1
|
Nadora D, Ezzati S, Bol B, Aboud O. Serendipity in Neuro-Oncology: The Evolution of Chemotherapeutic Agents. Int J Mol Sci 2025; 26:2955. [PMID: 40243541 PMCID: PMC11988343 DOI: 10.3390/ijms26072955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The development of novel therapeutics in neuro-oncology faces significant challenges, often marked by high costs and low success rates. Despite advances in molecular biology and genomics, targeted therapies have had limited impact on improving patient outcomes in brain tumors, particularly gliomas, due to the complex, multigenic nature of these malignancies. While significant efforts have been made to design drugs that target specific signaling pathways and genetic mutations, the clinical success of these rational approaches remains sparse. This review critically examines the landscape of neuro-oncology drug discovery, highlighting instances where serendipity has led to significant breakthroughs, such as the unexpected efficacy of repurposed drugs and off-target effects that proved beneficial. By exploring historical and contemporary cases, we underscore the role of chance in the discovery of impactful therapies, arguing that embracing serendipity alongside rational drug design may enhance future success in neuro-oncology drug development.
Collapse
Affiliation(s)
- Denise Nadora
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Shawyon Ezzati
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Brandon Bol
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Orwa Aboud
- Department of Neurology, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Perez-Gutierrez L, Li P, Ferrara N. Endothelial cell diversity: the many facets of the crystal. FEBS J 2024; 291:3287-3302. [PMID: 36266750 DOI: 10.1111/febs.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and play crucial roles in angiogenesis. While it has been known for a long time that there are considerable differences among ECs from lymphatic and blood vessels, as well as among arteries, veins and capillaries, the full repertoire of endothelial diversity is only beginning to be elucidated. It has become apparent that the role of ECs is not just limited to their exchange functions. Indeed, a multitude of organ-specific functions, including release of growth factors, regulation of immune functions, have been linked to ECs. Recent years have seen a surge into the identification of spatiotemporal molecular and functional heterogeneity of ECs, supported by technologies such as single-cell RNA sequencing (scRNA-seq), lineage tracing and intersectional genetics. Together, these techniques have spurred the generation of epigenomic, transcriptomic and proteomic signatures of ECs. It is now clear that ECs across organs and in different vascular beds, but even within the same vessel, have unique molecular identities and employ specialized molecular mechanisms to fulfil highly specialized needs. Here, we focus on the molecular heterogeneity of the endothelium in different organs and pathological conditions.
Collapse
Affiliation(s)
- Lorena Perez-Gutierrez
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Pin Li
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Younes H, Kyritsi I, Mahrougui Z, Benharouga M, Alfaidy N, Marquette C. Effects of Prokineticins on Cerebral Cell Function and Blood-Brain Barrier Permeability. Int J Mol Sci 2023; 24:15428. [PMID: 37895111 PMCID: PMC10607385 DOI: 10.3390/ijms242015428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Prokineticins are a family of small proteins with diverse roles in various tissues, including the brain. However, their specific effects on different cerebral cell types and blood-brain barrier (BBB) function remain unclear. The aim of this study was to investigate the effects of PROK1 and PROK2 on murine cerebral cell lines, bEnd.3, C8.D30, and N2a, corresponding to microvascular endothelial cells, astrocytes and neurons, respectively, and on an established BBB co-culture model. Western blot analysis showed that prokineticin receptors (PROKR1 and PROKR2) were differentially expressed in the considered cell lines. The effect of PROK1 and PROK2 on cell proliferation and migration were assessed using time-lapse microscopy. PROK1 decreased neural cells' proliferation, while it had no effect on the proliferation of endothelial cells and astrocytes. In contrast, PROK2 reduced the proliferation of all cell lines tested. Both PROK1 and PROK2 increased the migration of all cell lines. Blocking PROKRs with the PROKR1 antagonist (PC7) and the PROKR2 antagonist (PKR-A) inhibited astrocyte PROK2-mediated migration. Using the insert co-culture model of BBB, we demonstrated that PROKs increased BBB permeability, which could be prevented by PROKRs' antagonists.
Collapse
Affiliation(s)
- Hadi Younes
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| | - Ioanna Kyritsi
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| | - Zineb Mahrougui
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| | - Mohamed Benharouga
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| | - Nadia Alfaidy
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| | - Christel Marquette
- University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France; (H.Y.); (I.K.); (Z.M.); (M.B.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Laboratory of Biology & Biotechnology for Health, Interdisciplinary Research Institute of Grenoble, 38000 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France
| |
Collapse
|
4
|
Yan L, Qu X, Yu J, Robinson RS, Woad KJ, Shi Z. Transforming growth factor-β1 disrupts angiogenesis during the follicular-luteal transition through the Smad-serpin family E member 1 (SERPINE1)/serpin family B member 5 (SERPINB5) signalling pathway in the cow. Reprod Fertil Dev 2021; 33:643-654. [PMID: 38600656 DOI: 10.1071/rd20325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 04/12/2024] Open
Abstract
Intense angiogenesis is critical for the development of the corpus luteum and is tightly regulated by numerous factors. However, the exact role transforming growth factor-β1 (TGFB1) plays during this follicular-luteal transition remains unclear. This study hypothesised that TGFB1, acting through TGFB receptor 1 (TGFBR1) and Smad2/3 signalling, would suppress angiogenesis during the follicular-luteal transition. Using a serum-free luteinising follicular angiogenesis culture system, TGFB1 (1 and 10ngmL-1 ) markedly disrupted the formation of capillary-like structures, reducing the endothelial cell network area and the number of branch points (P <0.001 compared with control). Furthermore, TGFB1 activated canonical Smad signalling and inhibited endothelial nitric oxide synthase (NOS3 ) mRNA expression, but upregulated latent TGFB-binding protein and TGFBR1 , serpin family E member 1 (SERPINE1 ) and serpin family B member 5 (SERPINB5 ) mRNA expression. SB431542, a TGFBR1 inhibitor, reversed the TGFB1-induced upregulation of SERPINE1 and SERPINB5 . In addition, TGFB1 reduced progesterone synthesis by decreasing the expression of steroidogenic acute regulatory protein (STAR ), cytochrome P450 family 11 subfamily A member 1 (CYP11A1 ) and 3β-hydroxysteroid dehydrogenase (HSD3B1 ) expression. These results show that TGFB1 regulates NOS3 , SERPINE1 and SERPINB5 expression via TGFBR1 and Smad2/3 signalling and this could be the mechanism by which TGFB1 suppresses endothelial networks. Thereby, TGFB1 may provide critical homeostatic control of angiogenesis during the follicular-luteal transition. The findings of this study reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinisation, which may lead to novel therapeutic strategies to reverse luteal inadequacy.
Collapse
Affiliation(s)
- Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Kathryn J Woad
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Corresponding author
| |
Collapse
|
5
|
Zakirov B, Charalambous G, Thuret R, Aspalter IM, Van-Vuuren K, Mead T, Harrington K, Regan ER, Herbert SP, Bentley K. Active perception during angiogenesis: filopodia speed up Notch selection of tip cells in silico and in vivo. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190753. [PMID: 33550953 PMCID: PMC7934951 DOI: 10.1098/rstb.2019.0753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
How do cells make efficient collective decisions during tissue morphogenesis? Humans and other organisms use feedback between movement and sensing known as 'sensorimotor coordination' or 'active perception' to inform behaviour, but active perception has not before been investigated at a cellular level within organs. Here we provide the first proof of concept in silico/in vivo study demonstrating that filopodia (actin-rich, dynamic, finger-like cell membrane protrusions) play an unexpected role in speeding up collective endothelial decisions during the time-constrained process of 'tip cell' selection during blood vessel formation (angiogenesis). We first validate simulation predictions in vivo with live imaging of zebrafish intersegmental vessel growth. Further simulation studies then indicate the effect is due to the coupled positive feedback between movement and sensing on filopodia conferring a bistable switch-like property to Notch lateral inhibition, ensuring tip selection is a rapid and robust process. We then employ measures from computational neuroscience to assess whether filopodia function as a primitive (basal) form of active perception and find evidence in support. By viewing cell behaviour through the 'basal cognitive lens' we acquire a fresh perspective on the tip cell selection process, revealing a hidden, yet vital time-keeping role for filopodia. Finally, we discuss a myriad of new and exciting research directions stemming from our conceptual approach to interpreting cell behaviour. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Bahti Zakirov
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Georgios Charalambous
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Raphael Thuret
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Irene M. Aspalter
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Kelvin Van-Vuuren
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Thomas Mead
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Kyle Harrington
- Virtual Technology and Design, University of Idaho, Moscow, ID, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biology, The College of Wooster, Wooster, OH, USA
| | - Shane Paul Herbert
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 2018. [PMID: 29537336 DOI: 10.1152/physrev.00012.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This signaling system has been linked to several important biological functions, including gastrointestinal tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progression, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neurogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also, Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronociceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 antibodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit angiogenesis and inflammation associated with tumors or some autoimmune disorders.
