1
|
Zhang P, Zhou C, Jing Q, Gao Y, Yang L, Li Y, Du J, Tong X, Wang Y. Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy. Apoptosis 2023; 28:1520-1533. [PMID: 37634193 DOI: 10.1007/s10495-023-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, 317200, Taizhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
3
|
Kong Y, Jiang J, Huang Y, Li L, Liu X, Jin Z, Wei F, Liu X, Zhang S, Duan X, Zhang Y, Tong Q, Chen H. Endoplasmic reticulum stress in melanoma pathogenesis and resistance. Biomed Pharmacother 2022; 155:113741. [DOI: 10.1016/j.biopha.2022.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
|
4
|
Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19:md19110626. [PMID: 34822497 PMCID: PMC8625372 DOI: 10.3390/md19110626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023] Open
Abstract
Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.
Collapse
|
5
|
Tang Y, Chen J, Li J, Zheng Y, Zhong X, Huang S, Chen B, Peng B, Zou X, Chen X. Pristimerin synergistically sensitizes conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells to sorafenib through endoplasmic reticulum stress and ROS generation by modulating Akt/FoxO1/p27 kip1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153563. [PMID: 33951569 DOI: 10.1016/j.phymed.2021.153563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. Sorafenib (SORA), as a first-line therapeutic drug, has been used to treat HCC, but resistance poses a major limitation on the efficacy of SORA chemotherapy. Pristimerin (PRIS), a natural bioactive component isolated from various plant species in the Celastraceae and Hippocrateaceae families, has been reported to exhibit outstanding antitumor effects in several types of cells in vitro. PURPOSE The aim of this study was to investigate whether PRIS can exert synergistic anti-tumor effects with the combination of SORA, and if so, through what mechanism. METHODS Conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells (CRHCs) were isolated from human liver cancer tissues and treated with SORA and PRIS. Cell proliferation, apoptosis, migration and tube formation ability were detected by DNA content quantification, flow cytometry, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. RESULTS Initially, we observed that the combination of the two drugs had a much stronger inhibitory effect on CRHCs growth than either drug alone. Moreover, the combination of 2 µM SORA and 1 µM PRIS exhibited a significant anti‑migrative and anti-invaded effect on CRHCs, and remarkably inhibited capillary structure formation of Human Umbilical Vein Endothelial Cells (HUVECs). Furthermore, the combined treatment with SORA and PRIS synergistically induced intrinsic apoptosis in CRHCs, involving a caspase-4-dependent mechanism paralleled by an increased Bax/Bcl-xL ratio. These activities were mediated through ROS generation and the induction of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. GRP78 silencing or ER stress inhibitor 4-phenylbutyric acid administration was revealed to abolish the anticancer effects of PRIS, indicating the critical role of GRP78 in mediating the bioactivity of PRIS. The present study also provides mechanistic evidence that PRIS modulated the Akt/FoxO1/p27kip1 signaling pathway, which is required for mitochondrial-mediated intrinsic apoptosis, activation of ER stress, and stimulation of caspase-4 induced by PRIS, and, consequently resulting in suppressed cell viability, migration and angiogenesis co-treated with SORA in CRHCs. CONCLUSION Our results suggest the use of PRIS as sensitizers of chemotherapy paving the way for innovative and promising targeted chemotherapy-based therapeutic strategies in human HCC.
Collapse
Affiliation(s)
- Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Jiaqi Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Yifan Zheng
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiuxiu Zhong
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Bin Chen
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
6
|
Meng X, Liu K, Xie H, Zhu Y, Jin W, Lu J, Wang R. Endoplasmic reticulum stress promotes epithelial‑mesenchymal transition via the PERK signaling pathway in paraquat‑induced pulmonary fibrosis. Mol Med Rep 2021; 24:525. [PMID: 34036384 PMCID: PMC8170262 DOI: 10.3892/mmr.2021.12164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is the primary reason for mortality in patients with paraquat (PQ) poisoning. Our previous study demonstrated that epithelial-mesenchymal transition (EMT) had a role in PQ-induced pulmonary fibrosis. However, the role of endoplasmic reticulum (ER) stress in PQ-induced EMT remains clear. The present study aimed to determine the role of ER stress in EMT in PQ-induced pulmonary fibrosis. A549 and RLE-6TN cells were incubated with LY294002 (a PI3K inhibitor) or transfected with protein kinase RNA-like ER kinase (PERK) small interfering RNA (si) for 24 h prior to being exposed to PQ. Next, the expression levels of ER stress-related proteins, PI3K/AKT/GSK-3β signaling pathway-related proteins and EMT-related markers were analyzed by performing western blotting, reverse transcription-quantitative PCR and immunofluorescence assays. The results of the present study revealed that the protein expression levels of PERK, phosphorylated (p)-PERK, p-eukaryotic initiation factor 2 (eIF2)α were significantly upregulated in the PQ group, whereas p-PI3K, p-AKT and p-GSK-3β were significantly upregulated in the sicontrol + PQ group compared with the sicontrol group. In vitro, following transfection with siPERK or treatment with the PI3K inhibitor, the protein expression levels of E-cadherin (an epithelial marker) were upregulated, whereas the protein expression levels of α-SMA (a mesenchymal marker) were downregulated. Immunofluorescence analysis revealed that the levels of E-cadherin were markedly upregulated, whereas the levels of α-SMA were notably downregulated following transfection with siPERK compared with the sicontrol group. The results of wound healing assay demonstrated that cell migration in the siPERK + PQ group was markedly decreased compared with the sicontrol + PQ group. These indicated that PQ-induced EMT was suppressed after silencing PERK. The expression levels of p-GSK-3β, p-AKT and p-PI3K were also markedly downregulated in the siPERK + PQ group compared with the sicontrol + PQ group. In conclusion, the findings of the present study suggested that ER stress may promote EMT through the PERK signaling pathway in PQ-induced pulmonary fibrosis. Thus, ER stress may represent a potential therapeutic target for PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Kan Liu
- Department of Diving Medicine, Faculty of Nautical Medicine, Second Military Medical University, Shanghai 200082, P.R. China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| |
