1
|
Zabihi A. The role of biological macromolecules in the regulation of angiogenesis in glioblastoma: Focus on vascular growth factors, integrins, and extracellular matrix proteins. Int J Biol Macromol 2025; 311:143838. [PMID: 40319984 DOI: 10.1016/j.ijbiomac.2025.143838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Glioblastoma, classified as a grade 4 brain tumor, accounts for approximately half of all malignant central nervous system cancers. Despite extensive research and aggressive treatment modalities, much about this disease remains elusive. The proliferation of blood vessels within glioblastoma tumors significantly contributes to their invasive nature, primarily due to the influence of vascular endothelial growth factor-A (VEGF-A). As a result, the past decade has seen a concentrated effort to explore angiogenesis, especially the VEGF signaling pathway, as a therapeutic target for glioblastoma. This investigation led to the FDA approval of bevacizumab, a monoclonal antibody against VEGF-A, for the treatment of recurrent glioblastoma. However, despite promising clinical trials and theoretical research, bevacizumab has not significantly improved patient survival rates. Furthermore, other anti-angiogenic agents targeting the VEGF signaling pathway have shown limited efficacy. This suggests the existence of multiple alternative angiogenic pathways that facilitate vascularization, even when VEGF signaling is inhibited. In this study, we aim to assess the current landscape of anti-angiogenic agents, explore potential resistance mechanisms to such therapies, and suggest strategies to improve the effectiveness of these therapeutic interventions. Our goal is to provide a comprehensive understanding of the limitations of current treatments and to identify new avenues for enhancing therapeutic outcomes in glioblastoma patients.
Collapse
Affiliation(s)
- Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University Rasht Branch, Rasht, Iran.
| |
Collapse
|
2
|
Cerretti G, Bosio A, Librizzi G, Pintacuda G, Caccese M, Salvalaggio A, Zoccarato M, Parisi A, Padovan M, Maccari M, Cavallin F, Bellu L, Pasqualetti F, Ius T, Denaro L, Volpin F, Coppola M, Lonardi S, Lombardi G. Bevacizumab in recurrent glioblastoma: does dose matter? Our monocentric and comparative experience. J Neurooncol 2025; 173:449-456. [PMID: 40063186 DOI: 10.1007/s11060-025-04992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE Bevacizumab is an anti-angiogenetic treatment that can be used in patients with recurrent glioblastoma, but there are limited and controversial data on the optimal dose and schedule, associated toxicities and survival benefits of different doses. METHODS A retrospective analysis of patients with recurrent IDHwt glioblastoma treated with bevacizumab at the Veneto Institute of Oncology was performed. Patients received bevacizumab in 2 different schedules (5 mg/kg or 10 mg/kg q2w), as monotherapy or in combination with chemotherapy. RESULTS 81 patients were analyzed, 33 received bevacizumab 5 mg/Kg, 48 received bevacizumab 10 mg/Kg. Median PFS was 4 months in both patients treated with 5 mg/kg and those treated with 10 mg/kg (p-value=0.08), median OS was 5 months in patients treated with 5 mg/kg and 7 months in those treated with 10 mg/kg (p-value=0.10). There was no difference in the use of steroid therapy between the two groups. The incidence of adverse events was not statistically different. CONCLUSIONS There was no statistically significant difference in survival, PFS, response, toxicity and steroid reduction between the two different doses. These results may support the use of lower doses of the drug with comparable benefit for patients and with additional advantage in terms of health care costs.
Collapse
Affiliation(s)
- Giulia Cerretti
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata n°64, 35128, Padua, Italy.
| | - Alberto Bosio
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata n°64, 35128, Padua, Italy
| | - Giovanni Librizzi
- Neuroradiology, Department of Neurosciences, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
| | - Alessandro Salvalaggio
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Marco Zoccarato
- Neurology Unit O.S.A, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Alessandro Parisi
- Radiotherapy Unit, IOV-IRCCS Veneto Institute of Oncology, Padova, Italy
| | - Marta Padovan
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata n°64, 35128, Padua, Italy
| | - Marta Maccari
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata n°64, 35128, Padua, Italy
| | | | - Luisa Bellu
- Radiotherapy Unit, IOV-IRCCS Veneto Institute of Oncology, Padova, Italy
| | - Francesco Pasqualetti
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata n°64, 35128, Padua, Italy
- Radiotherapy Unit, IOV-IRCCS Veneto Institute of Oncology, Padova, Italy
| | - Tamara Ius
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Francesco Volpin
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Marina Coppola
- Pharmacy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sara Lonardi
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata n°64, 35128, Padua, Italy
| |
Collapse
|
3
|
Beylerli O, Gareev I, Kaprin A, Ahmad A, Chekhonin V, Yang S, Yang G. Hemorrhagic and ischemic risks of anti-VEGF therapies in glioblastoma. Cancer Gene Ther 2025:10.1038/s41417-025-00914-8. [PMID: 40394233 DOI: 10.1038/s41417-025-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Glioblastoma (GBM) is one of the most aggressive primary brain tumors, characterized by extensive neovascularization and a highly infiltrative phenotype. Anti-vascular endothelial growth factor (VEGF) therapies, such as bevacizumab, have emerged as significant adjunct treatments for recurrent and high-grade GBM by targeting abnormal tumor vasculature. Despite demonstrated benefits in slowing tumor progression and alleviating peritumoral edema, these agents are associated with notable vascular complications, including hemorrhagic and ischemic events. Hemorrhagic complications range from minor intracranial microbleeds to life-threatening intracranial hemorrhages (ICH). Mechanistically, VEGF inhibition disrupts endothelial function and decreases vascular integrity, making already fragile tumor vessels prone to rupture. Glioma-associated vascular abnormalities, including disorganized vessel networks and compromised blood-brain barrier, further exacerbate bleeding risks. Concurrent use of anticoagulants, hypertension, and genetic predispositions also significantly elevate hemorrhagic risk. In addition to bleeding complications, ischemic events are increasingly recognized in patients receiving anti-VEGF therapy. Reduced vascular endothelial cells (ECs) survival and diminished microvascular density can lead to regional hypoperfusion and potentially precipitate cerebrovascular ischemia. Impaired vasoreactivity and increased vascular resistance, often accompanied by endothelial dysfunction and microvascular rarefaction, contribute to elevated stroke and arterial thrombotic risk. This review synthesizes current evidence on hemorrhagic and ischemic complications arising from anti-VEGF therapy in GBM. We discuss underlying pathophysiological mechanisms, risk factors, and clinically relevant biomarkers, as well as prevention strategies-such as rigorous blood pressure (BP) control and close monitoring of coagulation parameters. We further highlight emerging avenues in precision medicine, including pharmacogenomic profiling and targeted adjunct agents that protect vascular integrity, aimed at mitigating adverse vascular events while preserving therapeutic efficacy. The goal is to optimize outcomes for GBM patients by balancing the benefits of anti-VEGF therapy with vigilant management of its inherent vascular risks. In addition, this study analyzes existing clinical trials of the use of anti-VEGF drugs in the treatment of gliomas using data from the clinicaltirals.gov website.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre (NMRRC) of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Shanshan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Heilongjiang Province Neuroscience Institute, Harbin, China.
| |
Collapse
|
4
|
Kinnersley B, Jung J, Cornish AJ, Chubb D, Laxton R, Frangou A, Gruber AJ, Sud A, Caravagna G, Sottoriva A, Wedge DC, Booth T, Al-Sarraj S, Lawrence SED, Albanese E, Anichini G, Baxter D, Boukas A, Chowdhury YA, D'Urso P, Corns R, Dapaah A, Edlmann E, Greenway F, Grundy P, Hill CS, Jenkinson MD, Trichinopoly Krishna S, Smith S, Manivannan S, Martin AJ, Matloob S, Mukherjee S, O'Neill K, Plaha P, Pollock J, Price S, Rominiyi O, Sachdev B, Saeed F, Sinha S, Thorne L, Ughratdar I, Whitfield P, Youshani AS, Bulbeck H, Arumugam P, Houlston R, Ashkan K. Genomic landscape of diffuse glioma revealed by whole genome sequencing. Nat Commun 2025; 16:4233. [PMID: 40335506 PMCID: PMC12059081 DOI: 10.1038/s41467-025-59156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Diffuse gliomas are the commonest malignant primary brain tumour in adults. Herein, we present analysis of the genomic landscape of adult glioma, by whole genome sequencing of 403 tumours (256 glioblastoma, 89 astrocytoma, 58 oligodendroglioma; 338 primary, 65 recurrence). We identify an extended catalogue of recurrent coding and non-coding genetic mutations that represents a source for future studies and provides a high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and extrachromosomal DNA. Finally, we relate these to clinical outcome. As well as identifying drug targets for treatment of glioma our findings offer the prospect of improving treatment allocation with established targeted therapies.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK.
- UCL Cancer Institute, 72 Huntley St, WC1E 6DD, London, UK.
| | - Josephine Jung
- Institute of Psychiatry, Psychology and Neurosciences, Kings College London, Strand, WC2R 2LS, London, UK.
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK.