Collapse
Affiliation(s)
- Lucia Negri
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| | - Napoleone Ferrara
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Hohman TJ, Dumitrescu L, Cox NJ, Jefferson AL. Genetic resilience to amyloid related cognitive decline. Brain Imaging Behav 2017; 11:401-409. [PMID: 27743375 PMCID: PMC5392179 DOI: 10.1007/s11682-016-9615-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preclinical Alzheimer's disease (AD) is characterized by amyloid deposition in the absence of overt clinical impairment. There is substantial heterogeneity in the long-term clinical outcomes among amyloid positive individuals, yet limited work has focused on identifying molecular factors driving resilience from amyloid-related cognitive impairment. We apply a recently developed predicted gene expression analysis (PrediXcan) to identify genes that modify the association between baseline amyloid deposition and longitudinal cognitive changes. Participants free of clinical AD (n = 631) were selected from the AD Neuroimaging Initiative (ADNI) who had a baseline positron emission tomography measure of amyloid deposition (quantified as a standard uptake value ratio), longitudinal neuropsychological data, and genetic data. PrediXcan was used to impute gene expression levels across 15 heart and brain tissues. Mixed effect regression models assessed the interaction between predicted gene expression levels and amyloid deposition on longitudinal cognitive outcomes. The predicted gene expression levels for two genes in the coronary artery (CNTLN, PROK1) and two genes in the atrial appendage (PRSS50, PROK1) interacted with amyloid deposition on episodic memory performance. The predicted gene expression levels for two additional genes (TMC4 in the basal ganglia and HMBS in the aorta) interacted with amyloid deposition on executive function performance. Post-hoc analyses provide additional validation of the HMBS and PROK1 effects across two independent subsets of ADNI using two additional metrics of amyloid deposition. These results highlight a subset of unique candidate genes of resilience and provide evidence that cell-cycle regulation, angiogenesis, and heme biosynthesis likely play a role in AD progression.
Collapse
Affiliation(s)
- Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Suite 204F, Nashville, TN, 37212, USA.
| | - Logan Dumitrescu
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Suite 204F, Nashville, TN, 37212, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Suite 204F, Nashville, TN, 37212, USA
| |
Collapse
|
8
|
Corlan AS, Cîmpean AM, Jitariu AA, Melnic E, Raica M. Endocrine Gland-Derived Vascular Endothelial Growth Factor/Prokineticin-1 in Cancer Development and Tumor Angiogenesis. Int J Endocrinol 2017; 2017:3232905. [PMID: 28386275 PMCID: PMC5366234 DOI: 10.1155/2017/3232905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
A lot of data suggests endocrine gland-derived vascular endothelial growth factor (EG-VEGF) to be restricted to endocrine glands and to some endocrine-dependent organs. Many evidences show that EG-VEGF stimulates angiogenesis and cell proliferation, although it is not a member of the VEGF family. At the time, a lot of data regarding the role of this growth factor in normal development are available. However, controversial results have been published in the case of pathological conditions and particularly in malignant tumors. Thus, our present paper has been focused on the role of EG-VEGF in normal tissues and various malignant tumors and their angiogenic processes.
Collapse
Affiliation(s)
- Ana Silvia Corlan
- Department of Endocrinology, “Vasile Goldis” University of Arad, Arad, Romania
| | - Anca Maria Cîmpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
- *Anca Maria Cîmpean:
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
| | - Eugen Melnic
- Department of Pathology, “Nicolae Testemitanu” University of Medicine and Pharmacy, Chișinău, Moldova
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
| |
Collapse
|
9
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Zimmer-Galler I, Shah SM, Wenick AS, Brady CJ, Han I, He L, Channa R, Poon D, Meyerle C, Aronow MB, Sodhi A, Handa JT, Kherani S, Han Y, Sophie R, Wang G, Qian J. Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated With Ozurdex Trial. Am J Ophthalmol 2016; 168:13-23. [PMID: 27130369 PMCID: PMC5482180 DOI: 10.1016/j.ajo.2016.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE The Diabetic Macular Edema Treated with Ozurdex (DMEO) Trial measured aqueous pro-permeability factors (PPFs) in diabetic macular edema (DME) patients before and after injection of dexamethasone implant or vascular endothelial growth factor (VEGF)-neutralizing protein and correlated changes in levels with changes in excess foveal thickness (EFT) to identify potential PPFs contributing to DME. DESIGN Prospective, randomized crossover clinical trial. METHODS Twenty DME patients randomized to dexamethasone implant or VEGF-neutralizing protein had aqueous taps and spectral-domain optical coherence tomography (SDOCT) at baseline and every 4 weeks for 28 weeks. Aqueous levels of 55 vasoactive proteins were measured with protein array. Crossover at week 16 provided changes in protein levels after each intervention in all 20 patients. RESULTS After dexamethasone implant there was significant correlation between changes in levels of 13 vasoactive proteins with changes in EFT, including 3 known PPFs: angiopoietin-2 (r = 0.40, P = .001), hepatocyte growth factor (HGF; r = 0.31, P = .02), and endocrine gland-VEGF (EG-VEGF, r = 0.43, P < .001). Reduction of prolactin, insulin-like growth factor binding protein-3, and matrix metalloproteinase-9 correlated with edema reduction after injection of a VEGF-neutralizing protein as well as dexamethasone implant, suggesting their modulation is likely secondary to changes in edema rather than causative. CONCLUSIONS Correlation of edema reduction with reduction in the PPFs angiopoietin-2, HGF, and EG-VEGF provides potential insight into the multifactorial molecular mechanism by which dexamethasone implants reduce edema and suggest that additional study is needed to investigate the contributions of these 3 factors to chronic DME.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Gulnar Hafiz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tahreem A Mir
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrienne W Scott
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ingrid Zimmer-Galler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed M Shah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adam S Wenick
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J Brady
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingmin He
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roomasa Channa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Poon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine Meyerle
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Beth Aronow
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saleema Kherani
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yong Han
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raafay Sophie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guohua Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Hall AP, Westwood FR, Wadsworth PF. Review of the Effects of Anti-Angiogenic Compounds on the Epiphyseal Growth Plate. Toxicol Pathol 2016; 34:131-47. [PMID: 16537292 DOI: 10.1080/01926230600611836] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The formation of new blood vessels from a pre-existing vascular bed, termed “angiogenesis,” is of critical importance for the growth and development of the animal since it is required for the growth of the skeleton during endochondral ossification, development and cycling of the corpus luteum and uterus, and for the repair of tissues during wound healing. “Vasculogenesis,” the de novo formation of blood vessels is also important for the proper function and development of the vascular system in the embryo. New blood vessel formation is a prominent feature and permissive factor in the relentless progression of many human diseases, one of the most important examples of which is neoplasia. It is for this reason that angiogenesis is considered to be one of the hallmarks of cancer. The development of new classes of drugs that inhibit the growth and proper functioning of new blood vessels in vivo is likely to provide significant therapeutic benefit in the treatment of cancer, as well as other conditions where angiogenesis is a strong driver to the disease process. During the preclinical safety testing of these drugs, it is becoming increasingly clear that their in vivo efficacy is reflected in the profile of “expected toxicity” (resulting from pharmacology) observed in laboratory animals, so much so, that this profile of “desired” toxicity may act as a signature for their anti-angiogenic effect. In this article we review the major mechanisms controlling angiogenesis and its role during endochondral ossification. We also review the effects of perturbation of endochondral ossification through four mechanisms—inhibition of vascular endothelial growth factor (VEGF), pp60 c-Src kinase and matrix metalloproteinases as well as disruption of the blood supply with vascular targeting agents. Inhibition through each of these mechanisms appears to have broadly similar effects on the epiphyseal growth plate characterised by thickening due to the retention of hypertrophic chondrocytes resulting from the inhibition of angiogenesis. In contrast, in the metaphysis there are differing effects reflecting the specific role of these targets at this site.
