1
|
Ghosh S, Bishnoi B, Das S. Artery regeneration: Molecules, mechanisms and impact on organ function. Semin Cell Dev Biol 2025; 171:103611. [PMID: 40318557 DOI: 10.1016/j.semcdb.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different in vitro cellular reprogramming and tissue engineering approaches to promote artery regeneration, in vivo. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.
Collapse
Affiliation(s)
- Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
2
|
Chen QH, Zheng JY, Wang DC. Asthma and stem cell therapy. World J Stem Cells 2025; 17:103599. [DOI: 10.4252/wjsc.v17.i2.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025] Open
Abstract
The global incidence of asthma, a leading respiratory disorder affecting more than 235 million people, has dramatically increased in recent years. Characterized by chronic airway inflammation and an imbalanced response to airborne irritants, this chronic condition is associated with elevated levels of inflammatory factors and symptoms such as dyspnea, cough, wheezing, and chest tightness. Conventional asthma therapies, such as corticosteroids, long-acting β-agonists, and anti-inflammatory agents, often evoke diverse adverse reactions and fail to reduce symptoms and hospitalization rates over the long term effectively. These limitations have prompted researchers to explore innovative therapeutic strategies, including stem cell-related interventions, offering hope to those afflicted with this incurable disease. In this review, we describe the characteristics of stem cells and critically assess the potential and challenges of stem cell-based therapies to improve disease management and treatment outcomes for asthma and other diseases.
Collapse
Affiliation(s)
- Qiong-Hua Chen
- Department of Respiratory Medicine, Quanzhou Women’s and Children’s Hospital, Clinical Medical College of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jing-Yang Zheng
- Department of Respiratory Medicine, Quanzhou Women’s and Children’s Hospital, Clinical Medical College of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Da-Chun Wang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX 77030, United States
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
3
|
Smadja DM, Mauge L, Rancic J, Gaussem P, Feraud O, Oudrhiri N, Bennaceur-Griscelli A. Comparative Evaluation of Endothelial Colony-Forming Cells from Cord and Adult Blood vs. Human Embryonic Stem Cell-Derived Endothelial Cells: Insights into Therapeutic Angiogenesis Potential. Stem Cell Rev Rep 2025; 21:581-588. [PMID: 39612122 DOI: 10.1007/s12015-024-10830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The discovery of endothelial progenitor cells has revolutionized our understanding of postnatal blood vessel formation, with endothelial colony-forming cells (ECFCs) emerging as key players in vasculogenesis. Among various ECFC sources, cord blood-derived ECFCs (CB-ECFCs) are of particular interest due to their superior proliferative and clonogenic potential and their ability to promote vascular network formation. Human embryonic stem cell-derived endothelial cells (hESC-ECs) have also shown potential in regenerative medicine, though their vasculogenic efficacy remains unclear compared to CB- and adult blood-derived ECFCs (AB-ECFCs). This study aimed to directly compare the angiogenic and vasculogenic capabilities of CB-ECFCs, AB-ECFCs, and hESC-ECs in vitro and in vivo. Our results demonstrated that CB-ECFCs had a significantly higher proliferation rate than both AB-ECFCs and hESC-ECs (p < 0.01). In tube formation assays, CB-ECFCs exhibited superior ability to form capillary-like structures compared to hESC-ECs (p < 0.0001) and AB-ECFCs (p < 0.01). In vivo, CB-ECFCs significantly improved blood flow recovery in ischemic tissue (p < 0.01), outperforming both AB-ECFCs and hESC-ECs, with no significant recovery observed in the latter two groups. These findings suggest that CB-ECFCs represent a more effective cell source for therapeutic angiogenesis, while further optimization is needed to enhance the efficacy of hESC-ECs for clinical applications. Future research should explore the molecular mechanisms underlying the superior regenerative potential of CB-ECFCs and focus on improving the stability and functionality of stem cell-derived ECs for therapeutic use.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France.
| | - Laetitia Mauge
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
- Université Paris Cité, INSERM, PARCC, Paris, F-75015, France
| | - Jeanne Rancic
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Pascale Gaussem
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Olivier Feraud
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France
| | - Noufissa Oudrhiri
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France
- CITHERA UMS45, Infrastructure-INGESTEM, INSERM, Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
- Hematology Department, AP-HP, Hôpital Universitaire Paris Sud-Kremlin Bicêtre, Kremlin-Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France.
- CITHERA UMS45, Infrastructure-INGESTEM, INSERM, Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France.
- Hematology Department, AP-HP, Hôpital Universitaire Paris Sud-Kremlin Bicêtre, Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Ying Z, Lyu L, Xu X, Wen Z, Xue J, Chen M, Li Z, Jiang L, Chen T. Resident vascular Sca1 + progenitors differentiate into endothelial cells in vascular remodeling via miR-145-5p/ERG signaling pathway. iScience 2024; 27:110080. [PMID: 38883819 PMCID: PMC11176791 DOI: 10.1016/j.isci.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial cell (EC) damage or dysfunction serves as the initial event in the pathogenesis of various cardiovascular diseases. Progenitor cells have been postulated to be able to differentiate into ECs, facilitate endothelial regeneration, and alleviate vascular pathological remodeling. However, the precise cellular origins and underlying mechanisms remain elusive. Through single-cell RNA sequencing (scRNA-seq), we identified an increasing population of progenitors expressing stem cell antigen 1 (Sca1) during vascular remodeling in mice. Using both mouse femoral artery injury and vein graft models, we determined that Sca1+ cells differentiate into ECs, restored endothelium in arterial and venous remodeling processes. Notably, we have observed that the differentiation of Sca1+ cells into ECs is negatively regulated by the microRNA-145-5p (miR-145-5p)-Erythroblast transformation-specific-related gene (ERG) pathway. Inhibiting miR-145-5p promoted Sca1+ cell differentiation and reduced neointimal formation after vascular injury. Finally, a similar downregulation of miR-145-5p in human arteriovenous fistula was observed comparing to healthy veins.
Collapse
Affiliation(s)
- Zhangquan Ying
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lingxia Lyu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaodong Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zuoshi Wen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianing Xue
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengjia Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhoubin Li
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
5
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Jiao YC, Wang YX, Liu WZ, Xu JW, Zhao YY, Yan CZ, Liu FC. Advances in the differentiation of pluripotent stem cells into vascular cells. World J Stem Cells 2024; 16:137-150. [PMID: 38455095 PMCID: PMC10915963 DOI: 10.4252/wjsc.v16.i2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.