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ross Laxton
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Anna Frangou
- Cancer Genomics, Big Data Institute, Nuffield Department of Medicine, Old Road Campus, OX3 7LF, Oxford, UK
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Giulio Caravagna
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - David C Wedge
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Thomas Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas's Hospital, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Samuel E D Lawrence
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Erminia Albanese
- Department of Neurosurgery, Royal Stoke University Hospital, Newcastle Road, ST4 6QG, Stoke-on-Trent, UK
| | - Giulio Anichini
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, 3S corridor, Fulham Palace Road, London, W6 8RF, UK
| | - David Baxter
- Department of Neurosurgery, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Alexandros Boukas
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, Oxford, UK
| | - Yasir A Chowdhury
- Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, B15 2GW, Birmingham, UK
| | - Pietro D'Urso
- Department of Neurosurgery, Manchester Royal Infirmary, Oxford Rd, M13 9WL, Manchester, UK
| | - Robert Corns
- Department of Neurosurgery, Leeds General Infirmary, Great George St, LS1 3EX, Leeds, UK
| | - Andrew Dapaah
- Department of Neurosurgery, Queen's Medical Centre NHS Trust, Derby Road, Lenton, NG7 2UH, Nottingham, UK
| | - Ellie Edlmann
- South West Neurosurgery Unit, University Hospitals Plymouth NHS Trust, Derriford Road, Crownhill, PL6 8DH, Plymouth, UK
| | - Fay Greenway
- Department of Neurosurgery, St. George's University Hospitals NHS Foundation Trust, Blackshaw Rd, SW17 0QT, London, UK
| | - Paul Grundy
- Department of Neurosurgery, Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, UK
| | - Ciaran S Hill
- UCL Cancer Institute, 72 Huntley St, WC1E 6DD, London, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, L9 7LJ, Liverpool, UK
| | - Sandhya Trichinopoly Krishna
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, L9 7LJ, Liverpool, UK
| | - Stuart Smith
- Department of Neurosurgery, Queen's Medical Centre NHS Trust, Derby Road, Lenton, NG7 2UH, Nottingham, UK
| | - Susruta Manivannan
- Department of Neurosurgery, Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, UK
| | - Andrew J Martin
- Department of Neurosurgery, St. George's University Hospitals NHS Foundation Trust, Blackshaw Rd, SW17 0QT, London, UK
| | - Samir Matloob
- Department of Neurosurgery, Queen's Hospital Romford, Rom Valley Way, RM7 0AG, Romford, UK
| | - Soumya Mukherjee
- Department of Neurosurgery, Addenbrookes Hospital, Hills Rd, CB2 0QQ, Cambridge, UK
| | - Kevin O'Neill
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, 3S corridor, Fulham Palace Road, London, W6 8RF, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, Oxford, UK
| | - Jonathan Pollock
- Department of Neurosurgery, Queen's Hospital Romford, Rom Valley Way, RM7 0AG, Romford, UK
| | - Stephen Price
- Department of Neurosurgery, Addenbrookes Hospital, Hills Rd, CB2 0QQ, Cambridge, UK
| | - Ola Rominiyi
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, Broomhall, S10 2JF, Sheffield, UK
| | - Bobby Sachdev
- Department of Neurosurgery, Royal Stoke University Hospital, Newcastle Road, ST4 6QG, Stoke-on-Trent, UK
| | - Fozia Saeed
- Department of Neurosurgery, Leeds General Infirmary, Great George St, LS1 3EX, Leeds, UK
| | - Saurabh Sinha
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, Broomhall, S10 2JF, Sheffield, UK
| | - Lewis Thorne
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK
| | - Ismail Ughratdar
- Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, B15 2GW, Birmingham, UK
| | - Peter Whitfield
- South West Neurosurgery Unit, University Hospitals Plymouth NHS Trust, Derriford Road, Crownhill, PL6 8DH, Plymouth, UK
| | - Amir Saam Youshani
- Department of Neurosurgery, Manchester Royal Infirmary, Oxford Rd, M13 9WL, Manchester, UK
| | - Helen Bulbeck
- Brainstrust, 4 Yvery Court, Castle Road, PO31 7QG, Cowes, Isle of Wight, UK
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Keyoumars Ashkan
- Institute of Psychiatry, Psychology and Neurosciences, Kings College London, Strand, WC2R 2LS, London, UK.
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK.
| |
Collapse
|
5
|
Li YL, Mao J, Cheng Z, Zhou XY, Zhang DN, Li YZ, Cao ZX, Ren JX. Identification of low-toxicity DNA topoisomerase I inhibitors with potential blood-brain barrier penetrability for glioblastoma therapy: structure-based virtual screening reveals promising novel Scaffolds. Mol Divers 2025:10.1007/s11030-025-11185-8. [PMID: 40237873 DOI: 10.1007/s11030-025-11185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Due to the blood-brain barrier (BBB), DNA topoisomerase I (Topo I) inhibitors often cause dose-limiting toxicity in glioblastoma (GBM) treatment. Therefore, developing low-toxicity Topo I inhibitors with enhanced BBB permeability holds a significant promise for improving GBM treatment outcomes. In this study, structure-based virtual screening methods combined with biological evaluations successfully identified three potent Topo I inhibitors, which exhibited IC50 values of approximately 25 µM against A172 cells. Structural similarity analysis showed that these compounds have novel scaffolds. Compounds F1260-0895 and F2557-0012 exhibited negligible cytotoxicity on HK-2 cells. The most active compound, F2557-0012, directly targets human Topo I. Clonal formation assays and growth inhibition curves demonstrated the sustained inhibitory effects of F2557-0012 on A172 cells. The flow cytometric analysis showed that F2557-0012 effectively inhibits cell proliferation with minimal effect on apoptosis. Molecular dynamic simulations demonstrated that compound F2557-0012 exhibits stable binding to the Topo I-DNA complex. Two new easily synthesized compounds, demonstrating improved BBB permeability and reduced hematotoxicity, were derived from F1260-0895 and F2557-0012 through structural optimization utilizing the OptADMET platform. Molecular docking analyses indicated that the two novel compounds exhibited a significantly stronger interaction with the Topo I-DNA complex. Further investigations are warranted to synthesize optimized compounds and evaluate their anti-GBM activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Ya-Lin Li
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Jun Mao
- College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Zhong Cheng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030607, People's Republic of China
| | - Xin-Yu Zhou
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Duan-Na Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Ji-Xia Ren
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| |
Collapse
|
6
|
Dirven L, Machingura A, van den Bent MJ, Coens C, Bottomley A, Brandes AA, Domont J, Idbaih A, Koekkoek JAF, Reijneveld JC, Platten M, Wick W, Taphoorn MJB. Health-related quality of life in patients with progressive glioblastoma treated with combined bevacizumab and lomustine versus lomustine only: Secondary outcome of the randomized phase III EORTC 26101 study. Neurooncol Pract 2025; 12:209-218. [PMID: 40110057 PMCID: PMC11913650 DOI: 10.1093/nop/npae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background Progression-free survival, but not overall survival, was prolonged with bevacizumab and lomustine compared to lomustine only in the randomized phase 3 European Organization for Research and Treatment of Cancer (EORTC) 26101 study. Objective To evaluate the impact of treatment on health-related quality of life (HRQoL) in progressive glioblastoma patients participating in the EORTC 26101 study. Methods Patients with progressive glioblastoma, after standard radio-chemotherapy, were 2:1 randomized to either BEV/LOM or LOM. HRQoL was a secondary trial outcome and assessed using the EORTC QLQ-C30 and QLQ-BN20 questionnaires at baseline, and subsequently every 12 weeks. Predefined scales for analysis were global health status (GH), physical functioning, social functioning (SF), motor dysfunction, and communication deficit. The primary endpoint was HRQoL during the last assessment up to week 36. Moreover, time to HRQoL deterioration (TTD) and HRQoL deterioration-free survival (DFS) were calculated. Results Out of 437 patients, 402 (92%) patients had a baseline HRQoL assessment, which dropped to 66% at week 36. During the last assessment up to week 36, no differences were observed for predefined scales, apart from SF being clinically relevant lower in the combination arm (mean 66.0 versus 81.0, p = .001). Of note, the baseline SF score was 66.4 for patients in the combination arm, showing stable SF. Median DFS was significantly longer in the combination arm (12.4 weeks) compared to lomustine alone (6.7 weeks), reflecting the difference in time to progression between arms. TTD, not including progression as an event, was not different between treatment arms (median 13.0 versus 12.9 weeks). Conclusion The addition of bevacizumab to lomustine did not negatively affect HRQoL during the progression-free period.
Collapse
Affiliation(s)
- Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abigirl Machingura
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | | | - Corneel Coens
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Andrew Bottomley
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Alba A Brandes
- Department of Medical Oncology, AUSL-IRCCS Scienze Neurologiche, Bologna, Italy
| | | | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-Oncologie, F-75013, Paris, France
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap C Reijneveld
- Department of Neurology and Brain Tumour Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Michael Platten
- UMM, Mannheim, Heidelberg University and CCU Neuroimmunology, Heidelberg, Germany
| | - Wolfgang Wick
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Gong J, Zhang W, Balthasar JP. Camptothein-Based Anti-Cancer Therapies and Strategies to Improve Their Therapeutic Index. Cancers (Basel) 2025; 17:1032. [PMID: 40149365 PMCID: PMC11941615 DOI: 10.3390/cancers17061032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, and severe off-target toxicities. Despite extensive research, only two CPTs, irinotecan and topotecan, have received health authority approval. Ongoing clinical trials continue to explore the use of CPTs in combination with targeted therapies and immunotherapies to expand their clinical use. Drug delivery systems, including liposomes and antibody-drug conjugates (ADCs), have significantly enhanced the therapeutic index of CPTs. Liposomal irinotecan (Onivyde®, Ipsen, Paris, France) and two ADCs delivering CPT payloads, trastuzumab deruxtecan (Enhertu®, Daiichi Sankyo, Tokyo, Japan) and sacituzumab govitecan (Trodelvy®, Gilead Sciences, Inc., Foster City, CA, USA), have demonstrated substantial efficacy and safety. There is promise that novel strategies such as inverse targeting and co-dosing with anti-idiotypic distribution enhancers may expand the utility of CPT ADCs. This review highlights CPT therapies in clinical use and discusses approaches to further enhance their therapeutic selectivity.
Collapse
Affiliation(s)
| | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA (W.Z.)
| |
Collapse
|
8
|
Kim J, Jang H, Park Y, Jung I, Jo K. ExPDrug: Integration of an interpretable neural network and knowledge graph for pathway-based drug repurposing. Comput Biol Med 2025; 187:109729. [PMID: 39884058 DOI: 10.1016/j.compbiomed.2025.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Precision medicine aims to provide personalized therapies by analyzing patient molecular profiles, often focusing on gene expression data. However, effectively linking these data to actionable drug discovery for clinical application remains challenging. In this paper, we introduce ExPDrug, a neural network (NN) model that integrates biological pathways from transcriptomic data with a biomedical knowledge graph to facilitate pathway-based drug repurposing. ExPDrug enhances disease phenotype prediction by capturing the complex relationships between genes and pathways. Using layer-wise relevance propagation (LRP), the model interprets the contribution of each pathway using relevance scores applied in a random walk-with-restart (RWR) algorithm to prioritize potential drug candidates in the biomedical network. ExPDrug outperforms existing methods in predicting phenotypes for the three diseases and identifying drug candidates, as supported by the literature. This model offers a transformative approach for advancing precision medicine by linking transcriptomic insights directly to clinical drug repurposing, thereby potentially improving treatment strategies for complex diseases.
Collapse
Affiliation(s)
- Junku Kim
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Hojoong Jang
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Youngjun Park
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Inuk Jung
- School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
9
|
Sarker A, Uddin B, Ahmmed R, Mahmud S, Ajadee A, Pappu MAA, Aziz MA, Mollah MNH. Discovery of mutated oncodriver genes associated with glioblastoma originated from stem cells of subventricular zone through whole exome sequence profile analysis, and drug repurposing. Heliyon 2025; 11:e42052. [PMID: 39906820 PMCID: PMC11791140 DOI: 10.1016/j.heliyon.2025.e42052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers due to its high mortality rate in spite of intensive treatment. It may be happened because of drug resistance against their typical receptors, since these receptor genes are often mutated by environmental stress. So identifying mutated oncodriver genes which could be used as potential drug target is essential in order to develop effective new therapeutic drugs as well as better prognosis for GBM patients. In this study, we analyzed whole exome sequencing (WES) profiles of NCBI database on GBM and matched-normal (control) samples originated from astrocyte like neural stem cells (NSC) of subventricular zone (SVZ) to explore GBM-causing mutated oncodriver genes, since SVZ is considered as the origin of GBM development. We detected 16 mutated oncodriver genes. Then, filtering by differential co-expression analysis based on independent RNA-Seq profiles of CGGA database revealed 10 genes as dysregulated oncodriver genes. Following that, 3 significantly overexpressed oncodriver genes (MTCH2, VWF, and WDR89) were identified as potential drug targets. Then molecular mechanisms of GBM development were investigated by these three overexpressed driver genes through gene ontology (GO), KEGG-pathways, Gene regulatory network (GRN) and mutation analysis. Finally, overexpressed oncodriver genes guided top-ranked six drug agents (Irinotecan, Imatinib, etoposide, pazopanib, trametinib and cabozanitinib) were recommended against GBM through molecular docking study. Most of our findings received support by the literature review also. Therefore, the findings of this study might carry potential values to the wet-lab researchers for further investigation in terms of diagnosis and therapies of GBM.