Collapse
Affiliation(s)
- Anthony P Hall
- AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, England.
| | | | | |
Collapse
|
11
|
Cao YL, Zhang ZF, Wang J, Miao MH, Xu JH, Shen YP, Chen AM, Du J, Yuan W. Association between polymorphisms of prokineticin receptor (PKR1 rs4627609 and PKR2 rs6053283) and recurrent pregnancy loss. J Zhejiang Univ Sci B 2016; 17:218-24. [PMID: 26984842 DOI: 10.1631/jzus.b1500180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recurrent pregnancy loss (RPL) is a condition with complex etiologies, to which both genetic and environmental factors may contribute. During the last decade, studies indicated that the expression patterns of the prokineticin receptor (PKR1 and PKR2) are closely related to early pregnancy. However, there are few studies on the role of PKR1 and PKR2 in RPL. In this study, we purpose to investigate the association between polymorphisms of the prokineticin receptor (PKR1 rs4627609 and PKR2 rs6053283) and RPL on a group of 93 RPL cases and 169 healthy controls. Genotyping of the single nucleotide polymorphisms (SNPs) was performed using a Sequenom MassARRAY iPLEX system. The results revealed a significant association between PKR2 rs6053283 polymorphism and RPL (P=0.003), whereas no association was observed between PKR1 rs4627609 polymorphism and RPL (P=0.929) in the Chinese Han population.
Collapse
Affiliation(s)
- Yun-lei Cao
- Shanghai Obstetrics/Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zhao-feng Zhang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Mao-hua Miao
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Jian-hua Xu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Yue-ping Shen
- Department of Biostatistics and Epidemiology, Public Health School, Soochow University, Suzhou 215123, China
| | - Ai-min Chen
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jing Du
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Wei Yuan
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Sophie R, Shah SM, Ying HS, Lu L, Chen C, Campbell JP, Kherani S, Zimmer-Galler I, Wenick A, Han I, Paulus Y, Sodhi A, Wang G, Qian J. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am J Ophthalmol 2015; 160:313-321.e19. [PMID: 25908486 PMCID: PMC6600806 DOI: 10.1016/j.ajo.2015.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE To correlate aqueous vasoactive protein changes with macular edema after dexamethasone implant in retinal vein occlusion (RVO). DESIGN Prospective, interventional case series. METHODS Twenty-three central RVO (CRVO) and 17 branch RVO (BRVO) subjects with edema despite prior anti-vascular endothelial growth factor (VEGF) treatment had aqueous taps at baseline and 4 and 16 weeks after dexamethasone implant. Best-corrected visual acuity (BCVA) and center subfield thickness were measured every 4 weeks. Aqueous vasoactive protein levels were measured by protein array or enzyme-linked immunosorbent assay. RESULTS Thirty-two vasoactive proteins were detected in aqueous in untreated eyes with macular edema due to RVO. Reduction in excess foveal thickness after dexamethasone implant correlated with reduction in persephin and pentraxin 3 (Pearson correlation coefficients = 0.682 and 0.638, P = .014 and P = .003). Other protein changes differed among RVO patients as edema decreased, but ≥50% of patients showed reductions in hepatocyte growth factor, endocrine gland VEGF, insulin-like growth factor binding proteins, or endostatin by ≥30%. Enzyme-linked immunosorbent assay in 18 eyes (12 CRVO, 6 BRVO) showed baseline levels of hepatocyte growth factor and VEGF of 168.2 ± 20.1 pg/mL and 78.7 ± 10.0 pg/mL, and each was reduced in 12 eyes after dexamethasone implant. CONCLUSIONS Dexamethasone implants reduce several pro-permeability proteins providing a multitargeted approach in RVO. No single protein in addition to VEGF can be implicated as a contributor in all patients. Candidates for contribution to chronic edema in subgroups of patients that deserve further study include persephin, hepatocyte growth factor, and endocrine gland VEGF.
Collapse
|
13
|
Talavera-Adame D, Dafoe DC. Endothelium-derived essential signals involved in pancreas organogenesis. World J Exp Med 2015; 5:40-49. [PMID: 25992319 PMCID: PMC4436939 DOI: 10.5493/wjem.v5.i2.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are essential for pancreas differentiation, endocrine specification, and endocrine function. They are also involved in the physiopathology of type 1 and type 2 diabetes. During embryogenesis, aortic ECs provide specific factors that maintain the expression of key genes for pancreas development such as pancreatic and duodenal homeobox-1. Other unknown factors are also important for pancreatic endocrine specification and formation of insulin-producing beta cells. Endocrine precursors proliferate interspersed with ductal cells and exocrine precursors and, at some point of development, these endocrine precursors migrate to pancreatic mesenchyme and start forming the islets of Langerhans. By the end of the gestation and close to birth, these islets contain immature beta cells with the capacity to express vascular endothelial growth factor and therefore to recruit ECs from the surrounding microenvironment. ECs in turn produce factors that are essential to maintain insulin secretion in pancreatic beta cells. Once assembled, a cross talk between endocrine cells and ECs maintain the integrity of islets toward an adequate function during the whole life of the adult individual. This review will focus in the EC role in the differentiation and maturation of pancreatic beta cells during embryogenesis as well as the current knowledge about the involvement of endothelium to derive pancreatic beta cells in vitro from mouse or human pluripotent stem cells.
Collapse
|
14
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Gennari-Moser C, Khankin EV, Escher G, Burkhard F, Frey BM, Karumanchi SA, Frey FJ, Mohaupt MG. Vascular Endothelial Growth Factor-A and Aldosterone. Hypertension 2013; 61:1111-7. [DOI: 10.1161/hypertensionaha.111.00575] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin–angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell–dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
Collapse
Affiliation(s)
- Carine Gennari-Moser
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Eliyahu V. Khankin
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Geneviève Escher
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Fiona Burkhard
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Brigitte M. Frey
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - S. Ananth Karumanchi
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Felix J. Frey
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| | - Markus G. Mohaupt
- From the Department of Nephrology, Hypertension and Clinical Pharmacology (C.G.-M., G.E., B.M.F., F.J.F., M.G.M.), and Division of Urology (F.B.), University Hospital Bern, Berne, Switzerland; and Department of Medicine, Division of Vascular and Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.V.K., S.A.K.)
| |
Collapse
|
16
|
Papparella A, Nino F, Noviello C, Romano M, Papparella S, Paciello O, Sinisi AA. Morphologic changes due to human chorionic gonadotropin in the rat testis: Role of vascular endothelial growth factor. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojped.2013.32016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
WEN CW, NING DG, LIU RJ, ZHANG YW. A Novel Target for Starving Tumor Therapy: Endocrine-gland-derived Vascular Endothelial Growth Factor*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Chioda M, Peranzoni E, Desantis G, Papalini F, Falisi E, Solito S, Samantha S, Mandruzzato S, Bronte V. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev 2011; 30:27-43. [PMID: 21267772 DOI: 10.1007/s10555-011-9268-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumour development is accompanied by an enhanced haematopoiesis. This is not a widespread activation since only cells belonging to the myelo-monocytic compartment are expanded and mobilized from primary sites of haematopoiesis to other organs, reaching also the tumour stroma. This process occurs early during tumour formation but becomes more evident in advanced disease. Far from being a simple, unwanted consequence of cancer development, accumulation of myelo-monocytitc cells plays a role in tumour vascularization, local spreading, establishment of metastasis at distant sites, and contribute to create an environment unfavourable for the adoptive immunity against tumour-associated antigens. Myeloid populations involved in these process are likely different but many cells, expanded in primary and secondary lymphoid organs of tumour-bearing mice, share various levels of the CD11b and Gr-1 (Ly6C/G) markers. CD11b(+)Gr-1(+) cells are currently named myeloid-derived suppressor cells for their ability to inhibit T lymphocyte responses in tumour-bearing hosts. In this manuscript, we review the recent literature on tumour-conditioned myeloid subsets that assist tumour growth, both in mice and humans.