Collapse
Affiliation(s)
- Yi-Chang Jiao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ying-Xin Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Zhu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jing-Wen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao 266103, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China
| | - Fu-Chen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
7
|
Dubey P, Batra V, Sarwalia P, Nayak S, Baithalu R, Kumar R, Datta TK. miR-1246 is implicated as a possible candidate for endometrium remodelling facilitating implantation in buffalo (Bubalus bubalis). Vet Med Sci 2022; 9:443-456. [PMID: 36282011 PMCID: PMC9857007 DOI: 10.1002/vms3.968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The microRNAs (miRs) secreted by the trophectoderm (TE) cells have recently been implicated in the conceptus-endometrial cross talk during implantation and placentation. These miRs modulate various cellular processes during conception and throughout the pregnancy by regulating the gene expression in the foetal and maternal tissues. OBJECTIVES This study was undertaken to elucidate the function of TE secreted miRNAs in the maternal-foetal cross-talk during implantation/placentation in buffalo. METHODS The in vitro produced blastocysts were cultured on a cumulus feeder layer for 21 days. The relative expression profiles of a selected panel of miRs was generated using the spent media collected on Days 0, 7, 12, 16, and 21. A custom-designed mirVana™ miRNA mimic was used to transfect the endometrial epithelial cells (EECs) in order to determine the role of miRNA exhibiting highest expression on Days 21 and 21. RESULTS The expression of miR-1246 (p < 0.001) and let-7b (p < 0.01) was found to be significantly higher on Day 21 of TE culture in comparison to the control (Day 0). This elevated expression indicated the involvement of these miRs in the maternal-foetal cross-talk. Interestingly, after the transfection of EECs with miRNA mimic for miR-1246 (a novel molecule vis-à-vis implantation), the expression of beta-catenin and mucin1 in these cells was found to be significantly (p < 0.05) downregulated vis-à-vis the control, that is, the IFN-τ primed EECs (before transfection). CONCLUSIONS The TE secreted miR-1246 appeared to lower the expression of the endometrial receptivity genes (mucin1 and beta-catenin) which apparently assists the endometrium in preparing for placentation.
Collapse
Affiliation(s)
- Pratiksha Dubey
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia,Department of Biological SciencesIndian Institute of Science Education and ResearchMohaliIndia
| | - Vipul Batra
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Parul Sarwalia
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Samiksha Nayak
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Rubina Baithalu
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Rakesh Kumar
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Tirtha Kumar Datta
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia,ICAR‐Central Institute for Research on BuffaloesHisarHaryanaIndia
| |
Collapse
|
8
|
Chen Y, Ding BS. Comprehensive Review of the Vascular Niche in Regulating Organ Regeneration and Fibrosis. Stem Cells Transl Med 2022; 11:1135-1142. [PMID: 36169406 DOI: 10.1093/stcltm/szac070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022] Open
Abstract
The vasculature occupies a large area of the body, and none of the physiological activities can be carried out without blood vessels. Blood vessels are not just passive conduits and barriers for delivering blood and nutrients. Meanwhile, endothelial cells covering the vascular lumen establish vascular niches by deploying some growth factors, known as angiocrine factors, and actively participate in the regulation of a variety of physiological processes, such as organ regeneration and fibrosis and the occurrence and development of cancer. After organ injury, vascular endothelial cells regulate the repair process by secreting various angiocrine factors, triggering the proliferation and differentiation process of stem cells. Therefore, analyzing the vascular niche and exploring the factors that maintain vascular homeostasis can provide strong theoretical support for clinical treatment targeting blood vessels. Here we mainly discuss the regulatory mechanisms of the vascular niche in organ regeneration and fibrosis.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Jung C, Oh JE, Lee S, Yoon YS. Generation and Application of Directly Reprogrammed Endothelial Cells. Korean Circ J 2022; 52:643-658. [PMID: 36097834 PMCID: PMC9470489 DOI: 10.4070/kcj.2022.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-based therapy has emerged as a promising option for treating advanced ischemic cardiovascular disease by inducing vascular regeneration. However, clinical trials with adult cells turned out disappointing in general. As a newer approach, direct reprogramming has emerged to efficiently generate endothelial cells (ECs), which can promote neovascularization and vascular regeneration. This review provides recent updates on the direct endothelial reprogramming. In general, directly reprogrammed ECs can be generated by two approaches: one by transitioning through a plastic intermediate state and the other in a one-step transition without any intermediate states toward pluripotency. Moreover, the methods to deliver reprogramming factors and chemicals for the fate conversion are highlighted. Next, the therapeutic effects of the directly reprogrammed ECs on animal models are reviewed in detail. Other applications using directly reprogrammed ECs, such as tissue engineering and disease modeling, are also discussed. Lastly, the remaining questions and foremost challenges are addressed.
Collapse
Affiliation(s)
- Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Oh
- Research and Development Center, KarisBio Inc., Seoul, Korea
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Research and Development Center, KarisBio Inc., Seoul, Korea
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022; 5:635. [PMID: 35768543 PMCID: PMC9243106 DOI: 10.1038/s42003-022-03578-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine. Drug-loaded liposomal nanoparticles conjugated to endothelial colony-forming cells can improve the vasculogenic potential of vascular progenitor cells exposed to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shanique Edwards
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kellen Round
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Owen
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pietro Sainaghi
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Siyuan Zhang
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura S Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
11
|
A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. Int J Oral Sci 2022; 14:31. [PMID: 35732648 PMCID: PMC9217949 DOI: 10.1038/s41368-022-00179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient’s appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Collapse
|
12
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study. Int J Mol Sci 2022; 23:ijms23042331. [PMID: 35216446 PMCID: PMC8875109 DOI: 10.3390/ijms23042331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022] Open
Abstract
Human hematopoietic stem/progenitor cell (HSPC)-based gene therapy is a promising direction for curing HIV-1-infected individuals. The zinc finger protein (2LTRZFP) designed to target the 2-LTR-circle junction of HIV-1 cDNA was previously reported as an intracellular antiviral molecular scaffold that prevents HIV integration. Here, we elucidate the efficacy and safety of using 2LTRZFP in human CD34+ HSPCs. We transduced 2LTRZFP which has the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs using a lentiviral vector. The 2LTRZFPmCherry-transduced HSPCs were subsequently differentiated into macrophages. The expression levels of pro-apoptotic proteins of the 2LTRZFPmCherry-transduced HSPCs showed no significant difference from those of the non-transduced control. Furthermore, the 2LTRZFPmCherry-transduced HSPCs were successfully differentiated into mature macrophages, which had normal phagocytic function. The cytokine secretion assay demonstrated that 2LTRZFPmCherry-transduced CD34+ derived macrophages promoted the polarization towards classically activated (M1) subtypes. More importantly, the 2LTRZFPmCherry transduced cells significantly exhibited resistance to HIV-1 integration in vitro. Our findings demonstrate that the 2LTRZFPmCherry-transduced macrophages were found to be functionally and phenotypically normal, with no adverse effects of the anti-HIV-1 scaffold. Our data suggest that the anti-HIV-1 integrase scaffold is a promising antiviral molecule that could be applied to human CD34+ HSPC-based gene therapy for AIDS patients.