Collapse
Affiliation(s)
- Arnob Sarker
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Burhan Uddin
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Al Amin Pappu
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
10
|
Falchook GS, Battiste JD, Kalra A, Shastry M, Finney L, Hoekstra SJ, Shih MG, Shih KC. A phase Ib study evaluating the c-MET inhibitor INC280 (capmatinib) in combination with bevacizumab in patients with high-grade glioma. Neurooncol Adv 2025; 7:vdae220. [PMID: 39925637 PMCID: PMC11805691 DOI: 10.1093/noajnl/vdae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background To improve survival in patients with high-grade glioma, INC280 (capmatinib) a highly selective and potent oral inhibitor of the MET receptor with robust central nervous system (CNS) penetration, was evaluated in combination with bevacizumab (BEV). Methods There were 2 phases, dose-escalation (3+3 design) and dose-expansion, which included patients (1) who progressed during or after first-line therapy (no prior BEV), (2) who progressed during or after second-line therapy with BEV, and (3) who had unresectable high-grade glioma (no prior BEV). Results Sixty-four patients with high-grade glioma were treated; 18 in escalation cohorts and 46 in expansion Cohorts A (21), B (15), and C (10). The maximum-tolerated dose (MTD) was not reached and the RP2D was 400 mg capmatinib PO BID (800 mg daily). Treatment continued for a median of 14 weeks and up to ~6 years in one patient. Common treatment-related adverse events (65% ≤ Grade 2) included fatigue, peripheral edema, nausea, diarrhea, ALT increased, and constipation. Headaches and seizures occurred in 11 patients; Grade 3+ events included Grade 3 headache (1) and Grade 3 seizures (4). There were no treatment-related deaths. The 12 responders to treatment (2 CRs [1 pt in escalation and 1 pt in Cohort A] and 10 PRs [2 pts in escalation and A = 6, B = 1, and C = 1]) had a median duration of response of 9.2 months. Two patients with durable responses (CR >5 years, PR >1 year) did not harbor baseline c-MET alterations. Conclusion Capmatinib + BEV was well-tolerated but had no clear signal of activity in c-MET non-activated high-grade glioma.
Collapse
Affiliation(s)
- Gerald S Falchook
- Drug Development, Sarah Cannon Research Institute at HealthOne, Denver, CO, USA
| | - James D Battiste
- Neuro-Oncology, Oklahoma University Health, Oklahoma City, OK, USA
| | - Amandeep Kalra
- Medical Oncology, HCA Midwest Kansas City, Kansas City, KS, USA
| | - Mythili Shastry
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Lindsey Finney
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Susan J Hoekstra
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Meredith G Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
| | - Kent C Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| |
Collapse
|
11
|
Hou J, Xing Z, Li A, Wu H, Jin Y, Song Q, Ji S, Zhang Z, Zhang X. Synergistic antitumor effects of Phlorizin and Temozolomide in glioblastoma: Mechanistic insights and molecular targeting. Fitoterapia 2025; 180:106313. [PMID: 39617291 DOI: 10.1016/j.fitote.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 01/01/2025]
Abstract
Glioblastoma (GBM), one of the most aggressive brain cancers, presents significant treatment challenges due to its complex biology and resistance to conventional therapies, necessitating the development of new, low-toxicity, and effective treatments. This study explores the antitumor potential of phlorizin, a naturally occurring dihydrochalcone, as a standalone agent and in combination with temozolomide (TMZ), the standard chemotherapeutic for GBM. Phlorizin was found to significantly inhibit cell viability and migration in vitro, with synergistic effects observed when combined with TMZ. Comprehensive analyses, including protein-protein interaction network construction, enrichment analysis, and molecular docking with AKT1, identified the PI3K/AKT/mTOR signaling pathway as a critical mediator of glioblastoma cell survival and proliferation targeted by phlorizin. Pathway enrichment analysis of 88 intersection targets further highlighted this pathway's role in phlorizin's activity. Western blot validation confirmed that phlorizin inhibits the expression of key proteins within the PI3K/AKT/mTOR pathway, providing a mechanistic basis for its antitumor effects. These findings suggest that phlorizin, particularly in combination with TMZ, holds significant potential as a therapeutic strategy for glioblastoma by targeting molecular pathways critical for cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Junzhi Hou
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China; College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Zhaobin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Ang Li
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Hongjiao Wu
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Ye Jin
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063202, PR China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, PR China.
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063202, PR China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063202, PR China.
| |
Collapse
|
12
|
Ospina JP, Wen PY. Medical and neurologic management of brain tumor patients. Curr Opin Neurol 2024; 37:657-665. [PMID: 39221926 DOI: 10.1097/wco.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This article discusses commonly encountered medical and neurological complications in patients with brain tumors and highlights recommendations for their management based on updated evidence. RECENT FINDINGS Use of dexamethasone is correlated with worse prognosis in patients with glioblastoma, and in brain metastases, high doses may lead to increased side effects without additional clinical benefit. There are multiple antiseizure medications (ASM) to choose from and possible interactions and toxicity must be considered when choosing an agent. Additionally, there is growing interest in the use of AMPA receptor blockers as ASM in patients with brain tumors. Nonpharmacological strategies for the management of fatigue remain paramount. Cognitive decline is common after whole brain radiation (WBRT) and hippocampal-sparing WBRT results in superior cognitive outcomes. Venous thromboembolism is a common complication and there is growing evidence on the use of direct oral anticoagulants (DOACs) in this population. SUMMARY There is evolving evidence on the management of medical and neurological complications in patients with brain tumors. These complications, require early identification and multidisciplinary collaboration and expertise.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
13
|
Hosoya T, Kambe A, Kesumayadi I, Makishima K, Sueyoshi S, Sakamoto M, Kurosaki M. Mechanism and significance of diffusion restriction followed by calcification in high-grade glioma treated with bevacizumab. Sci Rep 2024; 14:26419. [PMID: 39488647 PMCID: PMC11531518 DOI: 10.1038/s41598-024-78226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
In this study, we focused on calcification and diffusion restriction, which sometimes appear around the resection cavity or periventricular white matter in patients with high-grade glioma (HGG) treated with bevacizumab (BVZ), as candidate imaging biomarkers for BVZ treatment efficacy. We investigated the timing of the appearance of diffusion restriction and calcification using magnetic resonance imaging and computed tomography in 35 patients with newly diagnosed or recurrent HGG treated with BVZ. In 17 (48.6%) patients, calcification was identified around the resection cavity or periventricular white matter at a median of 12 months after the initiation of BVZ treatment. Patients with calcification had significantly longer progression-free survival (16 vs. 7 months; p = 0.0023) and overall survival (36 vs. 12 months; p = 0.0006) than those without calcification. Histopathological examination revealed the presence of scattered microcalcifications within areas of necrosis, which suggested dystrophic calcification induced by BVZ. Diffusion-restricted lesions that appeared in patients with calcification had significantly lower apparent diffusion coefficients than those in patients without calcifications, indicating the presence of treatment-related necrosis but not hypercellularity. In conclusion, the radiological finding of diffusion restriction followed by calcification could be a potential imaging biomarker for favorable clinical course in patients with HGG treated with BVZ.
Collapse
Affiliation(s)
- Tomohiro Hosoya
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan
| | - Atsushi Kambe
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan.
| | - Irfan Kesumayadi
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan
| | - Karen Makishima
- Division of Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683- 8504, Tottori, Japan
| | - Shuntaro Sueyoshi
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan
| | - Makoto Sakamoto
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan
| | - Masamichi Kurosaki
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishi-cho, Yonago, 683-8504, Tottori, Japan
| |
Collapse
|
14
|
Abdelnabi D, Lastakchi S, Watts C, Atkins H, Hingtgen S, Valdivia A, McConville C. Local administration of irinotecan using an implantable drug delivery device stops high-grade glioma tumor recurrence in a glioblastoma tumor model. Drug Deliv Transl Res 2024; 14:3070-3088. [PMID: 38319555 PMCID: PMC11445345 DOI: 10.1007/s13346-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
The treatment for Glioblastoma is limited due to the presence of the blood brain barrier, which restricts the entry of chemotherapeutic drugs into the brain. Local delivery into the tumor resection margin has the potential to improve efficacy of chemotherapy. We developed a safe and clinically translatable irinotecan implant for local delivery to increase its efficacy while minimizing systemic side effects. Irinotecan-loaded implants were manufactured using hot melt extrusion, gamma sterilized at 25 kGy, and characterized for their irinotecan content, release, and drug diffusion. Their therapeutic efficacy was evaluated in a patient-derived xenograft mouse resection model of glioblastoma. Their safety and translatability were evaluated using histological analysis of brain tissue and serum chemistry analysis. Implants containing 30% and 40% w/w irinotecan were manufactured without plasticizer. The 30% and 40% implants showed moderate local toxicity up to 2- and 6-day post-implantation. Histopathology of the implantation site showed signs of necrosis at days 45 and 14 for the 30% and 40% implants. Hematological analysis and clinical chemistry showed no signs of serious systemic toxicity for either implant. The 30% implants had an 80% survival at day 148, with no sign of tumor recurrence. Gamma sterilization and 12-month storage had no impact on the integrity of the 30% implants. This study demonstrates that the 30% implants are a promising novel treatment for glioblastoma that could be quickly translated into the clinic.