Collapse
|
19
|
Gao MZ, Zhao XM, Sun ZG, Hong Y, Zhao LW, Zhang HQ. Endocrine gland–derived vascular endothelial growth factor concentrations in follicular fluid and serum may predict ovarian hyperstimulation syndrome in women undergoing controlled ovarian hyperstimulation. Fertil Steril 2011; 95:673-8. [DOI: 10.1016/j.fertnstert.2010.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/08/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
|
20
|
Abstract
The complex organization and regulation of the human hypothalamic-pituitary-gonadal axis render it susceptible to dysfunction in the face of a variety of genetic insults, leading to different degrees of hypogonadotrophic hypogonadism (HH). Although the genetic basis of some HH was recognized more than 60 years ago the first specific pathogenic defect, in the KAL1 gene, was only identified within the last 20 years. In the past decade, the rate of genetic discovery has dramatically accelerated, with defects in more than 10 genes now associated with HH. Several themes have emerged as the genetic basis of HH has gradually been uncovered, including the association of some genes such as FGFR1, FGF8, PROK2 and PROKR2, both with HH in association with hyposmia/anosmia (Kallmann syndrome) and with normosmic HH, thus blurring the clinical distinction between ontogenic and purely functional defects in the axis. Many examples of digenic inheritance of HH have also been reported, sometimes producing variable reproductive and accessory phenotypes within a family with non-Mendelian inheritance patterns. In strictly normosmic HH, human genetics has made a particularly dramatic impact in the past 6 years through homozygosity mapping in consanguineous families, first through identification of a key role for kisspeptin in triggering GnRH release, and very recently through demonstration of a critical role for neurokinin B in normal sexual maturation. This review summarises current understanding of the genetic architecture of HH, as well as its diagnostic and mechanistic implications.
Collapse
Affiliation(s)
- Robert K Semple
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
21
|
The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain. Proc Natl Acad Sci U S A 2009; 106:14646-51. [PMID: 19667192 DOI: 10.1073/pnas.0903720106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neutrophil migration into injured tissues is invariably accompanied by pain. Bv8/prokineticin 2 (PK2), a chemokine characterized by a unique structural motif comprising five disulfide bonds, is highly expressed in inflamed tissues associated to infiltrating cells. Here, we demonstrate the fundamental role of granulocyte-derived PK2 (GrPK2) in initiating inflammatory pain and driving peripheral sensitization. In animal models of complete Freund's adjuvant-induced paw inflammation the development and duration of pain temporally correlated with the expression levels of PK2 in the inflamed sites. Such an increase in PK2 mRNA depends mainly on a marked up-regulation of PK2 gene transcription in granulocytes. A substantially lower up-regulation was also detected in macrophages. From a pool of peritoneal granulocytes, elicited in rats by oyster glycogen, we purified the GrPK2 protein, which displayed high affinity for the prokineticin receptors (PKRs) and, when injected into the rat paw, induced hypersensitivity to noxious stimuli as the amphibian prokineticin Bv8 did. Mice lacking PKR1 or PKR2 developed significantly less inflammation-induced hyperalgesia in comparison with WT mice, confirming the involvement of both PKRs in inflammatory pain. The inflammation-induced up-regulation of PK2 was significantly less in pkr1 null mice than in WT and pkr2 null mice, demonstrating a role of PKR1 in setting PK2 levels during inflammation. Pretreatment with a nonpeptide PKR antagonist, which preferentially binds PKR1, dose-dependently reduced and eventually abolished both prokineticin-induced hypernociception and inflammatory hyperalgesia. Inhibiting PK2 formation or antagonizing PKRs may represent another therapeutic approach for controlling inflammatory pain.
Collapse
|
22
|
Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 2009; 9:470-81. [PMID: 19616475 DOI: 10.1016/j.coph.2009.06.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/27/2009] [Accepted: 06/18/2009] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a subset of myeloid cells that expand under pathological conditions, such as cancer development, acute and chronic infections, trauma, bone marrow transplantations, and some autoimmune diseases. MDSCs mediate a negative regulation of the immune response by affecting different T lymphocyte subsets. Potential mechanisms, which underlie this inhibitory activity range from those requiring direct cell-to-cell contact with others, more indirect, and mediated by the modification of the microenvironment. Pharmacological inhibition of MDSC suppressive pathways is a promising strategy to overcome disease-induced immune defects, which might be a key step in enhancing the effectiveness of immune-based therapies.
Collapse
Affiliation(s)
- Stefano Ugel
- Department of Oncology and Surgical Science, Via Gattamelata 64, 35128 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ribatti D. Napoleone Ferrara and the Saga of Vascular Endothelial Growth Factor. ACTA ACUST UNITED AC 2009; 15:1-8. [DOI: 10.1080/10623320802092377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Abstract
The 'seed and soil' hypothesis for metastasis sets forth the concept that a conducive microenvironment, or niche, is required for disseminating tumour cells to engraft distant sites. This Opinion presents emerging data that support this concept and outlines the potential mechanism and temporal sequence by which changes occur in tissues distant from the primary tumour. To enable improvements in the prognosis of advanced malignancy, early interventions that target both the disseminating seed and the metastatic soil are likely to be required.
Collapse
Affiliation(s)
- Bethan Psaila
- Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York NY 10021, USA
- Department of Haematology, Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - David Lyden
- Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York NY 10021, USA
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Correspondence to: David Lyden, MD, PhD, Department of Pediatrics, Weill Cornell Medical College, New York, NY, 10021, Phone: 212 746 3941,
| |
Collapse
|
25
|
Testa U, Pannitteri G, Condorelli GL. Vascular endothelial growth factors in cardiovascular medicine. J Cardiovasc Med (Hagerstown) 2009; 9:1190-221. [PMID: 19001927 DOI: 10.2459/jcm.0b013e3283117d37] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of vascular endothelial growth factors (VEGFs) and their receptors has considerably improved the understanding of the development and function of endothelial cells. Each member of the VEGF family appears to have a specific function: VEGF-A induces angiogenesis (i.e. growth of new blood vessels from preexisting ones), placental growth factor mediates both angiogenesis and arteriogenesis (i.e. the formation of collateral arteries from preexisting arterioles), VEGF-C and VEGF-D act mainly as lymphangiogenic factors. The study of the biology of these endothelial growth factors has allowed a major progress in the comprehension of the genesis of the vascular system and its abnormalities observed in various pathologic conditions (atherosclerosis and coronary artery disease). The role of VEGF in the atherogenic process is still unclear, but actual evidence suggests both detrimental (development of a neoangiogenetic process within the atherosclerotic plaque) and beneficial (promotion of collateral vessel formation) effects. VEGF and other angiogenic growth factors (fibroblast growth factor), although initially promising in experimental studies and in initial phase I/II clinical trials in patients with ischemic heart disease or peripheral arterial occlusive disease, have subsequently failed to show significant therapeutic improvements in controlled clinical studies. Challenges still remain about the type or the combination of angiogenic factors to be administered, the form (protein vs. gene), the route, and the duration of administration.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Italy.
| | | | | |
Collapse
|
26
|
Nikitenko LL. Vascular endothelium in cancer. Cell Tissue Res 2008; 335:223-40. [PMID: 19015885 DOI: 10.1007/s00441-008-0707-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
The vascular endothelium plays an essential role during organogenesis and in tissue homeostasis. Growing evidence also supports its essential and complex role in tumour biology and cancer progression. In particular, excessive proliferation and transformation or dysfunction of endothelial cells leads to pathological (lymph)angiogenesis or vascular malfunctions, which are hallmarks of neoplastic and malignant disorders. Reciprocal interactions between endothelial cells and the local tumour microenvironment may regulate tumour progression and resistance to anti-cancer therapies in a tumour-type-specific manner.
