1
|
Lima CR, Antunes D, Caffarena E, Carels N. Structural Characterization of Heat Shock Protein 90β and Molecular Interactions with Geldanamycin and Ritonavir: A Computational Study. Int J Mol Sci 2024; 25:8782. [PMID: 39201468 PMCID: PMC11354266 DOI: 10.3390/ijms25168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Drug repositioning is an important therapeutic strategy for treating breast cancer. Hsp90β chaperone is an attractive target for inhibiting cell progression. Its structure has a disordered and flexible linker region between the N-terminal and central domains. Geldanamycin was the first Hsp90β inhibitor to interact specifically at the N-terminal site. Owing to the toxicity of geldanamycin, we investigated the repositioning of ritonavir as an Hsp90β inhibitor, taking advantage of its proven efficacy against cancer. In this study, we used molecular modeling techniques to analyze the contribution of the Hsp90β linker region to the flexibility and interaction between the ligands geldanamycin, ritonavir, and Hsp90β. Our findings indicate that the linker region is responsible for the fluctuation and overall protein motion without disturbing the interaction between the inhibitors and the N-terminus. We also found that ritonavir established similar interactions with the substrate ATP triphosphate, filling the same pharmacophore zone.
Collapse
Affiliation(s)
- Carlyle Ribeiro Lima
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Sheikh E, Agrawal K, Roy S, Burk D, Donnarumma F, Ko YH, Guttula PK, Biswal NC, Shukla HD, Gartia MR. Multimodal Imaging of Pancreatic Cancer Microenvironment in Response to an Antiglycolytic Drug. Adv Healthc Mater 2023; 12:e2301815. [PMID: 37706285 PMCID: PMC10842640 DOI: 10.1002/adhm.202301815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling and associated pathways through bioinformatics analysis.
Collapse
Affiliation(s)
- Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kirti Agrawal
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sanjit Roy
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Burk
- Department of Cell Biology and Bioimaging, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Young H Ko
- NewG Lab Pharma, 701 East Pratt Street, Columbus Center, Baltimore, MD, 21202, USA
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hem D Shukla
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Swami S, Mughees M, Mangangcha IR, Kauser S, Wajid S. Secretome analysis of breast cancer cells to identify potential target proteins of Ipomoea turpethum extract-loaded nanoparticles in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1247632. [PMID: 37900279 PMCID: PMC10602817 DOI: 10.3389/fcell.2023.1247632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Breast cancer is the leading cause of frequent malignancy and morbidity among women across the globe, with an increment of 0.5% incidences every year. The deleterious effects of traditional treatment on off-target surrounding cells make it difficult to win the battle against breast cancer. Hence, an advancement in the therapeutic approach is crucial. Nanotechnology is one of the emerging methods for precise, targeted, and efficient drug delivery in cells. The previous study has demonstrated the cytotoxic effect of Ipomoea turpethum extract on breast cancer cells delivered via NIPAAM-VP-AA nanoparticles (NVA-IT). Manipulating the tumor microenvironment (TME) to inhibit cancer progression, invasion, and metastasis seems to be very insightful for researchers these days. With the help of secretome analysis of breast cancer cells after treatment with NVA-IT, we have tried to find out the possible TME manipulation achieved to favor a better prognosis of the disease. Method: MCF-7 and MDA MB-231 cells were treated with the IC50 value of NVA-IT, and the medium was separated from the cells after 24 h of the treatment. Nano LCMS/MS analysis was performed to identify the secretory proteins in the media. Further bioinformatics tools like GENT2, GSCA, GeneCodis 4, and STRING were used to identify the key proteins and their interactions. Result: From the nano LCMS/MS analysis, 70 differentially expressed secretory proteins in MCF-7 and 191 in MDA MB-231 were identified in the cell's media. Fifteen key target proteins were filtered using bioinformatics analysis, and the interaction of proteins involved in vesicular trafficking, cell cycle checkpoints, and oxidative stress-related proteins was prominent. Conclusion: This study concluded that I. turpethum extract-loaded NIPAAM-VP-AA nanoparticles alter the secretory proteins constituting the TME to cease cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Sanskriti Swami
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Sana Kauser
