1
|
Zhang Y, Ma W, Wan F. Hesperidin alleviates pulmonary fibrosis by regulating EI24-mediated autophagy. Future Sci OA 2025; 11:2483147. [PMID: 40155367 PMCID: PMC11959899 DOI: 10.1080/20565623.2025.2483147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Etoposide-induced protein 2.4 (EI24), an essential component of autophagy, is lowly expressed in pulmonary fibrosis. Hesperidin (Hes), a flavonoid, can regulate autophagy in various diseases. However, whether Hes can inhibit pulmonary fibrosis by mechanically regulating EI24-mediated autophagy has not been uncovered. METHODS RLE-6TN cells were treated with transforming growth factor β1 (TGF-β1) and rats were injected with bleomycin (BLM) to construct the pulmonary fibrosis model. The effect of Hes on pulmonary fibrosis was evaluated by cell counting kit-8, immunofluorescence, hematoxylin and eosin, masson trichome staining and western blotting. RESULTS Hes reduced cell viability of TGF-β1-induced RLE-6TN cells. Administration of Hes restored the decrease in autophagy marker levels in TGF-β1-induced RLE-6TN cells. Hes inhibited the transcriptional and translational levels of α-SMA, collagen I and fibronectin that were increased by TGF-β1 in RLE-6TN cells. Mechanically, Hes restored EI24 expression, and EI24 knockdown reversed the effect of Hes on the expressions of autophagy and fibrosis-related proteins. Additionally, Hes enhanced autophagy and fibrosis markers, which were worsened by EI24 knockdown in BLM-induced rats. CONCLUSION Hes activated autophagy by upregulating EI24, which improved pulmonary fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cadre’s Ward, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| | - Wen Ma
- Department of gerontology, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| | - Fang Wan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| |
Collapse
|
2
|
Hewitt RJ, Pearmain L, Lyka E, Dickens J. Epithelial damage and ageing: the perfect storm. Thorax 2025:thorax-2024-222060. [PMID: 40425299 DOI: 10.1136/thorax-2024-222060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/14/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease of lung parenchymal scarring that is triggered by repeated microinjury to a vulnerable alveolar epithelium. It is increasingly recognised that cellular ageing, whether physiological or accelerated due to telomere dysfunction, renders the epithelium less able to cope with injury and triggers changes in epithelial behaviour that ultimately lead to the development of disease. AIMS This review aims to highlight how, with increasing age, the alveolar epithelium becomes vulnerable to exogenous insults. We discuss the downstream consequences of alveolar epithelial dysfunction on epithelial phenotype, alveolar repair and pro-pathogenic interactions with other alveolar niche-resident cell types which drive IPF pathogenesis. NARRATIVE We highlight how a wide array of cellular mechanisms that maintain cellular homeostasis become dysfunctional with ageing. Waning replicative capacity, genomic stability, mitochondrial function, proteostasis and metabolic function all contribute to a phenotype of vulnerability to 'second hits'. We discuss how in IPF the alveolar epithelium becomes dysfunctional, highlighting changes in repair capacity and fundamental cellular phenotype and how interactions between abnormal epithelium and other alveolar niche-resident cell types perpetuate disease. CONCLUSIONS The ageing epithelium is a vulnerable epithelium which, with the cumulative effects of environmental exposures, fundamentally changes its behaviour towards stalled differentiation, failed repair and profibrotic signalling. Further dissection of aberrant epithelial behaviour, and its impact on other alveolar cell types, will allow identification of novel therapeutic targets aimed at earlier pathogenic events.
Collapse
Affiliation(s)
- Richard J Hewitt
- King's Centre for Lung Health, King's College London, London, UK
| | - Laurence Pearmain
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- ILD Unit, North West Lung Centre, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Elisavet Lyka
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer Dickens
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Institiute for Medical Research, University of Cambridge, Cambridge, UK
- Royal Papworth NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Li N, Zhao W, Li J, Zhang D, Li K, Yang M, Lu X, Du L, Xu C, Liu Q. Autophagy and exosome dynamics in Radiation-Induced pulmonary fibrosis: the critical role of TRIB3. Respir Res 2025; 26:194. [PMID: 40399917 PMCID: PMC12093779 DOI: 10.1186/s12931-025-03271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
OBJECTIVE Dysregulated autophagy plays a critical role in the pathogenesis of pulmonary fibrosis. The stress protein TRIB3 has been correlated with abnormal autophagy, but its specific contribution to radiation-induced pulmonary fibrosis (RIPF) remains unclear. This study aimed to elucidate the role of TRIB3 in RIPF progression. METHODS We conducted RNA-sequencing of rat RIPF lung tissue to analyze the transcriptomic profile and determine gene expression changes in murine with RIPF. We established mouse models with alveolar epithelial type II cells (AEC II)-specific knockdown or overexpression of TRIB3 to elucidate its role in RIPF progression. We utilized mRFP-GFP-LC3 fluorescent reporter cells, nanoparticle tracking analysis, immunofluorescence and immunoprecipitation assays to uncover the underlying mechanisms. RESULTS TRIB3 expression was elevated in irradiated AEC II. Silencing TRIB3 in AEC II mitigated RIPF in mice, whereas its overexpression exacerbated the condition. Mechanistically, TRIB3 interacted with the LC3-interacting region (LIR) motif and ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1), an autophagic receptor protein, thereby inhibiting autophagic flux in AEC II cell line MLE12. This inhibition increased exosome secretion and facilitated crosstalk between MLE12 cells and fibroblasts, ultimately enhancing the proliferation and extracellular matrix production of lung fibroblasts. CONCLUSION TRIB3 in AEC II inhibits autophagic flux by interacting with SQSTM1, thereby increasing exosome secretion, which promotes fibroblast proliferation and extracellular matrix production, contributing to RIPF progression.
Collapse
Affiliation(s)
- Na Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyue Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Dengfeng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Kejun Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Xinran Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China.
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Institutions of Health Science, Tianjin, 300192, China.
| |
Collapse
|
4
|
Mao S, Yu N, Wang W, Mao Y, Du Y, Zhao Q, Gu X, Kang J. Ubiquitin-specific peptidase 10 attenuates bleomycin-induced pulmonary fibrosis via modulating autophagy depending on sirtuin 6-mediated AKT/mTOR. Cell Biol Toxicol 2025; 41:73. [PMID: 40278953 PMCID: PMC12031808 DOI: 10.1007/s10565-025-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by fibroblast activation and collagen deposition, is a progressive lung disease that lacks effective interventions. Ubiquitin-specific peptidase 10 (USP10) acts as a multifunctional player in inflammatory response and progression of cancers, the effect on pulmonary fibrosis is unknown. Here, we demonstrated downregulated expression of USP10 in fibrotic lung tissues of IPF patients. In the current study, lung tissues were collected at the end of weeks 1, 2, or 3 post bleomycin (BLM)-intratracheal delivery. Consistently, USP10 expression levels were reduced after BLM challenge in a time-dependent manner. Mice treated with lentivirus overexpressing USP10 exhibited mitigative lung injury and reduced collagen deposition. USP10 overexpression enhanced autophagy in BLM-treated mouse lungs. Interestingly, the protective effect of USP10 was attenuated as the pulmonary autophagy flux was blocked by autophagy inhibitor 3-methyladenine (3-MA). Primary human and mouse lung fibroblasts were treated with pro-fibrotic TGF-β1 to verify the role of USP10 in vitro. Mechanically, the deubiquitinating enzyme USP10 interacted with Sirtuin 6 (Sirt6) and inhibited its degradation. Furthermore, USP10 overexpression inhibited the activation of Sirt6-mediated AKT/mTOR pathway in both lung tissues and fibroblasts. Our findings suggest that USP10 might attenuate pulmonary fibrosis through the promotion of Sirt6/AKT/mTOR-mediated autophagy. These data prioritize USP10 as a therapeutic target for treating IPF.
