 0.59, p < 0.001). The most abundant bi-hormonal cell phenotype observed co-stained for glucagon and insulin, representing 3.1 ± 0.3% of all islet cells. Glucagon/somatostatin and insulin/somatostatin bi-hormonal cells were also observed representing 2-3% abundance relative to islet cell number. Glucagon/insulin bi-hormonal cells increased with age (R2 = 0.30, p < 0.05) whilst insulin/somatostatin (R2 = 0.50, p < 0.01) and glucagon/somatostatin (R2 = 0.35, p < 0.05) cells decreased with age of donor. Findings show that bi-hormonal cells are present within human pancreatic islets throughout life, perhaps reflecting an ongoing potential for endocrine cell plasticity.
Collapse
Affiliation(s)
- Jiwon Hahm
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (J.A.F.A.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (D.K.); (E.A.)
| | - Dawn Kumar
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (D.K.); (E.A.)
- Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Juan Andres Fernandez Andrade
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (J.A.F.A.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (D.K.); (E.A.)
| | - Edith Arany
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (D.K.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (J.A.F.A.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (D.K.); (E.A.)
- Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Ma H, Xu L, Wu S, Wang S, Li J, Ai S, Yang Z, Mo R, Lin L, Li Y, Wang S, Gao J, Li C, Kong D. Supragel-mediated efficient generation of pancreatic progenitor clusters and functional glucose-responsive islet-like clusters. Bioact Mater 2024; 41:1-14. [PMID: 39101030 PMCID: PMC11292262 DOI: 10.1016/j.bioactmat.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Although several synthetic hydrogels with defined stiffness have been developed to facilitate the proliferation and maintenance of human pluripotent stem cells (hPSCs), the influence of biochemical cues in lineage-specific differentiation and functional cluster formation has been rarely reported. Here, we present the application of Supragel, a supramolecular hydrogel formed by synthesized biotinylated peptides, for islet-like cluster differentiation. We observed that Supragel, with a peptide concentration of 5 mg/mL promoted spontaneous hPSCs formation into uniform clusters, which is mainly attributable to a supporting stiffness of ∼1.5 kPa as provided by the Supragel matrix. Supragel was also found to interact with the hPSCs and facilitate endodermal and subsequent insulin-secreting cell differentiation, partially through its components: the sequences of RGD and YIGSR that interacts with cell membrane molecules of integrin receptor. Compared to Matrigel and suspension culturing conditions, more efficient differentiation of the hPSCs was also observed at the stages 3 and 4, as well as the final stage toward generation of insulin-secreting cells. This could be explained by 1) suitable average size of the hPSCs clusters cultured on Supragel; 2) appropriate level of cell adhesive sites provided by Supragel during differentiation. It is worth noting that the Supragel culture system was more tolerance in terms of the initial seeding densities and less demanding, since a standard static cell culture condition was sufficient for the entire differentiation process. Our observations demonstrate a positive role of Supragel for hPSCs differentiation into islet-like cells, with additional potential in facilitating germ layer differentiation.
Collapse
Affiliation(s)
- Hongmeng Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lilin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shengjie Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sifan Ai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rigen Mo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| |
Collapse
|
10
|
Hahm J, Thirunavukarasu B, Gadoo R, Andrade JAF, Dalton T, Arany E, Hill DJ. Alpha- to Beta-Cell Transdifferentiation in Neonatal Compared with Adult Mouse Pancreas in Response to a Modest Reduction in Beta-Cells Using Streptozotocin. Int J Mol Sci 2024; 25:11152. [PMID: 39456933 PMCID: PMC11508719 DOI: 10.3390/ijms252011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Following the near-total depletion of pancreatic beta-cells with streptozotocin (STZ), a partial recovery of beta-cell mass (BCM) can occur, in part due to the alpha- to beta-cell transdifferentiation with an intermediary insulin/glucagon bi-hormonal cell phenotype. However, human type 2 diabetes typically involves only a partial reduction in BCM and it is not known if recovery after therapeutic intervention involves islet cell transdifferentiation, or how this varies with age. Here, we used transgenic mouse models to examine if islet cell transdifferentiation contributes to BCM recovery following only a partial depletion of BCM. Cell lineage tracing was employed using Glucagon-Cre/yellow fluorescent protein (YFP) transgenic mice treated with STZ (25 mg/kg-neonates; 70 mg/kg-adults) or vehicle alone on 3 consecutive days. Mice were euthanized 2-30 days later with a prior glucose tolerance test on day 30, and immunofluorescence histology performed on the pancreata. Beta-cell abundance was reduced by 30-40% two days post STZ in both neonates and adults, and subsequently partially recovered in adult but not neonatal mice. Glucose tolerance recovered in adult females, but not in males or neonates. Bi-hormonal cell abundance increased 2-3-fold in STZ-treated mice vs. controls in both neonates and adults, as did transdifferentiated cells expressing insulin and the YFP lineage tag, but not glucagon. Transdifferentiated cell presence was an order of magnitude lower than that of bi-hormonal cells. We conclude that alpha- to beta-cell transdifferentiation occurs in mice following only a moderate depletion in BCM, and that this was accompanied by a partial recovery of BCM in adults.