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Zhai J, Sun H, Li M, Gao Y, Hu Y, Gao Z, Xie X, Zhang L, Zhao G. Simple and sensitive detection of miRNA-122 based on a micro-biosensor through square wave voltammetry. RSC Adv 2023; 13:21414-21420. [PMID: 37465577 PMCID: PMC10350789 DOI: 10.1039/d3ra03759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The simple and sensitive detection of miRNA-122 in blood is crucially important for early hepatocellular carcinoma (HCC) diagnosis. In this work, a platinum microelectrode (PtμE) was prepared and electrodeposited with molybdenum disulfide (MoS2) and gold nanoparticles (AuNP), respectively, and denoted as PtμE/MoS2/Au. The prepared PtμE/MoS2/Au was used as the microsensor for the detection of miRNA-122 combined with the probe DNA as a biorecognition element which is the complementary strand of miRNA-122. The PtμE/MoS2/Au conjugated with the probe DNA modified with sulfydryl units was used as the micro-biosensor for the detection of miRNA-122. The square wave voltammetry was performed for the quantitative detection of miRNA-122 using [Fe(CN)6]4-/3- as a mediator. Under the optimized conditions, the PtμE/MoS2/Au micro-biosensor shows a linear detection toward miRNA-122 ranging from 10-11 to 10-8 M (S = 6.9 nA dec-1, R2 = 0.9997), and the detection limit is 1.6 × 10-12 M (3σ/b). The PtμE/MoS2/Au micro-biosensor demonstrates good selectivity against other types of proteins and small molecules, and has good reproducibility. Moreover, the PtμE/MoS2/Au micro-biosensor was successfully applied for the measurement of miRNA-122 in real blood samples. Herein, the proposed detection assay could be a potential tool in HCC clinical diagnostics with high sensitivity.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation Medicine of Binzhou Medical University Yantai 264003 China +86 535 6913246 +86 535 6913213
| | - Huiyuan Sun
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital Yantai 264003 China
| | - Mingkang Li
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Yuhao Gao
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Yixin Hu
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Zhi Gao
- Academy of Traditional Chinese and Western Medicine of Binzhou Medical University Yantai 264003 China
| | - Xiyu Xie
- Academy of Traditional Chinese and Western Medicine of Binzhou Medical University Yantai 264003 China
| | - Lixia Zhang
- School of Basic Medicine, Binzhou Medical University Yantai 264003 China
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University Yantai 264003 China
| |
Collapse
|
5
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
6
|
Zhai J, Jia Y, Ji P, Wang F, Zhang X, Zhao G. One-step detection of alpha fetal protein based on gold microelectrode through square wave voltammetry. Anal Biochem 2022; 658:114916. [PMID: 36130652 DOI: 10.1016/j.ab.2022.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
The detection of tumor markers in blood samples with high efficiency and sensitivity is in urgent need. In this work, a one-step quantitative detection assay for alpha fetal protein (AFP) based on gold microelectrode which is denoted as AuμE through square wave voltammetry using [Fe(CN)6]3-/4- as mediator was developed. As the biorecognition element of the assay, sulfydryl-modified AFP aptamer could be directly conjugated onto the surface of the AuμE, which could capture AFP with high specificity, and this attachment would cause the decrease of the capacitive current of the cyclic voltammetry due to the reduction of the active area of the electrodes. Under the optimized conditions, the AuμE aptasensor exhibited a linear detection range for AFP from 10-10 to 10-7 g/mL (S = 7.6 nA/dec, R2 = 0.991), and the detection limit is 2.5 × 10-11 g/mL. The AuμEs aptasensor demonstrates good selectivity against other types of proteins and small molecules, and has good reproducibility. The real blood samples were used for detection of AFP using the AuμEs aptasensor, the results agree well with those provided by the hospital through electrochemiluminescence method. Herein, the proposed one-step detection assay has a great application potential in point-of-care clinical diagnostics.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation Medicine of Binzhou Medical University, Yantai, 264003, PR China
| | - Ying Jia
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Piyou Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, PR China
| | - Feifan Wang
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Xiaoqing Zhang
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
7
|