Collapse
Affiliation(s)
- Leonid L Nikitenko
- Viral Oncology Group, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab 2008; 93:3551-9. [PMID: 18559922 PMCID: PMC2567850 DOI: 10.1210/jc.2007-2654] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Mice deficient in prokineticin 2(PROK2) and prokineticin receptor2 (PROKR2) exhibit variable olfactory bulb dysgenesis and GnRH neuronal migration defects reminiscent of human GnRH deficiency. OBJECTIVES We aimed to screen a large cohort of patients with Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (IHH) for mutations in PROK2/PROKR2, evaluate their prevalence, define the genotype/phenotype relationship, and assess the functionality of these mutant alleles in vitro. DESIGN Sequencing of the PROK2 and PROKR2 genes was performed in 170 KS patients and 154 nIHH. Mutations were examined using early growth response 1-luciferase assays in HEK 293 cells and aequorin assays in Chinese hamster ovary cells. RESULTS Four heterozygous and one homozygous PROK2 mutation (p.A24P, p.C34Y, p.I50M, p.R73C, and p.I55fsX1) were identified in five probands. Four probands had KS and one nIHH, and all had absent puberty. Each mutant peptide impaired receptor signaling in vitro except the I50M. There were 11 patients who carried a heterozygous PROKR2 mutation (p.R85C, p.Y113H, p.V115M, p.R164Q, p.L173R, p.W178S, p.S188L, p.R248Q, p.V331M, and p.R357W). Among them, six had KS, four nIHH, and one KS proband carried both a PROKR2 (p.V115M) and PROK2 (p.A24P) mutation. Reproductive phenotypes ranged from absent to partial puberty to complete reversal of GnRH deficiency after discontinuation of therapy. All mutant alleles appear to decrease intracellular calcium mobilization; seven exhibited decreased MAPK signaling, and six displayed decreased receptor expression. Nonreproductive phenotypes included fibrous dysplasia, sleep disorder, synkinesia, and epilepsy. Finally, considerable variability was evident in family members with the same mutation, including asymptomatic carriers. CONCLUSION Loss-of-function mutations in PROK2 and PROKR2 underlie both KS and nIHH.
Collapse
Affiliation(s)
- Lindsay W Cole
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Denison FC, Battersby S, King AE, Szuber M, Jabbour HN. Prokineticin-1: a novel mediator of the inflammatory response in third-trimester human placenta. Endocrinology 2008; 149:3470-7. [PMID: 18372330 PMCID: PMC2694305 DOI: 10.1210/en.2007-1695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prokineticin-1 (PK1) is a recently described protein with a wide range of functions, including tissue-specific angiogenesis, modulation of inflammatory responses, and regulation of hemopoiesis. The aim of this study was to investigate the localization and expression of PK1 and PK receptor-1 (PKR1), their signaling pathways, and the effect of PK1 on expression of the inflammatory mediators cyclooxygenase (COX)-2 and IL-8 in third-trimester placenta. PK1 and PKR1 were highly expressed in term placenta and immunolocalized to syncytiotrophoblasts, cytotrophoblasts, fetal endothelium, and macrophages. PK1 induced a time-dependent increase in expression of IL-8 and COX-2, which was significantly reduced by inhibitors of Gq, cSrc, epidermal growth factor receptor (EGFR), and MAPK kinase. Treatment of third-trimester placenta with 40 nm PK1 induced a rapid phosphorylation of cSrc, EGFR, and ERK1/2. Phosphorylation of ERK1/2 in response to PK1 was dependent on sequential phosphorylation of cSrc and EGFR. Using double-immunofluorescent immunohistochemistry, PKR1 colocalized with IL-8 and COX-2 in placenta. These data suggest that PK1 may have a novel role as a mediator of the inflammatory response in placenta.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blotting, Western
- Cyclooxygenase 2/metabolism
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression/drug effects
- Humans
- Immunohistochemistry
- In Vitro Techniques
- Interleukin-8/metabolism
- Keratins/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myometrium/metabolism
- Phosphorylation/drug effects
- Placenta/drug effects
- Placenta/metabolism
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Pregnancy
- Pregnancy Trimester, Third
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/pharmacology
Collapse
Affiliation(s)
- Fiona C Denison
- Department of Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 2008; 105:2640-5. [PMID: 18268320 DOI: 10.1073/pnas.0712185105] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The secreted Bv8 protein has been recently characterized as a regulator of myeloid cell mobilization and a neutrophil-derived mediator of tumor angiogenesis in several xenografts, but its role in tumor progression in an endogenous setting was unknown. The rat insulin promoter (RIP)-T-antigen (Tag) is a well characterized transgenic mouse model of multistage pancreatic beta-cell tumorigenesis. Also, the role of neutrophils in RIP-Tag angiogenic switching, as assessed by systemic ablation using anti-Gr1 antibodies at different stages of tumor progression, has been recently described. Here, we show that early treatment of RIP-Tag mice with anti-Bv8 antibodies resulted in a significant reduction in the number of angiogenic islets relative to control antibody-treated mice, implicating Bv8 in the angiogenic switch during neoplasia. Histological analysis showed a significant reduction in vascular surface areas in hyperplastic and angiogenic lesions in pancreatic islets from anti-Bv8-treated mice. Anti-Bv8 treatment also inhibited the mobilization and homing of CD11b+Gr1+ cells to the peripheral blood and the emerging neoplastic lesions. However, anti-Bv8 treatment had no effect on tumor vascularization or burden when initiated at later stages of tumor progression. The stage-dependent efficacy of anti-Bv8 treatment appears remarkably similar to that reported after neutrophil ablation, suggesting that Bv8 is an important mediator of neutrophil-dependent angiogenesis in this transgenic model. In summary, our studies verify a role for Bv8 in the mobilization and recruitment of myeloid cells and in the induction of tumor angiogenesis in the early stages of neoplastic progression.
Collapse
|
30
|
Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007; 450:825-31. [PMID: 18064003 DOI: 10.1038/nature06348] [Citation(s) in RCA: 511] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/01/2007] [Indexed: 02/04/2023]
|
31
|
Morales A, Vilchis F, Chávez B, Chan C, Robles-Díaz G, Díaz-Sánchez V. Expression and localization of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in human pancreas and pancreatic adenocarcinoma. J Steroid Biochem Mol Biol 2007; 107:37-41. [PMID: 17683928 DOI: 10.1016/j.jsbmb.2007.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 02/23/2007] [Indexed: 11/25/2022]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.
Collapse
Affiliation(s)
- Angélica Morales
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15 Tlalpan, 14000 México D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
32
|
Negri L, Lattanzi R, Giannini E, Melchiorri P. Bv8/Prokineticin proteins and their receptors. Life Sci 2007; 81:1103-16. [PMID: 17881008 DOI: 10.1016/j.lfs.2007.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/04/2007] [Accepted: 08/08/2007] [Indexed: 11/23/2022]
Abstract
The Bv8/Prokineticins (PKs) are a new family of peptides identified in frog, fish, reptiles and mammals that signal through two highly homologous G-protein coupled receptors, PKR1 and PKR2. Bv8/PK proteins possess a unique structural motif comprising five disulfide bonds and a completely conserved N-terminal hexapeptide sequence that is essential for the peptide's biological activities. Over the past few years, several biological functions of Bv8/PK proteins have been elucidated. This review considers all the published data on the action and physiological role of this new biological system implicated in angiogenesis and neurogenesis, in reproduction and cancer and in regulating physiological functions that underly circadian rhythms, such as the sleep/wake cycle, hormone secretion and ingestive behaviors. The high expression level of human Bv8/PK2 in bone marrow, lymphoid organs and leukocytes suggested an involvement of these peptides in hematopoiesis and in inflammatory and immunomodulatory processes. Our review highlights the role of the Bv8/PK and their receptor system in setting the pain threshold under normal and pathological conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Circadian Rhythm/physiology
- Gastrointestinal Hormones/chemistry
- Gastrointestinal Hormones/genetics
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Motility/physiology
- Humans
- Inflammation
- Mice
- Molecular Sequence Data
- Molecular Structure
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Pain Threshold/physiology
- Rabbits
- Rats
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Signal Transduction
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/chemistry
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
Collapse
Affiliation(s)
- Lucia Negri
- Department of Human Physiology and Pharmacology "V. Erspamer", University "La Sapienza", P.le A: Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
33
|
Hoffmann P, Feige JJ, Alfaidy N. Placental expression of EG-VEGF and its receptors PKR1 (prokineticin receptor-1) and PKR2 throughout mouse gestation. Placenta 2007; 28:1049-58. [PMID: 17531315 DOI: 10.1016/j.placenta.2007.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 11/24/2022]
Abstract
Compelling evidence indicates that vascular endothelial growth factor (VEGF) is an important mediator of placental angiogenesis and appears to be disregulated in pre-eclampsia (PE). Recently, we characterised the expression of EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK1) in human placenta during the first trimester of pregnancy and showed that this factor is likely to play an important role in human placentation. However, because it is impossible to prospectively study placentation in humans, it has been impossible to further characterise EG-VEGF expression throughout complete gestation and especially at critical gestational ages for PE development. In the present study, we used mouse placenta to further characterise EG-VEGF expression throughout gestation. We investigated the pattern of expression of EG-VEGF and its receptors, PKR1 and PKR2 at the mRNA and protein levels. Our results show that EG-VEGF and VEGF exhibit different patterns of expression and different localisations in the mouse placenta. EG-VEGF was mainly localised in the labyrinth whereas VEGF was mainly present in glycogen and giant cells. EG-VEGF mRNA and protein levels were highest before 10.5days post coitus (dpc) whereas those of VEGF showed stable expression throughout gestation. PKR1 protein was localised to the labyrinth layer and showed the same pattern of expression as EG-VEGF whereas PKR2 expression was maintained over 10.5dpc with both trophoblastic and endothelial cell localisations. Altogether these findings suggest that EG-VEGF may have a direct effect on both endothelial and trophoblastic cells and is likely to play an important role in mouse placentation.