Collapse
Affiliation(s)
- Jiwon Hahm
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Bavina Thirunavukarasu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Reva Gadoo
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Juan Andres Fernandez Andrade
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Tyler Dalton
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Edith Arany
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Holst-Hansen T, Nielsen PY, Jensen MH, Mandrup-Poulsen T, Trusina A. Tipping-point transition from transient to persistent inflammation in pancreatic islets. NPJ Syst Biol Appl 2024; 10:102. [PMID: 39266581 PMCID: PMC11393080 DOI: 10.1038/s41540-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with a systemic increase in the pro-inflammatory cytokine IL-1β. While transient exposure to low IL-1β concentrations improves insulin secretion and β-cell proliferation in pancreatic islets, prolonged exposure leads to impaired insulin secretion and collective β-cell death. IL-1 is secreted locally by islet-resident macrophages and β-cells; however, it is unknown if and how the two opposing modes may emerge at single islet level. We investigated the duality of IL-1β with a quantitative in silico model of the IL-1 regulatory network in pancreatic islets. We find that the network can produce either transient or persistent IL-1 responses when induced by pro-inflammatory and metabolic cues. This suggests that the duality of IL-1 may be regulated at the single islet level. We use two core feedbacks in the IL-1 regulation to explain both modes: First, a fast positive feedback in which IL-1 induces its own production through the IL-1R/IKK/NF-κB pathway. Second, a slow negative feedback where NF-κB upregulates inhibitors acting at different levels along the IL-1R/IKK/NF-κB pathway-IL-1 receptor antagonist and A20, among others. A transient response ensues when the two feedbacks are balanced. When the positive feedback dominates over the negative, islets transit into the persistent inflammation mode. Consistent with several observations, where the size of islets was implicated in its inflammatory state, we find that large islets and islets with high density of IL-1β amplifying cells are more prone to transit into persistent IL-1β mode. Our results are likely not limited to IL-1β but are general for the combined effect of multiple pro-inflammatory cytokines and chemokines. Generalizing complex regulations in terms of two feedback mechanisms of opposing nature and acting on different time scales provides a number of testable predictions. Taking islet architecture and cellular heterogeneity into consideration, further dynamic monitoring and experimental validation in actual islet samples will be crucial to verify the model predictions and enhance its utility in clinical applications.
Collapse
Affiliation(s)
| | - Pernille Yde Nielsen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Visa M, Berggren PO. Sex-dependent intra-islet structural rearrangements affecting alpha-to-beta cell interactions lead to adaptive enhancements of Ca 2+ dynamics in prediabetic beta cells. Diabetologia 2024; 67:1663-1682. [PMID: 38814444 PMCID: PMC11343800 DOI: 10.1007/s00125-024-06173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
AIMS/HYPOTHESIS Prediabetic pancreatic beta cells can adapt their function to maintain normoglycaemia for a limited period of time, after which diabetes mellitus will manifest upon beta cell exhaustion. Understanding sex-specific beta cell compensatory mechanisms and their failure in prediabetes (impaired glucose tolerance) is crucial for early disease diagnosis and individualised treatment. Our aims were as follows: (1) to determine the key time points of the progression from beta cells' functional adaptations to their failure in vivo; and (2) to mechanistically explain in vivo sex-specific beta cell compensatory mechanisms and their failure in prediabetes. METHODS Islets from male and female transgenic Ins1CreERT2-GCaMP3 mice were transplanted into the anterior chamber of the eye of 10- to 12-week-old sex-matched C57BL/6J mice. Recipient mice were fed either a control diet (CD) or western diet (WD) for a maximum of 4 months. Metabolic variables were evaluated monthly. Beta cell cytoplasmic free calcium concentration ([Ca2+]i) dynamics were monitored in vivo longitudinally by image fluorescence of the GCaMP3 reporter islets. Global islet beta cell [Ca2+]i dynamics in line with single beta cell [Ca2+]i analysis were used for beta cell coordination studies. The glucagon receptor antagonist L-168,049 (4 mmol/l) was applied topically to the transplanted eyes to evaluate in vivo the effect of glucagon on beta cell [Ca2+]idynamics. Human islets from non-diabetic women and men were cultured for 24 h in either a control medium or high-fat/high-glucose medium in the presence or absence of the glucagon receptor antagonist L-168,049. [Ca2+]i dynamics of human islets were evaluated in vitro after 1 h exposure to Fura-10. RESULTS Mice fed a WD for 1 month displayed increased beta cell [Ca2+]i dynamics linked to enhanced insulin secretion as a functional compensatory mechanism in prediabetes. Recruitment of inactive beta cells in WD-fed mice explained the improved beta cell function adaptation observed in vivo; this occurred in a sex-specific manner. Mechanistically, this was attributable to an intra-islet structural rearrangement involving alpha cells. These sex-dependent cytoarchitecture reorganisations, observed in both mice and humans, induced enhanced paracrine input from adjacent alpha cells, adjusting the glucose setpoint and amplifying the insulin secretion pathway. When WD feeding was prolonged, female mice maintained the adaptive mechanism due to their intrinsically high proportion of alpha cells. In males, [Ca2+]i dynamics progressively declined subsequent to glucose stimulation while insulin secretion continue to increase, suggesting uncoordinated beta cell function as an early sign of diabetes. CONCLUSIONS/INTERPRETATION We identified increased coordination of [Ca2+]i dynamics as a beta cell functional adaptation mechanisms in prediabetes. Importantly, we uncovered the mechanisms by which sex-dependent beta cell [Ca2+]i dynamics coordination is orchestrated by an intra-islet structure reorganisation increasing the paracrine input from alpha cells on beta cell function. Moreover, we identified reduced [Ca2+]i dynamics coordination in response to glucose as an early sign of diabetes preceding beta cell secretory dysfunction, with males being more vulnerable. Alterations in coordination capacity of [Ca2+]i dynamics may thus serve as an early marker for beta cell failure in prediabetes.