Collapse
|
7
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
8
|
Selimovic D, Wahl RU, Ruiz E, Aslam R, Flanagan TW, Hassan SY, Santourlidis S, Haikel Y, Friedlander P, Megahed M, Kandil E, Hassan M. Tumor necrosis factor-α triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways. Int J Oncol 2019; 55:1324-1338. [PMID: 31638203 DOI: 10.3892/ijo.2019.4900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains one of the most common malignancies worldwide. Although the treatment outcomes of HNSCC have improved in recent years, the prognosis of patients with advanced-stage disease remains poor. Current treatment strategies for HNSCC include surgery as a primary therapy, while radio-, chemo-, and biotherapeutics can be applied as second-line therapy. Although tumor necrosis factor-α (TNF-α) is a potent tumor suppressor cytokine, the stimulation of opposing signals impairs its clinical utility as an anticancer agent. The aim of this study was to elucidate the mechanisms regulating TNF-α‑induced opposing signals and their biological consequences in HNSCC cell lines. We determined the molecular mechanisms of TNF-α-induced opposing signals in HNSCC cells. Our in vitro analysis indicated that one of these signals triggers apoptosis, while the other induces both apoptosis and cell survival. The TNF-α-induced survival of HNSCC cells is mediated by the TNF receptor-associated factor 2 (TRAF2)/nuclear factor (NF)-κB-dependent pathway, while TNF-α-induced apoptosis is mediated by mitochondrial and non-mitochondrial-dependent mechanisms through FADD-caspase-8-caspase-3 and ASK-JNK-p53-Noxa pathways. The localization of Noxa protein to both the mitochondria and endoplasmic reticulum (ER) was found to cause mitochondrial dysregulation and ER stress, respectively. Using inhibitory experiments, we demonstrated that the FADD‑caspase-8‑caspase-3 pathway, together with mitochondrial dysregulation and ER stress-dependent pathways, are essential for the modulation of apoptosis, and the NF-κB pathway is essential for the modulation of anti-apoptotic effects/cell survival during the exposure of HNSCC cells to TNF-α. Our data provide insight into the mechanisms of TNF-α-induced opposing signals in HNSCC cells and may further help in the development of novel therapeutic approaches with which to minimize the systemic toxicity of TNF-α.
Collapse
Affiliation(s)
- Denis Selimovic
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Renate U Wahl
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emmanuelle Ruiz
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rizwan Aslam
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Düsseldorf, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Youssef Haikel
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Paul Friedlander
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Hassan
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Zhou B, Lu Q, Liu J, Fan L, Wang Y, Wei W, Wang H, Sun G. Melatonin Increases the Sensitivity of Hepatocellular Carcinoma to Sorafenib through the PERK-ATF4-Beclin1 Pathway. Int J Biol Sci 2019; 15:1905-1920. [PMID: 31523192 PMCID: PMC6743299 DOI: 10.7150/ijbs.32550] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms of resistance to the targeted drug sorafenib in the treatment of hepatocellular carcinoma (HCC) are poorly understood. The purpose of this study was to investigate the mechanism of sorafenib resistance and to elucidate the role of melatonin in overcoming sorafenib resistance. We first observed that sorafenib induced endoplasmic reticulum (ER) stress and activated autophagy in HCC, and the inhibition of ER stress and autophagy by specific inhibitors (PBA, TUDC and 3-MA) increased sorafenib-induced apoptosis, indicating that cells resist apoptosis by inducing ER stress and autophagy in the presence of sorafenib. Furthermore, specimens from patients with HCC revealed a close relationship between ER stress and autophagy, as demonstrated by the high correlation between expression of the autophagy-associated protein Beclin1 and expression of unfolded protein response (UPR) pathway proteins, especially PKR-like ER stress kinase (PERK); moreover, patients with combined expression of PERK and Beclin1 had more advanced disease (higher clinical stage) and a shorter overall survival time. ER stress inhibitors significantly blocked sorafenib-induced autophagy, selective knockdown of PERK and activating transcription factor 4 (ATF4) expression reduced sorafenib-induced autophagy activity compared with knockdown of the other two UPR pathways, and silencing ATF4 inhibited the expression of Beclin1. These results suggest that autophagy is downstream of ER stress and that the PERK-ATF4-Beclin1 pathway plays a role in ER stress-related autophagy. Interestingly, a low concentration of melatonin increased the sensitivity of HCC to sorafenib by inhibiting autophagy through the PERK-ATF4-Beclin1 pathway. Taken together, our findings suggest that cotreatment with sorafenib and melatonin is a potential therapy for HCC. Furthermore, ER stress-related autophagy plays key roles in apoptosis resistance. Therefore, targeting the PERK-ATF4-Beclin1 pathway may prove instrumental in HCC therapy.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Qianqian Lu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiatao Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lulu Fan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yu Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, Anhui, China
| | - Guoping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
10
|
Chiu CS, Tsai CH, Hsieh MS, Tsai SC, Jan YJ, Lin WY, Lai DW, Wu SM, Hsing HY, Arbiser JL, Sheu ML. Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways. Cancer Lett 2019; 442:113-125. [DOI: 10.1016/j.canlet.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
|
11
|