Collapse
Affiliation(s)
- Shitao Mao
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yikai Mao
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Du
- Department of Otolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qihe Zhao
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Son J, Park J, Jeong JW, Lee SH, Kim JE. SIRT2 inhibition attenuates myofibroblast transition through autophagy-mediated ciliogenesis in renal epithelial cells. Int J Biochem Cell Biol 2025; 181:106754. [PMID: 39988243 DOI: 10.1016/j.biocel.2025.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Myofibroblast transition plays a crucial role in both fibrotic diseases and wound healing. Although SIRT2 regulates fibrosis, its mechanisms of action remain poorly understood. This study aimed to investigate the effects of SIRT2 inhibition on myofibroblast transition in human renal cells under quiescent conditions. HK-2 kidney proximal tubular epithelial cells were starved of serum, resulting in the formation of primary cilia. Transforming growth factor-β (TGF-β) stimulation reduced both the number of ciliated cells and ciliary length. The ciliary defects resulted from a failure in autophagy termination, leading to the accumulation of OFD1, a negative regulator of ciliogenesis, at centriolar satellites. This phenomenon was correlated with the upregulation of fibrosis-related proteins. To elucidate the role of SIRT2 in the autophagy-ciliogenesis-fibrosis axis, cells were treated with AGK2, a specific inhibitor of SIRT2. AGK2 treatment promoted the formation of both autophagosomes and autolysosomes and facilitated OFD1 degradation at the centriolar satellites, resulting in the lengthening of primary cilia. Restoration of primary cilia by AGK2 was associated with the suppression of myofibroblast transition. In conclusion, SIRT2 inhibition attenuates TGF-β-induced fibrosis by promoting autophagy-mediated ciliogenesis. This study highlights SIRT2 as a potential therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Wang Y, Ma Z, Peng W, Yu Q, Liang W, Cao L, Wang Z. 3,5,6,7,8,3',4'- Heptamethoxyflavonoid inhibits TGF-β1-induced epithelial-mesenchymal transition by regulating oxidative stress and autophagy through MEK/ERK/PI3K/AKT/mTOR signaling pathway. Sci Rep 2025; 15:4567. [PMID: 39915543 PMCID: PMC11802913 DOI: 10.1038/s41598-025-88869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological process in the pathogenesis of fibrosis. 3,5,6,7,8,3',4'-hepmethoxyflavone (HMF), the main active ingredient extracted from the Chinese herb Breynia fruticosa (L.) Hook. f., has been shown to have beneficial effects on regulating apoptosis and inhibiting collagen deposition. However, it remains unclear whether and how HMF alleviates transforming growth factor-β1 (TGF-β1)-induced EMT. The objective of this study was to investigate the impact of HMF on TGF-β1-induced EMT in human alveolar Type II epithelial cells (A549) and its underlying mechanism. In vitro culture of TGF-β1-induced EMT in A549 cells revealed that HMF reduced cell viability and migration, inhibited collagen deposition, decreased expression levels of mesenchymal cell markers and fibrosis markers α-SMA, MMP2, TIMP1, β-catenin, and Snail. Meanwhile, the expression level of E-cadherin increased as an epithelial cell marker. Additionally, we discussed the effects of HMF on oxidative stress and autophagy. Various experiments confirmed that HMF regulated the expression levels of Nrf2, keap-1, HO-1, ROS, MDA, SOD, GSH, and played a role in reducing oxidative stress. At the same time, HMF significantly activated autophagy by increasing expressions of Beclin-1 and LC3B as well as enhancing autophagosome content. The addition 3-MA, an autophagy inhibitor attenuated these beneficial effects. Furthermore, HMF significantly inhibited phosphorylation levels of MEK, ERK, PI3K, AKT, and mTOR through various pathways. In conclusion, HMF effectively inhibits TGF-β1-induced EMT in A549 cells by targeting the MEK/ERK/PI3K/AKT/mTOR signaling pathway. Moreover, it exhibits a close correlation with the suppression of oxidative stress and induction of autophagy.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhiheng Ma
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Weiwen Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Qinglian Yu
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Wenjie Liang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Liu Cao
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhuqiang Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China.
| |
Collapse
|
8
|
Torres-Machorro AL, García-Vicente Á, Espina-Ordoñez M, Luis-García E, Negreros M, Herrera I, Becerril C, Toscano F, Cisneros J, Maldonado M. Update of Aging Hallmarks in Idiopathic Pulmonary Fibrosis. Cells 2025; 14:222. [PMID: 39937013 PMCID: PMC11817138 DOI: 10.3390/cells14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is an epithelial-driven interstitial lung disease of unknown etiology characterized by the excessive proliferation of fibroblast populations that synthesize large amounts of extracellular matrix. In this devastating disorder, all aging hallmarks appear prematurely or are altered. This review highlights key findings about IPF characteristics recently recognized as hallmarks of aging, including mechanical alterations, inflammaging, dysbiosis, alternative splicing, and disabled macroautophagy. It also revisits the classic hallmarks of aging, which encompass stem cell exhaustion, cellular senescence, and altered intercellular communication. Enhancing our understanding of the fundamental processes that underlie the altered hallmarks of aging in IPF may facilitate the development of innovative experimental strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ana Lilia Torres-Machorro
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Ángeles García-Vicente
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Posgrado en Ciencias Biomédicas, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Marco Espina-Ordoñez
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.E.-O.); (J.C.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Erika Luis-García
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Miguel Negreros
- Clínica de Vasculitis Sistémicas Primarias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico;
| | - Iliana Herrera
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Carina Becerril
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Fernanda Toscano
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Jose Cisneros
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.E.-O.); (J.C.)