Collapse
|
14
|
Current Progress in Vascular Engineering and Its Clinical Applications. Cells 2022; 11:cells11030493. [PMID: 35159302 PMCID: PMC8834640 DOI: 10.3390/cells11030493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary heart disease (CHD) is caused by narrowing or blockage of coronary arteries due to atherosclerosis. Coronary artery bypass grafting (CABG) is widely used for the treatment of severe CHD cases. Although autologous vessels are a preferred choice, healthy autologous vessels are not always available; hence there is a demand for tissue engineered vascular grafts (TEVGs) to be used as alternatives. However, producing clinical grade implantable TEVGs that could healthily survive in the host with long-term patency is still a great challenge. There are additional difficulties in producing small diameter (<6 mm) vascular conduits. As a result, there have not been TEVGs that are commercially available. Properties of vascular scaffolds such as tensile strength, thrombogenicity and immunogenicity are key factors that determine the biocompatibility of TEVGs. The source of vascular cells employed to produce TEVGs is a limiting factor for large-scale productions. Advanced technologies including the combined use of natural and biodegradable synthetic materials for scaffolds in conjunction with the use of mesenchyme stem cells or induced pluripotent stem cells (iPSCs) provide promising solutions for vascular tissue engineering. The aim of this review is to provide an update on various aspects in this field and the current status of TEVG clinical applications.
Collapse
|
15
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
16
|
Jiang WC, Hsu WY, Ao-Ieong WS, Wang CY, Wang J, Yet SF. A novel engineered vascular construct of stem cell-laden 3D-printed PGSA scaffold enhances tissue revascularization. Biofabrication 2021; 13. [PMID: 34233298 DOI: 10.1088/1758-5090/ac1259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022]
Abstract
Development of transplantable engineered tissue has been hampered by lacking vascular network within the engineered tissue. Three-dimensional (3D) printing has emerged as a new technology with great potential in fabrication and customization of geometric microstructure. In this study, utilizing digital light processing system, we manufactured a recently designed novel 3D architecture scaffold with poly(glycerol sebacate) acrylate (PGSA). Vascular construct was subsequently generated by seeding stem cells within this scaffold. PGSA provided inductive substrate in terms of supporting three-germ layer differentiation of embryonic stem cells (ESCs) and also promoting ESCs-derived vascular progenitor cells (VPCs) differentiation into endothelial cells (ECs). Furthermore, the differentiation efficiency of VPCs into ECs on PGSA was much higher than that on collagen IV or fibronectin. The results from seeding VPCs in the rotating hexagonal PGSA scaffold suggest that this architectural framework is highly efficient for cell engraftment in 3D structures. After long-term suspension culture of the VPCs in scaffold under directed EC differentiation condition, VPC-differentiated ECs were populated in the scaffold and expressed EC markers. Transplantation of the vascular construct in mice resulted in formation of new vascular network and integration of the microvasculature within the scaffold into the existing vasculature of host tissue. Importantly, in a mouse model of wound healing, ECs from the transplanted vascular construct directly contributed to revascularization and enhanced blood perfusion at the injured site. Collectively, this transplantable vascular construct provides an innovative alternative therapeutic strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wan-Yuan Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yen Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
17
|
Alsaigh T, Di Bartolo BA, Mulangala J, Figtree GA, Leeper NJ. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease. Circ Res 2021; 128:1927-1943. [PMID: 34110900 PMCID: PMC8208504 DOI: 10.1161/circresaha.121.318265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral arterial disease is a growing worldwide problem with a wide spectrum of clinical severity and is projected to consume >$21 billion per year in the United States alone. While vascular researchers have brought several therapies to the clinic in recent years, few of these approaches have leveraged advances in high-throughput discovery screens, novel translational models, or innovative trial designs. In the following review, we discuss recent advances in unbiased genomics and broader omics technology platforms, along with preclinical vascular models designed to enhance our understanding of disease pathobiology and prioritize targets for additional investigation. Furthermore, we summarize novel approaches to clinical studies in subjects with claudication and ischemic ulceration, with an emphasis on streamlining and accelerating bench-to-bedside translation. By providing a framework designed to enhance each aspect of future clinical development programs, we hope to enrich the pipeline of therapies that may prevent loss of life and limb for those with peripheral arterial disease.
Collapse
Affiliation(s)
- Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Belinda A. Di Bartolo
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | | | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
18
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Vasyutin I, Butnaru D, Lyundup A, Timashev P, Vinarov A, Kuznetsov S, Atala A, Zhang Y. Frontiers in urethra regeneration: current state and future perspective. Biomed Mater 2021; 16. [PMID: 32503009 DOI: 10.1088/1748-605x/ab99d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Despite the positive achievements attained, the treatment of male urethral strictures and hypospadiases still remains a challenge, particularly in cases of severe urethral defects. Complications and the need for additional interventions in such cases are common. Also, shortage of autologous tissue for graft harvesting and significant morbidity in the location of harvesting present problems and often lead to staged treatment. Tissue engineering provides a promising alternative to the current sources of grafts for urethroplasty. Since the first experiments in urethral substitution with tissue engineered grafts, this topic in regenerative medicine has grown remarkably, as many different types of tissue-engineered grafts and approaches in graft design have been suggested and testedin vivo. However, there have been only a few clinical trials of tissue-engineered grafts in urethral substitution, involving hardly more than a hundred patients overall. This indicates that the topic is still in its inception, and the search for the best graft design is continuing. The current review focuses on the state of the art in urethral regeneration with tissue engineering technology. It gives a comprehensive overview of the components of the tissue-engineered graft and an overview of the steps in graft development. Different cell sources, types of scaffolds, assembling approaches, options for vascularization enhancement and preclinical models are considered.