Chen J, Wu Y, Zhang L, Fang X, Hu X. Evidence for calpains in cancer metastasis. J Cell Physiol 2018; 234:8233-8240. [PMID: 30370545 DOI: 10.1002/jcp.27649] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Metastatic dissemination represents the final stage of tumor progression as well as the principal cause of cancer-associated deaths. Calpains are a conserved family of calcium-dependent cysteine proteinases with ubiquitous or tissue-specific expression. Accumulating evidence indicates a central role for calpains in tumor migration and invasion via participating in several key processes, including focal adhesion dynamics, cytoskeletal remodeling, epithelial-to-mesenchymal transition, and apoptosis. Activated after the increased intracellular calcium concentration ( [ Ca 2 + ] i ) induced by membrane channels and extracellular or intracellular stimuli, calpains induce the limited cleavage or functional modulation of various substrates that serve as metastatic mediators. This review covers established literature to summarize the mechanisms and underlying signaling pathways of calpains in cancer metastasis, making calpains attractive targets for aggressive tumor therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lumin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Quadri JA, Sarwar S, Pinky, Kar P, Singh S, Mallick SR, Arava S, Nag TC, Roy TS, Shariff A. Fluoride induced tissue hypercalcemia, IL-17 mediated inflammation and apoptosis lead to cardiomyopathy: Ultrastructural and biochemical findings. Toxicology 2018; 406-407:44-57. [PMID: 29800585 DOI: 10.1016/j.tox.2018.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/09/2023]
Abstract
An increased prevalence of cardiac complications has been observed in residents of fluorosis endemic areas chronically exposed to fluoride. Fluoride induces soft tissue injury due to oxidative stress, lipid peroxidation (LPO) and mitochondriopathy. It was hypothesized that chronic fluoride exposure induces apoptosis in cardiomyocytes due to inflammation, lysis of extra cellular matrix and altered calcium metabolism. This study was planned to evaluate the effects of chronic fluoride exposure and the mechanism of action in the cardiac muscle. Fifteen week old male Wistar rats were administered a human equivalent dose of fluoride (50 and 100 ppm ad-libitum, HED = 5 & 10 ppm in human) for 75-days. After 75-days of fluoride exposure, the animals were euthanized and fluoride, oxidative stress (SOD, GPX, Catalase activities) and LPO were measured. Histopathological and ultrastructural pathological examinations were conducted on the cardiac tissues using light, atomic force and electron microscopies. The cardiac tissues were also assessed for apoptosis (TUNEL/Caspase assays), and tissue calcium levels (Alizarin-assay and SEM-EDX). Tissue inflammation and expression of IL-17, MMP-9, Caspase-3 and Bcl-2 were evaluated. In the fluoride exposed groups, a significant (≤0.05) increase in levels of oxidative stress, LPO and apoptosis were observed. The IL-17, MMP-9 and Caspase-3 were significantly (≤0.05) higher in the cardiac muscle after chronic fluoride exposure. The fluoride seems to have induced inflammation in the cardiac tissues, as well as an increase in tissue calcium (≤0.05). There was significant damage to cardiac muscle fibres including, thinning, distortion and neo-vasculogenesis following chronic fluoride exposure. Mitochondriopathy, lysis of ground substance, oedema, and hyper-vacuolation was seen in fluoride treated groups. Remarkable levels of distortion and bending in Z band were observed under the AFM. Many of these observed changes mimic those occurring in cardiomegaly, cardiac hypertrophy and cardiomyopathies.
Collapse
Affiliation(s)
| | - Saba Sarwar
- Department of Anatomy, AIIMS, New Delhi, India
| | - Pinky
- Department of Anatomy, AIIMS, New Delhi, India
| | - Parmita Kar
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - Seema Singh
- Department of Anatomy, AIIMS, New Delhi, India
| | | | | | | | | | - A Shariff
- Department of Anatomy, AIIMS, New Delhi, India
| |
Collapse
|
13
|
Tsumagari K, Abd Elmageed ZY, Sholl AB, Green EA, Sobti S, Khan AR, Kandil A, Murad F, Friedlander P, Boulares AH, Kandil E. Bortezomib sensitizes thyroid cancer to BRAF inhibitor in vitro and in vivo. Endocr Relat Cancer 2018; 25:99-109. [PMID: 29269566 PMCID: PMC9048863 DOI: 10.1530/erc-17-0182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Although overall survival rate for patients with thyroid cancer (TC) is high, there is an alarming 10-year recurrence rate of up to 30% conferring a ~50% survival among these high-risk patients. The BRAFV600E mutation is estimated to be present in over 50% of papillary thyroid cancer (PTC) cases besides being associated with carcinogenesis and poor prognosis. We assessed the status of NF-κB, Ki-67, cyclin D1 and BRAFV600E in TC tissues and TC cell lines using immunohistochemistry and Western blot analysis. Concurrently, we evaluated the outcomes of combined targeting of the proteasome pathway in addition to selective BRAF inhibitors in cases of PTC. In this study, BRAFV600E-bearing TC cells were treated with BRAFV600E inhibitor, Vemurafenib alone or in combination with the proteasome inhibitor, Bortezomib. The combination of both drugs showed synergistic effects as evidenced by cell growth inhibition (P < 0.05), increased G2-phase cell cycle arrest and induced apoptosis (P < 0.05). In our TC xenograft model, the combination of Vemurafenib and Bortezomib significantly reduced tumor size (P < 0.05) and expression of the markers of cell growth and proliferation, Ki-67 and cyclin D1 (P < 0.001), when compared to monotherapy. Further analysis demonstrated that treatment with Bortezomib sensitized TC cells to Vemurafenib via mitochondrial dysregulation and apoptosis of TC cells, as evidenced by the increase in the expression of p53, Noxa protein, the loss of mitochondrial membrane potential, cytochrome c release and Poly (ADP-ribose) polymerase cleavage. Our results demonstrate a strong clinical potential for the combination of the Bortezomib and the BRAF inhibitor Vemurafenib as an efficient therapeutic approach for the treatment of TC.
Collapse
Affiliation(s)
- Koji Tsumagari
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Andrew B Sholl
- Department of PathologyTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Erik A Green
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Saboori Sobti
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Abdul Razzaq Khan
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Abdulrahman Kandil
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Fadi Murad
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
| | - Paul Friedlander
- Department of OtolaryngologyTulane University School of Medicine, New Orleans, Louisiana, USA
| | - A Hamid Boulares
- The Stanley Scott Cancer CenterLouisiana State University Health Science Center, New Orleans, Louisiana, USA
- Department of PharmacologyLouisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Emad Kandil
- Department of SurgeryTulane University School of Medicine, New Orleans, Louisiana, USA
- Department of OtolaryngologyTulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
14
|
Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, Tian F, Song G, Wang T. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. CHEMOSPHERE 2017; 182:159-165. [PMID: 28494360 DOI: 10.1016/j.chemosphere.2017.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur.