| | - Mariel Maldonado
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| |
Collapse
|
9
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Wei Y, Ni W, Zhao L, Gao Y, Zhou B, Feng Q, Ma Y, Wang L. Phillygenin Inhibits PI3K-Akt-mTOR Signalling Pathway to Prevent bleomycin-Induced Idiopathic Pulmonary Fibrosis in Mice. Clin Exp Pharmacol Physiol 2025; 52:e70017. [PMID: 39746665 DOI: 10.1111/1440-1681.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterised by irreversible lung structure and function. Phillygenin (PHI) is a lignan extracted from Forsythiae fructus with the activities of anti-inflammatory and antioxidant. This study aimed to explore the protective effect of PHI on IPF. The mouse model of IPF was established by bleomycin (BLM), and then treated with PHI. After 15 days of administration, the lung index was calculated. H&E staining, Masson staining and immunohistochemical methods were used to detect the effect of PHI on pulmonary fibrosis. MDA and SOD were tested to evaluate the effect of PHI on lung tissue oxidative stress. Western blot was used to detect the effect of PHI on the expressions of α-SMA, p-smad2, TGF- β1, Nrf2, HO-1 and NQO-1. Network pharmacology was used to identify the key signalling pathways for PHI to improve IPF, and Western blot was used to validate the result. The results showed that PHI prevented mice from BLM-induced IPF, manifested by reducing lung index, improving lung tissue pathological damage, inhibiting collagen deposition and expression of fibrosis markers including α-SMA, collagen1, p-smad2 and TGF-β1. PHI inhibited oxidative stress by upregulating the expressions of Nrf2, HO-1 and NQO-1. Network pharmacology revealed that PI3K-Akt-mTOR signalling pathway was the underlying target of PHI for IPF. Molecular docking indicated strong binding of PHI with PIK3CA, AKT1 and RELA. Western blot validated that PHI downregulated the PI3K-Akt-mTOR signalling pathway and stimulated autophagy. This study indicated that PHI prevented BLM-induced pulmonary fibrosis by inhibiting PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Yongjia Wei
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lizhi Zhao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Yanhong Gao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Bing Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Qun Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Yun Ma
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Limin Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
11
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2025; 329:e13410. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Zhuo J, Liu D, Yu Q, Hu M, Huang H, Chen Y, Li Y, Gao Y, Chen W, Meng X, Zou F, Zhang J, Cai S, Dong H. Indole-3-acetic acid attenuates pulmonary fibrosis by modulating lung microbiota, inhibiting fibroblast activation, and alleviating alveolar epithelial cell senescence. Life Sci 2024; 359:123191. [PMID: 39481838 DOI: 10.1016/j.lfs.2024.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIM Pulmonary fibrosis (PF) is a relentlessly progressive disorder characterized by high mortality and limited effective therapeutic options. Indole-3-acetic acid (IAA), originally recognized as a plant hormone, is also identified as a tryptophan-derived metabolite catabolized from microbiota in mammals. IAA has exhibited antioxidative, anti-inflammatory, and anti-tumor effects in various disorders, yet its role in PF remains elusive. MAIN METHODS Bleomycin (BLM) was employed to induce PF in a mouse model. TGF-β1 was utilized in primary mouse lung fibroblasts (pMLFs) to establish a pro-fibrotic in vitro cellular model, and in A549 cells to create an in vitro cellular senescence model. The therapeutic effects of IAA on PF were evaluated using hematoxylin-eosin staining, immunofluorescence staining, western blotting, SA-β-gal assay, and network pharmacology analysis. Additionally, the effect of IAA on lung microbiota of PF was investigated using 16S rRNA gene sequencing analysis. KEY FINDINGS we observed a significant reduction in IAA levels in both PF patients and mouse models. Moreover, we demonstrated the therapeutic potential of IAA in alleviating PF in BLM-induced mouse models, showing a dose-dependent response. Mechanistically, we delineated three perspectives. Firstly, IAA promoted autophagic flux by inhibiting the PI3K/AKT/mTOR pathway, thereby suppressing lung fibroblast differentiation and extracellular matrix (ECM) deposition. Secondly, IAA attenuated alveolar epithelial cell senescence by modulating the PI3K/AKT and HIF-1 pathways. Lastly, IAA displayed the ability to mitigate PF by modulating the structure and composition of lung microbiota. SIGNIFICANCE Our study demonstrates that IAA alleviates PF through multiple pathways, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Jinzhong Zhuo
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongyu Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Yu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Minxuan Hu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yixin Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqun Li
- Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yimei Gao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weimou Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaojin Meng
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Kumari S, Singh P, Dash D, Singh R. Understanding the molecular basis of anti-fibrotic potential of intranasal curcumin and its association with mitochondrial homeostasis in silica-exposed mice. Mitochondrion 2024; 78:101943. [PMID: 39122226 DOI: 10.1016/j.mito.2024.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Silicosis is an occupational disease of the lungs brought in by repeated silica dust exposures. Inhalation of crystalline silica leads to persistent lung inflammation characterized by lung lesions due to granuloma formation. The specific molecular mechanism has not yet been identified, though. The Present study investigated the impact of silica-exposed lung fibrosis and probable molecular mechanisms. Here, Curcumin, derived from Curcuma longa shown to be an effective anti-inflammatory and anti-fibrotic molecule has been taken to investigate its therapeutic efficacy in silica-induced lung fibrosis. An experimental model of silicosis was established in mice where curcumin was administered an hour before intranasal silica exposure every alternate day for 35 days. Intranasal Curcumin treatment reduced silica-induced oxidative stress, inflammation marked by inflammatory cell recruitment, and prominent granuloma nodules along with aberrant collagen repair. Its protective benefits were confirmed by reduced MMP9 activities along with EMT markers (Vimentin and α-SMA). It has restored autophagy and suppressed the deposition of damaged mitochondria after silica exposure. Intranasal Curcumin also inhibited oxidative stress by boosting antioxidant enzyme activities and enhanced Nrf2-Keap1 expressions. Higher levels of PINK1, PARKIN, Cyt-c, P62/SQSTM, and damaged mitochondria in the silicosis group were significantly lowered after curcumin and dexamethasone treatments. Curcumin-induced autophagy resulted in reduced silica-induced mitochondria-dependent apoptosis. We report that intranasal curcumin treatment showed protective properties on pathological features prompted by silica particles, suggesting that the compound may constitute a promising strategy for the treatment of silicosis in the near future.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Attia SH, Saadawy SF, El-Mahroky SM, Nageeb MM. Alleviation of pulmonary fibrosis by the dual PPAR agonist saroglitazar and breast milk mesenchymal stem cells via modulating TGFß/SMAD pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5953-5974. [PMID: 38376539 PMCID: PMC11329427 DOI: 10.1007/s00210-024-03004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Pulmonary fibrosis (PF) is a complex disorder with high morbidity and mortality. Limited efficacies of the available drugs drive researchers to seek for new therapies. Saroglitazar (Saro), a full (PPAR α/γ) agonist, is devoid of known PPAR-mediated adverse effects. Breast milk mesenchymal stem cells (BrMSCs) are contemplated to be the ideal cell type harboring differentiation/anti-inflammatory/immunosuppressive properties. Accordingly, our aims were to investigate the potential roles of Saro and/or BrMSCs in PF and to spot their underlying protective mechanisms. In this study, PF was induced by bleomycin (BLM) via intratracheal instillation. Treatment started 14 days later. Animals were treated with oral saroglitazar (3 mg/kg daily) or intraperitoneal single BrMSCs injection (0.5 ml phosphate buffer saline (PBS) containing 2 × 107 cells) or their combination with same previous doses. At the work end, 24 h following the 6 weeks of treatment period, the levels of oxidative (MDA, SOD), inflammatory (IL-1ß, IL-10), and profibrotic markers (TGF-ß, αSMA) were assessed. The autophagy-related genes (LC3, Beclin) and the expression of PPAR-α/γ and SMAD-3/7 were evaluated. Furthermore, immunohistochemical and histological work were evaluated. Our study revealed marked lung injury influenced by BLM with severe oxidative/inflammatory/fibrotic damage, autophagy inhibition, and deteriorated lung histology. Saro and BrMSCs repaired the lung structure worsened by BLM. Treatments greatly declined the oxidative/inflammatory markers. The pro-fibrotic TGF-ß, αSMA, and SMAD-3 were decreased. Contrarily, autophagy markers were increased. SMAD-7 and PPAR α/γ were activated denoting their pivotal antifibrotic roles. Co-administration of Saro and BrMSCs revealed the top results. Our findings support the study hypothesis that Saro and BrMSCs can be proposed as potential treatments for IPF.
Collapse
Affiliation(s)
- Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa M El-Mahroky
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Wei Y, Gao S, Li C, Huang X, Xie B, Geng J, Dai H, Wang C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1458-1477. [PMID: 38777148 DOI: 10.1016/j.ajpath.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-β1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-β1 down-regulated ALDH2 through a TGF-β receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanqiu Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuwei Gao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
17
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
18
|
Zheng D, Guo J, Liang Z, Jin Y, Ding Y, Liu J, Qi C, Shi K, Xie L, Zhu M, Wang L, Hu Z, Yang Z, Liu Q, Li X, Ning W, Gao J. Supramolecular Nanofibers Ameliorate Bleomycin-Induced Pulmonary Fibrosis by Restoring Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401327. [PMID: 38725147 PMCID: PMC11267363 DOI: 10.1002/advs.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Indexed: 07/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.
Collapse
Affiliation(s)
- Debin Zheng
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jiasen Guo
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Ziyi Liang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yueyue Jin
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jingfei Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Kaiwen Shi
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Limin Xie
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Meiqi Zhu
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Qian Liu
- Department of UrologyTianjin First Central HospitalTianjin300192P. R. China
| | - Xiaoxue Li
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| |
Collapse
|
19
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024; 16:1438-1451. [PMID: 38913046 PMCID: PMC12096940 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China.
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Wang Y, He X, Wang H, Hu W, Sun L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117820. [PMID: 38286157 DOI: 10.1016/j.jep.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS TGF-β induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS TGF-β induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-β-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-β-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-β-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, PR China.
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Huijie Wang
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China.