Collapse
Affiliation(s)
- Dina Abdelnabi
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sarah Lastakchi
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Colin Watts
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
| | - Hannah Atkins
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Valdivia
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christopher McConville
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
15
|
Tini P. Letter to the Editor: Commentary on "Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent Glioblastoma". J Korean Med Sci 2024; 39:e323. [PMID: 39468950 PMCID: PMC11519056 DOI: 10.3346/jkms.2024.39.e323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Paolo Tini
- Department of Medical Sciences, Surgery and Neuroscience, Università di Siena, Siena, Italy.
| |
Collapse
|
16
|
Tsuboi N, Otani Y, Uneda A, Ishida J, Suruga Y, Matsumoto Y, Fujimura A, Fujii K, Matsui H, Kurozumi K, Date I, Michiue H. New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline. Cancer Med 2024; 13:e70288. [PMID: 39440923 PMCID: PMC11497491 DOI: 10.1002/cam4.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications. RESULTS The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model. CONCLUSION Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
Collapse
Affiliation(s)
- Nobushige Tsuboi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
| | - Yoshihiro Otani
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsuhito Uneda
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joji Ishida
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yasuki Suruga
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yuji Matsumoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsushi Fujimura
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kentaro Fujii
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hideki Matsui
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kazuhiko Kurozumi
- Department of NeurosurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | | |
Collapse
|
17
|
Lee Y, Lee E, Roh TH, Kim SH. Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent Glioblastoma: A Nationwide Population-Based Study. J Korean Med Sci 2024; 39:e244. [PMID: 39228184 PMCID: PMC11372412 DOI: 10.3346/jkms.2024.39.e244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND For treating recurrent glioblastoma, for which there is no established treatment, the antiangiogenic antibody, bevacizumab, is used alone or with irinotecan. This study was aimed at comparing the survival of patients with recurrent glioblastoma receiving bevacizumab monotherapy and those receiving bevacizumab plus irinotecan combination therapy (B+I) by using a nationwide population-based dataset. METHODS Patients matching the International Classification of Diseases code C71.x were screened from the Health Insurance Review and Assessment Service database. From January 2008 to November 2021, patients who underwent surgery or biopsy and subsequent standard concurrent chemoradiation with temozolomide were included. Among them, those who received bevacizumab monotherapy or B+I were selected. Demographic characteristics, inpatient stay, prescription frequency, survival outcomes, and steroid prescription duration were compared between these two groups. RESULTS Eight hundred and forty-six patients who underwent surgery or biopsy and received concurrent chemoradiotherapy with temozolomide were included. Of these, 450 and 396 received bevacizumab monotherapy and B+I, respectively. The corresponding median overall survival from the initial surgery was 22.60 months (95% confidence interval [CI], 20.50-24.21) and 20.44 months (95% CI, 18.55-22.60; P = 0.508, log-rank test). The B+I group had significantly more bevacizumab prescriptions (median 5 times; BEV group: median 3 times). Cox analysis, based on the postsurgery period, revealed that male sex (hazard ratio [HR], 1.28; P = 0.002), older age (HR, 1.01; P = 0.042), and undergoing biopsy instead of surgery (HR, 1.79; P < 0.0001) were significantly associated with decreased survival. Fewer radiotherapy cycles correlated with improved survival outcomes (HR, 0.63; P = 0.001). Cox analysis, conducted from the start of chemotherapy including bevacizumab, showed that male sex was the only variable significantly associated with decreased survival (HR, 1.18; P = 0.044). CONCLUSION We found no significant difference in overall survival between the bevacizumab monotherapy and B+I groups. Considering the additional potential toxicity associated with irinotecan, bevacizumab monotherapy could be a suitable treatment option for treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Yeonhu Lee
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea.
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
McConville C, Lastakchi S, Al Amri A, Ngoga D, Fayeye O, Cruickshank G. Local Delivery of Irinotecan to Recurrent GBM Patients at Reoperation Offers a Safe Route of Administration. Cancers (Basel) 2024; 16:3008. [PMID: 39272866 PMCID: PMC11393903 DOI: 10.3390/cancers16173008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastomas are impossible to completely resect and almost always recur at the borders of the resection margin. There is no established chemotherapy regimen available to patients who recur, while systemic treatment is hampered by the blood-brain barrier. Here, we report on the first evaluation in humans of the intraparenchymal injection of irinotecan into the resection cavity after surgical resection of recurrent glioblastoma patients. The cytotoxicity of irinotecan was compared to SN-38 in primary cells from recurrent glioblastoma patients. Irinotecan was injected at multiple (~30) sites of the resection cavity wall at a depth of 3 to 5 mm. SN-38 was more cytotoxic than irinotecan at concentrations below 1 µM due to enzyme kinetics. The intraparenchymal administration of irinotecan was safe, with good wound healing and an absence of swelling, inflammation, or pseudo-abscess formation. The median survival post irinotecan administration was 32.6 weeks. The median overall survival was 30.5 months, with a two-year survival rate of 56%. This study demonstrates that local delivery of irinotecan into the brain parenchyma offers a safe route of administration over systemic delivery in the treatment of recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah Lastakchi
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Al Amri
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Desire Ngoga
- Pediatric Neurosurgery, The Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Oluwafikayo Fayeye
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Garth Cruickshank
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2GW, UK
| |
Collapse
|
19
|
Habibi MA, Shad N, Mirjnani MS, Fasihi S, Sadeghi S, Karami S, Ahmadvand MH, Delbari P, Zare AH, Zare AH, Alavi SAN. Is add-on Bevacizumab therapy to Temozolomide and radiotherapy associated with clinical utility for newly diagnosed Glioblastoma? A systematic review and meta-analysis. Neurosurg Rev 2024; 47:445. [PMID: 39162874 DOI: 10.1007/s10143-024-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Bevacizumab, temozolomide (TMZ), and radiotherapy are three therapeutic methods, but the combination of them as a new approach for the treatment of newly diagnosed high-grade gliomas (HGGs) is still under investigation. Therefore, this study aims to evaluate the safety, efficacy, and clinical utility of this treatment approach for patients with glioblastoma (GBM). PubMed/Medline, Scopus, Embase, and Web of Science were systematically reviewed from inception to 24 August 2023. Relevant studies evaluating the therapeutic effect of adding Bevacizumab to TMZ-based chemotherapy and radiation therapy were enrolled. All statistical analysis was performed using the "meta" package of R. A total of 21 studies were included in this study. Our meta-analysis found that adding bevacizumab to standard therapy improved progression-free survival (PFS) in patients with newly diagnosed GBM. The pooled 6-month PFS rate was significantly higher with bevacizumab (79% vs. 56%, odds ratio 3.17). Overall survival (OS) showed modest improvements, with 2-year OS rates of 39% vs. 20% favoring bevacizumab. Radiological response rates varied, with a pooled overall response rate of 44% for bevacizumab-treated patients. The complete response rate was 16%, partial response 32%, and progressive disease 25%. Adverse events occurred in 62% of bevacizumab-treated patients. Common complications included fatigue, thrombocytopenia, and thromboembolic events. When added to standard therapy, bevacizumab demonstrates modest improvements in PFS and OS for newly diagnosedGBM. While it shows promise in short-term outcomes and radiological responses, long-term survival benefits remain limited. The risk of adverse events, particularly CNS hemorrhage, necessitates careful patient selection. These findings suggest that bevacizumab may have a role in treating high-grade gliomas, but its use should be individualized based on patient characteristics and risk-benefit assessment.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Shad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Fasihi
- Department of Anesthesiology, Qom University of Medical Sciences, Qom, Iran
| | - Sara Sadeghi
- School of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pouria Delbari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Zare
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hessam Zare
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Naseri Alavi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Wei S, Chang L, Zhong Y. The efficacy and adverse events of bevacizumab combined with temozolomide in the treatment of glioma: a systemic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1419038. [PMID: 39015784 PMCID: PMC11250252 DOI: 10.3389/fmed.2024.1419038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Objectives To assess the efficacy and adverse events of bevacizumab (BEV) combined with temozolomide (TMZ) in the treatment of glioma. Materials and methods Randomized controlled trials (RCT) involving BEV combined with TMZ in the treatment of glioma were searched using PubMed, Embase and Cochrane library, and a comprehensive meta-analysis was conducted. The primary outcomes were overall survival time (OS) and progression-free survival time (PFS), and the secondary outcome was adverse events. Researchers conducted literature screening, data extraction and quality assessment according to inclusion and exclusion criteria. RevMan 5.3 software was used for meta-analysis. Results A total of 8 prospective RCTs of 3,039 cases were included in the meta-analysis. Meta-analysis showed that compared with TMZ alone, BEV combined with TMZ could significantly improve PFS, OS and complete remission rate (CR). A total of 6 studies reported related adverse events, mainly including thrombocytopenia, neutropenia, leukopenia, anemia and fatigue. Combination therapy may have more adverse events but no serious consequences. Conclusion The combination of BEV and TMZ had a better therapeutic effect on glioblastoma, significantly prolonged the survival time of patients and improved the quality of life. However, some patients are afflicted with the adverse events of combination therapy, and subsequent studies should continue to conduct larger, multi-center RCTs to confirm the findings and explore in depth how to minimize and manage adverse events effectively.
Collapse
Affiliation(s)
- SiYao Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - LanYin Chang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Ono T, Suzuki H, Nanjo H, Shimizu H. Clinical Course after Carmustine Wafer Implantation for Newly Diagnosed Adult-type Diffuse Gliomas; A controlled propensity matched analysis of a single center cohort. J Neurooncol 2024; 168:393-404. [PMID: 38780714 DOI: 10.1007/s11060-024-04679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE It remains unclear whether combining carmustine wafer (CW) implantation with the standard treatment for adult-type diffuse gliomas is safe and has a prognostic impact. This study aimed to investigate the prognostic value and safety of CW implantation. METHODS Adult patients with IDH-wild-type and -mutant gliomas, grades 3-4 treated with surgical resection, radiotherapy, and temozolomide chemotherapy between 2013 and 2023 were surveyed. CWs were implanted except in cases of intraoperative wide ventricle opening or marked preoperative brain swelling. For survival analyses, a case-matched dataset based on propensity score matching (PSM), including multiple factors (patient background, diagnosis, and extent of resection) was generated. Progression-free survival (PFS), overall survival (OS), and frequency of complications of CW implantation (brain edema, infection, and cerebrospinal fluid leakage) were compared between the CW and non-use groups. RESULTS In total, 127 patients (75 in the CW use group and 52 in the non-use group) were enrolled. Regardless of stratification, no significant differences in PFS and OS were observed between the CW use and non-use groups. The frequency of postoperative brain edema was significantly higher in the CW use group than in the non-use group. An adjusted dataset containing 41 patients in the CW use and nonuse groups was generated. Even after PSM, CW implantation had no prognostic effect. CONCLUSIONS CW implantation with standard treatment demonstrated little beneficial effect for the present strategy of CW use.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Hayato Suzuki
- Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Surgical Pathology, Akita University Hospital, 44-2 Hasunuma Hiroomote, Akita, Akita, 010-8543, Japan
| | - Hiroaki Shimizu
- Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| |
Collapse
|
22
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
23
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
24
|
Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y, Rak J. Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun 2024; 15:2865. [PMID: 38570528 PMCID: PMC10991552 DOI: 10.1038/s41467-024-46597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells. Inhibition of the expression and phosphorylation of EGFR in endothelial cells, either pharmacologically (Dacomitinib) or genetically (gene editing), abolishes their EV responses in vitro and disrupts vasectasia in vivo. Therapeutic inhibition of EGFR markedly extends anticancer effects of VEGF blockade in mice, coupled with abrogation of vasectasia and prolonged survival. Thus, vasectasia driven by intercellular transfer of oncogenic EGFR may represent a new therapeutic target in a subset of GBMs.