Collapse
Affiliation(s)
- Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Lu Wang
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xia Yang
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yi Lv
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
15
|
Su CC, Lee KI, Chen MK, Kuo CY, Tang CH, Liu SH. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways. PLoS One 2016; 11:e0168095. [PMID: 27930712 PMCID: PMC5145211 DOI: 10.1371/journal.pone.0168095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC). OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP) and induced cytochrome c and apoptosis inducing factor (AIF) release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER) stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Sophonnithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. Oncol Lett 2016; 13:119-128. [PMID: 28123531 PMCID: PMC5245090 DOI: 10.3892/ol.2016.5381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
Goniothalamin, a natural occurring styryl-lactone isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus, can trigger cancer cell death in various types of cancer cell. The present study focused on elucidation of the mitochondria-mediated apoptosis associated with endoplasmic reticulum (ER) stress-induced activation of c-Jun NH2-terminal kinase (JNK) by goniothalamin in HeLa cervical cancer cells. Cell viability was determined using an MTT assay, and DNA condensation and loss of mitochondrial membrane potential were determined using Hoechst 33342 and JC-1 staining, respectively. Flow cytometry was used for cell cycle and phosphatidyl-serine exposure analyses. Apoptotic-associated ER stress signaling pathways were determined using immunoblotting, reverse transcription-polymerase chain reaction (RT-PCR) and RT-quantitative PCR analyses. The results suggested that goniothalamin suppressed cell proliferation in a time- and dose-dependent manner. The induction of apoptosis was confirmed by increased DNA condensation, loss of mitochondrial membrane potential and cell surface phosphatidyl-serine presentation. The cell cycle analysis demonstrated that the goniothalamin-treated HeLa cells were in G2/M arrest. Determination of the caspase cascade and apoptotic proteins indicated the induction of apoptosis through the intrinsic pathway. In addition, the levels of phosphorylated JNK and the transcription factor, C/EBP homologous protein (CHOP), an ER stress-associated apoptotic molecule, were increased in the goniothalamin-treated cells. These data indicated that goniothalamin exerted a cytotoxic effect against HeLa cells via the induction of mitochondria-mediated apoptosis, associated with ER stress-induced activation of JNK.
Collapse
Affiliation(s)
- Thanet Sophonnithiprasert
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusarakam
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
17
|
El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, Hannig M, Hassan SY, Santourlidis S, Friedlander PL, Haikel Y, Vijaykumar S, Kandil E, Hassan M. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div 2016; 11:11. [PMID: 27486476 PMCID: PMC4969639 DOI: 10.1186/s13008-016-0023-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Tumor response to immunotherapy is the consequence of a concerted crosstalk between cytokines and effector cells. Interferon gamma (IFNγ) is one of the common cytokines coordinating tumor immune response and the associated biological consequences. Although the role of IFNγ in the modulation of tumor immunity has been widely documented, the mechanisms regulating IFNγ-induced cell death, during the course of immune therapy, is not described in detail. Results IFNγ triggered apoptosis of CLS-354 and RPMI 2650 cells, enhanced the protein expression and activation of indoleamine 2,3-dioxygenase (IDO), and suppressed the basal expression of heme oxygenase-1(HO-1). Interestingly, IFNγ induced the loss of mitochondrial membrane potential (Δψm) and increased accumulation of reactive oxygen species (ROS). The cytokine also induced the activation of Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT)1, apoptosis signal-regulating kinase 1 (ASK1), p38, c-jun-N-terminal kinase (JNK) and NF-κB pathways and the transcription factors STAT1, interferon regulatory factor 1 (IRF1), AP-1, ATF-2, NF-κB and p53, and expression of Noxa protein. Furthermore, IFNγ was found to trigger endoplasmic reticulum (ER) stress as evidenced by the cleavage of caspase-4 and activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol-requiring-1α (IRE1α) pathways. Using specific inhibitors, we identified a potential role for IDO as apoptotic mediator in the regulation of IFNγ-induced apoptosis of head and neck squamous cell carcinoma (HNSCC) cells via Noxa-mediated mitochondrial dysregulation and ER stress. Conclusion In addition to the elucidation of the role of IDO in the modulation of apoptosis, our study provides new insights into the molecular mechanisms of IFNγ-induced apoptosis of HNSCC cells during the course of immune therapy.
Collapse
Affiliation(s)
- Siraj M El Jamal
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | | | - Abdulhadi A Alamodi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Division of Oral Health Science, Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Abdulaziz Alkhateeb
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany ; College of Medicine, King Faisal University, Alhofuf, Saudi Arabia
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany
| | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Duesseldorf, Heinrich-Heine-University of Duesseldorf, Mooren Str.5, 40225 Duesseldorf, Germany
| | - Paul L Friedlander
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Srinivasan Vijaykumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Mohamed Hassan
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| |
Collapse
|
18
|
Phang CW, Karsani SA, Sethi G, Abd Malek SN. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells. PLoS One 2016; 11:e0148775. [PMID: 26859847 PMCID: PMC4747580 DOI: 10.1371/journal.pone.0148775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/22/2016] [Indexed: 01/05/2023] Open
Abstract
Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
Collapse
Affiliation(s)
- Chung-Weng Phang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore, Singapore
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
19
|
Bickler P, Clark J, Gabatto P, Brosnan H. Hypoxic preconditioning and cell death from oxygen/glucose deprivation co-opt a subset of the unfolded protein response in hippocampal neurons. Neuroscience 2015; 310:306-21. [DOI: 10.1016/j.neuroscience.2015.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/04/2023]
|
20
|
Hassan M, Selimovic D, Hannig M, Haikel Y, Brodell RT, Megahed M. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment. World J Exp Med 2015; 5:206-217. [PMID: 26618107 PMCID: PMC4655250 DOI: 10.5493/wjem.v5.i4.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment.
Collapse
|
21
|
A novel copper(I) complex induces ER-stress-mediated apoptosis and sensitizes B-acute lymphoblastic leukemia cells to chemotherapeutic agents. Oncotarget 2015; 5:5978-91. [PMID: 24980813 PMCID: PMC4171606 DOI: 10.18632/oncotarget.2027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A phosphine copper(I) complex [Cu(thp)4][PF6] (CP) was recently identified as an efficient in vitro antitumor agent. In this study, we evaluated the antiproliferative activity of CP in leukemia cell lines finding a significant efficacy, especially against SEM and RS4;11 cells. Immunoblot analysis showed the activation of caspase-12 and caspase-9 and of the two effector caspase-3 and -7, suggesting that cell death occurred in a caspase-dependent manner. Interestingly we did not observe mitochondrial involvement in the process of cell death. Measures on semipurified proteasome from RS4;11 and SEM cell extracts demonstrated that chymotrypsin-, trypsin- and caspase-like activity decreased in the presence of CP. Moreover, we found an accumulation of ubiquitinated proteins and a remarkable increase of ER stress markers: GRP78, CHOP, and the spliced form of XBP1. Accordingly, the protein synthesis inhibitor cycloheximide significantly protected cancer cells from CP-induced cell death, suggesting that protein synthesis machinery was involved. In well agreement with results obtained on stabilized cell lines, CP induced ER-stress and apoptosis also in primary cells from B-acute lymphoblastic leukemia patients. Importantly, we showed that the combination of CP with some chemotherapeutic drugs displayed a good synergy that strongly affected the survival of both RS4;11 and SEM cells.