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
21
|
Lee C, Kwak SH, Han J, Shin JH, Yoo B, Lee YS, Park JS, Lim BJ, Lee JG, Kim YS, Kim SY, Bae SH. Repositioning of ezetimibe for the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2024; 63:2300580. [PMID: 38359963 PMCID: PMC11096666 DOI: 10.1183/13993003.00580-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND We previously identified ezetimibe, an inhibitor of Niemann-Pick C1-like intracellular cholesterol transporter 1 and European Medicines Agency-approved lipid-lowering agent, as a potent autophagy activator. However, its efficacy against pulmonary fibrosis has not yet been evaluated. This study aimed to determine whether ezetimibe has therapeutic potential against idiopathic pulmonary fibrosis. METHODS Primary lung fibroblasts isolated from both humans and mice were employed for mechanistic in vitro experiments. mRNA sequencing of human lung fibroblasts and gene set enrichment analysis were performed to explore the therapeutic mechanism of ezetimibe. A bleomycin-induced pulmonary fibrosis mouse model was used to examine in vivo efficacy of the drug. Tandem fluorescent-tagged microtubule-associated protein 1 light chain 3 transgenic mice were used to measure autophagic flux. Finally, the medical records of patients with idiopathic pulmonary fibrosis from three different hospitals were reviewed retrospectively, and analyses on survival and lung function were conducted to determine the benefits of ezetimibe. RESULTS Ezetimibe inhibited myofibroblast differentiation by restoring the mechanistic target of rapamycin complex 1-autophagy axis with fine control of intracellular cholesterol distribution. Serum response factor, a potential autophagic substrate, was identified as a primary downstream effector in this process. Similarly, ezetimibe ameliorated bleomycin-induced pulmonary fibrosis in mice by inhibiting mechanistic target of rapamycin complex 1 activity and increasing autophagic flux, as observed in mouse lung samples. Patients with idiopathic pulmonary fibrosis who regularly used ezetimibe showed decreased rates of all-cause mortality and lung function decline. CONCLUSION Our study presents ezetimibe as a potential novel therapeutic for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chanho Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| | - Se Hyun Kwak
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
- These authors contributed equally to this work
| | - Jisu Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byunghun Yoo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Seol Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| | - Soo Han Bae
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- These authors contributed equally to this work
| |
Collapse
|
22
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Xu Z, Davies ER, Yao L, Zhou Y, Li J, Alzetani A, Marshall BG, Hancock D, Wallis T, Downward J, Ewing RM, Davies DE, Jones MG, Wang Y. LKB1 depletion-mediated epithelial-mesenchymal transition induces fibroblast activation in lung fibrosis. Genes Dis 2024; 11:101065. [PMID: 38222900 PMCID: PMC7615521 DOI: 10.1016/j.gendis.2023.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 01/16/2024] Open
Abstract
The factors that determine fibrosis progression or normal tissue repair are largely unknown. We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition (EMT) in human alveolar epithelial type II (ATII) cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signalling. Here, we report that liver kinase B1 (LKB1) inactivation in ATII cells inhibits autophagy and induces EMT as a consequence. In IPF lungs, this is caused by downregulation of CAB39L, a key subunit within the LKB1 complex. 3D co-cultures of ATII cells and MRC5 lung fibroblasts coupled with RNA sequencing (RNA-seq) confirmed that paracrine signalling between LKB1-depleted ATII cells and fibroblasts augmented myofibroblast differentiation. Together these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATII cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.
Collapse
Affiliation(s)
- Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Elizabeth R. Davies
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ben G. Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London NW1 1AT, UK
| | - Tim Wallis
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
24
|
Yoon HY, Kim H, Bae Y, Song JW. Smoking status and clinical outcome in idiopathic pulmonary fibrosis: a nationwide study. Respir Res 2024; 25:191. [PMID: 38685071 PMCID: PMC11059669 DOI: 10.1186/s12931-024-02819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Smoking status has been linked to the development of idiopathic pulmonary fibrosis (IPF). However, the effect of smoking on the prognosis of patients with IPF is unclear. We aimed to investigate the association between smoking status and all-cause mortality or hospitalisation by using national health claims data. METHODS IPF cases were defined as people who visited medical institutions between January 2002 and December 2018 with IPF and rare incurable disease exempted calculation codes from the National Health Insurance Database. Total 10,182 patients with available data on smoking status were included in this study. Ever-smoking status was assigned to individuals with a history of smoking ≥ 6 pack-years. The multivariable Cox proportional hazard model was used to evaluate the association between smoking status and prognosis. RESULTS In the entire cohort, the mean age was 69.4 years, 73.9% were males, and 45.2% were ever smokers (current smokers: 14.2%; former smokers: 31.0%). Current smokers (hazard ratio [HR]: 0.709; 95% confidence interval [CI]: 0.643-0.782) and former smokers (HR: 0.926; 95% CI: 0.862-0.996) were independently associated with all-cause mortality compared with non-smokers. Current smokers (HR: 0.884; 95% CI: 0.827-0.945) and former smokers (HR: 0.909; 95% CI: 0.862-0.959) were also associated with a reduced risk of all-cause hospitalisation compared with non-smokers. A non-linear association between smoking amount and prognosis was found in a spline HR curve and showed increasing risk below 6 pack-years. CONCLUSION Ever-smoking status may be associated with favourable clinical outcomes in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Yoonjong Bae
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
25
|
Chu L, Zhuo J, Huang H, Chen W, Zhong W, Zhang J, Meng X, Zou F, Cai S, Zou M, Dong H. Tetrandrine alleviates pulmonary fibrosis by inhibiting alveolar epithelial cell senescence through PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 969:176459. [PMID: 38438063 DOI: 10.1016/j.ejphar.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the β-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.
Collapse
Affiliation(s)
- Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
27
|
Staab-Weijnitz CA. A NEAT Discovery Hints at Altered Golgi Signaling in Lung Fibrosis. Am J Respir Cell Mol Biol 2024; 70:155-156. [PMID: 38060429 PMCID: PMC10914770 DOI: 10.1165/rcmb.2023-0384ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research Munich, Germany
| |
Collapse
|
28
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Hao Y, Li J, Dan L, Wu X, Xiao X, Yang H, Zhou R, Li B, Wang F, Du Q. Chinese medicine as a therapeutic option for pulmonary fibrosis: Clinical efficacies and underlying mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116836. [PMID: 37406748 DOI: 10.1016/j.jep.2023.116836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a fibrotic interstitial lung disease caused by continuous damage and excessive repair of alveolar epithelial cells, the pathogenesis of which is not fully understood. At present, the incidence of PF has increased significantly around the world. The therapeutic arsenals against PF are relatively limited, with often poor efficacy and many adverse effects. As a conventional and effective therapeutic strategy, traditional Chinese medicine (TCM) has been widely applied in treating lung fibrosis for thousands of years in China. Due to the multi-ingredient, multi-target characteristics, Chinese medicines possess promising clinical benefits for PF treatment. AIM OF THIS REVIEW This review aims to systematically analyze the clinical efficacy of Chinese medicine on PF, and further summarize the relevant mechanisms of Chinese medicine treating PF in preclinical studies, in order to provide a comprehensive insight into the beneficial effects of Chinese medicines on PF. METHODS Eight major Chinese and English databases were searched from database inception up to October 2022, and all randomized clinical trials (RCTs) investigating the effects of Chinese medicine intervention on effectiveness and safety in the treatment of PF patients were included. Subsequently, preclinical studies related to the treatment of PF in Chinese medicine, including Chinese medicine compounds, Chinese herbal materials and extracts, and Chinese herbal formulas (CHFs) were searched through PubMed and Web of science to summarize the related mechanisms of Chinese medicine against PF. RESULTS A total of 56 studies with 4019 patients were included by searching the relevant databases. Total clinical efficacy, pulmonary function, blood gas analysis, lung high resolution CT (HRCT), 6 min walk test (6-MWT), St George's Respiratory Questionnaire (SGRQ) scores, clinical symptom scores, TCM syndrome scores and other outcome indicators related to PF were analyzed. Besides, numerous preclinical studies have shown that many Chinese medicine compounds, Chinese herbal materials and extracts, and CHFs play a preventive and therapeutic role in PF by reducing oxidative stress, ameliorating inflammation, inhibiting epithelial-mesenchymal transition and myofibroblasts activation, and regulating autophagy and apoptosis. CONCLUSION Chinese medicines show potential as supplements or substitutes for treating PF. And studies on Chinese medicines will provide a new approach to better management of PF.