Collapse
Affiliation(s)
- Cristiana Spinelli
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lata Adnani
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Meehan
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Laura Montermini
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Minjun Kim
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Tamiko Nishimura
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sidney E Croul
- Department of Pathology & Laboratory Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ichiro Nakano
- Department of Neurosurgery, Hokuto Social Medical Corporation, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
| | | | - Janusz Rak
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
26
|
Álvarez-Torres MDM, Balaña C, Fuster-García E, Puig J, García-Gómez JM. Unlocking Bevacizumab's Potential: rCBV max as a Predictive Biomarker for Enhanced Survival in Glioblastoma IDH-Wildtype Patients. Cancers (Basel) 2023; 16:161. [PMID: 38201588 PMCID: PMC10778147 DOI: 10.3390/cancers16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Aberrant vascular architecture and angiogenesis are hallmarks of glioblastoma IDH-wildtype, suggesting that these tumors are suitable for antiangiogenic therapy. Bevacizumab was FDA-approved in 2009 following promising results in two clinical trials. However, its use for recurrent glioblastomas remains a subject of debate, as it does not universally improve patient survival. PURPOSES In this study, we aimed to analyze the influence of tumor vascularity on the benefit provided by BVZ and propose preoperative rCBVmax at the high angiogenic tumor habitat as a predictive biomarker to select patients who can benefit the most. METHODS Clinical and MRI data from 106 patients with glioblastoma IDH-wildtype have been analyzed. Thirty-nine of them received BVZ, and the remaining sixty-seven did not receive a second-line treatment. The ONCOhabitats method was used to automatically calculate rCBV. RESULTS We found a median survival from progression of 305 days longer for patients with moderate vascular tumors who received BVZ than those who did not receive any second-line treatment. This contrasts with patients with high-vascular tumors who only presented a median survival of 173 days longer when receiving BVZ. Furthermore, better responses to BVZ were found for the moderate-vascular group with a higher proportion of patients alive at 6, 12, 18, and 24 months after progression. CONCLUSIONS We propose rCBVmax as a potential biomarker to select patients who can benefit more from BVZ after tumor progression. In addition, we propose a threshold of 7.5 to stratify patients into moderate- and high-vascular groups to select the optimal second-line treatment.
Collapse
Affiliation(s)
- María del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Carmen Balaña
- Applied Research Group in Oncology (B-ARGO Group), Institut Catala d’Oncologia (ICO), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Elies Fuster-García
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Josep Puig
- Radiology Department CDI, Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Juan Miguel García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| |
Collapse
|
27
|
Shao X, Saito R, Sato A, Okuno S, Saigusa D, Saito R, Uruno A, Osada Y, Kanamori M, Tominaga T. Local Delivery of Nimustine Hydrochloride against Brain Tumors: Basic Characterization Study. TOHOKU J EXP MED 2023; 261:187-194. [PMID: 37635063 DOI: 10.1620/tjem.2023.j069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Convection-enhanced delivery (CED) delivers agents directly into tumors and the surrounding parenchyma. Although a promising concept, clinical applications are often hampered by insufficient treatment efficacy. Toward developing an effective CED-based strategy for delivering drugs with proven clinical efficacy, we performed a basic characterization study to explore the locally delivered characteristics of the water soluble nitrosourea nimustine hydrochloride (ACNU). First, ACNU distribution after CED in rodent brain was studied using mass spectrometry imaging. Clearance of 14C-labeled ACNU after CED in striatum was also studied. ACNU was robustly distributed in rodent brain similar to the distribution of the hydrophilic dye Evans blue after CED, and locally delivered ACNU was observed for over 24 h at the delivery site. Subsequently, to investigate the potential of ACNU to induce an immunostimulative microenvironment, Fas and transforming growth factor-β1 (TGF-β1) was assessed in vitro. We found that ACNU significantly inhibited TGF-β1 secretion and reduced Fas expression. Further, after CED of ACNU in 9L-derived intracranial tumors, the infiltration of CD4/CD8 lymphocytes in tumors was evaluated by immunofluorescence.CED of ACNU in xenografted intracranial tumors induced tumor infiltration of CD4/CD8 lymphocytes. ACNU has a robust distribution in rodent brain by CED, and delayed clearance of the drug was observed at the local infusion site. Further, local delivery of ACNU affects the tumor microenvironment and induces immune cell migration in tumor. These characteristics make ACNU a promising agent for CED.
Collapse
Affiliation(s)
- Xiaodong Shao
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Aya Sato
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Saori Okuno
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Daisuke Saigusa
- Faculty of Pharma-Science, Teikyo University
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University
| | - Ritsumi Saito
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University
| | - Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University
| | - Yoshinari Osada
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
28
|
Feng Y, Zhang Z, Tang W, Dai Y. Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. EXPLORATION (BEIJING, CHINA) 2023; 3:20220173. [PMID: 37933278 PMCID: PMC10582614 DOI: 10.1002/exp.20220173] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 11/08/2023]
Abstract
Tumor surgical resection is the major strategy for cancer treatment. Meanwhile, perioperative treatment especially the postoperative adjuvant anticancer strategies play essential roles in satisfying therapeutic results and rapid recovery. Postoperative tumor recurrence, metastasis, bleeding, inter-tissue adhesion, infection, and delayed wound healing are vital risks that could lead to poor prognosis or even treatment failure. Therefore, methods targeting these postoperative complications are in desperate need. In situ biomaterial-based drug delivery platforms are promising candidates for postoperative treatment and recovery, resulting from their excellent properties including good biocompatibility, adaptive shape, limited systemic effect, designable function, and easy drug loading. In this review, we focus on introducing the gel/hydrogel-based in situ biomaterial platforms involving their properties, advantages, and synthesis procedures. Based on the loaded contents in the gel/hydrogel such as anticancer drugs, immunologic agents, cell components, and multifunctional nanoparticles, we further discuss the applications of the in situ platforms for postoperative tumor recurrence and metastasis inhibition. Finally, other functions aiming at fast postoperative recovery were introduced, including hemostasis, antibacterial infection, adhesion prevention, tissue repair, and wound healing. In conclusion, gel/hydrogel is a developing and promising platform for postoperative treatment, exhibiting gratifying therapeutic effects and inconspicuous toxicity to normal tissues, which deserves further research and exploration.
Collapse
Affiliation(s)
- Yuzhao Feng
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SARChina
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SARChina
| | - Zhan Zhang
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SARChina
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SARChina
| | - Wei Tang
- Departments of Pharmacy and Diagnostic RadiologyNanomedicine Translational Research ProgramFaculty of Science and Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SARChina
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SARChina
| |
Collapse
|
29
|
Grafals-Ruiz N, Sánchez-Álvarez AO, Santana-Rivera Y, Lozada-Delgado EL, Rabelo-Fernandez RJ, Rios-Vicil CI, Valiyeva F, Vivas-Mejia PE. MicroRNA-92b targets tumor suppressor gene FBXW7 in glioblastoma. Front Oncol 2023; 13:1249649. [PMID: 37752997 PMCID: PMC10518455 DOI: 10.3389/fonc.2023.1249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive and lethal primary brain tumor. Despite limited treatment options, the overall survival of GBM patients has shown minimal improvement over the past two decades. Factors such as delayed cancer diagnosis, tumor heterogeneity, cancer stem cell survival, infiltrative nature of GBM cells, metabolic reprogramming, and development of therapy resistance contribute to treatment failure. To address these challenges, multitargeted therapies are urgently needed for improved GBM treatment outcomes. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Dysregulated miRNAs have been identified in GBM, playing roles in tumor initiation, progression, and maintenance. Among these miRNAs, miR-92b (miRNA-92b-3p) has been found to be overexpressed in various cancers, including GBM. However, the specific target genes of miR-92b and its therapeutic potential in GBM remain poorly explored. Methods Samples encompassed T98G, U87, and A172 human GBM cell lines, GBM tumors from Puerto Rican patients, and murine tumors. In-situ hybridization (ISH) assessed miR-92b expression in patient tumors. Transient and stable transfections modified miR-92b levels in GBM cell lines. Real-time PCR gauged gene expressions. Caspase 3 and Trypan Blue assays evaluated apoptosis and viability. Bioinformatics tools (TargetScanHuman 8.0, miRDB, Diana tools, miRWalk) predicted targets. Luciferase assays and Western Blots validated miRNA-target interactions. A subcutaneous GBM Xenograft mouse model received intraperitoneal NC-OMIs or miR92b-OMIs encapsulated in liposomes, three-times per week for two weeks. Analysis utilized GraphPad Prism 8; statistical significance was assessed using 2-tailed, unpaired Student's t-test and two-way ANOVA as required. Results This study investigated the expression of miR-92b in GBM tumors compared to normal brain tissue samples, revealing a significant upregulation. Inhibition of miR-92b using oligonucleotide microRNA inhibitors (OMIs) suppressed GBM cell growth, migration, and induced apoptosis, while ectopic expression of miR-92b yielded opposite effects. Systemic administration of liposomal-miR92b-OMIs in GBM xenograft mice resulted in reductions in tumor volume and weight. Subsequent experiments identified F-Box and WD Repeat Domain Containing 7 (FBXW7) as a direct target gene of miR-92b in GBM cells. Discussion FBXW7 acts as a tumor suppressor gene in various cancer types, and analysis of patient data demonstrated that GBM patients with higher FBXW7 mRNA levels had significantly better overall survival compared to those with lower levels. Taken together, our findings suggest that the dysregulated expression of miR-92b in GBM contributes to tumor progression by targeting FBXW7. These results highlight the potential of miR-92b as a therapeutic target for GBM. Further exploration and development of miR-92b-targeted therapies may offer a novel approach to improve treatment outcomes in GBM patients.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Yasmarie Santana-Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Dentistry School, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L. Lozada-Delgado
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert J. Rabelo-Fernandez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
30
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
31
|
Mantica M, Drappatz J, Lieberman F, Hadjipanayis CG, Lunsford LD, Niranjan A. Phase II study of border zone stereotactic radiosurgery with bevacizumab in patients with recurrent or progressive glioblastoma multiforme. J Neurooncol 2023; 164:179-190. [PMID: 37515669 DOI: 10.1007/s11060-023-04398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Recurrent glioblastoma is universally fatal with limited effective treatment options. The aim of this phase 2 study of Border Zone SRS plus bevacizumab was to evaluate OS in patients with recurrent GBM. METHODS Patients with histologically confirmed GBM with recurrent disease who had received prior first-line treatment with fractionated radiotherapy and chemotherapy and eligible for SRS were enrolled. Bevacizumab 10 mg/kg was given day -1, day 14, and then every 14 days until disease progression. 1-14 days before BZ-SRS procedure, patients underwent brain MRI /MRS. MRS with measurement of choline-to-N-acetyl aspartate index (CNI) area ≥ 3 was targeted for SRS. RESULTS From 2015-2017, sixteen of planned 40 patients were enrolled. The median age was 62 (range, 48-74Y). 3/16 (0.188) participants experienced grade 2 toxicity. No AREs were reported. The mOS was 11.73 months compared to 8.74 months (P = 0.324) from date of SRS for the BZ-SRS and institutional historical controls, respectively. PFS-6 and OS-6 were 31.2% (p = 0.00294) and 81.2%(p = 0.058), respectively. Of 13 evaluable for best response: 1 CR (p = 0.077), 4 PR (p = 0.308), 7 SD (p = 0.538), and 1 PD (p = 0.077). 11/16 participants had MRS scans with an estimated probability that MRS changes a treatment plan of 0 (0, 0.285). CONCLUSION BZ-SRS with bevacizumab was feasible and well tolerated. There is no significant survival benefit using BZ-SRS with bevacizumab compared to institutional historical controls. Secondary analysis revealed a trend toward improved PFS-6, but not OS-6 after BZ-SRS. MRS scans did not result in changes to SRS treatment plans.