Zhai J, Ji P, Xin Y, Liu Y, Qu Q, Han W, Zhao G. Development of Carcinoembryonic Antigen Rapid Detection System Based on Platinum Microelectrode. Front Chem 2022; 10:899276. [PMID: 35795222 PMCID: PMC9252266 DOI: 10.3389/fchem.2022.899276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid and highly sensitive detection of carcinoembryonic antigen (CEA) in blood could effectively improve the diagnostic sensitivity of colorectal cancer. In this work, a platinum microelectrode (PtμE) modified with gold nanoparticles was developed as a microsensor for the detection of CEA. As the recognition element, a CEA aptamer modified with sulfhydryl could be conjugated onto the surface of the PtμEs/Au. The quantitative analysis of the concentration of CEA [CEA] by the prepared PtμEs/Au aptasensor was carried out through square wave voltammetry. Under the optimized conditions, the PtμEs/Au aptasensor exhibits a linear response toward [CEA] in the range of 1.0 × 10–11—1.0 × 10–7 g/ml (S = 5.5 nA/dec, R2 = 0.999), and the detection limit is 7.7 × 10–12 g/ml. The PtμEs/Au aptasensor also has good selectivity against other types of proteins existing in blood. The availability of the developed assay toward [CEA] in blood samples was investigated, and the results agreed well with those obtained through electrochemiluminescence provided by the hospital, and the volume of the blood sample for detection is only 20 μl. Herein, the proposed detection system could be used for the quantitative analysis of CEA in blood, with the advantages of high sensitivity, short time, and low cost. Moreover, the PtμEs/Au aptasensor has a potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation Medicine of Binzhou Medical University, Yantai, China
| | - Piyou Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yu Xin
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yifan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qianwen Qu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wentong Han
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Guangtao Zhao,
| |
Collapse
|
8
|
Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Systems biology comprehensive analysis on breast cancer for identification of key gene modules and genes associated with TNM-based clinical stages. Sci Rep 2020; 10:10816. [PMID: 32616754 PMCID: PMC7331704 DOI: 10.1038/s41598-020-67643-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC), as one of the leading causes of death among women, comprises several subtypes with controversial and poor prognosis. Considering the TNM (tumor, lymph node, metastasis) based classification for staging of breast cancer, it is essential to diagnose the disease at early stages. The present study aims to take advantage of the systems biology approach on genome wide gene expression profiling datasets to identify the potential biomarkers involved at stage I, stage II, stage III, and stage IV as well as in the integrated group. Three HER2-negative breast cancer microarray datasets were retrieved from the GEO database, including normal, stage I, stage II, stage III, and stage IV samples. Additionally, one dataset was also extracted to test the developed predictive models trained on the three datasets. The analysis of gene expression profiles to identify differentially expressed genes (DEGs) was performed after preprocessing and normalization of data. Then, statistically significant prioritized DEGs were used to construct protein-protein interaction networks for the stages for module analysis and biomarker identification. Furthermore, the prioritized DEGs were used to determine the involved GO enrichment and KEGG signaling pathways at various stages of the breast cancer. The recurrence survival rate analysis of the identified gene biomarkers was conducted based on Kaplan-Meier methodology. Furthermore, the identified genes were validated not only by using several classification models but also through screening the experimental literature reports on the target genes. Fourteen (21 genes), nine (17 genes), eight (10 genes), four (7 genes), and six (8 genes) gene modules (total of 53 unique genes out of 63 genes with involving those with the same connectivity degree) were identified for stage I, stage II, stage III, stage IV, and the integrated group. Moreover, SMC4, FN1, FOS, JUN, and KIF11 and RACGAP1 genes with the highest connectivity degrees were in module 1 for abovementioned stages, respectively. The biological processes, cellular components, and molecular functions were demonstrated for outcomes of GO analysis and KEGG pathway assessment. Additionally, the Kaplan-Meier analysis revealed that 33 genes were found to be significant while considering the recurrence-free survival rate as an alternative to overall survival rate. Furthermore, the machine learning calcification models show good performance on the determined biomarkers. Moreover, the literature reports have confirmed all of the identified gene biomarkers for breast cancer. According to the literature evidence, the identified hub genes are highly correlated with HER2-negative breast cancer. The 53-mRNA signature might be a potential gene set for TNM based stages as well as possible therapeutics with potentially good performance in predicting and managing recurrence-free survival rates at stages I, II, III, and IV as well as in the integrated group. Moreover, the identified genes for the TNM-based stages can also be used as mRNA profile signatures to determine the current stage of the breast cancer.