Collapse
Affiliation(s)
- Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lijuan Dan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuanyu Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rui Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
30
|
Dong Y, Cao X, Huang J, Hu Z, Chen C, Chen M, Long Q, Xu Z, Lv D, Rong Y, Luo S, Wang H, Deng W, Tang B. Melatonin inhibits fibroblast cell functions and hypertrophic scar formation by enhancing autophagy through the MT2 receptor-inhibited PI3K/Akt /mTOR signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166887. [PMID: 37739092 DOI: 10.1016/j.bbadis.2023.166887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Hypertrophic scar (HS) is a fibrotic skin condition and characterized by abnormal proliferation of myofibroblasts and accumulation of extracellular matrix. Melatonin, an endogenous hormone, can alleviate fibrosis in multiple models of diseases. This study examined the effect of melatonin on fibrosis in primary fibroblasts from human HS (HSFs) and a rabbit ear model and potential mechanisms. Melatonin treatment significantly decreased the migration and contraction capacity, collagen and α-smooth muscle actin (α-SMA) production in HSFs. RNA-sequencing and bioinformatic analyses indicated that melatonin modulated the expression of genes involved in autophagy and oxidative stress. Mechanistically, melatonin treatment attenuated the AKT/mTOR activation through affecting the binding of MT2 receptor with PI3K to enhance autophagy, decreasing fibrogenic factor production in HSFs. Moreover, melatonin treatment inhibited HS formation in rabbit ears by enhancing autophagy. The anti-fibrotic effects of melatonin were abrogated by treatment with an autophagy inhibitor (3-methyladenine, 3-MA), an Akt activator (SC79), or an MT2 selective antagonist (4-phenyl-2propionamidotetralin, 4-P-PDOT). Therefore, melatonin may be a potential drug for prevention and treatment of HS.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinsheng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Canter of Cancer Medicine, Guangzhou, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chufen Chen
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Canter of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Canter of Cancer Medicine, Guangzhou, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Canter of Cancer Medicine, Guangzhou, China.
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Gong H, Lyu X, Liu Y, Peng N, Tan S, Dong L, Zhang X. Eupatilin inhibits pulmonary fibrosis by activating Sestrin2/PI3K/Akt/mTOR dependent autophagy pathway. Life Sci 2023; 334:122218. [PMID: 37918625 DOI: 10.1016/j.lfs.2023.122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive chronic inflammatory disease with poor clinical outcomes and ineffective drug treatment options. Eupatilin is a major component extracted from the traditional herbal medicine Artemisia asiatica Nakai. Notably, it was demonstrated to have an anti-fibrosis effect in endometrial fibrosis, vocal fold, and hepatic fibrosis. Its role and mechanism in IPF remain unclear. METHODS This study used the TGF-β1-induced human embryonic lung fibroblasts (MRC-5) activation, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model. Western blot, immunofluorescence staining, quantitative real time-PCR, hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to evaluate the effects of eupatilin on fibroblast activation, pulmonary fibrosis, and autophagy. The autophagosomes were observed with a transmission electron microscope (TEM). RNA sequencing was used to determine the signaling pathway and key regulator related to autophagy. RESULTS Eupatilin significantly decreased the expression of Col1A1, fibronectin, α-SMA, and SQSTM1/p62. In contrast, it increased the expression of LC3B II/I and the number of autophagosomes in TGF-β1 treated MRC-5, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model; it also alleviated bleomycin-induced lung fibrosis. The KEGG pathway mapping displayed that PI3K/Akt and Sestrin2 were associated with the enhanced fibrogenic process. Eupatilin suppressed the phosphorylation of PI3K/Akt/mTOR. Autophagy inhibitor 3-methyladenine (3-MA) and Akt activator SC-79 abrogated the anti-fibrotic effect of eupatilin. Sestrin2 expression was also downregulated in TGF-β1 treated lung fibroblasts and lung tissues of the bleomycin-induced pulmonary fibrosis mice model. Furthermore, eupatilin promoted Sestrin2 expression, and the knockdown of Sestrin2 significantly aggravated the degree of fibrosis, increased the phosphorylation of PI3K/Akt/mTOR, and decreased autophagy. CONCLUSION These findings indicate that eupatilin ameliorates pulmonary fibrosis through Sestrin2/PI3K/Akt/mTOR-dependent autophagy pathway.
Collapse
Affiliation(s)
- Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Naling Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China.
| |
Collapse
|
32
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
33
|
Zhang K, Wu Z, Zhao Y, Qiu X, Li F, Chen Q, Cui F. LC3 Accelerated Brain-Lung Axis Abscopal Effects after Fractionated Whole-Brain Radiation by Promoting Motoneurons to Secrete Periostin. Radiat Res 2023; 200:462-473. [PMID: 37796808 DOI: 10.1667/rade-23-00075.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/14/2023] [Indexed: 10/07/2023]
Abstract
The effect of autophagy on the radiation-induced bystander effect (RIBE) in vivo is unclear. Here, the whole brains of microtubule-associated protein 1A/1B-light chain 3 (LC3) and C57BL/6 (B6) mice were irradiated once (10 Gy)(IR1), given 3 fractions in three weeks (IR3), or 6 fractions in six weeks (IR6). The median survival of LC3 mice was 56.5 days, and that of B6 mice was 65 days after IR6. LC3 mice showed more congestion and fibrosis in the lung after the IR3 and IR6 irradiation protocols than B6 mice. Quantitative proteomics of serum samples and lung RNA sequencing of the LC3 group showed that the common most clustered pathway of the IR3 group was the elastic fiber formation pathway, which contained Periostin (POSTN). POSTN in the motoneurons increased with increasing number of radiation fractions in LC3 mice. A 1 μg/g POSTN neutralizing antibody reduced the lung fibrosis of LC3 mice exposed to IR3 by one-third, and significantly prolonged the survival time of LC3 mice exposed to IR6. LDN-214117 and LRRK2-in-1 were the best two of sixteen transforming growth factor-beta1 (TGF-β) receptor and autophagy mediators to decrease Postn mRNA. These data led us to conclude that LC3 accelerated motoneuron secretion of POSTN and aggravated the RIBE in the lung after brain irradiation.