Collapse
|
22
|
El-Khattouti A, Selimovic D, Hannig M, Taylor EB, Abd Elmageed ZY, Hassan SY, Haikel Y, Kandil E, Leverkus M, Brodell RT, Megahed M, Hassan M. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med 2015; 20:266-86. [PMID: 26578344 PMCID: PMC4727561 DOI: 10.1111/jcmm.12718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Martin Leverkus
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany.,Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
23
|
Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival. PLoS One 2015; 10:e0131008. [PMID: 26132406 PMCID: PMC4489501 DOI: 10.1371/journal.pone.0131008] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 01/14/2023] Open
Abstract
The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.
Collapse
|
24
|
Ejaeidi AA, Craft BS, Puneky LV, Lewis RE, Cruse JM. Hormone receptor-independent CXCL10 production is associated with the regulation of cellular factors linked to breast cancer progression and metastasis. Exp Mol Pathol 2015; 99:163-72. [PMID: 26079660 DOI: 10.1016/j.yexmp.2015.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 01/02/2023]
Abstract
Breast cancer (BC) is a major health problem for women around the world. Although advances in the field of molecular therapy have been achieved, the successful therapeutic management of BC, particularly metastatic disease, remains a challenge for patients and clinicians. One of the areas of current investigation is the circulating tumor cells (CTCs), which have a determinant role in the development of distant metastasis. At the present, many of the available treatment strategies for metastatic disease are of limited benefit. However, the elucidation of the mechanisms of tumor progression and metastasis may help to identify key molecules/components that may function as therapeutic targets in the future. In the present study, the functional analysis of CTCs revealed their ability to grow and proliferate to form colonies. Immunofluorescence staining of the CTCs' colonies exhibits elevated expression of cell growth and survival associated proteins such as, survivin, ERK and Akt1. More importantly, the functional screening of the chemokine profile in BC patients' sera revealed an HR-independent elevation of the chemokine CXCL10 when compared to healthy controls. The analysis of chemokines CXCL9 and CXCL11 demonstrated an HR-dependent production pattern. The levels of both CXCL9 and CXCL11 were markedly high in HR+ patients' sera when compared to HR- patients and healthy controls. The functional analysis of HR+ and HR- BC derived cell lines when cultivated in media supplemented with patients' sera demonstrated the alteration of tumor progression and metastasis related proteins. We noted the induction of survivin, β-catenin, MKP-1, pERK, CXCR4 and MMP-1 both at the protein and mRNA levels. The induction of those proteins was in keeping with patients' sera induced cell proliferation as measured by the MTT assay. In conclusion, our data emphasizes the role of chemokines, especially CXCL10, in BC progression and metastasis via the induction of signaling pathways, which mainly involve survivin, β-catenin, MKP-1 and MMP-1.
Collapse
Affiliation(s)
- Ahmed A Ejaeidi
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Barbara S Craft
- Division of Oncology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Louis V Puneky
- Division of Oncology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Robert E Lewis
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Julius M Cruse
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
25
|
Krajarng A, Imoto M, Tashiro E, Fujimaki T, Shinjo S, Watanapokasin R. Apoptosis induction associated with the ER stress response through up-regulation of JNK in HeLa cells by gambogic acid. Altern Ther Health Med 2015; 15:26. [PMID: 25887496 PMCID: PMC4340837 DOI: 10.1186/s12906-015-0544-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 01/29/2015] [Indexed: 02/08/2023]
Abstract
Background Gambogic acid (GA) was extracted from the dried yellow resin of gamboge (Garcinia hanburyi) which is traditionally used as a coloring material for painting and cloth dying. Gamboge has been also used as a folk medicine for an internal purgative and externally infected wound. We focused on the mechanisms of apoptosis induction by GA through the unfold protein response (ER stress) in HeLa cells. Methods The cytotoxic effect of GA against HeLa cells was determined by trypan blue exclusion assay. Markers of ER stress such as XBP-1, GRP78, CHOP, GADD34 and ERdj4 were analyzed by RT-PCR and Real-time RT-PCR. Cell morphological changes and apoptotic proteins were performed by Hoechst33342 staining and Western blotting technique. Results Our results indicated a time- and dose-dependent decrease of cell viability by GA. The ER stress induction is determined by the up-regulation of spliced XBP1 mRNA and activated GRP78, CHOP, GADD34 and ERdj4 expression. GA also induced cell morphological changes such as nuclear condensation, membrane blebbing and apoptotic body in Hela cells. Apoptosis cell death detected by increased DR5, caspase-8, −9, and −3 expression as well as increased cleaved-PARP, while decreased Bcl-2 upon GA treatment. In addition, phosphorylated JNK was up-regulated but phosphorylated ERK was down-regulated after exposure to GA. Conclusions These results suggest that GA induce apoptosis associated with the ER stress response through up-regulation of p-JNK and down-regulation of p-ERK in HeLa cells.
Collapse
|
26
|
CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 2014; 357:83-104. [PMID: 25449786 DOI: 10.1016/j.canlet.2014.10.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/04/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023]
Abstract
According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation.
Collapse
|
27
|
Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 2014; 69:1-14. [PMID: 24434119 PMCID: PMC3960355 DOI: 10.1016/j.freeradbiomed.2014.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.