Collapse
Affiliation(s)
- Montse Visa
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Tecnológico de Monterrey, Real San Agustín, Mexico.
- West China Hospital, Sichuan University, Chengdu, China.
- School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
14
|
Caspi I, Tremmel DM, Pulecio J, Yang D, Liu D, Yan J, Odorico JS, Huangfu D. Glucose Transporters Are Key Components of the Human Glucostat. Diabetes 2024; 73:1336-1351. [PMID: 38775784 PMCID: PMC11262048 DOI: 10.2337/db23-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 07/21/2024]
Abstract
Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human β-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult β-cells and is expressed to a greater extent in fetal β-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of β-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human β-cells, and identify them as key components in establishing species-specific glycemic set points. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Daniel M. Tremmel
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jon S. Odorico
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
15
|
Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, Bose A, Gorain B. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155638. [PMID: 38728916 DOI: 10.1016/j.phymed.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.
Collapse
Affiliation(s)
- Sukanta Roy
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Subas Chandra Dinda
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Anirbandeep Bose
- School of Medical Science, Adamas University, Barbaria, Jagannathpur, Kolkata, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
16
|
Azzarello F, Carli F, De Lorenzi V, Tesi M, Marchetti P, Beltram F, Raimondi F, Cardarelli F. Machine-learning-guided recognition of α and β cells from label-free infrared micrographs of living human islets of Langerhans. Sci Rep 2024; 14:14235. [PMID: 38902357 PMCID: PMC11190282 DOI: 10.1038/s41598-024-65161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting β cells closely intermingled one another. Current methods for identifying α and β cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and β cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and β cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and β cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of β cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.
Collapse
Affiliation(s)
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Fabio Beltram
- NEST Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | |
Collapse
|
17
|
Basile L, Cannarella R, Iuliano S, Calogero AE, Condorelli RA, Greco EA, Aversa A, LA Vignera S. Semaglutide and obesity: beyond the nutritional and lifestyle intervention? Minerva Endocrinol (Torino) 2024; 49:182-195. [PMID: 39028209 DOI: 10.23736/s2724-6507.23.04103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Semaglutide is the second marketed glucagon-like peptide 1 receptor agonist that can be used safely and efficiently in non-diabetic people with excess weight, providing a new milestone in the pharmacological treatment of obesity. This narrative review aims to describe the clinical actions of this new drug in weight management in non-diabetic patients along with possible side-effects and dropout reasons. To accomplish this, the PubMed database was searched to retrieve the most relevant clinical studies published to date on this topic, using the following keywords "semaglutide and obesity". Currently, semaglutide is on the market in two formulations, the once-weekly subcutaneous (s.c.) semaglutide and once-daily oral semaglutide. Data in the literature on the anti-obesity action of semaglutide are available for both routes of administration of the drug, with a prevalence of studies using the s.c. one. However, given its dosage, oral semaglutide may provide greater attractiveness and better treatment adherence, but further research is needed in this field.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Iuliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy -
| | - Sandro LA Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Jacovetti C, Donnelly C, Menoud V, Suleiman M, Cosentino C, Sobel J, Wu K, Bouzakri K, Marchetti P, Guay C, Kayser B, Regazzi R. The mitochondrial tRNA-derived fragment, mt-tRF-Leu TAA, couples mitochondrial metabolism to insulin secretion. Mol Metab 2024; 84:101955. [PMID: 38704026 PMCID: PMC11112368 DOI: 10.1016/j.molmet.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic β-cells. CONCLUSIONS Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.
Collapse
Affiliation(s)
- Cecile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Chris Donnelly
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Diabetes Unit, University of Pisa, Pisa, Italy
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Diabetes Unit, University of Pisa, Pisa, Italy
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Lehrstrand J, Davies WIL, Hahn M, Korsgren O, Alanentalo T, Ahlgren U. Illuminating the complete ß-cell mass of the human pancreas- signifying a new view on the islets of Langerhans. Nat Commun 2024; 15:3318. [PMID: 38632302 PMCID: PMC11024155 DOI: 10.1038/s41467-024-47686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.
Collapse
Affiliation(s)
- Joakim Lehrstrand
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Wayne I L Davies
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Max Hahn
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tomas Alanentalo
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
20
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
21
|
Joutsen J, Pessa JC, Jokelainen O, Sironen R, Hartikainen JM, Sistonen L. Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2. Cell Stress Chaperones 2024; 29:235-271. [PMID: 38458311 PMCID: PMC10963207 DOI: 10.1016/j.cstres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
Collapse
Affiliation(s)
- Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland.
| | - Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Otto Jokelainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
22
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
23
|
Liu Y, Zhang Y, Chang X, Liu X. MDIC3: Matrix decomposition to infer cell-cell communication. PATTERNS (NEW YORK, N.Y.) 2024; 5:100911. [PMID: 38370122 PMCID: PMC10873161 DOI: 10.1016/j.patter.2023.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Yuelei Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Ren W, Hua M, Cao F, Zeng W. The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306128. [PMID: 38039489 PMCID: PMC10885671 DOI: 10.1002/advs.202306128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Indexed: 12/03/2023]
Abstract
Sympathetic innervation plays a crucial role in maintaining energy balance and contributes to metabolic pathophysiology. Recent evidence has begun to uncover the innervation landscape of sympathetic projections and sheds light on their important functions in metabolic activities. Additionally, the immune system has long been studied for its essential roles in metabolic health and diseases. In this review, the aim is to provide an overview of the current research progress on the sympathetic regulation of key metabolic organs, including the pancreas, liver, intestine, and adipose tissues. In particular, efforts are made to highlight the critical roles of the peripheral nervous system and its potential interplay with immune components. Overall, it is hoped to underscore the importance of studying metabolic organs from a comprehensive and interconnected perspective, which will provide valuable insights into the complex mechanisms underlying metabolic regulation and may lead to novel therapeutic strategies for metabolic diseases.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Meng Hua
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
| | - Fang Cao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563000China
| | - Wenwen Zeng
- Institute for Immunology and School of MedicineTsinghua Universityand Tsinghua‐Peking Center for Life SciencesBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijing100084China
| |
Collapse
|
25
|
Kumar PP, Rao GV, Shetty M, Pradeep R, PremaVani C, Sasikala M, Reddy DN. Understanding the Structural Arrangement of Islets in Chronic Pancreatitis. J Histochem Cytochem 2024; 72:25-40. [PMID: 38063163 PMCID: PMC10795563 DOI: 10.1369/00221554231217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/20/2023] [Indexed: 12/31/2023] Open
Abstract
Islet transplantation has become an established method for the treatment of insulin-deficient diabetes such as type 1 and type 3C (pancreatogenic). An effective transplantation necessitates a thorough understanding of the islet architecture and related functions to improve engraftment outcomes. However, in chronic pancreatitis (CP), the structural and related functional information is inadequate. Hence, the present study is aimed to understand the cytoarchitecture of endocrine cells and their functional implications in CP with and without diabetes. Herein, a set of human pancreatic tissue specimens (normal, n=5 and CP, n=20) was collected and processed for islet isolation. Furthermore, immunohistochemistry was used to assess the vascular densities, cell mass, organization, and cell-cell interactions. The glucose-stimulated insulin release results revealed that in chronic pancreatitis without diabetes mellitus altered (CPNDA), at basal glucose concentration the insulin secretion was increased by 24.2%, whereas at high glucose concentration the insulin levels were reduced by 77.4%. The impaired insulin secretion may be caused by alterations in the cellular architecture of islets during CP progression, particularly in chronic pancreatitis with diabetes mellitus and CPNDA conditions. Based on the results, a deeper comprehension of islet architecture would be needed to enhance successful transplantation in CP patients: (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Pondugala Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| | | | | | | | | | - Mitnala Sasikala
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| |
Collapse
|
26
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
27
|
Weir GC, Bonner-Weir S. Conflicting Views About Interactions Between Pancreatic α-Cells and β-Cells. Diabetes 2023; 72:1741-1747. [PMID: 37983524 PMCID: PMC10658062 DOI: 10.2337/db23-0292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/16/2023] [Indexed: 11/22/2023]
Abstract
In type 1 diabetes, the reduced glucagon response to insulin-induced hypoglycemia has been used to argue that β-cell secretion of insulin is required for the full glucagon counterregulatory response. For years, the concept has been that insulin from the β-cell core flows downstream to suppress glucagon secretion from the α-cells in the islet mantle. This core-mantle relationship has been supported by perfused pancreas studies that show marked increases in glucagon secretion when insulin was neutralized with antisera. Additional support comes from a growing number of studies focused on vascular anatomy and blood flow. However, in recent years this core-mantle view has generated less interest than the argument that optimal insulin secretion is due to paracrine release of glucagon from α-cells stimulating adjacent β-cells. This mechanism has been evaluated by knockout of β-cell receptors and impairment of α-cell function by inhibition of Gi designer receptors exclusively activated by designer drugs. Other studies that support this mechanism have been obtained by pharmacological blocking of glucagon-like peptide 1 receptor in humans. While glucagon has potent effects on β-cells, there are concerns with the suggested paracrine mechanism, since some of the supporting data are from isolated islets. The study of islets in static incubation or perifusion systems can be informative, but the normal paracrine relationships are disrupted by the isolation process. While this complicates interpretation of data, arguments supporting paracrine interactions between α-cells and β-cells have growing appeal. We discuss these conflicting views of the relationship between pancreatic α-cells and β-cells and seek to understand how communication depends on blood flow and/or paracrine mechanisms.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
28
|
Aggarwal M, Striegel DA, Hara M, Periwal V. Geometric and topological characterization of the cytoarchitecture of islets of Langerhans. PLoS Comput Biol 2023; 19:e1011617. [PMID: 37943957 PMCID: PMC10662755 DOI: 10.1371/journal.pcbi.1011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/21/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The islets of Langerhans are critical endocrine micro-organs that secrete hormones regulating energy metabolism in animals. Insulin and glucagon, secreted by beta and alpha cells, respectively, are responsible for metabolic switching between fat and glucose utilization. Dysfunction in their secretion and/or counter-regulatory influence leads to diabetes. Debate in the field centers on the cytoarchitecture of islets, as the signaling that governs hormonal secretion depends on structural and functional factors, including electrical connectivity, innervation, vascularization, and physical proximity. Much effort has therefore been devoted to elucidating which architectural features are significant for function and how derangements in these features are correlated or causative for dysfunction, especially using quantitative network science or graph theory characterizations. Here, we ask if there are non-local features in islet cytoarchitecture, going beyond standard network statistics, that are relevant to islet function. An example is ring structures, or cycles, of α and δ cells surrounding β cell clusters or the opposite, β cells surrounding α and δ cells. These could appear in two-dimensional islet section images if a sphere consisting of one cell type surrounds a cluster of another cell type. To address these issues, we developed two independent computational approaches, geometric and topological, for such characterizations. For the latter, we introduce an application of topological data analysis to determine locations of topological features that are biologically significant. We show that both approaches, applied to a large collection of islet sections, are in complete agreement in the context both of developmental and diabetes-related changes in islet characteristics. The topological approach can be applied to three-dimensional imaging data for islets as well.