Collapse
Affiliation(s)
- Igor Vasyutin
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Denis Butnaru
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Alexey Lyundup
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrey Vinarov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Sergey Kuznetsov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| | - Yuanyuan Zhang
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia.,Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
20
|
Chen H, Zhang Y, Ni T, Ding P, Zan Y, Cai X, Zhang Y, Liu M, Pei R. Construction of a Silk Fibroin/Polyethylene Glycol Double Network Hydrogel with Co-Culture of HUVECs and UCMSCs for a Functional Vascular Network. ACS APPLIED BIO MATERIALS 2021; 4:406-419. [PMID: 35014292 DOI: 10.1021/acsabm.0c00353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min. This work also demonstrates that coencapsulation of human umbilical vein endothelial cells (HUVECs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) into the DN hydrogel can facilitate the formation of more mature vessels and complete the capillary network in comparison with the hydrogels encapsulated with a single cell type both in vitro and in vivo. Taking together, the DN hydrogel, combined with coencapsulation of HUVECs and UCMSCs, represents a strategy for the construction of a functional vascular network.
Collapse
Affiliation(s)
- Hong Chen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Institut de Science des Matériaux de Mulhouse, IS2M-UMR CNRS 7361, UHA, 15, Rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xue Cai
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Yiwei Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
21
|
Abstract
The capability of forming functional blood vessel networks is critical for the characterization of endothelial cells. In this chapter, we will review a modified in vivo vascular network forming assay by replacing traditional mouse tumor-derived Matrigel with a well-defined collagen-fibrin hydrogel. The assay is reliable and does not require special equipment, surgical procedure, or a skilled person to perform. Moreover, investigators can modify this method on-demand for testing different cell sources, perturbation of gene functions, growth factors, and pharmaceutical molecules, and for the development and investigation of strategies to enhance neovascularization of engineered human tissues and organs.
Collapse
|
22
|
Ibrahim M, Xie B, Richardson MK. The growth of endothelial-like cells in zebrafish embryoid body culture. Exp Cell Res 2020; 392:112032. [PMID: 32353375 DOI: 10.1016/j.yexcr.2020.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
There is increasing interest in the possibility of culturing organ-like tissues (organoids) in vitro for biomedical applications. The ability to culture organoids would be greatly enhanced by having a functional circulation in vitro. The endothelial cell is the most important cell type in this context. Endothelial cells can be derived from pluripotent embryonic blastocyst cells in aggregates called embryoid bodies. Here, we examine the yield of endothelial-like cells in embryoid bodies (EBs) developed from transgenic zebrafish fli:GFP and kdrl:GFP blastocyst embryos. The isolated blastocyst cells developed into EBs within the first 24 h of culture and contained fli:GFP+ (putative endothelial, hematopoietic and other cell types); or kdrl:GFP+ (endothelial) cells. The addition of endothelial growth supplements to the media and culture on collagen type-I substratum increased the percentages of fli:GFP+ and kdrl:GFP+ cells in culture. We found that EBs developed in hanging-drop cultures possessed a higher percentage of fli:GFP+ (45.0 ± 3.1%) and kdrl:GFP+ cells (8.7 ± 0.7%) than those developed on conventional substrata (34.5 ± 1.4% or 5.2 ± 0.4%, respectively). The transcriptome analysis showed a higher expression of VEGF and TGFβ genes in EB cultures compared to the adherent cultures. When transferred to conventional culture, the percentage of fli:GFP+ or kdrl:GFP+ cells declined significantly over subsequent days in the EBs. The fli:GFP+ cells formed a monolayer around the embryoid bodies, while the kdrl:GFP+ cells formed vascular network-like structures in the embryoid bodies. Differences were observed in the spreading of fli:GFP+ cells, and network formation of kdrl:GFP+ cells on different substrates. The fli:GFP+ cells could be maintained in primary culture and sub-cultures. By contrast, kdrl:GFP+ cells were almost completely absent at 8d of primary culture. Our culture model allows real-time observation of fli:GFP+ and kdrl:GFP+ cells in culture. The results obtained from this study will be important for the development of vascular and endothelial cell culture using embryonic cells.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Institute of Biology Leiden, Leiden University, The Netherlands; Animal Biotechnology Division, Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Pakistan
| | - Bing Xie
- Institute of Biology Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
23
|
Zhang H, Aoki T, Hatano K, Kabayama K, Nakagawa M, Fukase K, Okamura Y. Porous nanosheet wrapping for live imaging of suspension cells. J Mater Chem B 2020; 6:6622-6628. [PMID: 31999284 DOI: 10.1039/c8tb01943f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of cell imaging, it is still a practical challenge to obtain the high quality live imaging of suspension cells, mainly due to undesirable cell movement in the imaging field during observation. This study describes a porous nanosheet wrapping method to noninvasively immobilize suspension cells for their live imaging. Perforated nanopores are fabricated on a nanosheet to enable the addition of external chemicals to cells, ranging from small molecules to macromolecules. Through several case studies, such as the live imaging of membrane staining of liposomes, transferrin endocytosis of B cells, and activation of platelets, it is verified that the confined space made by the nanosheet could provide a hydrodynamically stable environment for suspension cells, even if an aqueous stimulus is added through the nanopores in a static or a flowing condition. With this method, the live imaging of the whole activation process on a specific suspension cell in the imaging field is achieved, which is not feasible with the existing cell immobilization methods. This study suggests that the method of porous nanosheet wrapping will facilitate the visualization of the dynamic functions of suspension cells.
Collapse
Affiliation(s)
- Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Takuto Aoki
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kanae Hatano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masaru Nakagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan. and Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
24
|
Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater 2020; 5:74-81. [PMID: 31989061 PMCID: PMC6965207 DOI: 10.1016/j.bioactmat.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease, ranging from congenital heart disease to adult myocardial infarction, is the leading cause of death worldwide. In pursuit of reliable cardiovascular regenerative medicine, human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer plenty of potential cell-based applications. HPSCs are capable of proliferating indefinitely in an undifferentiated state, and are also pluripotent, being able to differentiate into virtually any somatic cell types given specific stepwise cues, thus representing an unlimited source to generate functional cardiovascular cells for heart regeneration. Here we recapitulated current advances in developing efficient protocols to generate hPSC-derived cardiovascular cell lineages, including cardiomyocytes, endothelial cells, and epicardial cells. We also discussed applications of hPSC-derived cells in combination with compatible bioactive materials, promising trials of cell transplantation in animal models of myocardial infarction, and potential hurdles to bring us closer to the ultimate goal of cell-based heart repair.