Collapse
Affiliation(s)
- Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jun Wan
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bradley P Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katayoon Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Selimovic D, Badura HE, El-Khattouti A, Soell M, Porzig BBOW, Spernger A, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Vinblastine-induced apoptosis of melanoma cells is mediated by Ras homologous A protein (Rho A) via mitochondrial and non-mitochondrial-dependent mechanisms. Apoptosis 2014; 18:980-97. [PMID: 23564313 DOI: 10.1007/s10495-013-0844-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the availability of melanoma treatment at the primary site, the recurrence of local melanoma can metastasize to any distant organ. Currently, the available therapies for the treatment of metastatic melanoma are of limited benefit. Thus, the functional analysis of conventional therapies may help to improve their efficiency in the treatment of metastatic melanoma. In the present study, the exposure of melanoma cells to vinblastine was found to trigger apoptosis as evidenced by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis inducing factor, activation of caspase-9 and 3, and cleavage of Poly (ADP-ribose)-Polymerase. Also, vinblastine enhances the phosphorylation of Ras homologous protein A, the accumulation of reactive oxygen species, the release of intracellular Ca(2+), as well as the activation of apoptosis signal-regulating kinase 1, c-jun-N-terminal kinase, p38, inhibitor of kappaBα (IκBα) kinase, and inositol requiring enzyme 1α. In addition, vinblastine induces the DNA-binding activities of the transcription factor NF-κB, HSF1, AP-1, and ATF-2, together with the expression of HSP70 and Bax proteins. Moreover, inhibitory experiments addressed a central role for Rho A in the regulation of vinblastine-induced apoptosis of melanoma cells via mitochondrial and non-mitochondrial-dependent mechanisms. In conclusion, the present study addresses for the first time a central role for Rho A in the modulation of vinblastine-induced apoptosis of melanoma cells and thereby provides an insight into the molecular action of vinblastine in melanoma treatment.
Collapse
Affiliation(s)
- Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, Faculty of Medicine and Dental Faculty, 11 Rue Humann, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228:1802-18. [PMID: 23629871 DOI: 10.1002/jcp.24360] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cellular Biology, URBC-NARILIS, University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
31
|
Weber H, Müller L, Jonas L, Schult C, Sparmann G, Schuff-Werner P. Calpain mediates caspase-dependent apoptosis initiated by hydrogen peroxide in pancreatic acinar AR42J cells. Free Radic Res 2013; 47:432-46. [PMID: 23495712 DOI: 10.3109/10715762.2013.785633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several studies have shown that oxidative stress induces apoptosis in many cellular systems including pancreatic acinar cells. However, the exact molecular mechanisms leading to apoptosis remain partially understood. This study aimed to investigate the role of the cytosolic cysteine protease calpain in H2O2-induced apoptosis in pancreatic AR42J cells. Apoptosis was evaluated using flow cytometric analysis of sub-G1 DNA populations, electron-microscopic analysis, caspase-3-specific αII-spectrin breakdown, and measuring the proteolytic activities of the initiator caspase-12 and caspase-8, and the executioner caspase-3. H2O2 induced an increase in the calpain proteolytic activity immediately after starting the experiments that tended to return to a nearly normal level after 8 h and could be attributed to m-calpain. Whereas no caspase-12, caspase-8 and caspase-3 activations could be detected within the first 0.5 h, significantly increased proteolytic activities were observed after 8 h compared with the control. At the same time, the cells showed first ultrastructural hallmarks of apoptosis and a decreased viability. In addition, αII-spectrin fragmentation was identified using immunoblotting that could be attributed to both calpain and caspase-3. Calpain inhibition reduced the activities of caspase-12, caspase-8, and caspase-3 leading to a decrease in the number of apoptotic cells. Immunoblotting analyses of caspase-12 and caspase-8 indicate that calpain may be involved in the activation process of both proteases. The results suggest that H2O2-induced apoptosis of AR42J cells requires activation of m-calpain initiating the endoplasmic reticulum stress-induced caspase-12 pathway and a caspase-8-dependent pathway. The findings also suggest that calpain may be involved in the execution phase of apoptosis.
Collapse
Affiliation(s)
- H Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Xiao T, Zhang Y, Wang Y, Xu Y, Yu Z, Shen X. Activation of an apoptotic signal transduction pathway involved in the upregulation of calpain and apoptosis-inducing factor in aldosterone-induced primary cultured cardiomyocytes. Food Chem Toxicol 2013; 53:364-370. [PMID: 23266505 DOI: 10.1016/j.fct.2012.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/12/2023]
Abstract
In this study, aldosterone (ALD)-induced apoptosis of cardiomyocyte was evaluated based on the previous studies, and the roles of calpain signaling were clarified. Primary cultured rat cardiomyocytes were injured by ALD (0.01-10 μM) for varying time periods. Then, the effects of ethylene glycol tetraacetic acid (EGTA) (0.5 mM), calpeptin (2.5 μM), and spironoclactone (10 μM) were evaluated on cardiomyocytes activated by ALD. Cardiomyocytes that were injured by ALD were assayed by the MTT and LDH leakage ratio. Apoptosis was evaluated by a TUNEL assay, annexin V/PI staining, and caspase-3 activity. The expression of cleavage of Bid (tBid), calpain and apoptosis-inducing factor (AIF) was evaluated by western blot analysis. ALD increased calpain expression and caspase-3 activity and promoted Bid cleavage. It also induced the release of AIF from mitochondria into the cytosol. The upregulation of calpain, tBid and caspase-3 activity were further inhibited by treatment with EGTA in the presence of ALD. Additionally, AIF levels in the cytosol decreased due to EGTA but not due to calpeptin. This was also accompanied by a significant decrease in apoptosis. Furthermore, treatment with spironoclactone not only attenuated the pro-apoptotic effect of ALD but reversed the ALD-induced increase of calpain and AIF levels.