Collapse
Affiliation(s)
- Megan Mantica
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA.
| | - Jan Drappatz
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Frank Lieberman
- University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA
| | | | - L Dade Lunsford
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ajay Niranjan
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Nelson TA, Dietrich J. Investigational treatment strategies in glioblastoma: progress made and barriers to success. Expert Opin Investig Drugs 2023; 32:921-930. [PMID: 37796104 PMCID: PMC10764117 DOI: 10.1080/13543784.2023.2267982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Glioblastoma, isocitrate dehydrogenase wildtype (IDHwt), remains an incurable disease despite considerable research effort. The current standard of care since 2005 comprises maximal safe resection followed by radiation with concurrent and adjuvant temozolomide; more recently, the addition of tumor treating fields was approved in the newly diagnosed and recurrent disease settings. AREAS COVERED Searches of PubMed, Cochrane Library, and ClinicalTrials.gov provided a foundation for this review. We first describe early research including carmustine wafers, brachytherapy, anti-angiogenesis, and immune checkpoint inhibition for glioblastoma. Next, we discuss challenges precluding the translation of preclinical successes. This is followed by a description of promising treatments such as chimeric antigen receptor T-cell therapy as well as the recent qualified successes of cancer vaccinations. Non-immunotherapy trials are also highlighted, and ongoing or pending phase 2 and 3 clinical trials are codified in study tables. EXPERT OPINION Unfortunately, hundreds of trials, including of agents effective in systemic malignancy, have not drastically changed management of glioblastoma. This may reflect unique resistance mechanisms and highlights a need for multimodality treatments beyond surgery, radiation, and conventional chemotherapy. Novel techniques, such as those in the emerging field of cancer neuroscience, may help uncover tolerable and effective regimens for this lethal malignancy.
Collapse
Affiliation(s)
- Thomas A Nelson
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Jorg Dietrich
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
33
|
Ellingson BM, Wen PY, Chang SM, van den Bent M, Vogelbaum MA, Li G, Li S, Kim J, Youssef G, Wick W, Lassman AB, Gilbert MR, de Groot JF, Weller M, Galanis E, Cloughesy TF. Objective response rate targets for recurrent glioblastoma clinical trials based on the historic association between objective response rate and median overall survival. Neuro Oncol 2023; 25:1017-1028. [PMID: 36617262 PMCID: PMC10237425 DOI: 10.1093/neuonc/noad002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/09/2023] Open
Abstract
Durable objective response rate (ORR) remains a meaningful endpoint in recurrent cancer; however, the target ORR for single-arm recurrent glioblastoma trials has not been based on historic information or tied to patient outcomes. The current study reviewed 68 treatment arms comprising 4793 patients in past trials in recurrent glioblastoma in order to judiciously define target ORRs for use in recurrent glioblastoma trials. ORR was estimated at 6.1% [95% CI 4.23; 8.76%] for cytotoxic chemothera + pies (ORR = 7.59% for lomustine, 7.57% for temozolomide, 0.64% for irinotecan, and 5.32% for other agents), 3.37% for biologic agents, 7.97% for (select) immunotherapies, and 26.8% for anti-angiogenic agents. ORRs were significantly correlated with median overall survival (mOS) across chemotherapy (R2= 0.4078, P < .0001), biologics (R2= 0.4003, P = .0003), and immunotherapy trials (R2= 0.8994, P < .0001), but not anti-angiogenic agents (R2= 0, P = .8937). Pooling data from chemotherapy, biologics, and immunotherapy trials, a meta-analysis indicated a strong correlation between ORR and mOS (R2= 0.3900, P < .0001; mOS [weeks] = 1.4xORR + 24.8). Assuming an ineffective cytotoxic (control) therapy has ORR = 7.6%, the average ORR for lomustine and temozolomide trials, a sample size of ≥40 patients with target ORR>25% is needed to demonstrate statistical significance compared to control with a high level of confidence (P < .01) and adequate power (>80%). Given this historic data and potential biases in patient selection, we recommend that well-controlled, single-arm phase II studies in recurrent glioblastoma should have a target ORR >25% (which translates to a median OS of approximately 15 months) and a sample size of ≥40 patients, in order to convincingly demonstrate antitumor activity. Crucially, this response needs to have sufficient durability, which was not addressed in the current study.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Los Angeles, California, USA
- UCLA Neuro-Oncology Program, Los Angeles, California, USA
- Department of Radiological Sciences, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Gang Li
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shanpeng Li
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jiyoon Kim
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg and Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York-Presbyterian Hospital, New York, New York, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
34
|
Ranjan T, Sengupta S, Glantz MJ, Green RM, Yu A, Aregawi D, Chaudhary R, Chen R, Zuccarello M, Lu-Emerson C, Moulding HD, Belman N, Glass J, Mammoser A, Anderson M, Valluri J, Marko N, Schroeder J, Jubelirer S, Chow F, Claudio PP, Alberico AM, Lirette ST, Denning KL, Howard CM. Cancer stem cell assay-guided chemotherapy improves survival of patients with recurrent glioblastoma in a randomized trial. Cell Rep Med 2023; 4:101025. [PMID: 37137304 PMCID: PMC10213810 DOI: 10.1016/j.xcrm.2023.101025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Therapy-resistant cancer stem cells (CSCs) contribute to the poor clinical outcomes of patients with recurrent glioblastoma (rGBM) who fail standard of care (SOC) therapy. ChemoID is a clinically validated assay for identifying CSC-targeted cytotoxic therapies in solid tumors. In a randomized clinical trial (NCT03632135), the ChemoID assay, a personalized approach for selecting the most effective treatment from FDA-approved chemotherapies, improves the survival of patients with rGBM (2016 WHO classification) over physician-chosen chemotherapy. In the ChemoID assay-guided group, median survival is 12.5 months (95% confidence interval [CI], 10.2-14.7) compared with 9 months (95% CI, 4.2-13.8) in the physician-choice group (p = 0.010) as per interim efficacy analysis. The ChemoID assay-guided group has a significantly lower risk of death (hazard ratio [HR] = 0.44; 95% CI, 0.24-0.81; p = 0.008). Results of this study offer a promising way to provide more affordable treatment for patients with rGBM in lower socioeconomic groups in the US and around the world.
Collapse
Affiliation(s)
- Tulika Ranjan
- Department of Neuro-Oncology, Allegheny Health Network, Pittsburgh, PA, USA; Department of Neuro-Oncology, Cancer Center Southern Florida, Tampa General Hospital, Tampa, FL, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Michael J Glantz
- Department of Neurosurgery, Penn State Neuroscience Institute, Hershey, PA, USA
| | - Richard M Green
- Department of Neuro-Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
| | - Alexander Yu
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Neuroscience Institute, Hershey, PA, USA
| | - Rekha Chaudhary
- Department of Internal Medicine, Division of Hematology-Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Ricky Chen
- Department of Neuro-Oncology, Providence Brain & Spine Institute, Portland, OR, USA
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | | | - Hugh D Moulding
- Department of Neuroscience, St. Luke's University Hospital & Health Network, Bethlehem, PA, USA
| | - Neil Belman
- Department of Neuroscience, St. Luke's University Hospital & Health Network, Bethlehem, PA, USA
| | - Jon Glass
- Departments of Neurology and Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aaron Mammoser
- Department of Neurosurgery, LSU Health Sciences Center, New Orleans, LA, USA
| | - Mark Anderson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Nicholas Marko
- Department of Neurosurgery, LewisGale Regional Health System, Salem, VA, USA
| | - Jason Schroeder
- Department of Neurosurgery, University of Toledo, Toledo, OH, USA
| | - Steven Jubelirer
- Department of Neuro-Oncology, Charleston Area Medical Center, Charleston, WV, USA
| | - Frances Chow
- Departments of Neurological Surgery and Neurology, University of Southern California, Los Angeles, CA, USA
| | - Pier Paolo Claudio
- Cordgenics, LLC, Huntington WV, USA; Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anthony M Alberico
- Department of Neurosurgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Krista L Denning
- Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
35
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
36
|
Eatmann AI, Hamouda E, Hamouda H, Farouk HK, Jobran AWM, Omar AA, Madeeh AK, Al-Dardery NM, Elnoamany S, Abd-Elnasser EG, Koraiem AM, Ahmed AA, Abouzid M, Karaźniewicz-Łada M. Potential Use of Thalidomide in Glioblastoma Treatment: An Updated Brief Overview. Metabolites 2023; 13:metabo13040543. [PMID: 37110201 PMCID: PMC10146416 DOI: 10.3390/metabo13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. Thalidomide is a vascular endothelial growth factor inhibitor that demonstrates antiangiogenic activity, and may provide additive or synergistic anti-tumor effects when co-administered with other antiangiogenic medications. This study is a comprehensive review that highlights the potential benefits of using thalidomide, in combination with other medications, to treat glioblastoma and its associated inflammatory conditions. Additionally, the review examines the mechanism of action of thalidomide in different types of tumors, which may be beneficial in treating glioblastoma. To our knowledge, a similar study has not been conducted. We found that thalidomide, when used in combination with other medications, has been shown to produce better outcomes in several conditions or symptoms, such as myelodysplastic syndromes, multiple myeloma, Crohn's disease, colorectal cancer, renal failure carcinoma, breast cancer, glioblastoma, and hepatocellular carcinoma. However, challenges may persist for newly diagnosed or previously treated patients, with moderate side effects being reported, particularly with the various mechanisms of action observed for thalidomide. Therefore, thalidomide, used alone, may not receive significant attention for use in treating glioblastoma in the future. Conducting further research by replicating current studies that show improved outcomes when thalidomide is combined with other medications, using larger sample sizes, different demographic groups and ethnicities, and implementing enhanced therapeutic protocol management, may benefit these patients. A meta-analysis of the combinations of thalidomide with other medications in treating glioblastoma is also needed to investigate its potential benefits further.