Collapse
|
34
|
Reisinger K, Baal N, McKinnon T, Münstedt K, Zygmunt M. The gonadotropins: tissue-specific angiogenic factors? Mol Cell Endocrinol 2007; 269:65-80. [PMID: 17349737 DOI: 10.1016/j.mce.2006.11.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 01/09/2023]
Abstract
The gonadotropins, whose members are human chorionic gonadotropin (hCG), lutenizing hormone (LH) and follicle-stimulating hormone (FSH) are a well characterized hormone family known to regulate reproductive functions in both females and males. Recent studies indicate that they can modulate the vascular system of reproductive organs. It was shown that gonadotropins not only influence the expression of vascular endothelial growth factor (VEGF) and both its receptors VEGFR-1 and -2, but also modulate other ubiquitously expressed angiogenic factors like the angiopoietins and their receptor Tie-2, basic fibroblast growth factor or placental-derived growth factor. Some recent data indicates a possible direct action of gonadotropins on endothelial cells. Thus, the gonadotropins act as tissue-specific angiogenic factors providing an optimal vascular supply during the menstrual cycle and early pregnancy in the female reproductive tract as well as in testis. In pathological conditions (e.g. preeclampsia, intrauterine growth restriction, ovarian hyperstimulation or endometriosis), these tightly regulated interactions between the gonadotropins and the ubiquitous angiogenic factors appear to be disturbed. The intent of this short manuscript is to review the current knowledge of the regulatory role of the gonadotropins in vasculo- and angiogenesis. We also review angiogenic actions of thyroid-stimulating hormone (TSH), a glycoprotein closely related to gonadotropins, which display strong gonodal actions.
Collapse
Affiliation(s)
- K Reisinger
- Department of Obstetrics and Gynecology, University of Giessen, Klinikstrasse 32, 35385 Giessen, Germany
| | | | | | | | | |
Collapse
|
35
|
Giovanni Artini P, Monteleone P, Parisen Toldin MR, Matteucci C, Ruggiero M, Cela V, Genazzani AR. Growth factors and folliculogenesis in polycystic ovary patients. Expert Rev Endocrinol Metab 2007; 2:215-223. [PMID: 30754182 DOI: 10.1586/17446651.2.2.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian folliculogenesis is regulated by a fine balance between endocrine and intraovarian factors. In this review, we focus on the role of growth factors in physiological folliculogenesis and in polycystic ovaries. Recent evidence shows that the main systems implicated in polycystic ovary folliculogenesis are the growth hormone and insulin-like growth factor system, vascular endothelial growth factor, and the transforming growth factor-β family. Growth hormone and the insulin-like growth factor system could affect follicular development and oocyte maturation if their balance was altered, while vascular endothelial growth factor is implied in follicular dominance by providing an increasing vascular supply. The transforming growth factor-β family is composed of various molecules, which have different roles in cellular proliferation. Finally, a series of different factors seem to be involved in altered polycystic ovary follicular growth.
Collapse
Affiliation(s)
- Paolo Giovanni Artini
- a University of Pisa, Department of Reproductive Medicine and Child Development, Division of Obstetrics & Gynecology, S. Chiara Hospital, Via Roma 56, 56126 Pisa, Italy.
| | - Patrizia Monteleone
- b Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - Maria Rosaria Parisen Toldin
- c Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - Cristiana Matteucci
- d Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - Maria Ruggiero
- e Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - Vito Cela
- f Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - Andrea Riccardo Genazzani
- g Department of Reproductive Medicine & Child Development, Division of Obstetrics & Gynecology, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| |
Collapse
|
36
|
Abstract
The corpus luteum (CL) is one of the few endocrine glands that forms from the remains of another organ and whose function and survival are limited in scope and time. The CL is the site of rapid remodeling, growth, differentiation, and death of cells originating from granulosa, theca, capillaries, and fibroblasts. The apparent raison d'etre of the CL is the production of progesterone, and all the structural and functional features of this gland are geared toward this end. Because of its unique importance for successful pregnancies, the mammals have evolved a complex series of checks and balances that maintains progesterone at appropriate levels throughout gestation. The formation, maintenance, regression, and steroidogenesis of the CL are among the most significant and closely regulated events in mammalian reproduction. During pregnancy, the fate of the CL depends on the interplay of ovarian, pituitary, and placental regulators. At the end of its life span, the CL undergoes a process of regression leading to its disappearance from the ovary and allowing the initiation of a new cycle. The generation of transgenic, knockout and knockin mice and the development of innovative technologies have revealed a novel role of several molecules in the reprogramming of granulosa cells into luteal cells and in the hormonal and molecular control of the function and demise of the CL. The current review highlights our knowledge on these key molecular events in rodents.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
37
|
Nikitenko LL, Cross T, Campo L, Turley H, Leek R, Manek S, Bicknell R, Rees MCP. Expression of terminally glycosylated calcitonin receptor-like receptor in uterine leiomyoma: endothelial phenotype and association with microvascular density. Clin Cancer Res 2006; 12:5648-58. [PMID: 17020966 DOI: 10.1158/1078-0432.ccr-06-0852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The role for the hypoxia-inducible angiogenic factor adrenomedullin (AM) in tumor growth and progression has been suggested. Calcitonin receptor-like receptor (CL) is a G protein-coupled receptor (GPCR) that mediates effects of AM, but little information is available on its expression and functional state in human tumors. The present study attempted to determine CL potential for antiangiogenic therapy of uterine leiomyoma. EXPERIMENTAL DESIGN AND RESULTS GPCR CL is transported to the cell surface and recognized by AM only when terminally/mature glycosylated. The presence and localization of this form of the receptor in tumor and surrounding myometrial tissues obtained from leiomyoma-bearing uteri were examined using deglycosylation, immunoblotting, and immunofluorescence analysis. The mature CL glycoprotein was expressed in both tissues and localized exclusively in normal and tumor endothelium within leiomyoma-bearing uteri. The functionality of the receptor expressed in myometrial microvascular endothelial cells (MMVEC) was examined in vitro using receptor internalization and angiogenic assays. The mature CL glycoprotein expressed by primary MMVECs was functional because AM interacted with this GPCR and induced its internalization as well as angiogenic effects (proliferation and migration) in MMVECs in vitro. Finally, the levels of tissue-expressed mature CL glycoprotein as a functional form of this GPCR were analyzed by immunoblotting. The expression of this functional form of the receptor in vivo was significantly decreased (P = 0.01) in leiomyoma tissue, and this was concurrent with the decrease in microvascular density (measured by Chalkley counting) in tumor compared with surrounding myometrium (P = 0.031). CONCLUSIONS Our findings suggest that GPCR CL mediates angiogenic effects of AM in myometrium and that further evaluation of the properties of the CL expressed in both normal and tumor endothelium in vivo may be essential before targeting this endothelial GPCR for antiangiogenic therapies.