Collapse
Affiliation(s)
- Tingting Xiao
- Research Division of Pharmacology, Guiyang Medical University, No. 9 Beiing Road, Guiyang 550004, China
| | | | | | | | | | | |
Collapse
|
33
|
Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J Transl Med 2013; 11:24. [PMID: 23360542 PMCID: PMC3599611 DOI: 10.1186/1479-5876-11-24] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/25/2013] [Indexed: 02/03/2023] Open
Abstract
Background Ischemia/reperfusion injury plays a crucial role in renal transplantation, and represents a significant risk factor for acute renal failure and delayed graft function. The pathophysiological contribution of endoplasmic reticulum and mitochondria stress to ischemia/reperfusion injury has also been highlighted. Berberine (BBR) has been showed to attenuate ischemia/reperfusion injury by inhibiting oxidative stress. The study was carried out to investigate whether the pretreatment of BBR could reduce hypoxia/reoxygenation (H/R)-induced injury by inhibiting mitochondria stress and endoplasmic reticulum stress pathways. Methods The cultured human renal proximal tubular cell line HK-2 cells were exposed to 24 h hypoxia (5% CO2, 1% O2, 94% N2) followed by 3 h reoxygenation (5% CO2, 21% O2, 74% N2). And BBR was added to the culture medium 2h prior to the treatment. Then the cell viability, oxidative stress level, morphological change of apoptosis and apoptotic rate were determined. In addition, Western blot analysis was performed to identify the expression of apoptotic pathway parameters, including Bcl-2, Bax and cytochrome C involved in mitochondrial-dependent pathway and ER stress hallmarks such as glucose-regulated protein 78 and CCAAT/enhancer binding protein homologous protein. Results H/R produced dramatic injuries in HK-2 cells. The cell viability and the oxidative stress level in group H/R was significantly decreased. The classical morphological change of apoptosis was found, while the apoptotic rate and the expression of proteins involved in mitochondrial stress and endoplasmic reticulum stress pathways increased (p<0.05). Administration of BBR significantly inhibited these H/R induced changes (p<0.05). Conclusion This study revealed that BBR pretreatment serves a protective role against H/R induced apoptosis of human renal proximal tubular cells, and the mechanism is related to suppression of mitochondrial stress and endoplasmic reticulum stress pathways.
Collapse
|
34
|
A new concept: Aβ1-42 generates a hyperfunctional proteolytic NCX3 fragment that delays caspase-12 activation and neuronal death. J Neurosci 2012; 32:10609-17. [PMID: 22855810 DOI: 10.1523/jneurosci.6429-11.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although the amyloid-β(1-42) (Aβ(1-42)) peptide involved in Alzheimer's disease is known to cause a dysregulation of intracellular Ca(2+) homeostasis, its molecular mechanisms still remain unclear. We report that the extracellular-dependent early increase (30 min) in intracellular calcium concentration ([Ca(2+)](i)), following Aβ(1-42) exposure, caused the activation of calpain that in turn elicited a cleavage of the Na(+)/Ca(2+) exchanger isoform NCX3. This cleavage generated a hyperfunctional form of the antiporter and increased NCX currents (I(NCX)) in the reverse mode of operation. Interestingly, this NCX3 calpain-dependent cleavage was essential for the Aβ(1-42)-dependent I(NCX) increase. Indeed, the calpain inhibitor calpeptin and the removal of the calpain-cleavage recognition sequence, via site-directed mutagenesis, abolished this effect. Moreover, the enhanced NCX3 activity was paralleled by an increased Ca(2+) content in the endoplasmic reticulum (ER) stores. Remarkably, the silencing in PC-12 cells or the knocking-out in mice of the ncx3 gene prevented the enhancement of both I(NCX) and Ca(2+) content in ER stores, suggesting that NCX3 was involved in the increase of ER Ca(2+) content stimulated by Aβ(1-42). By contrast, in the late phase (72 h), when the NCX3 proteolytic cleavage abruptly ceased, the occurrence of a parallel reduction in ER Ca(2+) content triggered ER stress, as revealed by caspase-12 activation. Concomitantly, the late increase in [Ca(2+)](i) coincided with neuronal death. Interestingly, NCX3 silencing caused an earlier activation of Aβ(1-42)-induced caspase-12. Indeed, in NCX3-silenced neurons, Aβ(1-42) exposure hastened caspase-dependent apoptosis, thus reinforcing neuronal cell death. These results suggest that Aβ(1-42), through Ca(2+)-dependent calpain activation, generates a hyperfunctional form of NCX3 that, by increasing Ca(2+) content into ER, delays caspase-12 activation and thus neuronal death.
Collapse
|
35
|
Selimovic D, Porzig BBOW, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal 2012; 25:308-18. [PMID: 23079083 DOI: 10.1016/j.cellsig.2012.10.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
Abstract
Generally, both endoplasmic reticulum (ER) stress and mitochondrial dysregulation are a potential therapeutic target of anticancer agents including bortezomib. The treatment of melanoma cells with bortezomib was found to induce apoptosis together with the upregulation of Noxa, Mcl-1, and HSP70 proteins, and the cleavage of LC3 and autophagic formation. Also, bortezomib induced ER-stress as evidenced by the increase of intracellular Ca(2+) release. In addition, bortezomib enhanced the phosphorylation of inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α), apoptosis signal-regulating kinase 1 (ASK1), c-jun-N-terminal kinase (JNK) and p38, and the activation of the transcription factors AP-1, ATF-2, Ets-1, and HSF1. Bortezomib-induced mitochondrial dysregulation was associated with the accumulation of reactive oxygen species (ROS), the release of both apoptosis inducing factor (AIF) and cytochrome c, the activation of caspase-9 and caspase-3, and cleavage of Poly (ADP-ribose) polymerase (PARP). The pretreatment of melanoma cells with the inhibitor of caspase-3 (Ac-DEVD-CHO) was found to block bortezomib-induced apoptosis that subsequently led to the increase of autophagic formation. In contrast, the inhibition of ASK1 abrogated bortezomib-induced autophagic formation and increased apoptosis induction. Furthermore, the inhibition of JNK, of HSP70 also increased apoptosis induction without influence of bortezomib-induced autophagic formation. Based on the inhibitory experiments, the treatment with bortezomib triggers the activation of both ER-stress-associated pathways, namely IRE1α-ASK1-p38-ATF-2/ets-1-Mcl-1, and IRE1α-ASK1-JNK-AP-1/HSF1-HSP70 as well as mitochondrial dysregulation-associated pathways, namely ROS-ASK1-JNK-AP-1/HSF1-HS70, and AIF-caspase-3-PARP and Cyt.c, and caspase-9-caspase-3-PARP. Taken together, our data demonstrates for the first time the molecular mechanisms, whereby bortezomib triggers both apoptosis and autophagic formation in melanoma cells.