Collapse
Affiliation(s)
- Ke Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Qidong People's Hospital/Affiliated Qidong Hospital of Nantong University, Qidong 226200, P R China
| | - Zhuojun Wu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education 215123, P R China
| | - Ying Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education 215123, P R China
| | - Xinyu Qiu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education 215123, P R China
| | - Fang Li
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, P R China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education 215123, P R China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P R China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education 215123, P R China
| |
Collapse
|
34
|
Chien LH, Deng JS, Jiang WP, Chou YN, Lin JG, Huang GJ. Evaluation of lung protection of Sanghuangporus sanghuang through TLR4/NF-κB/MAPK, keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 signaling pathways mediating apoptosis and autophagy. Biomed Pharmacother 2023; 165:115080. [PMID: 37392658 DOI: 10.1016/j.biopha.2023.115080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial pneumonia characterized by chronic and progressive fibrosis with an unknown etiology. Previous pharmacological studies have shown that Sanghuangporus sanghuang possesses various beneficial properties including immunomodulatory, hepatoprotective, antitumor, antidiabetic, anti-inflammatory, and neuroprotective effects. This study used a bleomycin (BLM)-induced IPF mouse model to illustrate the possible benefits of SS in ameliorating IPF. BLM was administered on day 1 to establish a pulmonary fibrosis mouse model, and SS was administered through oral gavage for 21 d. Hematoxylin and eosin (H&E) and Masson's trichrome staining results showed that SS significantly reduced tissue damage and decreased fibrosis expression. We observed that SS treatment resulted in a substantial lowering in the level of pro-inflammatory cytokines like TGF-β, TNF-α, IL-1β, and IL-6 as well as MPO. In addition, we observed a notable increase in glutathione (GSH) levels. Western blot analysis of SS showed that it reduces inflammatory factors (TWEAK, iNOS, and COX-2), MAPK (JNK, p-ERK, and p-38), fibrosis-related molecules (TGF-β, SMAD3, fibronectin, collagen, α-SMA, MMP2, and MMP9), apoptosis (p53, p21, and Bax), and autophagy (Beclin-1, LC3A/B-I/II, and p62), and notably increases caspase 3, Bcl-2, and antioxidant (Catalase, GPx3, and SOD-1) levels. SS alleviates IPF by regulating the TLR4/NF-κB/MAPK, Keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 pathways. These results suggest that SS has a pharmacological activity that protects the lungs and has the potential to improve pulmonary fibrosis.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jaung-Geng Lin
- Department of Chinese Medical, China Medical University, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
35
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
36
|
Huang F, Ding G, Yuan Y, Zhao L, Ding W, Wu S. PTEN Overexpression Alters Autophagy Levels and Slows Sodium Arsenite-Induced Hepatic Stellate Cell Fibrosis. TOXICS 2023; 11:578. [PMID: 37505544 PMCID: PMC10386595 DOI: 10.3390/toxics11070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Exposure to inorganic arsenic remains a global public health problem. The liver is the main target organ, leading to arsenic-induced liver fibrosis. Phosphatase and tensin homology deleted on chromosome ten (PTEN) may participate in arsenic-induced liver fibrosis by regulating autophagy, but the exact mechanisms remain unclear. We established a mouse model of arsenic poisoning through their drinking water and a fibrosis model using the human hepatic stellate cell line LX-2 through NaAsO2 exposure for 24 h. Masson staining measured liver fibrosis. The cells were transfected with a PTEN overexpression plasmid. Western blot and qRT-PCR determined the levels of protein/mRNA expression. Fibrosis was evident in both the mouse model and arsenic-exposed LX-2 cells. NaAsO2 upregulated expression of autophagic markers microtubule-associated protein light chain A/B (LC3), recombinant human autophagy effector protein (Beclin-1), and hairy and enhancer of split homolog-1 (HES1), but downregulated PTEN. Alongside this, α-smooth muscle actin (α-SMA) expression was significantly upregulated by NaAsO2. PTEN overexpression altered NaAsO2-induced autophagy and downregulated LC3 and Beclin-1. While Notch1, HES1, α-SMA, and collagen I expression were all downregulated in the NaAsO2 groups. Therefore, PTEN overexpression might decrease autophagy and inhibit fibrosis progression caused by arsenic, and the NOTCH1/HES1 pathway is likely involved.
Collapse
Affiliation(s)
- Fei Huang
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Guanxin Ding
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Yanjie Yuan
- The First Division Hospital of Xinjiang Production and Construction Corps, No. 4, Jiankang Road, Aksu City 843000, China
| | - Lijun Zhao
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | - Wenmeng Ding
- Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, No. 567 Shangde North Road, Shuimogou District, Urumqi 830011, China
| | | |
Collapse
|
37
|
Liu S, Fang X, Zhu R, Zhang J, Wang H, Lei J, Wang C, Wang L, Zhan L. Role of endoplasmic reticulum autophagy in acute lung injury. Front Immunol 2023; 14:1152336. [PMID: 37266445 PMCID: PMC10231642 DOI: 10.3389/fimmu.2023.1152336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), the prime causes of morbidity and mortality in critically ill patients, are usually treated by general supportive treatments. Endoplasmic reticulum autophagy (ER-phagy) maintains cellular homeostasis by degrading damaged endoplasmic reticulum (ER) fragments and misfolded proteins. ER-phagy is crucial for maintaining ER homeostasis and improving the internal environment. ER-phagy has a particular role in some aspects, such as immunity, inflammation, cell death, pathogen infection, and collagen quality. In this review, we summarized the definition, epidemiology, and pathophysiology of ALI/ARDS and described the regulatory mechanisms and functions of ER-phagy as well as discussed the potential role of ER-phagy in ALI/ARDS from the perspectives of immunity, inflammation, apoptosis, pathogen infection, and fibrosis to provide a novel and effective target for improving the prognosis of ALI/ARDS.
Collapse
Affiliation(s)
- Shiping Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Fang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiyao Zhu
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxi Lei
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Su HY, Yang JJ, Zou R, An N, Chen XC, Yang C, Yang HJ, Yao CW, Liu HF. Autophagy in peritoneal fibrosis. Front Physiol 2023; 14:1187207. [PMID: 37256065 PMCID: PMC10226653 DOI: 10.3389/fphys.2023.1187207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Peritoneal dialysis (PD) is a widely accepted renal replacement therapy for patients with end-stage renal disease (ESRD). Morphological and functional changes occur in the peritoneal membranes (PMs) of patients undergoing long-term PD. Peritoneal fibrosis (PF) is a common PD-related complication that ultimately leads to PM injury and peritoneal ultrafiltration failure. Autophagy is a cellular process of "self-eating" wherein damaged organelles, protein aggregates, and pathogenic microbes are degraded to maintain intracellular environment homeostasis and cell survival. Growing evidence shows that autophagy is involved in fibrosis progression, including renal fibrosis and hepatic fibrosis, in various organs. Multiple risk factors, including high-glucose peritoneal dialysis solution (HGPDS), stimulate the activation of autophagy, which participates in PF progression, in human peritoneal mesothelial cells (HPMCs). Nevertheless, the underlying roles and mechanisms of autophagy in PF progression remain unclear. In this review, we discuss the key roles and potential mechanisms of autophagy in PF to offer novel perspectives on future therapy strategies for PF and their limitations.
Collapse
|
39
|
Wanas H, Elbadawy HM, Almikhlafi MA, Hamoud AE, Ali EN, Galal AM. Combination of Niclosamide and Pirfenidone Alleviates Pulmonary Fibrosis by Inhibiting Oxidative Stress and MAPK/Nf-κB and STATs Regulated Genes. Pharmaceuticals (Basel) 2023; 16:ph16050697. [PMID: 37242480 DOI: 10.3390/ph16050697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of pulmonary fibrosis (PF) is extremely complex and involves numerous intersecting pathways. The successful management of PF may require combining multiple agents. There is a growing body of evidence that suggests the potential benefits of niclosamide (NCL), an FDA-approved anthelminthic drug, in targeting different fibrogenesis molecules. This study aimed at investigating the anti-fibrotic potential of NCL alone and in combination with pirfenidone (PRF), an approved drug for PF, in a bleomycin (BLM) induced PF experimental model. PF was induced in rats by intratracheal BLM administration. The effect of NCL and PRF individually and in combination on different histological and biochemical parameters of fibrosis was investigated. Results revealed that NCL and PRF individually and in combination alleviated the histopathological changes, extracellular matrix deposition and myofibroblastic activation induced by BLM. NCL and PRF either individually or in combination inhibited the oxidative stress and subsequent pathways. They modulated the process of fibrogenesis by inhibiting MAPK/NF-κB and downstream cytokines. They inhibited STATs and downstream survival-related genes including BCL-2, VEGF, HIF-α and IL-6. Combining both drugs showed significant improvement in the tested markers in comparison to the monotherapy. NCL, therefore, has a potential synergistic effect with PRF in reducing the severity of PF.