Collapse
Affiliation(s)
- Leonid L Nikitenko
- Nuffield Department of Obstetrics and Gynaecology, The University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fischer C, Schneider M, Carmeliet P. Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol 2006:157-212. [PMID: 16999228 DOI: 10.1007/3-540-36028-x_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasculature is the first organ to arise during development. Blood vessels run through virtually every organ in the body (except the avascular cornea and the cartilage), assuring metabolic homeostasis by supplying oxygen and nutrients and removing waste products. Not surprisingly therefore, vessels are critical for organ growth in the embryo and for repair of wounded tissue in the adult. Notably, however, an imbalance in angiogenesis (the growth of blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischaemic, infectious and immune disorders. During the last two decades, an explosive interest in angiogenesis research has generated the necessary insights to develop the first clinically approved anti-angiogenic agents for cancer and blindness. This novel treatment is likely to change the face of medicine in the next decade, as over 500 million people worldwide are estimated to benefit from pro- or anti-angiogenesis treatment. In this following chapter, we discuss general key angiogenic mechanisms in health and disease, and highlight recent developments and perspectives of anti-angiogenic therapeutic strategies.
Collapse
Affiliation(s)
- C Fischer
- Centre for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KULeuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | |
Collapse
|
39
|
Yamada E, Yamazaki K, Takano K, Obara T, Sato K. Iodide inhibits vascular endothelial growth factor-A expression in cultured human thyroid follicles: a microarray search for effects of thyrotropin and iodide on angiogenesis factors. Thyroid 2006; 16:545-54. [PMID: 16839256 DOI: 10.1089/thy.2006.16.545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Excess iodide has been administered to hyperthyroid patients before thyroid surgery to reduce intraoperative bleeding and oozing. The purpose of this study was to elucidate the mechanism by which iodide reduces blood flow in the hypervascular thyroid gland. DESIGN Human thyroid follicles were cultured in the presence or absence of thyrotropin (TSH), or in medium containing various concentrations of iodide, and TSH-or iodide-regulated gene expression was analyzed by cDNA microarray. MAIN OUTCOME TSH stimulated the expression of thyroglobulin, peroxidase, sodium iodide symporter, vascular endothelial growth factor (VEGF)-A, VEGF-B, and placental growth factor (PGF) but decreased that of VEGF-C by half. When thyroid follicles were cultured in high-iodide (10(5) M) medium, TSH-induced expression of VEGF-A, VEGF-B, and PGF was decreased, accompanied by a reduction of VEGF-A release into the medium. Furthermore, expression of putative angiogenesis inhibitors such as urokinase-type plasminogen activator (PLAU) was increased. These findings were confirmed by real-time polymerase chain reaction (PCR) and Northern blot hybridization. CONCLUSIONS We have demonstrated for the first time that iodide at high concentration decreases the expression of the angiogenic factors VEGF-A, VEGF-B, and PGF, accompanied by an increase in the expression of possible antiangiogenic factors such as PLAU. These proangiogenic and antiangiogenic factors may at least partly account for the iodide-induced decrease in thyroid blood flow.
Collapse
Affiliation(s)
- Emiko Yamada
- Thyroid Disease Institute, Kanaji Hospital, Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Narazaki M, Tosato G. Tumor cell populations differ in angiogenic activity: a model system for spontaneous angiogenic switch can tell us why. J Natl Cancer Inst 2006; 98:294-5. [PMID: 16507821 DOI: 10.1093/jnci/djj099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
41
|
Matsumoto SI, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci U S A 2006; 103:4140-5. [PMID: 16537498 PMCID: PMC1449660 DOI: 10.1073/pnas.0508881103] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokineticins, multifunctional secreted proteins, activate two endogenous G protein-coupled receptors PKR1 and PKR2. From in situ analysis of the mouse brain, we discovered that PKR2 is predominantly expressed in the olfactory bulb (OB). To examine the role of PKR2 in the OB, we created PKR1- and PKR2-gene-disrupted mice (Pkr1(-/-) and Pkr2(-/-), respectively). Phenotypic analysis indicated that not Pkr1(-/-)but Pkr2(-/-)mice exhibited hypoplasia of the OB. This abnormality was observed in the early developmental stages of fetal OB in the Pkr2(-/-) mice. In addition, the Pkr2(-/-) mice showed severe atrophy of the reproductive system, including the testis, ovary, uterus, vagina, and mammary gland. In the Pkr2(-/-) mice, the plasma levels of testosterone and follicle-stimulating hormone were decreased, and the mRNA transcription levels of gonadotropin-releasing hormone in the hypothalamus and luteinizing hormone and follicle-stimulating hormone in the pituitary were also significantly reduced. Immunohistochemical analysis revealed that gonadotropin-releasing hormone neurons were absent in the hypothalamus in the Pkr2(-/-) mice. The phenotype of the Pkr2(-/-) mice showed similarity to the clinical features of Kallmann syndrome, a human disease characterized by association of hypogonadotropic hypogonadism and anosmia. Our current findings demonstrated that physiological activation of PKR2 is essential for normal development of the OB and sexual maturation.
Collapse
Affiliation(s)
- Shun-ichiro Matsumoto
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
- To whom correspondence may be addressed. E-mail:
or
| | - Chihiro Yamazaki
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- Trans Genic, Inc., Tokyo Office, Houkoku Building 7th Floor, 3-9-2 Kyobashi, Chuo-ku, Tokyo 104-0031, Japan; and
| | - Koh-hei Masumoto
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- Department of Physics, Informatics, and Biology, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masanori Naito
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Takatoshi Soga
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hideki Hiyama
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Mitsuyuki Matsumoto
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Jun Takasaki
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masazumi Kamohara
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ayako Matsuo
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroyuki Ishii
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masato Kobori
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masao Katoh
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hitoshi Matsushime
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kiyoshi Furuichi
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
42
|
Becker CM, Sampson DA, Rupnick MA, Rohan RM, Efstathiou JA, Short SM, Taylor GA, Folkman J, D'Amato RJ. Endostatin inhibits the growth of endometriotic lesions but does not affect fertility. Fertil Steril 2006; 84 Suppl 2:1144-55. [PMID: 16210006 DOI: 10.1016/j.fertnstert.2005.04.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/09/2005] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To determine whether endometriosis can be treated with the angiogenesis inhibitor endostatin and the effect of this treatment on fertility and reproduction. DESIGN Pharmacologic intervention in a surgically induced model of endometriosis and in female mice undergoing mating. SETTING Animal research facility. ANIMAL(S) Eight-week-old, female C57BL/6 and SCID mice. INTERVENTION(S) After implantation of autologous endometrium, mice received endostatin or the vehicle-matched control for 4 weeks. For the reproductive function study, mice receiving endostatin or vehicle were mated and reproductive functions were observed. MAIN OUTCOME MEASURE(S) Growth of endometriotic lesions after 4 weeks of treatment; estrous cycling, corpus luteum formation, serum hormone levels, and mating time as fertility measures; and pregnancy rates, length of pregnancy, fetal vitality, number, and outcome of litter as reproductive measures. RESULT(S) Endostatin suppressed the growth of endometriotic lesions by 47% compared with controls. Estrous cycling and corpus luteum formation were normal in both groups. Female mice receiving endostatin were as fertile as mice receiving vehicle, had normal pregnancies, and delivered the same number of pups. The offspring were healthy without teratogenic stigmata and reproduced normally themselves. CONCLUSION(S) Antiangiogenic therapy with endostatin may present a promising novel, nontoxic therapeutic option for patients with endometriosis.
Collapse
Affiliation(s)
- Christian M Becker
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Endothelial cells play a key role in the development and function of blood and lymph vessels. Excessive proliferation and transformation of endothelial cells lead to pathological angiogenesis/lymphangiogenesis or vascular malfunctions which are hallmarks of malignant disorders. There is emerging evidence that circulating endothelial progenitor cells (EPCs) also contribute significantly to these processes. Major progress has been achieved over the past few years in the identification of key molecules involved, and in targeting tumour angiogenesis for human therapy. Current research efforts are concentrated on deciphering the origin and functional properties of endothelium in various tumours, as well as endothelial neoplasms themselves. The aim of these studies is to investigate the molecular mechanisms regulating mobilisation of EPCs from bone marrow, and their homing and differentiation into mature endothelium in situ at sites of neovascularisation, as well as the role of viral oncogenes in regulating the plasticity and extending the life span of endothelial cells. Integrated understanding of the mechanisms regulating the properties and function of endothelial cells during tumourigenesis is resulting in the development of a number of exciting and bold approaches for the treatment of cancer.