Collapse
Affiliation(s)
- Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
10
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
11
|
Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget 2018; 7:63189-63203. [PMID: 27527857 PMCID: PMC5325356 DOI: 10.18632/oncotarget.11055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.
Collapse
Affiliation(s)
- Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Proteomic Differences in Feline Fibrosarcomas Grown Using Doxorubicin-Sensitive and -Resistant Cell Lines in the Chick Embryo Model. Int J Mol Sci 2018; 19:ijms19020576. [PMID: 29443940 PMCID: PMC5855798 DOI: 10.3390/ijms19020576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Proteomic analyses are rapid and powerful tools that are used to increase the understanding of cancer pathogenesis, discover cancer biomarkers and predictive markers, and select and monitor novel targets for cancer therapy. Feline injection-site sarcomas (FISS) are aggressive skin tumours with high recurrence rates, despite treatment with surgery, radiotherapy, and chemotherapy. Doxorubicin is a drug of choice for soft tissue sarcomas, including FISS. However, multidrug resistance is one of the major causes of chemotherapy failure. The main aim of the present study was to identify proteins that differentiate doxorubicin-resistant from doxorubicin-sensitive FISS using two-dimensional gel electrophoresis (2DE), followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using the three-dimensional (3D) preclinical in ovo model, which resembles features of spontaneous fibrosarcomas, three significantly (p ≤ 0.05) differentially expressed proteins were identified in tumours grown from doxorubicin-resistant fibrosarcoma cell lines (FFS1 and FFS3) in comparison to the doxorubicin-sensitive one (FFS5): Annexin A5 (ANXA5), Annexin A3 (ANXA3), and meiosis-specific nuclear structural protein 1 (MNS1). Moreover, nine other proteins were significantly differentially expressed in tumours grown from the high doxorubicin-resistant cell line (FFS1) in comparison to sensitive one (FFS5). This study may be the first proteomic fingerprinting of FISS reported, identifying potential candidates for specific predictive biomarkers and research targets for doxorubicin-resistant FISS.
Collapse
|
13
|
Teke K, Guzel N, Uslubas AK, Kasap M, Yilmaz H, Akpinar G, Yildiz DK, Dillioglugil O. Monitoring the response of urothelial precancerous lesions to Bacillus Calmette-Guerin at the proteome level in an in vivo rat model. Cancer Immunol Immunother 2018; 67:67-77. [PMID: 28916862 PMCID: PMC11028241 DOI: 10.1007/s00262-017-2063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Intravesical Bacillus Calmette-Guerin (BCG) is the best treatment modality for progression of non-muscle invasive bladder cancer. We aimed to monitor changes at the proteome level to identify putative protein biomarkers associated with the response of urothelial precancerous lesions to intravesical BCG treatment. The rats were divided into three groups (n = 10/group): control, non-treated, and BCG-treated groups. The non-treated and BCG-treated groups received N-methyl-N-nitrosourea intravesically. BCG Tice-strain was instilled into bladder in BCG-treated group. At the endpoint of experiment, all surviving rat bladders were collected and equally divided into two portions vertically from dome to neck. Half of each bladder was assessed immunohistopathologically and the other half was used for 2D-based comparative proteomic analysis. Differentially expressed proteins were validated by Western blot analysis. Precancerous lesions of bladder cancer were more common in non-treated group (77.8%) than in BCG-treated group (50%) and the control group (0%). Greater than twofold changes occurred in the expression of a number of proteins. Among them, Rab-GDIβ, aldehyde dehydrogenase 2 (ALDH2) and 14-3-3 zeta/delta were important since they were previously reported to be associated with cancer and their expression levels were found to be lower in BCG-treated group in comparison to the non-treated group. ALDH2 and 14-3-3 zeta/delta were also found to be highly expressed in the non-treated group compared to the control group. The down-regulation of these proteins and Rab-GDIβ was achieved with BCG; this result indicates that they may be used as putative biomarkers for monitoring changes in bladder carcinogenesis in response to BCG immunotherapy.