Collapse
Affiliation(s)
- Ahmed Ismail Eatmann
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland
| | - Esraa Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | - Heba Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | - Afnan W M Jobran
- Faculty of Medicine, Al Quds University, Jerusalem P.O. Box 51000, Palestine
| | - Abdallah A Omar
- Department of Pharmaceutical Services and Sciences, Children's Cancer Hospital Egypt (CCHE-57357), Cairo 11617, Egypt
| | | | | | - Salma Elnoamany
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | | | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Mohamed Abouzid
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
37
|
Tsien CI, Pugh SL, Dicker AP, Raizer JJ, Matuszak MM, Lallana EC, Huang J, Algan O, Deb N, Portelance L, Villano JL, Hamm JT, Oh KS, Ali AN, Kim MM, Lindhorst SM, Mehta MP. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol 2023; 41:1285-1295. [PMID: 36260832 PMCID: PMC9940937 DOI: 10.1200/jco.22.00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS.
Collapse
Affiliation(s)
| | - Stephanie L. Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | | | | - Jiayi Huang
- Washington University School of Medicine in St Louis-Siteman Cancer Center, St. Louis, MO
| | - Ozer Algan
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nimisha Deb
- St Luke's University Hospital & Health Network accruals Thomas Jefferson University Hospital, Bethlehem, PA
| | - Lorraine Portelance
- University of Miami Miller School of Medicine-Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - John T. Hamm
- Norton Hospital Pavilion and Medical Campus, Louisville, KY
| | - Kevin S. Oh
- Dana-Farber/Harvard Cancer Center, Boston, MA
| | - Arif N. Ali
- The Hope Center accruals Emory University/Winship Cancer Institute, Dalton, GA
| | - Michelle M. Kim
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Scott M. Lindhorst
- Medical University of South Carolina Minority Underserved NCORP, Charleston, SC
| | | |
Collapse
|
38
|
Metronomic Temozolomide in Heavily Pretreated Patients With Recurrent Isocitrate Dehydrogenase Wild-type Glioblastoma: A Large Real-Life Mono-Institutional Study. Clin Oncol (R Coll Radiol) 2023; 35:e319-e327. [PMID: 36858930 DOI: 10.1016/j.clon.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
AIMS Glioblastoma (GBM) is the most common primary malignant brain tumour in adults and frequently relapses. The aim of this study was to assess the efficacy and safety of metronomic temozolomide (TMZ) in the recurrent GBM population. MATERIALS AND METHODS All patients treated at our centre between September 2013 and March 2021 were retrospectively reviewed. The main inclusion criteria were first-line therapy with the Stupp protocol, relapse after the first or subsequent line of therapy, treatment with a metronomic TMZ schedule (50 mg/m2 continuously) and histological diagnosis of isocitrate dehydrogenase wild-type GBM according to World Health Organization 2016 classification. RESULTS In total, 120 patients were enrolled. The median follow-up was 15.6 months, the median age was 59 years, Eastern Cooperative Oncology Group performance status (ECOG-PS) was 0-2 in 107 patients (89%). O6-methylguanine-DNA-methyltransferase (MGMT) was methylated in 66 of 105 (62%) evaluable patients. The median number of prior lines of treatment was 2 (range 1-7). Three (2%) patients showed a partial response; 48 (40%) had stable disease; 69 (57%) had progressive disease. The median overall survival from the start of metronomic TMZ was 5.4 months (95% confidence interval 4.3-6.4), whereas the median progression-free survival (PFS) was 2.6 months (95% confidence interval 2.3-2.8). At univariate analysis, MGMT methylated and unmethylated patients had a median PFS of 2.9 and 2.1 months (P = 0.001) and a median overall survival of 5.6 and 4.4 months (P = 0.03), respectively. At multivariate analysis, the absence of MGMT methylation (hazard ratio = 2.3, 95% confidence interval 1.3-3.9, P = 0.004) and ECOG-PS ≤ 2 (hazard ratio = 0.5, 95% confidence interval 0.3-0.9, P = 0.017) remained significantly associated with PFS, whereas ECOG-PS ≤ 2 (hazard ratio = 0.4, 95% confidence interval 0.3-07, P = 0.001) was the only factor associated with overall survival. The most common grade 3-4 toxicities were haematological (lymphopenia 10%, thrombocytopenia 3%). CONCLUSIONS Rechallenge with metronomic TMZ is a well-tolerated option for recurrent GBM, even in pretreated patients. Patients with methylated MGMT disease and good ECOG-PS seem to benefit the most from this treatment.
Collapse
|
39
|
D'Alessandris QG, Martini M, Cenci T, DI Bonaventura R, Lauretti L, Stumpo V, Olivi A, Larocca LM, Pallini R, Montano N. Tailored therapy for recurrent glioblastoma: report of a personalized molecular approach. J Neurosurg Sci 2023; 67:103-107. [PMID: 32550606 DOI: 10.23736/s0390-5616.20.04943-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Failure of clinical trials with targeted therapies in glioblastoma (GBM) is probably related to the enrollment of molecularly unselected patients. In this study we report the results of a precision medicine protocol in recurrent GBM. METHODS We prospectively evaluated 34 patients with recurrent GBM. We determined the expression of vascular endothelial growth factor (VEGF), epidermal growth factor receptor variant III (EGFRvIII), and phosphatase and tensin homolog (PTEN). According to the molecular pattern we administered bevacizumab alone in patients with VEGF overexpression, absence of EGFRvIII, and normal PTEN (group A; N.=16); bevacizumab + erlotinib in patients with VEGF overexpression, expression of EGFRvIII, and normal PTEN (group B; N.=14); and bevacizumab + sirolimus in patients with VEGF overexpression and loss of PTEN, irrespective of the EGFRvIII status (group C; N.=4). We evaluated the response rate, the clinical benefit rate, the 6-month progression-free survival (PFS-6), the 12-month PFS (PFS-12) and the safety profile of the treatment. Moreover, we compared our results with the ones of EORTC 26101 trial. RESULTS Response rate was 50% in the whole cohort with the highest rate in group C (75%). Clinical benefit rate was 71% with the highest rate in group C (75%). PFS-6 was 56% in the whole cohort with the highest rate in group B (64%). PFS-12 was 21% in the whole cohort with the highest rate in group B (29%). When comparing our results with those from the combination arm of the EORTC 26101 trial we found a significantly higher PFS-6 and PFS-12 in our cohort. CONCLUSIONS The precision medicine protocol for recurrent GBM is feasible and leads to improved results if compared with studies lacking molecular selection.
Collapse
Affiliation(s)
- Quintino G D'Alessandris
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Maurizio Martini
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Tonia Cenci
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Rina DI Bonaventura
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Liverana Lauretti
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Vittorio Stumpo
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Luigi M Larocca
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Roberto Pallini
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Nicola Montano
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
40
|
Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther 2023; 16:71-86. [PMID: 36721854 PMCID: PMC9884437 DOI: 10.2147/ott.s366371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Virtually all glioblastomas treated in the first-line setting will recur in a short period of time, and the search for alternative effective treatments has so far been unsuccessful. Various obstacles remain unresolved, and no effective salvage therapy for recurrent glioblastoma can be envisaged in the short term. One of the main impediments to progress is the low incidence of the disease itself in comparison with other pathologies, which will be made even lower by the recent WHO classification of gliomas, which includes molecular alterations. This new classification helps refine patient prognosis but does not clarify the most appropriate treatment. Other impediments are related to clinical trials: glioblastoma patients are often excluded from trials due to their advanced age and limiting neurological symptoms; there is also the question of how best to measure treatment efficacy, which conditions the design of trials and can affect the acceptance of results by oncologists and medicine agencies. Other obstacles are related to the drugs themselves: most treatments cannot cross the blood-brain-barrier or the brain-to-tumor barrier to reach therapeutic drug levels in the tumor without producing toxicity; the drugs under study may have adverse metabolic interactions with those required for symptom control; identifying the target of the drug can be a complex issue. Additionally, the optimal method of treatment - local vs systemic therapy, the choice of chemotherapy, irradiation, targeted therapy, immunotherapy, or a combination thereof - is not yet clear in glioblastoma in comparison with other cancers. Finally, in addition to curing or stabilizing the disease, glioblastoma therapy should aim at maintaining the neurological status of the patients to enable them to return to their previous lifestyle. Here we review currently available treatments, obstacles in the search for new treatments, and novel lines of research that show promise for the future.
Collapse
Affiliation(s)
- Estela Pineda
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Ainhoa Hernández
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona, Spain
| | - Carmen Balaña
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain,Correspondence: Carmen Balaña, Institut Catala d’Oncologia (ICO) Badalona, Carretera Canyet s/n, Badalona, 08916, Spain, Tel +34 497 89 25, Fax +34 497 89 50, Email
| |
Collapse
|
41
|
Tran TAT, Kim YH, Duong THO, Thangaraj J, Chu TH, Jung S, Kim IY, Moon KS, Kim YJ, Lee TK, Lee CW, Yun H, Lee JJ, Lee HJ, Lee KH, Jung TY. Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus irinotecan in a glioblastoma mouse model. Front Immunol 2023; 13:1009484. [PMID: 36703992 PMCID: PMC9871756 DOI: 10.3389/fimmu.2022.1009484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Bev) plus irinotecan (Iri) against glioblastoma multiforme (GBM) were investigated. For the experimental design, NK cells were expanded and activated by K562 cells expressing the OX40 ligand and membrane-bound IL-18 and IL-21. The effects of Bev and Iri on the proliferation and NK ligand expression of GBM cells were evaluated through MTT assay and flow cytometry. The cytotoxic effects of NK cells against Bev plus Iri-treated GBM cells were also predicted via the LDH assay in vitro. The therapeutic effect of different injected NK cell routes and numbers combined with the different doses of Bev and Iri was confirmed according to tumor size and survival in the subcutaneous (s.c) and intracranial (i.c) U87 xenograft NOD/SCID IL-12Rγnull mouse model. The presence of injected-NK cells in tumors was detected using flow cytometry and immunohistochemistry ex vivo. As a result, Iri was found to affect the proliferation and NK ligand expression of GBM cells, while Bev did not cause differences in these cellular processes. However, the administration of Bev modulated Iri efficacy in the i.c U87 mouse model. NK cells significantly enhanced the cytotoxic effects against Bev plus Iri-treated GBM cells in vitro. Although the intravenous (IV) injection of NK cells in combination with Bev plus Iri significantly reduced the tumor volume in the s.c U87 mouse model, only the direct intratumorally (IT) injection of NK cells in combination with Bev plus Iri elicited delayed tumor growth in the i.c U87 mouse model. Tumor-infiltrating NK cells were detected after IV injection of NK cells in both s.c and i.c U87 mouse models. In conclusion, the potential therapeutic effect of NK cells combined with Bev plus Iri against GBM cells was limited in this study. Accordingly, further research is required to improve the accessibility and strength of NK cell function in this combination treatment.