HPSCs hold tremendous therapeutic potential for treating CVDs. HPSCs could differentiate into multiple cardiovascular cell lineages. Transplantation of hPSC-derived cardiovascular cells and biomaterials shows promising results, but challenges still remain.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
25
|
Chen T, Karamariti E, Hong X, Deng J, Wu Y, Gu W, Simpson R, Wong MM, Yu B, Hu Y, Qu A, Xu Q, Zhang L. DKK3 (Dikkopf-3) Transdifferentiates Fibroblasts Into Functional Endothelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2020; 39:765-773. [PMID: 30816803 DOI: 10.1161/atvbaha.118.311919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective- To determine the role of a cytokine-like protein DKK3 (dikkopf-3) in directly transdifferentiating fibroblasts into endothelial cells (ECs) and the underlying mechanisms. Approach and Results- DKK3 overexpression in human fibroblasts under defined conditions for 4 days led to a notable change in cell morphology and progenitor gene expression. It was revealed that these cells went through mesenchymal-to-epithelial transition and subsequently expressed KDR (kinase insert domain receptor) at high levels. Further culture in EC defined media led to differentiation of these progenitors into functional ECs capable of angiogenesis both in vitro and in vivo, which was regulated by the VEGF (vascular endothelial growth factor)/miR (microRNA)-125a-5p/Stat3 (signal transducer and activator of transcription factor 3) axis. More importantly, fibroblast-derived ECs showed the ability to form a patent endothelium-like monolayer in tissue-engineered vascular grafts ex vivo. Conclusions- These data demonstrate that DKK3 is capable of directly differentiating human fibroblasts to functional ECs under defined media and provides a novel potential strategy for endothelial regeneration.
Collapse
Affiliation(s)
- Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| | - Eirini Karamariti
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Xuechong Hong
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Jiacheng Deng
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Yutao Wu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Russell Simpson
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Mei Mei Wong
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China (B.Y., A.Q.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.).,School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom (E.K., X.H., J.D., W.D., R.S., M.M.W., Y.H., Q.X.)
| | - Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (T.C., Y.W., Q.X., L.Z.)
| |
Collapse
|
26
|
Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials 2020; 234:119747. [PMID: 31951971 DOI: 10.1016/j.biomaterials.2019.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
The effective deployment of arterial (AECs), venous (VECs) and stem cell-derived endothelial cells (PSC-ECs) in clinical applications requires understanding of their distinctive phenotypic and functional characteristics, including their responses to microenvironmental cues. Efforts to mimic the in-vivo vascular basement membrane milieu have led to the design and fabrication of nano- and micro-topographical substrates. Although the basement membrane architectures of arteries and veins are different, investigations into the effects of substrate topographies have so far focused on generic EC characteristics. Thus, topographical modulation of arterial- or venous-specific EC phenotype and function remains unknown. Here, we comprehensively evaluated the effects of 16 unique topographies on primary AECs, VECs and human PSC-ECs using a Multi Architectural (MARC) Chip. Gratings and micro-lenses augmented venous-specific phenotypes and depressed arterial functions in VECs; while AECs did not respond consistently to topography. PSC-ECs exhibited phenotypic and functional maturation towards an arterial subtype with increased angiogenic potential, NOTCH1 and Ac-LDL expression on gratings. Specific topographies could elicit different phenotypic and functional changes, despite similar morphological response in different ECs, demonstrating no direct correlation between the two responses.
Collapse
|
27
|
Sex-dependent VEGF expression underlies variations in human pluripotent stem cell to endothelial progenitor differentiation. Sci Rep 2019; 9:16696. [PMID: 31723192 PMCID: PMC6853961 DOI: 10.1038/s41598-019-53054-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies because of their unique combination of two properties: pluripotency and a high proliferative capacity. To realize this potential, development of efficient hPSC differentiation protocols is required. In this work, sex-based differences are identified in a GSK3 inhibitor based endothelial progenitor differentiation protocol. While male hPSCs efficiently differentiate into CD34 + CD31+ endothelial progenitors upon GSK3 inhibition, female hPSCs showed limited differentiation capacity using this protocol. Using VE-cadherin-GFP knockin reporter cells, female cells showed significantly increased differentiation efficiency when treated with VEGF during the second stage of endothelial progenitor differentiation. Interestingly, male cells showed no significant change in differentiation efficiency with VEGF treatment, but did show augmented early activation of VE-cadherin expression. A sex-based difference in endogenous expression of VEGF was identified that is likely the underlying cause of discrepancies in sex-dependent differentiation efficiency. These findings highlight the importance of sex differences in progenitor biology and the development of new stem cell differentiation protocols.
Collapse
|
28
|
Palladino A, Mavaro I, Pizzoleo C, De Felice E, Lucini C, de Girolamo P, Netti PA, Attanasio C. Induced Pluripotent Stem Cells as Vasculature Forming Entities. J Clin Med 2019; 8:E1782. [PMID: 31731464 PMCID: PMC6912734 DOI: 10.3390/jcm8111782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tissue engineering (TE) pursues the ambitious goal to heal damaged tissues. One of the most successful TE approaches relies on the use of scaffolds specifically designed and fabricated to promote tissue growth. During regeneration the guidance of biological events may be essential to sustain vasculature neoformation inside the engineered scaffold. In this context, one of the most effective strategies includes the incorporation of vasculature forming cells, namely endothelial cells (EC), into engineered constructs. However, the most common EC sources currently available, intended as primary cells, are affected by several limitations that make them inappropriate to personalized medicine. Human induced Pluripotent Stem Cells (hiPSC), since the time of their discovery, represent an unprecedented opportunity for regenerative medicine applications. Unfortunately, human induced Pluripotent Stem Cells-Endothelial Cells (hiPSC-ECs) still display significant safety issues. In this work, we reviewed the most effective protocols to induce pluripotency, to generate cells displaying the endothelial phenotype and to perform an efficient and safe cell selection. We also provide noteworthy examples of both in vitro and in vivo applications of hiPSC-ECs in order to highlight their ability to form functional blood vessels. In conclusion, we propose hiPSC-ECs as the preferred source of endothelial cells currently available in the field of personalized regenerative medicine.