Collapse
Affiliation(s)
- Kerem Teke
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey.
| | - Nil Guzel
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Ali Kemal Uslubas
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Murat Kasap
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Hasan Yilmaz
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Demir Kursat Yildiz
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Ozdal Dillioglugil
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| |
Collapse
|
14
|
Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer. Pharmacol Res 2017; 124:20-33. [PMID: 28735000 DOI: 10.1016/j.phrs.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/09/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer in women, and the second most frequent cause of cancer-related deaths in women worldwide. It is a heterogeneous disease composed of multiple subtypes with distinct morphologies and clinical implications. Quantitative systems pharmacology (QSP) is an emerging discipline bridging systems biology with pharmacokinetics (PK) and pharmacodynamics (PD) leveraging the systematic understanding of drugs' efficacy and toxicity. Despite numerous challenges in applying computational methodologies for QSP and mechanism-based PK/PD models to biological, physiological, and pharmacological data, bridging these disciplines has the potential to enhance our understanding of complex disease systems such as BC. In QSP/PK/PD models, various sources of data are combined including large, multi-scale experimental data such as -omics (i.e. genomics, transcriptomics, proteomics, and metabolomics), biomarkers (circulating and bound), PK, and PD endpoints. This offers a means for a translational application from pre-clinical mathematical models to patients, bridging the bench to bedside paradigm. Not only can these models be applied to inform and advance BC drug development, but they also could aid in optimizing combination therapies and rational dosing regimens for BC patients. Here, we review the current literature pertaining to the application of QSP and pharmacometrics-based pharmacotherapy in BC including bottom-up and top-down modeling approaches. Bottom-up modeling approaches employ mechanistic signal transduction pathways to predict the behavior of a biological system. The ones that are addressed in this review include signal transduction and homeostatic feedback modeling approaches. Alternatively, top-down modeling techniques are bioinformatics reconstruction techniques that infer static connections between molecules that make up a biological network and include (1) Bayesian networks, (2) co-expression networks, and (3) module-based approaches. This review also addresses novel techniques which utilize the principles of systems biology, synthetic lethality and tumor priming, both of which are discussed in relationship to novel drug targets and existing BC therapies. By utilizing QSP approaches, clinicians may develop a platform for improved dose individualization for subpopulation of BC patients, strengthen rationale in treatment designs, and explore mechanism elucidation for improving future treatments in BC medicine.
Collapse
|
15
|
Thistle JE, Hellberg Y, Mortensen K, Hamilton-Dutoit S, Kjærsgaard A, Cronin-Fenton D, Sørensen HT, Lash TL. The effect of 14-3-3ζ expression on tamoxifen resistance and breast cancer recurrence: a Danish population-based study. Breast Cancer Res Treat 2017. [PMID: 28643021 DOI: 10.1007/s10549-017-4289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Overexpression of 14-3-3ζ has been linked to breast cancer recurrence in several studies, including studies assessing its effect on tamoxifen resistance. The study was performed to estimate the effect of 14-3-3ζ and differentiate potential prognostic or predictive utility. METHODS A case-control study, nested in a population of 11,251 females residing on the Jutland Peninsula of Denmark, was performed. Participants were aged 35-69, diagnosed with stage I, II, or III breast cancer between 1985 and 2001, and registered with the Danish Breast Cancer Cooperative Group. We identified 541 recurrent breast cancer cases with estrogen receptor-positive disease treated with tamoxifen for at least 1 year (ER+/TAM+) and 300 cases with estrogen receptor-negative disease never treated with tamoxifen (ER-/TAM-). We matched cases to controls on ER/TAM status, date of surgery, menopausal status, stage, and county. 14-3-3ζ expression was assessed using immunohistochemistry on tissue microarrays. We computed the odds ratio (OR) associating 14-3-3ζ expression with breast cancer recurrence adjusting for confounding using logistic regression. A quantitative bias analysis was performed to account for bias due to expression assay methods. RESULTS Associations for cytoplasmic and nuclear 14-3-3ζ staining above the 50th percentile were near null in both ER+/TAM+ and ER-/TAM- patients. When examining combined 14-3-3ζ staining, the association increased in the ER+/TAM+ group (adjusted OR 1.44, 95% confidence interval (CI) 1.05, 1.99). A nearly twofold increase in odds of recurrence was observed in above the 75th percentile staining of combined 14-3-3ζ, both for ER+/TAM+ patients (adjusted OR 1.93, 95% CI 1.15, 3.24) and ER-/TAM- patients (adjusted OR 1.93, 95% CI 1.03, 3.62), indicating potential prognostic utility. CONCLUSION Evidence is lacking to conclude that 14-3-3ζ is a useful marker of tamoxifen resistance; however, 14-3-3ζ expression is a potentially useful prognostic marker of breast cancer recurrence. Independent utility beyond established prognostic markers needs to be determined.