Collapse
Affiliation(s)
- Hanaa Wanas
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Amany E Hamoud
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Eid N Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
- Department of Anatomy, Faculty of Medicine, Taibah University, Madinah 41477, Saudi Arabia
| | - Amr M Galal
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| |
Collapse
|
40
|
Han S, Lu Q, Liu X. Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Exp Ther Med 2023; 25:145. [PMID: 36911379 PMCID: PMC9995810 DOI: 10.3892/etm.2023.11844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and fatal interstitial lung disease of unknown cause, with a median survival of 2-3 years. Its pathogenesis is unclear and there is currently no effective treatment for IPF. Approximately two-thirds of patients with IPF are >60 years old, with a mean age of 66 years, suggesting a link between aging and IPF. However, the mechanism by which aging promotes development of PF remains unclear. Senescence of alveolar epithelial cells and lung fibroblasts (LFs) and their senescence-associated secretion phenotype (SASP) may be involved in the occurrence and development of IPF. The present review focus on senescence of LFs and epithelial and stem cells, as well as SASP, the activation of profibrotic signaling pathways and potential treatments for pathogenesis of IPF.
Collapse
Affiliation(s)
- Shan Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Qiangwei Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiaoqiu Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
41
|
Ting L, Feng Y, Zhou Y, Tong Z, Dong Z. IL-27 induces autophagy through regulation of the DNMT1/lncRNA MEG3/ERK/p38 axis to reduce pulmonary fibrosis. Respir Res 2023; 24:67. [PMID: 36869378 PMCID: PMC9985266 DOI: 10.1186/s12931-023-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
PURPOSE Previous studies have shown that interleukin-27 (IL-27) can reduce bleomycin (BLM)-induced pulmonary fibrosis (PF). However, the underlying mechanism by which IL-27 attenuates PF is not fully clear. METHODS In this research, we used BLM to construct a PF mouse model, and MRC-5 cells stimulated by transforming growth factor-β1 (TGF-β1) were used to construct a PF model in vitro. The lung tissue status was observed by Masson and hematoxylin and eosin (HE) staining. To detect gene expression, RT‒qPCR was used. The protein levels were detected by western blotting and immunofluorescence staining. EdU and ELISA were used to detect cell proliferation viability and hydroxyproline (HYP) content, respectively. RESULTS Aberrant IL-27 expression was observed in BLM-induced mouse lung tissues, and the use of IL-27 attenuated mouse lung tissue fibrosis. TGF-β1 induced autophagy inhibition in MRC-5 cells, and IL-27 alleviated MRC-5 cell fibrosis by activating autophagy. The mechanism is inhibition of DNA methyltransferase 1 (DNMT1)-mediated lncRNA MEG3 methylation and ERK/p38 signaling pathway activation. Overexpression of DNMT1, knockdown of lncRNA MEG3, autophagy inhibitor or ERK/p38 signaling pathway inhibitors reversed the positive effect of IL-27 in a lung fibrosis model in vitro. CONCLUSION In conclusion, our study shows that IL-27 upregulates MEG3 expression through inhibition of DNMT1-mediated lncRNA MEG3 promoter methylation, which in turn inhibits ERK/p38 signaling pathway-induced autophagy and attenuates BLM-induced PF, providing a contribution to the elucidation of the potential mechanisms by which IL-27 attenuates PF.
Collapse
Affiliation(s)
- Li Ting
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China.
| |
Collapse
|
42
|
Zhang X, Hu X, Zhang Y, Liu B, Pan H, Liu Z, Yao Z, Zhu Q, Wu C, Shen T. Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. J Nanobiotechnology 2023; 21:69. [PMID: 36849924 PMCID: PMC9970859 DOI: 10.1186/s12951-023-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Hu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuqing Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhuomeng Yao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Qixing Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Heath and Medical Sciences, University of Surrey, Surrey, Guildford, UK
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
43
|
Li Y, Lian Z, Li Q, Ding W, Wang W, Zhang L, Muhataer X, Zhou Y, Yang X, Wu C. Molecular mechanism by which the Notch signaling pathway regulates autophagy in a rat model of pulmonary fibrosis in pigeon breeder's lung. Open Med (Wars) 2023; 18:20230629. [PMID: 36785767 PMCID: PMC9921914 DOI: 10.1515/med-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
This study investigated the molecular mechanisms underlying the involvement of the Notch signaling pathway and autophagy in the development of pulmonary fibrosis in pigeon breeder's lung (PBL). Rats were divided into control (Ctrl), PBL model (M), M + D (Notch signaling inhibition), M + W (autophagy inhibition), and M + R (autophagy induction) groups. Lyophilized protein powder from pigeon shedding materials was used as an allergen to construct a fibrotic PBL rat model. The mechanism by which Notch signaling regulated autophagy in the pulmonary fibrosis of PBL was investigated by inhibiting the Notch pathway and interfering with autophagy. Pulmonary interstitial fibrosis was significantly greater in the M group and the M + W group than in the M + D and M + R groups. The expression of α-smooth muscle actin was significantly higher in the M, M + D, and M + W groups than in the Ctrl group (P < 0.05). The expression of the cell autophagy markers Beclin1 and LC3 was lower in the M, M + D, and M + W groups than in the Ctrl group (P < 0.05), whereas Beclin1 and LC3 expressions were higher in the M + D and M + R groups than in the M group. The levels of reactive oxygen species in serum and lung tissues were higher in the M, M + D, M + W, and M + R groups than in the Ctrl group (P < 0.05). The Notch signaling pathway is involved in the pathological process of pulmonary fibrosis in the rat model of PBL by regulating autophagy.
Collapse
Affiliation(s)
- Yafang Li
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| | - Zhichuang Lian
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Qifeng Li
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Wei Ding
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Wenyi Wang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Xirennayi Muhataer
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Yuan Zhou
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, 830001 Urumqi, China,Xinjiang Clinical Research Center for Interstitial Lung Diseases, 830001 Urumqi, China
| |
Collapse
|
44
|
Peng J, Xiao X, Li S, Lyu X, Gong H, Tan S, Dong L, Sanders YY, Zhang X. Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway. Exp Gerontol 2023; 172:112085. [PMID: 36623738 DOI: 10.1016/j.exger.2023.112085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease with limited therapeutic options. Aspirin can alleviate liver, kidney, and cardiac fibrosis. However, its role in lung fibrosis is unclear. This study aims to investigate the effects of aspirin on lung fibroblast differentiation and pulmonary fibrosis. TGF-β1-induced human embryonic lung fibroblasts, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mouse model were used in this study. The results showed that aspirin significantly decreased the expression of Collagen 1A1, Fibronectin, Alpha-smooth muscle actin, and equestosome1, and increased the ratio of light chain 3 beta II/I and the number of autophagosome in vivo and in vitro; reduced bleomycin-induced lung fibrosis. Aspirin also decreased the ratios of phosphorylated phosphatidylinositol 3 kinase (p-PI3K)/PI3K, protein kinase B (p-AKT)/AKT, and mechanistic target of rapamycin (p-mTOR)/mTOR in vitro. Autophagy inhibitor 3-methyladenine, bafilomycin-A1, and AKT activator SC-79 abrogated the effects of aspirin. These findings indicate that aspirin ameliorates pulmonary fibrosis through a PI3K/AKT/mTOR-dependent autophagy pathway.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xun Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
45
|
Marzoog BA. Local Lung Fibroblast Autophagy in the Context of Lung Fibrosis Pathogenesis. CURRENT RESPIRATORY MEDICINE REVIEWS 2023; 19:6-11. [DOI: 10.2174/1573398x19666221130141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022]
Abstract
Abstract:
The current molecular advances in lung fibrosis pathogenesis distend beyond the cellular to involve subcellular and molecular levels. Lung fibrogenesis and autophagy impairment are tight-ly associated. Autophagy is involved in cell cycle control and regulation of the intracellular micro-environment. Degradation of impaired intracellular organelles and biproducts is crucial to maintain-ing a healthy cell and preventing its metaplasia / transdifferentiation to a pathological cell. Autoph-agy modifies the metabolism of alveolar epithelial cells, endothelial cells, and lung fibroblasts. Au-tophagy upregulation induces local lung fibroblast hyperactivity and fibrosis. Several molecular triggers were found to induce lung fibroblast autophagy including TGFβ by inhibition of the PI3K/AKT/mTOR. However, physiologically, a balance is retained between autophagy inducers and inhibitors. Each type of autophagy plays its role in the initiation and progression of lung fibro-sis. The pathogenesis of pulmonary fibrosis is multifactorial and involves dysfunction / dysregula-tion of alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells. The deposition of extracellular matrix proteins, the remodeling of the lung architecture and the mo-lecular changes include impaired glycolysis, mitochondrial oxidation, gene expression modification, altered phospholipid and sphingolipid metabolism, and dysregulated protein folding lead to repro-gramming of lung fibroblast into myofibroblast and their activation. The paper thoroughly addresses the molecular triggers and inhibitors of lung fibroblast autophagy in lung fibrosis.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Department of Medicine, National Research Mordovia State University, Bolshevitskaya Street-68, Saransk, Rep, Mordovia-
430005, Russia
| |
Collapse
|
46
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
47
|
Li X, Ma X, Miao Y, Zhang J, Xi B, Li W, Zhang Q, Chen L, Yang Y, Li H, Wei L, Zhou H, Yang C. Duvelisib attenuates bleomycin-induced pulmonary fibrosis via inhibiting the PI3K/Akt/mTOR signalling pathway. J Cell Mol Med 2023; 27:422-434. [PMID: 36651446 PMCID: PMC9889612 DOI: 10.1111/jcmm.17665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Jianwei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Buri Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Li Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Yue Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Hongli Li
- Department of Respiratory and Critical Care MedicineTianjin Beichen HospitalTianjinChina
| | - Luqing Wei
- Department of Respiratory and Critical Care MedicineTianjin Beichen HospitalTianjinChina
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| |
Collapse
|
48
|
Sadeghdoust M, Aligolighasemabadi F, Dehesh T, Taefehshokr N, Sadeghdoust A, Kotfis K, Hashemiattar A, Ravandi A, Aligolighasemabadi N, Vakili O, Grabarek B, Staszkiewicz R, Łos MJ, Mokarram P, Ghavami S. The Effects of Statins on Respiratory Symptoms and Pulmonary Fibrosis in COVID-19 Patients with Diabetes Mellitus: A Longitudinal Multicenter Study. Arch Immunol Ther Exp (Warsz) 2023; 71:8. [PMID: 36853269 PMCID: PMC9972324 DOI: 10.1007/s00005-023-00672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 03/01/2023]
Abstract
The aim of this prospective cohort study was to explore the effect of statins on long-term respiratory symptoms and pulmonary fibrosis in coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM). Patients were recruited from three tertiary hospitals, categorized into Statin or Non-statin groups, and assessed on days 0, 28, and 90 after symptoms onset to record the duration of symptoms. Pulmonary fibrosis was scored at baseline and follow-up time points by high-resolution computed tomography scans. Each group comprised 176 patients after propensity score matching. Data analysis revealed that the odds of having cough and dyspnea were significantly higher in the Non-statin group compared to the Statin group during the follow-up period. Overall, there was no significant difference in the change in pulmonary fibrosis score between groups. However, Non-statin patients with > 5 years of DM were more likely to exhibit a significantly higher fibrosis score during the follow-up period as compared to their peers in the Statin group. Our results suggest that the use of statins is associated with a lower risk of developing chronic cough and dyspnea in diabetic patients with COVID-19, and may reduce pulmonary fibrosis associated with COVID-19 in patients with long-term (> 5 years) DM.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- grid.411768.d0000 0004 1756 1744Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Farnaz Aligolighasemabadi
- grid.411768.d0000 0004 1756 1744Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Tania Dehesh
- grid.412105.30000 0001 2092 9755Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Taefehshokr
- grid.39381.300000 0004 1936 8884Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON Canada
| | - Adel Sadeghdoust
- grid.412237.10000 0004 0385 452XDepartment of Internal Medicine, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Katarzyna Kotfis
- grid.107950.a0000 0001 1411 4349Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Amirhossein Hashemiattar
- grid.411768.d0000 0004 1756 1744Department of Radiology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Amir Ravandi
- grid.21613.370000 0004 1936 9609Institute of Cardiovascular Sciences, Sr. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Neda Aligolighasemabadi
- grid.411874.f0000 0004 0571 1549Department of Internal Medicine, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Omid Vakili
- grid.411036.10000 0001 1498 685XDepartment of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Beniamin Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland ,Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland ,Laboratory of Molecular Biology and Virology, GynCentrum, Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland ,Department of Neurosurgery, 5Th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland
| | - Marek J. Łos
- grid.6979.10000 0001 2335 3149Biotechnology Center, Silesian University of Technology, Gliwice, Poland ,grid.412571.40000 0000 8819 4698Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Ghavami
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada. .,Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, Zabrze, Poland. .,Research Institute of Oncology and Hematology, Cancer Care, Manitoba University of Manitoba, Winnipeg, Canada. .,Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
49
|
Liu Y, Li Z, Xiao H, Xie B, He J, Song M, Wang J, Geng J, Dai H, Wang C. USP13 Deficiency Impairs Autophagy and Facilitates Age-related Lung Fibrosis. Am J Respir Cell Mol Biol 2023; 68:49-61. [PMID: 36150040 DOI: 10.1165/rcmb.2022-0002oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease. Failure of the proteostasis network with age, including insufficient autophagy, contributes to the pathology of IPF. Mechanisms underlying autophagy disruption in IPF are unclear and may involve regulation of USP (ubiquitin-specific protease) by post-translational modifications. To expand our previous observation of low USP13 expression in IPF, this study evaluated the role of USP13 in age-related lung fibrosis. Here, we demonstrated that Usp13-deficient aged mice exhibited impaired autophagic activity and increased vulnerability to bleomycin-induced fibrosis. Mechanistically, USP13 interacted with and deubiquitinated Beclin 1, and Beclin 1 overexpression abolished the effects of USP13 disruption. In addition, Beclin 1 inhibition resulted in insufficient autophagy and more severe lung fibrosis after bleomycin injury, consistent with the phenotype of aged Usp13-deficient mice. Collectively, we show a protective role of USP13 in age-related pulmonary fibrosis. Aging-mediated USP13 loss impairs autophagic activity and facilitates lung fibrosis through Beclin 1 deubiquitination. Our findings support the notion that age-dependent dysregulation of autophagic regulators enhances vulnerability to lung fibrosis.
Collapse
Affiliation(s)
- Yuan Liu
- Graduate School of Peking Union Medical College and.,National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Zhen Li
- Graduate School of Peking Union Medical College and.,National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Huijuan Xiao
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and.,School of Clinical Medicine, Peking University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Jiarui He
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Meiyue Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Huaping Dai
- Graduate School of Peking Union Medical College and.,National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and
| | - Chen Wang
- Graduate School of Peking Union Medical College and.,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; and.,School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
50
|
Zhang Y, Zhang J, Fu Z. Role of autophagy in lung diseases and ageing. Eur Respir Rev 2022; 31:31/166/220134. [PMID: 36543345 PMCID: PMC9879344 DOI: 10.1183/16000617.0134-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
The lungs face ongoing chemical, mechanical, biological, immunological and xenobiotic stresses over a lifetime. Advancing age progressively impairs lung function. Autophagy is a "housekeeping" survival strategy involved in numerous physiological and pathological processes in all eukaryotic cells. Autophagic activity decreases with age in several species, whereas its basic activity extends throughout the lifespan of most animals. Dysregulation of autophagy has been proven to be closely related to the pathogenesis of several ageing-related pulmonary diseases. This review summarises the role of autophagy in the pathogenesis of pulmonary diseases associated with or occurring in the context of ageing, including acute lung injury, chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China,Corresponding author: Zhiling Fu ()
| |
Collapse
|