Collapse
Affiliation(s)
- Manu Aggarwal
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Deborah A. Striegel
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Vipul Periwal
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Skelin Klemen M, Kopecky J, Dolenšek J, Stožer A. Human Beta Cell Functional Adaptation and Dysfunction in Insulin Resistance and Its Reversibility. Nephron Clin Pract 2023; 148:78-84. [PMID: 37883937 PMCID: PMC10860743 DOI: 10.1159/000534667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Beta cells play a key role in the pathophysiology of diabetes since their functional adaptation is able to maintain euglycemia in the face of insulin resistance, and beta cell decompensation or dysfunction is a necessary condition for full-blown type 2 diabetes (T2D). The mechanisms behind compensation and decompensation are incompletely understood, especially for human beta cells, and even less is known about influences of chronic kidney disease (CKD) or immunosupressive therapy after transplantation on these processes and the development of posttransplant diabetes. SUMMARY During compensation, beta cell sensitivity to glucose becomes left-shifted, i.e., their sensitivity to stimulation increases, and this is accompanied by enhanced signals along the stimulus-secretion coupling cascade from membrane depolarization to intracellular calcium and the most distal insulin secretion dynamics. There is currently no clear evidence regarding changes in intercellular coupling during this stage of disease progression. During decompensation, intracellular stimulus-secretion coupling remains enhanced to some extent at low or basal glucose concentrations but seems to become unable to generate effective signals to stimulate insulin secretion at high or otherwise stimulatory glucose concentrations. Additionally, intercellular coupling becomes disrupted, lowering the number of cells that contribute to secretion. During progression of CKD, beta cells also seem to drift from a compensatory left-shift to failure, and immunosupressants can further impair beta cell function following kidney transplantation. KEY MESSAGES Beta cell stimulus-secretion coupling is enhanced in compensated insulin resistance. With worsening insulin resistance, both intra- and intercellular coupling become disrupted. CKD can progressively disrupt beta cell function, but further studies are needed, especially regarding changes in intercellular coupling.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia,
| | - Jan Kopecky
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
30
|
Cao S, Wang L, Feng Y, Peng XD, Li LM. A data integration approach unveils a transcriptional signature of type 2 diabetes progression in rat and human islets. PLoS One 2023; 18:e0292579. [PMID: 37816033 PMCID: PMC10564241 DOI: 10.1371/journal.pone.0292579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic islet failure is a key characteristic of type 2 diabetes besides insulin resistance. To get molecular insights into the pathology of islets in type 2 diabetes, we developed a computational approach to integrating expression profiles of Goto-Kakizaki and Wistar rat islets from a designed experiment with those of the human islets from an observational study. A principal gene-eigenvector in the expression profiles characterized by up-regulated angiogenesis and down-regulated oxidative phosphorylation was identified conserved across the two species. In the case of Goto-Kakizaki versus Wistar islets, such alteration in gene expression can be verified directly by the treatment-control tests over time, and corresponds to the alteration of α/β-cell distribution obtained by quantifying the islet micrographs. Furthermore, the correspondence between the dual sample- and gene-eigenvectors unveils more delicate structures. In the case of rats, the up- and down-trend of insulin mRNA levels before and after week 8 correspond respectively to the top two principal eigenvectors. In the case of human, the top two principal eigenvectors correspond respectively to the late and early stages of diabetes. According to the aggregated expression signature, a large portion of genes involved in the hypoxia-inducible factor signaling pathway, which activates transcription of angiogenesis, were significantly up-regulated. Furthermore, top-ranked anti-angiogenic genes THBS1 and PEDF indicate the existence of a counteractive mechanism that is in line with thickened and fragmented capillaries found in the deteriorated islets. Overall, the integrative analysis unravels the principal transcriptional alterations underlying the islet deterioration of morphology and insulin secretion along type 2 diabetes progression.