Collapse
Affiliation(s)
- Jake E Thistle
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ylva Hellberg
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
16
|
Seneviratne APB, Turan Z, Hermant A, Lecine P, Smith WO, Borg JP, Jaulin F, Kreitzer G. Modulation of estrogen related receptor alpha activity by the kinesin KIF17. Oncotarget 2017; 8:50359-50375. [PMID: 28881568 PMCID: PMC5584137 DOI: 10.18632/oncotarget.18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
Estrogen-related receptor alpha (ERR1) is an orphan nuclear receptor that can bind transcriptional co-activators constitutively. ERR1 expression correlates with poor patient outcomes in breast cancer, heightening interest in this nuclear receptor as a therapeutic target. Because ERR1 has no known regulatory ligand, a major challenge in targeting its activity is to find cellular or synthetic modulators of its function. We identified an interaction between ERR1 and KIF17, a kinesin-2 family microtubule motor, in a yeast-2-hybrid screen. We confirmed the interaction using in vitro biochemical assays and determined that binding is mediated by the ERR1 ligand-binding/AF2 domain and the KIF17 C-terminal tail. Expression of KIF17 tail domain in either ER-negative or ER-positive breast cancer epithelial cells attenuated nuclear accumulation of newly synthesized ERR1 and inhibited ERR1 transcriptional activity. Conversely, ERR1 transcriptional activity was elevated significantly in KIF17 knock-out cells. Sequence analysis of the KIF17 tail domain revealed it contains a nuclear receptor box with a conserved LXXLL motif found in transcriptional co-activators. Expression of a 12 amino-acid peptide containing this motif was sufficient to inhibit ERR1 transcriptional activity and cell invasion, while deletion of this region from the KIF17 tail resulted in increased ERR1 activity. Together, these data suggest KIF17 modifies ERR1 function by two possible, non-exclusive mechanisms: (i) by regulating nuclear-cytoplasmic distribution or (ii) by competing with transcriptional co-activators for binding to ERR1. Thus targeting the ERR1-KIF17 interaction has potential as a novel strategy for treating breast cancer.
Collapse
Affiliation(s)
- Am Pramodh Bandara Seneviratne
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,The City University of New York School of Medicine, New York, NY, USA
| | - Zeynep Turan
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,California Institute of Technology, Pasadena, CA, USA
| | - Aurelie Hermant
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France.,BIOASTER, Tony Garnier, Lyon, France
| | - William O Smith
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France
| | - Fanny Jaulin
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,Gustave Roussy Institute, Villejuif, France
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,The City University of New York School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Comparative Proteomic Analysis of Breast Cancer Tissue and the Adjacent Normal Tissue in Iranian Patients with HER2 Negative Ductal Carcinoma of Breast. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.6019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Multiphysics and Multiscale Analysis for Chemotherapeutic Drug. BIOMED RESEARCH INTERNATIONAL 2015; 2015:493985. [PMID: 26491672 PMCID: PMC4600874 DOI: 10.1155/2015/493985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022]
Abstract
This paper presents a three-dimensional dynamic model for the chemotherapy design based on a multiphysics and multiscale approach. The model incorporates cancer cells, matrix degrading enzymes (MDEs) secreted by cancer cells, degrading extracellular matrix (ECM), and chemotherapeutic drug. Multiple mechanisms related to each component possible in chemotherapy are systematically integrated for high reliability of computational analysis of chemotherapy. Moreover, the fidelity of the estimated efficacy of chemotherapy is enhanced by atomic information associated with the diffusion characteristics of chemotherapeutic drug, which is obtained from atomic simulations. With the developed model, the invasion process of cancer cells in chemotherapy treatment is quantitatively investigated. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of chemotherapy treatment.