Collapse
Affiliation(s)
- Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ayyanathan K, Kesaraju S, Dawson-Scully K, Weissbach H. Combination of sulindac and dichloroacetate kills cancer cells via oxidative damage. PLoS One 2012; 7:e39949. [PMID: 22866174 PMCID: PMC3398923 DOI: 10.1371/journal.pone.0039949] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 06/04/2012] [Indexed: 01/28/2023] Open
Abstract
Sulindac is an FDA-approved non-steroidal anti-inflammatory drug with documented anticancer activities. Our recent studies showed that sulindac selectively enhanced the killing of cancer cells exposed to oxidizing agents via production of reactive oxygen species (ROS) resulting in mitochondrial dysfunction. This effect of sulindac and oxidative stress on cancer cells could be related to the defect in respiration in cancer cells, first described by Warburg 50 years ago, known as the Warburg effect. We postulated that sulindac might enhance the selective killing of cancer cells when combined with any compound that alters mitochondrial respiration. To test this hypothesis we have used dichloroacetate (DCA), which is known to shift pyruvate metabolism away from lactic acid formation to respiration. One might expect that DCA, since it stimulates aerobic metabolism, could stress mitochondrial respiration in cancer cells, which would result in enhanced killing in the presence of sulindac. In this study, we have shown that the combination of sulindac and DCA enhances the selective killing of A549 and SCC25 cancer cells under the conditions used. As predicted, the mechanism of killing involves ROS production, mitochondrial dysfunction, JNK signaling and death by apoptosis. Our results suggest that the sulindac-DCA drug combination may provide an effective cancer therapy.
Collapse
Affiliation(s)
- Kasirajan Ayyanathan
- Center for Molecular Biology and Biotechnology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, Florida, United States of America.
| | | | | | | |
Collapse
|
37
|
Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol 2012; 86:1547-58. [DOI: 10.1007/s00204-012-0873-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/16/2012] [Indexed: 12/30/2022]
|
38
|
Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells. Br J Nutr 2012; 109:727-35. [PMID: 22676837 DOI: 10.1017/s0007114512001882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
α-Tocopheryl succinate (α-TOS) has been shown to be a potent apoptosis inducer and growth inhibitor in a variety of cancer cells. Our previous studies showed the important role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the apoptosis induced by α-TOS. However, the relationship of oxidative stress with ER stress is still controversial. The objective of the present study was to investigate the interplay between the two stress responses induced by α-TOS in SGC-7901 human gastric cancer cells. In response to α-TOS, cytological changes typical of apoptosis, induction of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein transcription factor (CHOP), and activation of caspase-4 were observed. And the antioxidant N-acetyl-l-cysteine inhibited induction of both GRP78 and CHOP by α-TOS transcriptionally and translationally. Furthermore, knocking down CHOP by RNA interference decreased ROS generation, increased glutathione level and induced glutathione peroxidase mRNA expression in α-TOS-treated cells, whereas catalase and superoxide dismutases mRNA expression were not altered. The results imply that α-TOS induces ER stress response through ROS production, while CHOP perturbs the redox state of SGC-7901 cells treated with α-TOS.
Collapse
|
39
|
Hassan M, Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O. Hepatitis C virus-host interactions: Etiopathogenesis and therapeutic strategies. World J Exp Med 2012; 2:7-25. [PMID: 24520529 PMCID: PMC3905577 DOI: 10.5493/wjem.v2.i2.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a significant health problem facing the world. This virus infects more than 170 million people worldwide and is considered the major cause of both acute and chronic hepatitis. Persons become infected mainly through parenteral exposure to infected material by blood transfusions or injections with nonsterile needles. Although the sexual behavior is considered as a high risk factor for HCV infection, the transmission of HCV infection through sexual means, is less frequently. Currently, the available treatment for patients with chronic HCV infection is interferon based therapies alone or in combination with ribavirin and protease inhibitors. Although a sustained virological response of patients to the applied therapy, a great portion of patients did not show any response. HCV infection is mostly associated with progressive liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma. Although the focus of many patients and clinicians is sometimes limited to that problem, the natural history of HCV infection (HCV) is also associated with the development of several extrahepatic manifestations including dermatologic, rheumatologic, neurologic, and nephrologic complications, diabetes, arterial hypertension, autoantibodies and cryglobulins. Despite the notion that HCV-mediated extrahepatic manifestations are credible, the mechanism of their modulation is not fully described in detail. Therefore, the understanding of the molecular mechanisms of HCV-induced alteration of intracellular signal transduction pathways, during the course of HCV infection, may offer novel therapeutic targets for HCV-associated both hepatic and extrahepatic manifestations. This review will elaborate the etiopathogenesis of HCV-host interactions and summarize the current knowledge of HCV-associated diseases and their possible therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Hassan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Denis Selimovic
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Abdelouahid El-Khattouti
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Hanan Ghozlan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Youssef Haikel
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Ola Abdelkader
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|
40
|
Meng S, Song F, Chen H, Gao X, Amos CI, Lee JE, Wei Q, Qureshi AA, Han J. No association between Parkinson disease alleles and the risk of melanoma. Cancer Epidemiol Biomarkers Prev 2011; 21:243-5. [PMID: 22086882 DOI: 10.1158/1055-9965.epi-11-0905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recent data showed that melanoma was more common among patients with Parkinson disease than individuals without Parkinson disease and vice versa. It has been hypothesized that these two diseases may share common genetic and environmental risk factors. METHODS We evaluated the association between single-nucleotide polymorphisms (SNP) selected on the basis of recent genome-wide association studies (GWAS) on Parkinson disease risk and the risk of melanoma using 2,297 melanoma cases and 6,651 controls. RESULTS The Parkinson disease SNP rs156429 in the chromosome 7p15 region was nominally associated with melanoma risk with P value of 0.04, which was not significant after the Bonferroni correction for multiple comparisons. No association was observed between the remaining 31 Parkinson disease SNPs and the risk of melanoma. The genetic score based on the number of Parkinson disease risk allele was not associated with melanoma risk [OR for the highest genetic score quartile (30-35) vs. the lowest (15-20), 1.13, 95% confidence interval (CI), 0.47-2.70]. CONCLUSION The Parkinson disease SNPs identified in published GWAS do not seem to play an important role in melanoma development. IMPACT The Parkinson disease susceptibility loci discovered by GWAS contribute little to the observed epidemiologic association between the Parkinson disease and melanoma.
Collapse
Affiliation(s)
- Shasha Meng
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|