Collapse
Affiliation(s)
- Antonio Palladino
- CESMA—Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, 80146 Naples, Italy
| | - Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Carmela Pizzoleo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo A. Netti
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
29
|
Abstract
Accumulating evidence demonstrates that pre-vascularization of tissue-engineered constructs can significantly enhance their survival and engraftment upon transplantation. Endothelial cells (ECs), the basic component of vasculatures, are indispensable to the entire process of pre-vascularization. However, the source of ECs still poses an issue. Recent studies confirmed that diverse approaches are available in the derivation of ECs for tissue engineering, such as direct isolation of autologous ECs, reprogramming of somatic cells, and induced differentiation of stem cells in typology. Herein, we discussed a variety of human stem cells (i.e., totipotent, pluripotent, multipotent, oligopotent, and unipotent stem cells), which can be induced to differentiate into ECs and reviewed the multifarious approaches for EC generation, such as 3D EB formation for embryonic stem cells (ESCs), stem cell-somatic cell co-culture, and directed endothelial differentiation with growth factors in conventional 2D culture.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Jiacai He
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Jianguang Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatological Hospital and College, Anhui Medical University, 69 Meishan Road, Hefei, 230032 Anhui Province China
| |
Collapse
|
30
|
Arora S, Yim EKF, Toh YC. Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and Venous Subtypes. Front Bioeng Biotechnol 2019; 7:143. [PMID: 31259171 PMCID: PMC6587665 DOI: 10.3389/fbioe.2019.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are required for a multitude of cardiovascular clinical applications, such as revascularization of ischemic tissues or endothelialization of tissue engineered grafts. Patient derived primary ECs are limited in number, have donor variabilities and their in vitro phenotypes and functions can deteriorate over time. This necessitates the exploration of alternative EC sources. Although there has been a recent surge in the use of pluripotent stem cell derived endothelial cells (PSC-ECs) for various cardiovascular clinical applications, current differentiation protocols yield a heterogeneous EC population, where their specification into arterial or venous subtypes is undefined. Since arterial and venous ECs are phenotypically and functionally different, inappropriate matching of exogenous ECs to host sites can potentially affect clinical efficacy, as exemplified by venous graft mismatch when placed into an arterial environment. Therefore, there is a need to design and employ environmental cues that can effectively modulate PSC-ECs into a more homogeneous arterial or venous phenotype for better adaptation to the host environment, which will in turn contribute to better application efficacy. In this review, we will first give an overview of the developmental and functional differences between arterial and venous ECs. This provides the foundation for our subsequent discussion on the different bioengineering strategies that have been investigated to varying extent in providing biochemical and biophysical environmental cues to mature PSC-ECs into arterial or venous subtypes. The ability to efficiently leverage on a combination of biochemical and biophysical environmental cues to modulate intrinsic arterio-venous specification programs in ECs will greatly facilitate future translational applications of PSC-ECs. Since the development and maintenance of arterial and venous ECs in vivo occur in disparate physio-chemical microenvironments, it is conceivable that the application of these environmental factors in customized combinations or magnitudes can be used to selectively mature PSC-ECs into an arterial or venous subtype.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Williams IM, Wu JC. Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arterioscler Thromb Vasc Biol 2019; 39:1317-1329. [PMID: 31242035 DOI: 10.1161/atvbaha.119.312265] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial cells (ECs) are critical for several aspects of cardiovascular disease therapy, including vascular regeneration, personalized drug development, and tissue engineering. Human pluripotent stem cells (hPSCs) afford us with an unprecedented opportunity to produce virtually unlimited quantities of human ECs. In this review, we highlight key developments and outstanding challenges in our ability to derive ECs de novo from hPSCs. Furthermore, we consider strategies for recapitulating the vessel- and tissue-specific functional heterogeneity of ECs in vitro. Finally, we discuss ongoing attempts to utilize hPSC-derived ECs and their progenitors for various therapeutic applications. Continued progress in generating hPSC-derived ECs will profoundly enhance our ability to discover novel drug targets, revascularize ischemic tissues, and engineer clinically relevant tissue constructs. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ian M Williams
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| |
Collapse
|
32
|
Wang K, Lin RZ, Melero-Martin JM. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell Mol Life Sci 2019; 76:421-439. [PMID: 30315324 PMCID: PMC6349493 DOI: 10.1007/s00018-018-2939-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Tissue engineering holds great promise in regenerative medicine. However, the field of tissue engineering faces a myriad of difficulties. A major challenge is the necessity to integrate vascular networks into bioengineered constructs to enable physiological functions including adequate oxygenation, nutrient delivery, and removal of waste products. The last two decades have seen remarkable progress in our collective effort to bioengineer human-specific vascular networks. Studies have included both in vitro and in vivo investigations, and multiple methodologies have found varying degrees of success. What most approaches to bioengineer human vascular networks have in common, however, is the synergistic use of both (1) endothelial cells (ECs)-the cells used to line the lumen of the vascular structures and (2) perivascular cells-usually used to support EC function and provide perivascular stability to the networks. Here, we have highlighted trends in the use of various cellular sources over the last two decades of vascular network bioengineering research. To this end, we comprehensively reviewed all life science and biomedical publications available at the MEDLINE database up to 2018. Emphasis was put on selective studies that definitively used human ECs and were specifically related to bioengineering vascular networks. To facilitate this analysis, all papers were stratified by publication year and then analyzed according to their use of EC and perivascular cell types. This study provides an illustrating discussion on how each alternative source of cells has come to be used in the field. Our intention was to reveal trends and to provide new insights into the trajectory of vascular network bioengineering with regard to cellular sources.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
33
|
Kumar SA, Delgado M, Mendez VE, Joddar B. Applications of stem cells and bioprinting for potential treatment of diabetes. World J Stem Cells 2019; 11:13-32. [PMID: 30705712 PMCID: PMC6354103 DOI: 10.4252/wjsc.v11.i1.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cell-based therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulin-producing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Victor E Mendez
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
34
|
Suknuntha K, Tao L, Brok-Volchanskaya V, D'Souza SS, Kumar A, Slukvin I. Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells. Stem Cell Rev Rep 2018. [PMID: 29520567 DOI: 10.1007/s12015-018-9805-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of transcription factors that directly convert pluripotent stem cells (PSCs) into endothelial and blood cells and advances in the chemical modifications of messenger RNA (mRNA) offer alternative nucleic acid-based transgene-free approach for scalable production of these cells for drug screening and therapeutic purposes. Here we evaluated the effect of 5' and 3' RNA untranslated regions (UTRs) on translational efficiency of chemically-modified synthetic mRNA (modRNA) in human PSCs and showed that an addition of 5'UTR indeed enhanced protein expression. With the optimized modRNAs expressing ETV2 or ETV2 and GATA2, we are able to produce VE-cadherin+ endothelial cells and CD34+CD43+ hematopoietic progenitors, respectively, from human PSCs as well as non-human primate (NHP) PSCs. Overall, our findings provide valuable information on the design of in vitro transcription templates being used in PSCs and its broad applicability for basic research, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA.