Collapse
|
19
|
Are clear cell carcinomas of the ovary and endometrium phenotypically identical? A proteomic analysis. Hum Pathol 2015; 46:1427-36. [PMID: 26243671 DOI: 10.1016/j.humpath.2015.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
Phenotypic differences between otherwise similar tumors arising from different gynecologic locations may be highly significant in understanding the underlying driver molecular events at each site and may potentially offer insights into differential responses to treatment. In this study, the authors sought to identify and quantify phenotypic differences between ovarian clear cell carcinoma (OCCC) and endometrial clear cell carcinoma (ECCC) using a proteomic approach. Tissue microarrays were constructed from tumor samples of 108 patients (54 ECCCs and 54 OCCCs). Formalin-fixed samples on microarray slides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry, and 730 spectral peaks were generated from the combined data set. A linear mixed-effect model with random intercept was used to generate 93 (12.7%) peaks that were significantly different between OCCCs and ECCCs at the fold cutoffs of 1.5 and 0.667 and an adjusted P value cutoff of 1.0 × 10(-10). Liquid chromatography-tandem mass spectrometry was performed on selected cores from each group, and peptides identified therefrom were compared with lists of statistically significant peaks from the aforementioned linear mixed-effects model to find matches within 0.2 Da. A total of 53 candidate proteins were thus identified as being differentially expressed in OCCCs and ECCCs, 45 (85%) of which were expressed at higher levels in ECCCs than OCCCs. These proteins were functionally diverse and did not highlight a clearly dominant cellular theme or molecular pathway. Although ECCCs and OCCCs are very similar, some phenotypic differences are demonstrable. Additional studies of these differentially expressed proteins may ultimately clarify the significance of these differences.
Collapse
|
20
|
Woodcock JM, Coolen C, Goodwin KL, Baek DJ, Bittman R, Samuel MS, Pitson SM, Lopez AF. Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics. Oncotarget 2015; 6:14522-36. [PMID: 25971334 PMCID: PMC4546484 DOI: 10.18632/oncotarget.3995] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 12/24/2022] Open
Abstract
14-3-3 proteins play a pivotal role in controlling cell proliferation and survival, two commonly dysregulated hallmarks of cancers. 14-3-3 protein expression is enhanced in many human cancers and correlates with more aggressive tumors and poor prognosis, suggesting a role for 14-3-3 proteins in tumorigenesis and/or progression. We showed previously that the dimeric state of 14-3-3 proteins is regulated by the lipid sphingosine, a physiological inducer of apoptosis. As the functions of 14-3-3 proteins are dependent on their dimeric state, this sphingosine-mediated 14-3-3 regulation provides a possible means to target dimeric 14-3-3 for therapeutic effect. However, sphingosine mimics are needed that are not susceptible to sphingolipid metabolism. We show here the identification and optimization of sphingosine mimetics that render dimeric 14-3-3 susceptible to phosphorylation at a site buried in the dimer interface and induce mitochondrial-mediated apoptosis. Two such compounds, RB-011 and RB-012, disrupt 14-3-3 dimers at low micromolar concentrations and induce rapid down-regulation of Raf-MAPK and PI3K-Akt signaling in Jurkat cells. Importantly, both RB-011 and RB-012 induce apoptosis of human A549 lung cancer cells and RB-012, through disruption of MAPK signaling, reduces xenograft growth in mice. Thus, these compounds provide proof-of-principle for this novel 14-3-3-targeting approach for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Joanna M. Woodcock
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Carl Coolen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katy L. Goodwin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Dong Jae Baek
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Liu Y, Buil A, Collins BC, Gillet LCJ, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance G, Spector TD, Dermitzakis ET, Aebersold R. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 2015; 11:786. [PMID: 25652787 PMCID: PMC4358658 DOI: 10.15252/msb.20145728] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis-SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood-based biomarker studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alfonso Buil