Collapse
Affiliation(s)
- Shenghao Cao
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yance Feng
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-ding Peng
- Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei M. Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
32
|
Asuaje Pfeifer M, Langehein H, Grupe K, Müller S, Seyda J, Liebmann M, Rustenbeck I, Scherneck S. PyCreas: a tool for quantification of localization and distribution of endocrine cell types in the islets of Langerhans. Front Endocrinol (Lausanne) 2023; 14:1250023. [PMID: 37772078 PMCID: PMC10523144 DOI: 10.3389/fendo.2023.1250023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Manifest diabetes, but also conditions of increased insulin resistance such as pregnancy or obesity can lead to islet architecture remodeling. The contributing mechanisms are as poorly understood as the consequences of altered cell arrangement. For the quantification of the different cell types but also the frequency of different cell-cell contacts within the islets, different approaches exist. However, few methods are available to characterize islet cell distribution in a statistically valid manner. Here we describe PyCreas, an open-source tool written in Python that allows semi-automated analysis of islet cell distribution based on images of pancreatic sections stained by immunohistochemistry or immunofluorescence. To ensure that the PyCreas tool is suitable for quantitative analysis of cell distribution in the islets at different metabolic states, we studied the localization and distribution of alpha, beta, and delta cells during gestation and prediabetes. We compared the islet cell distribution of pancreatic islets from metabolically healthy NMRI mice with that of New Zealand obese (NZO) mice, which exhibit impaired glucose tolerance (IGT) both preconceptionally and during gestation, and from C57BL/6 N (B6) mice, which acquire this IGT only during gestation. Since substrain(s) of the NZO mice are known to show a variant in the Abcc8 gene, we additionally examined preconceptional SUR1 knock-out (SUR1-KO) mice. PyCreas provided quantitative evidence that alterations in the Abcc8 gene are associated with an altered distribution pattern of islet cells. Moreover, our data indicate that this cannot be a consequence of prolonged hyperglycemia, as islet architecture is already altered in the prediabetic state. Furthermore, the quantitative analysis suggests that states of transient IGT, such as during common gestational diabetes mellitus (GDM), are not associated with changes in islet architecture as observed during long-term IGT. PyCreas provides the ability to systematically analyze the localization and distribution of islet cells at different stages of metabolic disease to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
33
|
Kabra UD, Jastroch M. Mitochondrial Dynamics and Insulin Secretion. Int J Mol Sci 2023; 24:13782. [PMID: 37762083 PMCID: PMC10530730 DOI: 10.3390/ijms241813782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic β cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and β cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic β cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
Collapse
Affiliation(s)
- Uma D. Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara 391760, India;
| | - Martin Jastroch
- The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Rout S, Amirtham SM, Prasad M, Cherian AG, B SR, Sudhakar Y, Prince N. In Vitro Human Fetal Pancreatic Islets to Redefine Pancreatic Research. Cureus 2023; 15:e43244. [PMID: 37692623 PMCID: PMC10491859 DOI: 10.7759/cureus.43244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND In vitro studies with human fetal islets of different gestational ages (GA) would be a great tool to generate information on the developmental process of the islets as this would help to recontextualize diabetes research and clinical practice. Pancreatic islets from human cadavers and other animal species are extensively researched to explore their suitability for islet transplantation procedure, one of the upcoming treatment strategies for insulin-dependent diabetes mellitus. Although human fetal islets are also considered for islet transplantation, ethical issues and limited knowledge constraints their use. The fetal islets could be explored to address the information lacunae on the maturity process of pancreatic islets and the endocrine-exocrine signaling mechanisms. AIM This study aimed to assess the feasibility of isolating viable islets and study the cytoarchitecture of the fetal pancreas of GA 22-29 weeks, not reported otherwise. METHODOLOGY Pancreas obtained from the aborted fetuses of GA 22-29 weeks were subjected to collagenase digestion and were further cultured to determine the viability in vitro. Parameters assessed were expression of markers for endocrine cell lineages and insulin release to glucose challenge. RESULTS Islets were viable in vitro and islets were shown to maintain cues for post-digestion re-aggregation and expansion in culture. The immunofluorescent staining showed islets of varying sizes, homogenous cell clusters aggregating to form heterogenous cell clusters, otherwise not reported for this GA. On stimulation with different concentrations of glucose (2.8 and 28 mM), the fetal islets in the culture exhibited insulin release, and this response confirmed their viability in vitro. CONCLUSION Our findings showed that viable islets could be isolated and cultured in vitro for further in-depth studies to explore their proliferative potential as well as for the identification of pancreatic progenitors, a good strategy to take forward.
Collapse
Affiliation(s)
- Sipra Rout
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Mythraeyee Prasad
- Anatomy, Velammal Medical College Hospital and Research Institute, Madurai, IND
| | | | - Sandya Rani B
- Research, Christian Medical College and Hospital, Vellore, IND
| | - Yesudas Sudhakar
- Biochemistry, Christian Medical College and Hospital, Vellore, IND
| | - Neetu Prince
- Physiology, Christian Medical College and Hospital, Vellore, IND
| |
Collapse
|
35
|
Eizirik DL, Szymczak F, Mallone R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat Rev Endocrinol 2023; 19:425-434. [PMID: 37072614 DOI: 10.1038/s41574-023-00826-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
A perplexing feature of type 1 diabetes (T1D) is that the immune system destroys pancreatic β-cells but not neighbouring α-cells, even though both β-cells and α-cells are dysfunctional. Dysfunction, however, progresses to death only for β-cells. Recent findings indicate important differences between these two cell types. First, expression of BCL2L1, a key antiapoptotic gene, is higher in α-cells than in β-cells. Second, endoplasmic reticulum (ER) stress-related genes are differentially expressed, with higher expression levels of pro-apoptotic CHOP in β-cells than in α-cells and higher expression levels of HSPA5 (which encodes the protective chaperone BiP) in α-cells than in β-cells. Third, expression of viral recognition and innate immune response genes is higher in α-cells than in β-cells, contributing to the enhanced resistance of α-cells to coxsackievirus infection. Fourth, expression of the immune-inhibitory HLA-E molecule is higher in α-cells than in β-cells. Of note, α-cells are less immunogenic than β-cells, and the CD8+ T cells invading the islets in T1D are reactive to pre-proinsulin but not to glucagon. We suggest that this finding is a result of the enhanced capacity of the α-cell to endure viral infections and ER stress, which enables them to better survive early stressors that can cause cell death and consequently amplify antigen presentation to the immune system. Moreover, the processing of the pre-proglucagon precursor in enteroendocrine cells might favour immune tolerance towards this potential self-antigen compared to pre-proinsulin.