Collapse
Affiliation(s)
- L Nikitenko
- CR U.K. Viral Oncology Group, Wolfson Institute for Biomedical Research, UCL, London WC1E 6BT, UK.
| | | |
Collapse
|
44
|
Wen S, Wilson DTR, Kuruppu S, Korsinczky MLJ, Hedrick J, Pang L, Szeto T, Hodgson WC, Alewood PF, Nicholson GM. Discovery of an MIT-like atracotoxin family: spider venom peptides that share sequence homology but not pharmacological properties with AVIT family proteins. Peptides 2005; 26:2412-26. [PMID: 15979762 DOI: 10.1016/j.peptides.2005.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 (PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MIT1, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pig ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1muM, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors.
Collapse
Affiliation(s)
- Suping Wen
- Neurotoxin Research Group, Department of Health Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Christensen C, Ambartsumian N, Gilestro G, Thomsen B, Comoglio P, Tamagnone L, Guldberg P, Lukanidin E. Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Res 2005; 65:6167-77. [PMID: 16024618 DOI: 10.1158/0008-5472.can-04-4309] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of a semaphorin, known as a repelling cue in axon guidance, Sema3E, correlates with the ability to form lung metastasis in murine adenocarcinoma cell models. Now, besides providing evidence for the relevance of SEMA3E to human disease by showing that SEMA3E is frequently expressed in human cancer cell lines and solid tumors from breast cancer patients, we show biological activities of Sema3E, which support the implication of Sema3E in tumor progression and metastasis. In vivo, expression of Sema3E in mammary adenocarcinoma cells induces the ability to form experimental lung metastasis, and in vitro, the Sema3E protein exhibits both migration and growth promoting activity on endothelial cells and pheochromocytoma cells. This represents the first evidence of a metastasis-promoting function of a class 3 semaphorin, as this class of genes has hitherto been implicated in tumor biology only as tumor suppressors and negative regulators of growth. Moreover, we show that the full-size Sema3E protein is converted into a p61-Sema3E isoform due to furin-dependent processing, and by analyzing processing-deficient and truncated forms, we show that the generation of p61-Sema3E is required and sufficient for the function of Sema3E in lung metastasis, cell migration, invasive growth, and extracellular signal-regulated kinase 1/2 activation of endothelial cells. These findings suggest that certain breast cancer cells may increase their lung-colonizing ability by converting the growth repellent, Sema3E, into a growth attractant and point to a type of semaphorin signaling different from the conventional signaling induced by full-size dimeric class 3 semaphorins.
Collapse
Affiliation(s)
- Claus Christensen
- Institute of Cancer Biology, Department of Biostatistics and Electronic Data Processing, Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Söderhäll I, Kim YA, Jiravanichpaisal P, Lee SY, Söderhäll K. An ancient role for a prokineticin domain in invertebrate hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2005; 174:6153-60. [PMID: 15879111 DOI: 10.4049/jimmunol.174.10.6153] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemopoietic development requires firm control of cell proliferation and differentiation. Although recent research has revealed conserved function of transcription factors and signaling pathways regulating lineage commitment in hemopoietic development in Drosophila melanogaster and vertebrates, little is known about hemopoietic cytokines among the invertebrate phyla. In the present study, we show that differentiation and growth of hemopoietic stem cells in vitro from an invertebrate, Pacifastacus leniusculus, require an endogenous cytokine-like factor, astakine, containing a prokineticin (PK) domain. Astakine induces a strong hematopoiesis response in live animals. An astakine homologue was also found in the shrimp, Penaeus monodon. So far, PK domains are only identified in vertebrates, in which they, for example, direct angiogenic growth. Our finding of the first PK-like cytokine characterized from any invertebrate provides novel information concerning the evolution of growth factors and blood cell development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Astacoidea
- Base Sequence
- Cell Differentiation/physiology
- Cell Division/physiology
- Cell Movement/physiology
- Cells, Cultured
- Cloning, Molecular
- Cytokines/genetics
- Cytokines/isolation & purification
- Cytokines/metabolism
- Cytokines/physiology
- Cytoplasmic Granules/metabolism
- Evolution, Molecular
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Hemocytes/cytology
- Hemocytes/metabolism
- Hemocytes/physiology
- Molecular Sequence Data
- Penaeidae
- Protein Structure, Tertiary/genetics
- Sequence Homology, Amino Acid
- Structural Homology, Protein
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/chemistry
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/isolation & purification
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/physiology
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Osusky KL, Hallahan DE, Fu A, Ye F, Shyr Y, Geng L. The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 2005; 7:225-33. [PMID: 15609077 DOI: 10.1007/s10456-004-3149-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 08/06/2004] [Indexed: 12/28/2022]
Abstract
Antiangiogenic agents produce regression in few tumors in clinical trials, but are effective in preventing recurrences. To determine whether the vascular endothelial growth factor (VEGF) receptor is a molecular target to prevent metastatic disease, we utilized a non-specific inhibitor of the VEGF receptor, SU11248. This receptor tyrosine kinase (RTK) inhibitor prevented migration of endothelial cells and markedly attenuated capillary-like tubule formation in endothelial cells in culture. Similarly, this agent prevented blood vessel formation in the tumor vascular window model. VEGF RTK inhibition produced minimal effects on established blood vessels in the tumor vascular window model and little effect on blood flow studied by power Doppler analysis. To determine whether these agents attenuate the development of metastases, Lewis lung carcinoma tumors were resected from the dorsal skin and lung metastases were quantified with and without treatment with SU11248. The RTK inhibitor attenuated the formation of lung metastases following resection of the hind limb tumor. In contrast, these agents did not induce regression of primaries but slowed the progression of tumor growth. These findings suggest that the greatest role for VEGF antagonists may be to prevent the formation of new blood vessels, during and after conventional therapy is given to existing neoplastic disease.
Collapse
Affiliation(s)
- Katherine L Osusky
- Department of Radiation Oncology, Vanderbilt University, 1301 22 Avenue South, B-902, Nashville, TN 37232-5671, USA
| | | | | | | | | | | |
Collapse
|
48
|
Strieth S, von Johnston V, Eichhorn ME, Eichhon ME, Enders G, Krasnici S, Thein E, Hammer C, Dellian M. A new animal model to assess angiogenesis and endocrine function of parathyroid heterografts in vivo. Transplantation 2005; 79:392-400. [PMID: 15729164 DOI: 10.1097/01.tp.0000151633.92173.75] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is still a matter of investigation how angiogenesis and restoration of gland perfusion determine graft function after free parathyroid autotransplantation. We provide a new animal model allowing simultaneous and repetitive in vivo assessment of angiogenesis and endocrine function of parathyroid transplants. METHODS Fresh human parathyroid tissue from patients with secondary hyperparathyroidism was grafted into dorsal skinfold chamber preparations of athymic nude mice (CD1-nu; n=8). Equivalent pieces of the same human donor specimens were heat-inactivated and served as control grafts (n=7). RESULTS In all animals receiving parathyroid transplants, intact human parathyroid hormone levels were detectable by species-specific enzyme-linked immunosorbent assay analysis of plasma samples on day 5 after transplantation and increased by 2.5-fold over the observation period (19 days) in contrast with controls. Plasma Ca levels revealed no differences between the groups. On day 5 after transplantation, intravital fluorescence microscopy revealed murine angiogenic microvessels sprouting along nonperfused human donor vessels, and 1 week later functional microvasculature was established in all parathyroid transplants. Histologic analysis revealed well-vascularized endocrine tissue. In contrast, control grafts were necrotic and partly resorbed; they exhibited no angiogenic activity or well-vascularized fat cells indicating fatty degeneration. In addition, species-specific Western blot analysis revealed vascular endothelial growth factor expression of parathyroid transplants rather than functional vessel density as the functional parameter of angiogenesis determining transplant function in vivo. CONCLUSION This model may serve to understand mechanisms associated with specific parathyroid transplant angiogenesis and its significance for transplant function to optimize clinical success of autotransplantation in therapy-resistant patients.
Collapse
Affiliation(s)
- Sebastian Strieth
- Institute for Surgical Research, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005:209-31. [PMID: 15617481 DOI: 10.1007/3-7643-7311-3_15] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Lacković V, Kostić V, Sternić N, Kanjuh V, Vuković I. [Angiogenesis in the central nervous system: a role of vascular endothelial growth factor]. VOJNOSANIT PREGL 2005; 62:59-67. [PMID: 15715351 DOI: 10.2298/vsp0501059l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|