Collapse
Affiliation(s)
- Thi-Anh-Thuy Tran
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Young-Hee Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Thi-Hoang-Oanh Duong
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - JayaLakshmi Thangaraj
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Young Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung-Sub Moon
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Young-Jin Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Tae-Kyu Lee
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Internal Medicine, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea,*Correspondence: Tae-Young Jung, ; Kyung-Hwa Lee,
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea,*Correspondence: Tae-Young Jung, ; Kyung-Hwa Lee,
| |
Collapse
|
42
|
Alsulami TA, Hyare H, Thomas DL, Golay X. The value of arterial spin labelling (ASL) perfusion MRI in the assessment of post-treatment progression in adult glioma: A systematic review and meta-analysis. Neurooncol Adv 2023; 5:vdad122. [PMID: 37841694 PMCID: PMC10576519 DOI: 10.1093/noajnl/vdad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background The distinction between viable tumor and therapy-induced changes is crucial for the clinical management of patients with gliomas. This study aims to quantitatively assess the efficacy of arterial spin labeling (ASL) biomarkers, including relative cerebral blood flow (rCBF) and absolute cerebral blood flow (CBF), for the discrimination of progressive disease (PD) and treatment-related effects. Methods Eight articles were included in the synthesis after searching the literature systematically. Data have been extracted and a meta-analysis using the random-effect model was subsequently carried out. Diagnostic accuracy assessment was also performed. Results This study revealed that there is a significant difference in perfusion measurements between groups with PD and therapy-induced changes. The rCBF yielded a standardized mean difference (SMD) of 1.25 [95% CI 0.75, 1.75] (p < .00001). The maximum perfusion indices (rCBFmax and CBFmax) both showed equivalent discriminatory ability, with SMD of 1.35 [95% CI 0.78, 1.91] (p < .00001) and 1.56 [95% CI 0.79, 2.33] (p < .0001), respectively. Similarly, accuracy estimates were comparable among ASL-derived metrices. Pooled sensitivities [95% CI] were 0.85 [0.67, 0.94], 0.88 [0.71, 0.96], and 0.93 [0.73, 0.98], and pooled specificities [95% CI] were 0.83 [0.71, 0.91], 0.83 [0.67, 0.92], 0.84 [0.67, 0.93], for rCBF, rCBFmax and CBFmax, respectively. Corresponding HSROC area under curve (AUC) [95% CI] were 0.90 [0.87, 0.92], 0.92 [0.89, 0.94], and 0.93 [0.90, 0.95]. Conclusion These results suggest that ASL quantitative biomarkers, particularly rCBFmax and CBFmax, have the potential to discriminate between glioma progression and therapy-induced changes.
Collapse
Affiliation(s)
- Tamadur A Alsulami
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Harpreet Hyare
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| |
Collapse
|
43
|
Impact of Blood-Brain Barrier to Delivering a Vascular-Disrupting Agent: Predictive Role of Multiparametric MRI in Rodent Craniofacial Metastasis Models. Cancers (Basel) 2022; 14:cancers14235826. [PMID: 36497308 PMCID: PMC9740057 DOI: 10.3390/cancers14235826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular-disrupting agents (VDAs) have shown a preliminary anti-cancer effect in extracranial tumors; however, the therapeutic potential of VDAs in intracranial metastatic lesions remains unclear. Simultaneous intracranial and extracranial tumors were induced by the implantation of rhabdomyosarcoma in 15 WAG/Rij rats. Pre-treatment characterizations were performed at a 3.0 T clinical magnet including a T2 relaxation map, T1 relaxation map, diffusion-weighted imaging (DWI), and perfusion-weighted imaging (PWI). Shortly afterward, a VDA was intravenously given and MRI scans at 1 h, 8 h, and 24 h after treatment were performed. In vivo findings were further confirmed by postmortem angiography and histopathology staining with H&E, Ki67, and CD31. Before VDA treatment, better perfusion (AUC30: 0.067 vs. 0.058, p < 0.05) and AUC300 value (0.193 vs. 0.063, p < 0.001) were observed in extracranial lesions, compared with intracranial lesions. After VDA treatment, more significant and persistent perfusion deficiency measured by PWI (AUC30: 0.067 vs. 0.008, p < 0.0001) and a T1 map (T1 ratio: 0.429 vs. 0.587, p < 0.05) were observed in extracranial tumors, in contrast to the intracranial tumor (AUC30: 0.058 vs. 0.049, p > 0.05, T1 ratio: 0.497 vs. 0.625, p < 0.05). Additionally, significant changes in the T2 value and apparent diffusion coefficient (ADC) value were observed in extracranial lesions, instead of intracranial lesions. Postmortem angiography and pathology showed a significantly larger H&E-stained area of necrosis (86.2% vs. 18.3%, p < 0.0001), lower CD31 level (42.7% vs. 54.3%, p < 0.05), and lower Ki67 level (12.2% vs. 32.3%, p < 0.01) in extracranial tumors, compared with intracranial lesions. The BBB functioned as a barrier against the delivery of VDA into intracranial tumors and multiparametric MRI may predict the efficacy of VDAs on craniofacial tumors.
Collapse
|
44
|
Song P, Li H, Xu K, Li ZW, Ren X, Fu XJ. A bibliometric and visualization-based analysis of temozolomide research hotspots and frontier evolution. Front Oncol 2022; 12:905868. [DOI: 10.3389/fonc.2022.905868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
The literature related to TMZ research in the Web of Science (WOS) database was analyzed using bibliometrics and visualization by Citespace and VOSviewer.The publication status (number of publications, institutions, and frequency of citations), collaborations, and research focus was analyzed to clarify the current situation of TMZ research. And the recent research on TMZ provides a detailed summary. Based on objective data analysis, this study provides a complete analysis portraying the progression of historical milestones in TMZ development and future research directions from various TMZ research domains.
Collapse
|
45
|
van Opijnen MP, Broekman MLD, de Vos FYF, Cuppen E, van der Hoeven JJM, van Linde ME, Compter A, Beerepoot LV, van den Bent MJ, Vos MJ, Fiebrich HB, Koekkoek JAF, Hoeben A, Kho KH, Driessen CML, Jeltema HR, Robe PAJT, Maas SLN. Study protocol of the GLOW study: maximising treatment options for recurrent glioblastoma patients by whole genome sequencing-based diagnostics—a prospective multicenter cohort study. BMC Med Genomics 2022; 15:233. [PMID: 36333718 PMCID: PMC9636658 DOI: 10.1186/s12920-022-01343-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background Glioblastoma (GBM), the most common glial primary brain tumour, is without exception lethal. Every year approximately 600 patients are diagnosed with this heterogeneous disease in The Netherlands. Despite neurosurgery, chemo -and radiation therapy, these tumours inevitably recur. Currently, there is no gold standard at time of recurrence and treatment options are limited. Unfortunately, the results of dedicated trials with new drugs have been very disappointing. The goal of the project is to obtain the evidence for changing standard of care (SOC) procedures to include whole genome sequencing (WGS) and consequently adapt care guidelines for this specific patient group with very poor prognosis by offering optimal and timely benefit from novel therapies, even in the absence of traditional registration trials for this small volume cancer indication. Methods The GLOW study is a prospective diagnostic cohort study executed through collaboration of the Hartwig Medical Foundation (Hartwig, a non-profit organisation) and twelve Dutch centers that perform neurosurgery and/or treat GBM patients. A total of 200 patients with a first recurrence of a glioblastoma will be included. Dual primary endpoint is the percentage of patients who receive targeted therapy based on the WGS report and overall survival. Secondary endpoints include WGS report success rate and number of targeted treatments available based on WGS reports and number of patients starting a treatment in presence of an actionable variant. At recurrence, study participants will undergo SOC neurosurgical resection. Tumour material will then, together with a blood sample, be sent to Hartwig where it will be analysed by WGS. A diagnostic report with therapy guidance, including potential matching off-label drugs and available clinical trials will then be sent back to the treating physician for discussing of the results in molecular tumour boards and targeted treatment decision making. Discussion The GLOW study aims to provide the scientific evidence for changing the SOC diagnostics for patients with a recurrent glioblastoma by investigating complete genome diagnostics to maximize treatment options for this patient group. Trial registration: ClinicalTrials.gov Identifier: NCT05186064. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01343-4.
Collapse
|
46
|
The Efficacy and Safety of Adjuvant Lomustine to Chemotherapy for Recurrent Glioblastoma: A Meta-analysis of Randomized Controlled Studies. Clin Neuropharmacol 2022; 45:162-167. [DOI: 10.1097/wnf.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
48
|
Aquilanti E, Wen PY. Current therapeutic options for glioblastoma and future perspectives. Expert Opin Pharmacother 2022; 23:1629-1640. [DOI: 10.1080/14656566.2022.2125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Elisa Aquilanti
- Division of Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Patrick Y. Wen
- Division of Neuro Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| |
Collapse
|
49
|
Akindona FA, Frederico SC, Hancock JC, Gilbert MR. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front Oncol 2022; 12:947634. [PMID: 36091174 PMCID: PMC9454306 DOI: 10.3389/fonc.2022.947634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells are thought to be the main drivers of tumorigenesis for malignancies such as glioblastoma (GBM). They are maintained through a close relationship with the tumor vasculature. Previous literature has well-characterized the components and signaling pathways for maintenance of this stem cell niche, but details on how the niche initially forms are limited. This review discusses development of the nonmalignant neural and hematopoietic stem cell niches in order to draw important parallels to the malignant environment. We then discuss what is known about the cancer stem cell niche, its relationship with angiogenesis, and provide a hypothesis for its development in GBM. A better understanding of the mechanisms of development of the tumor stem cell niche may provide new insights to potentially therapeutically exploit.
Collapse
Affiliation(s)
- Funto A. Akindona
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
| | - Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John C. Hancock
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark R. Gilbert,
| |
Collapse
|
50
|
Zhang HH, Du XJ, Deng ML, Zheng L, Yao DC, Wang ZQ, Yang QY, Wu SX. Apatinib for recurrent/progressive glioblastoma multiforme: A salvage option. Front Pharmacol 2022; 13:969565. [PMID: 36060005 PMCID: PMC9432461 DOI: 10.3389/fphar.2022.969565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose: The recurrent/progressive glioblastoma multiforme (GBM) carries a dismal prognosis and the definitive treatment strategy has not yet been established. This study aimed to assess the efficacy and safety of apatinib in recurrent/progressive GBM patients. Materials and methods: The clinical data of 19 recurrent/progressive GBM patients who received apatinib treatment from November 2015 to December 2019 at Sun Yat-sen University Cancer Center were collected retrospectively in this study. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and treatment-related adverse events (AEs) were reviewed and assessed. Results: The overall ORR was 52.6%, and the DCR was 73.7%. Median PFS and OS were 5.1 and 10.4 months, respectively. The 6-month PFS and OS rates were 38.9% and 68.4%, respectively. The 12-month PFS and OS rates were 16.7% and 36.8%, respectively. The treatment-related toxicities were generally well-tolerated. The most common grade 3/4 AEs were hand-foot syndrome (36.8%) and hypertension (21.1%). Conclusion: Our study showed that apatinib therapy provided a better salvaging option for recurrent/progressive GBM patients and the toxicity was manageable.
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Radiation Oncology, Xiang’an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Jing Du
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei-Ling Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lie Zheng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dun-Chen Yao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Qiang Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qun-Ying Yang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shao-Xiong Wu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Shao-Xiong Wu,
| |
Collapse
|