Collapse
Affiliation(s)
- Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium.
| | - Florian Szymczak
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
36
|
Pettway YD, Saunders DC, Brissova M. The human α cell in health and disease. J Endocrinol 2023; 258:e220298. [PMID: 37114672 PMCID: PMC10428003 DOI: 10.1530/joe-22-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
In commemoration of 100 years since the discovery of glucagon, we review current knowledge about the human α cell. Alpha cells make up 30-40% of human islet endocrine cells and play a major role in regulating whole-body glucose homeostasis, largely through the direct actions of their main secretory product - glucagon - on peripheral organs. Additionally, glucagon and other secretory products of α cells, namely acetylcholine, glutamate, and glucagon-like peptide-1, have been shown to play an indirect role in the modulation of glucose homeostasis through autocrine and paracrine interactions within the islet. Studies of glucagon's role as a counterregulatory hormone have revealed additional important functions of the α cell, including the regulation of multiple aspects of energy metabolism outside that of glucose. At the molecular level, human α cells are defined by the expression of conserved islet-enriched transcription factors and various enriched signature genes, many of which have currently unknown cellular functions. Despite these common threads, notable heterogeneity exists amongst human α cell gene expression and function. Even greater differences are noted at the inter-species level, underscoring the importance of further study of α cell physiology in the human context. Finally, studies on α cell morphology and function in type 1 and type 2 diabetes, as well as other forms of metabolic stress, reveal a key contribution of α cell dysfunction to dysregulated glucose homeostasis in disease pathogenesis, making targeting the α cell an important focus for improving treatment.
Collapse
Affiliation(s)
- Yasminye D. Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| |
Collapse
|
37
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
38
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
39
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Wilson PW, Cho C, Allsing N, Khanum S, Bose P, Grubschmidt A, Sant KE. Tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol disrupt pancreatic organogenesis and gene expression in zebrafish embryos. Birth Defects Res 2023; 115:458-473. [PMID: 36470842 DOI: 10.1002/bdr2.2132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2 = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.
Collapse
Affiliation(s)
- Peyton W Wilson
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Christine Cho
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Nicholas Allsing
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Saleha Khanum
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Pria Bose
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Ava Grubschmidt
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
41
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
42
|
Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci 2022; 24:ijms24010119. [PMID: 36613557 PMCID: PMC9820198 DOI: 10.3390/ijms24010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed. The scaffold supports the adhesion and proliferation of human adipose derived stem cell (hADSCs) and prolongs the viability and insulin-producing function of pancreatic islets. Experiments conducted allow for the reliance on the prospects of using the donor pancreas unsuitable for transplantation in the technologies of tissue engineering and regenerative medicine, including the development of a tissue equivalent of a pancreas.
Collapse
|
43
|
Gosak M, Yan-Do R, Lin H, MacDonald PE, Stožer A. Ca2+ Oscillations, Waves, and Networks in Islets From Human Donors With and Without Type 2 Diabetes. Diabetes 2022; 71:2584-2596. [PMID: 36084321 PMCID: PMC9750953 DOI: 10.2337/db22-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Pancreatic islets are highly interconnected structures that produce pulses of insulin and other hormones, maintaining normal homeostasis of glucose and other nutrients. Normal stimulus-secretion and intercellular coupling are essential to regulated secretory responses, and these hallmarks are known to be altered in diabetes. In the current study, we used calcium imaging of isolated human islets to assess their collective behavior. The activity occurred in the form of calcium oscillations, was synchronized across different regions of islets through calcium waves, and was glucose dependent: higher glucose enhanced the activity, elicited a greater proportion of global calcium waves, and led to denser and less fragmented functional networks. Hub regions were identified in stimulatory conditions, and they were characterized by long active times. Moreover, calcium waves were found to be initiated in different subregions and the roles of initiators and hubs did not overlap. In type 2 diabetes, glucose dependence was retained, but reduced activity, locally restricted waves, and more segregated networks were detected compared with control islets. Interestingly, hub regions seemed to suffer the most by losing a disproportionately large fraction of connections. These changes affected islets from donors with diabetes in a heterogeneous manner.
Collapse
Affiliation(s)
- Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Richard Yan-Do
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
44
|
Goswami I, de Klerk E, Carnese P, Hebrok M, Healy KE. Multiplexed microfluidic platform for stem-cell derived pancreatic islet β cells. LAB ON A CHIP 2022; 22:4430-4442. [PMID: 36305868 PMCID: PMC9642094 DOI: 10.1039/d2lc00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Stem cell-derived β cells offer an alternative to primary islets for biomedical discoveries as well as a potential surrogate for islet transplantation. The expense and challenge of obtaining and maintaining functional stem cell-derived β cells calls for a need to develop better high-content and high-throughput culture systems. Microphysiological systems (MPS) are promising high-content in vitro platforms, but scaling for high-throughput screening and discoveries remain a challenge. Traditionally, simultaneous multiplexing of liquid handling and cell loading poses a challenge in the design of high-throughput MPS. Furthermore, although MPS for islet β culture/testing have been developed, studies on multi-day culture of stem-cell derived β cells in MPS have been limited. We present a scalable, multiplexed islet β MPS device that incorporates microfluidic gradient generators to parallelize fluid handling for culture and test conditions. We demonstrated the viability and functionality of the stem cell-derived enriched β clusters (eBCs) for a week, as assessed by the ∼2 fold insulin release by the clusters to glucose challenge. To show the scalable multiplexing for drug testing, we demonstrated the loss of stimulation index after long-term exposure to logarithmic concentration range of glybenclamide. The MPS cultured eBCs also confirmed a glycolytic bottleneck as inferred by insulin secretion responses to metabolites methyl succinate and glyceric acid. Thus, we present an innovative culture platform for eBCs with a balance of high-content and high-throughput characteristics.