| | - Lihong Tao
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Vera Brok-Volchanskaya
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Saritha S D'Souza
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53792, USA
| |
Collapse
|
35
|
Yu Y, Situ Q, Jia W, Li J, Wu Q, Lei J. Data driven mathematical modeling reveals the dynamic mechanism of MSC-induced neovascularization. FASEB J 2018; 33:3496-3509. [PMID: 30517036 DOI: 10.1096/fj.201801652r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coculture of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) in vitro leads to the formation of a capillary-like reticular structure by ECs, which has great potential as a better substitute for artificial blood vessels in terms of stability and functionality. To investigate the mechanisms of the early neovascularization induced by MSCs, we analyzed the kinematic features of the motion of ECs and concluded that the dynamic interaction between cells and the extracellular matrix would reveal the capillary-like structure formation. Based on this hypothesis, we proposed a mathematical model to simulate the vascular-like migration pattern of ECs in silico, which was confirmed by in vitro studies. These in vitro studies validated that the dynamic secretion and degradation of collagen I is the critical factor for capillary structure formation. The model proposed based on cell tracking, single cell sequencing, and mathematical simulation provides a better understanding of the neovascularization process induced by MSCs and a possible simple explanation guiding this important cellular behavior.-Yu, Y., Situ, Q., Jia, W., Li, J., Wu, Q., Lei, J. Data driven mathematical modeling reveals the dynamic mechanism of MSC-induced neovascularization.
Collapse
Affiliation(s)
- Yingting Yu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| | - Wangyue Jia
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Junxiang Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China; and
| | - Jinzhi Lei
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Bioengineering the innate vasculature of complex organs: what have we learned so far. Curr Opin Organ Transplant 2018; 23:657-663. [DOI: 10.1097/mot.0000000000000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun Biol 2018; 1:161. [PMID: 30320229 PMCID: PMC6172230 DOI: 10.1038/s42003-018-0161-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/24/2018] [Indexed: 11/30/2022] Open
Abstract
Engineered tissues are a promising tool for addressing the growing need for tissues and organs in surgical reconstructions. Prevascularization of implanted tissues is expected to enhance survival prospects post transplantation and minimize deficiencies and/or hypoxia deeper in the tissue. Here, we fabricate a three-dimensional, prevascularized engineered muscle containing human myoblasts, genetically modified endothelial cells secreting angiopoietin 1 (ANGPT1) and genetically modified smooth muscle cells secreting vascular endothelial growth factor (VEGF). The genetically engineered human muscle shows enhanced host neovascularization and myogenesis following transplantation into a mouse host, compared to the non-secreting control. The vascular, genetically modified cells have been cleared for clinical trials and can be used to construct autologous vascularized tissues. Therefore, the described genetically engineered vascularized muscle has the potential to be fully translated to the clinical setting to overcome autologous tissue shortage and to accelerate host neovascularization and integration of engineered grafts following transplantation. Luba Perry et al. report transplantation of engineered prevascularized human muscle into mice to repair an abdominal muscle defect. They show that genetically engineering smooth muscle cells to secrete VEGF and endothelial cells to secrete ANGPT1 significantly improves host neovascularization and myogenesis.
Collapse
|
38
|
Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models. MICROMACHINES 2018; 9:mi9100493. [PMID: 30424426 PMCID: PMC6215090 DOI: 10.3390/mi9100493] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.
Collapse
|
39
|
Vašíček J, Shehata M, Schnabl S, Hilgarth M, Hubmann R, Jäger U, Bauer M, Chrenek P. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells. Biotechnol Prog 2018; 34:1278-1289. [PMID: 29882300 DOI: 10.1002/btpr.2659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581, and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34+ cells labelled by AC136 in comparison to the clone 581 and pCD34 (P < 0.01). A higher percentage of rabbit CD133+ cells were also detected by 293C3 compared to the AC133 clone (P < 0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34+ cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34+ cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34+ cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34+ HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1278-1289, 2018.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Research Centre AgroBioTech, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| | - Medhat Shehata
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Susanne Schnabl
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Martin Hilgarth
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Rainer Hubmann
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Ulrich Jäger
- Dept. of Internal Medicine I, Div. of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Miroslav Bauer
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Natural Sciences, Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 74 Nitra, mládeže, Slovak Republic, Nábrežie 91
| | - Peter Chrenek
- NAFC-Research Institute for Animal Production in Nitra, Institute of Farm Animal Genetics and Reproduction, Lužianky, Slovak Republic, Hlohovecká 2, 951 41.,Faculty of Biotechnology and Food Science, Department of Biochemistry and Biotechnology, Slovak University of Agriculture, Nitra, Tr A. Hlinku 2, 949 76, Slovak Republic
| |
Collapse
|
40
|
Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev Rep 2018; 14:642-667. [DOI: 10.1007/s12015-018-9825-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Abstract
PURPOSE OF REVIEW Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) emerged as an important source of cells for cardiovascular regeneration. This review summarizes protocols for generating hPSC-ECs and provides an overview of the current state of the research in clinical application of hPSC-derived ECs. RECENT FINDINGS Various systems were developed for differentiating hPSCs into the EC lineage. Stepwise two-dimensional systems are now well established, in which various growth factors, small molecules, and coating materials are used at specific developmental stages. Moreover, studies made significant advances in clinical applicability of hPSC-ECs by removing undefined components from the differentiation system, improving the differentiation efficiency, and proving their direct vascular incorporating effects, which contrast with adult stem cells and their therapeutic effects in vivo. Finally, by using biomaterial-mediated delivery, investigators improved the survival of hPSC-ECs to more than 10 months in ischemic tissues and described long-term behavior and safety of in vivo transplanted hPSC-ECs at the histological level. hPSC-derived ECs can be as a critical source of cells for treating advanced cardiovascular diseases. Over the past two decades, substantial improvement has been made in the differentiation systems and their clinical compatibility. In the near future, establishment of fully defined differentiation systems and proof of the advantages of biomaterial-mediated cell delivery, with some additional pre-clinical studies, will move this therapy into a vital option for treating those diseases that cannot be managed by currently available therapies.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Hee Kim
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle. WMB 3309, Atlanta, GA, 30322, USA
| | - Young-Sup Yoon
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle. WMB 3309, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Recent Progress in Vascular Tissue-Engineered Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:123-144. [PMID: 30471030 DOI: 10.1007/978-981-13-0445-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is the number one cause of death in the U.S and results in the loss of approximately one million lives and more than 400 billion U.S. dollars for treatments every year. Recently, tissue engineered blood vessels have been studied and developed as promising replacements for treatment with autologous veins. Here, we summarize the cell sources and methods to make tissue-engineered blood vessels (TEBVs), the recent progress in TEBV related research, and also the recent progress in TEBV related clinical studies.