Collapse
Affiliation(s)
- Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Eleonora de Klerk
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Phichitpol Carnese
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Bosi E, Marchetti P, Rutter GA, Eizirik DL. Human alpha cell transcriptomic signatures of types 1 and 2 diabetes highlight disease-specific dysfunction pathways. iScience 2022; 25:105056. [PMID: 36134336 PMCID: PMC9483809 DOI: 10.1016/j.isci.2022.105056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023] Open
Abstract
Although glucagon secretion is perturbed in both T1D and T2D, the pathophysiological changes in individual pancreatic alpha cells are still obscure. Using recently curated single-cell RNASeq data from T1D or T2D donors and their controls, we identified alpha cell transcriptomic alterations consistent with both common and discrete pathways. Although alterations in alpha cell identity gene (ARX, MAFB) expression were conserved, cytokine-regulated genes and genes involved in glucagon biosynthesis and processing were up-regulated in T1D. Conversely, mitochondrial genes associated with ROS (COX7B, NQO2) were dysregulated in T2D. Additionally, T1D alpha cells displayed altered expression of autoimmune-induced ER stress genes (ERLEC1, HSP90), whilst those from T2D subjects showed modified glycolytic and citrate cycle gene (LDHA?, PDHB, PDK4) expression. Thus, despite conserved alterations related to loss of function, alpha cells display disease-specific gene signatures which may be secondary to the main pathogenic events in each disease, namely immune- or metabolism-mediated-stress, in T1D and T2D, respectively.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
- Corresponding author
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
| | - Guy Allen Rutter
- CR-CHUM and Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Decio Laks Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
46
|
Jain C, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4:1097-1108. [PMID: 36131204 DOI: 10.1038/s42255-022-00618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of β cell insulin signalling might protect and/or regenerate β cells as an improved treatment of patients with diabetes.
Collapse
Affiliation(s)
- Chirag Jain
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair of β-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, München, Germany.
| |
Collapse
|
47
|
Ponomareva AS, Baranova NV, Miloserdov IA, Sevastianov VI. In vitro effect of bioscaffolds on viability and insulin‑producing function of human islets of Langerhans. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-109-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The culture of islets of Langerhans with bioscaffolds – extracellular matrix (ECM) mimetics – can provide a native microenvironment suitable for islets. This is one of the main conditions for creating a pancreatic tissue equivalent.Objective: to compare the secretory capacity of viable human pancreatic islets in monoculture (control group) and cultured in the presence of two bioscaffolds: biopolymer collagen-based hydrogel scaffold (experimental group 1) and tissue-specific scaffold from decellularized deceased donor pancreas (experimental group 2).Materials and methods. Islets of Langerhans were isolated from the caudal pancreas using a collagenase technique. The viability of cultured islets was accessed by vital fluorescence staining, while secretory capacity was evaluated by enzyme-linked immunosorbent assay (ELISA).Results. Pancreatic islets cultured with bioscaffolds showed no signs of degradation and fragmentation, they remained viable throughout the entire period of observation (7 days). The monoculture of islets showed significant destructive changes during this period. Basal insulin levels in experimental groups 1 and 2 increased by 18.8% and 39.5% on day 1 of culture compared to the control group, by 72.8% and 102.7% on day 4 of incubation, and by 146.4% and 174.6% on day 7, respectively. The insulin secretion level of islets with tissue-specific scaffolds was 17.4% higher than that when cultured with biopolymer collagen-based scaffolds.Conclusion. Biopolymer and tissue-specific ECM mimetics contribute not only to preservation of the viability of isolated islets of Langerhans but also maintain their insulin secretion capacity for 7 days at a higher level in comparison with monoculture. The experiments revealed that the use of a tissue-specific scaffold for the creation of a pancreatic tissue equivalent has slight potential advantage over biopolymer scaffold.
Collapse
Affiliation(s)
- A. S. Ponomareva
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - N. V. Baranova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - I. A. Miloserdov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
48
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
49
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Abstract
Primary cilia as a signaling organelle have garnered recent attention as a regulator of pancreatic islet function. These rod-like sensors exist on all major islet endocrine cell types and transduce a variety of external cues, while dysregulation of cilia function contributes to the development of diabetes. The complex role of islet primary cilia has been examined using genetic deletion targeting various components of cilia. In this review, we summarize experimental models for the study of islet cilia and current understanding of mechanisms of cilia regulation of islet hormone secretion. Consensus from these studies shows that pancreatic cilia perturbation can cause both endocrine and exocrine defects that are relevant to human disease. We discuss future research directions that would further elucidate cilia action in distinct groups of islet cells, including paracrine and juxtacrine regulation, GPCR signaling, and endocrine-exocrine crosstalk.
Collapse
Affiliation(s)
| | - Jing W. Hughes
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|