Collapse
|
43
|
Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, Kutalkova K, Vavreckova E, Matula P, Matula P, Veverkova L, Koutna I. Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Stem Cells Dev 2017; 27:10-22. [PMID: 29117787 PMCID: PMC5756468 DOI: 10.1089/scd.2017.0132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Collapse
Affiliation(s)
- Pavel Simara
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Lenka Tesarova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Daniela Rehakova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Simon Farkas
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Barbara Salingova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Katerina Kutalkova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Eva Vavreckova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Pavel Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Petr Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Lenka Veverkova
- I. Surgery Department, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Irena Koutna
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
44
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
45
|
Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Bahmanpour S. Hepatogenic Differentiation Capacity of Human Wharton's Jelly Mesenchymal Stem Cell in a Co-culturing System with Endothelial Cells in Matrigel/collagen Scaffold in the Presence of Fetal Liver Extract. Int J Stem Cells 2017; 10:218-226. [PMID: 29084421 PMCID: PMC5741202 DOI: 10.15283/ijsc17003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2017] [Indexed: 01/30/2023] Open
Abstract
Background Human Wharton's jelly mesenchymal stem cells (HWJMSCs) isolated from medical waste product can be considered as an accessible source of cells in regenerative medicine. Stem cell-derived hepatocytes have poor function and need appropriate niche to reconstruct the liver structure. Therefore, we attempted to find a novel approach in differentiating HWJMSCs into functional hepatic cells using 3D culture conditions and liver extract that recapitulates vital stage in liver development. Materials and Methods HWJMSCs were extracted from human Wharton's jelly, characterized by flow cytometry, and differentiated towards osteogenic and adipogenic lineages. HWJMSCs were co-cultured with HUVECs in 3D matrigel/ collagen scaffolds in the presence of fetal liver extract for 14 days. The expression of specific liver genes were evaluated by lectins, PAS and immunocytochemistry. Results According to flow cytometry data, isolated cells from HWJMSCs were shown to express MSC markers. HWJMSCs co-cultured with HUVECs in matrigel/collagen scaffold with extract expressed albumin, lectins UEA and PNA. Immunohistochemistry of the cells in matrigel/collagen scaffold with or without extract exhibited a positive reaction for CK19. Conclusions Co-culturing of the HWJMSC/HUVEC in 3D matrigel/collagen scaffold is bimimicary of in vivo cell condition. The results showed that administration of the liver extract in 3D matrigel/collagen culture of HWJMSC/HUVEC can induce hepatocyte marker expression.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cell Technology Research Center, Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Tissue Engineering Lab, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Wang Y, Yin P, Bian GL, Huang HY, Shen H, Yang JJ, Yang ZY, Shen ZY. The combination of stem cells and tissue engineering: an advanced strategy for blood vessels regeneration and vascular disease treatment. Stem Cell Res Ther 2017; 8:194. [PMID: 28915929 PMCID: PMC5603030 DOI: 10.1186/s13287-017-0642-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past years, vascular diseases have continued to threaten human health and increase financial burdens worldwide. Transplantation of allogeneic and autologous blood vessels is the most convenient treatment. However, it could not be applied generally due to the scarcity of donors and the patient’s condition. Developments in tissue engineering are contributing greatly with regard to this urgent need for blood vessels. Tissue engineering-derived blood vessels are promising alternatives for patients with aortic dissection/aneurysm. The aim of this review is to show the importance of advances in biomaterials development for the treatment of vascular disease. We also provide a comprehensive overview of the current status of tissue reconstruction from stem cells and transplantable cellular scaffold constructs, focusing on the combination of stem cells and tissue engineering for blood vessel regeneration and vascular disease treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pei Yin
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Cardio-Thoracic Surgery, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Guang-Liang Bian
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Cardio-Thoracic Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Hao-Yue Huang
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun-Jie Yang
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zi-Ying Yang
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
47
|
Thuringer D, Solary E, Garrido C. The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment. Front Mol Neurosci 2017; 10:246. [PMID: 28824376 PMCID: PMC5543088 DOI: 10.3389/fnmol.2017.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.
Collapse
Affiliation(s)
| | - Eric Solary
- INSERM U1170, Institut Gustave RoussyVillejuif, France
| | - Carmen Garrido
- INSERM U1231, Université de Bourgogne Franche ComtéDijon, France
| |
Collapse
|
48
|
Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 2017; 357:science.aal2379. [DOI: 10.1126/science.aal2379] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Zhang J, Chu LF, Hou Z, Schwartz MP, Hacker T, Vickerman V, Swanson S, Leng N, Nguyen BK, Elwell A, Bolin J, Brown ME, Stewart R, Burlingham WJ, Murphy WL, Thomson JA. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proc Natl Acad Sci U S A 2017; 114:E6072-E6078. [PMID: 28696312 PMCID: PMC5544294 DOI: 10.1073/pnas.1702295114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Zhonggang Hou
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy Hacker
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI 53705
| | - Vernella Vickerman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Scott Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Ning Leng
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Biostatistics, Genentech, San Francisco, CA 94080
| | - Bao Kim Nguyen
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Angela Elwell
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - Matthew E Brown
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715
| | - William J Burlingham
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, 53705
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715;
- Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117
| |
Collapse
|
50
|
Landau S, Szklanny AA, Yeo GC, Shandalov Y, Kosobrodova E, Weiss AS, Levenberg S. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 2017; 122:72-82. [DOI: 10.1016/j.biomaterials.2017.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/01/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
|