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ludovic C J Gillet
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz C Blum
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Lin-Yang Cheng
- Department of Statistics and Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olga Vitek
- Department of Statistics and Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jeppe Mouritsen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Genevieve Lachance
- Department of Twin Research and Genetic Epidemiology, King's College London St Tomas' Hospital Campus, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London St Tomas' Hospital Campus, London, UK
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Li N, Wang H, Fan J, Tong C, Yang J, Wei H, Yi J, Ling R. Overexpression of 14-3-3θ promotes tumor metastasis and indicates poor prognosis in breast carcinoma. Oncotarget 2014; 5:249-57. [PMID: 24371149 PMCID: PMC3960205 DOI: 10.18632/oncotarget.1502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An isoform of the 14-3-3 protein family, 14-3-3θ has been linked with tumor cell proliferation and apoptosis. However, the role of 14-3-3θ in the progression of breast cancer remains unknown. Here, we report that 14-3-3θ plays a critical role in breast cancer metastasis and prognosis. The expression of 14-3-3θ was markedly higher in breast cancer tissues compared to adjacent normal tissues. A hospital-based study cohort of 216 breast cancer patients was evaluated in this study. The level of 14-3-3θ expression was determined and correlated based upon tumor clinicopathological features, disease-free survival, and overall survival. We found that overexpression of 14-3-3θ was correlated with advanced TNM stage (P<0.05), lymph node metastasis (P<0.05), and ER negative status (P<0.05). Breast cancer patients with high 14-3-3θ expression had a shorter overall survival and a higher rate of recurrence than those with low 14-3-3θ expression. Additionally, knockdown of 14-3-3θ expression in breast cancer cells inhibited metastasis in vitro. Similarly, an in vivo assay showed that 14-3-3θ knockdown dramatically suppressed the growth of breast cancer xenografts and inhibited tumor cell metastasis in a lung metastasis model. Thus, this study provided the first evidence that 14-3-3θ is a novel tumor suppressor and may serve as a candidate prognostic biomarker and target for new therapies in metastatic breast cancer.
Collapse
Affiliation(s)
- Nanlin Li
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The changes of Proteome in MG-63 cells after induced by calcitonin gene-related peptide. Biochem Biophys Res Commun 2014; 453:648-52. [DOI: 10.1016/j.bbrc.2014.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 11/18/2022]
|
24
|
Heger Z, Rodrigo MAM, Krizkova S, Zitka O, Beklova M, Kizek R, Adam V. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review). Oncol Lett 2014; 7:1341-1344. [PMID: 24765135 PMCID: PMC3997732 DOI: 10.3892/ol.2014.1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 01/03/2023] Open
Abstract
Estrogen receptors [ERs (subtypes α and β)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ERα positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Ondrej Zitka
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| |
Collapse
|
25
|
Guo C, Liu XJ, Cheng ZX, Liu YJ, Li H, Peng X. Characterization of protein species and weighted protein co-expression network regulation of Escherichia coli in response to serum killing using a 2-DE based proteomics approach. MOLECULAR BIOSYSTEMS 2013; 10:475-84. [PMID: 24366695 DOI: 10.1039/c3mb70404a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications, providing covalent alterations to extend their functions, show protein species on 2-DE gels, but our knowledge on protein species is still limited. In the present study, characteristics of protein species are determined in Escherichia coli using 2-DE based proteomics. In the E. coli proteome, 691 unique proteins (representing 1096 protein spots) accounting for 15.37% of gene-coding proteins of the bacterium are identified. Out of them, 191 have 596 protein species. Proteins with higher abundance, a higher proportion of Glu, Gly, Lys, and higher pI are more likely to have protein species. Further investigation on bacterial serum resistance indicates that more proteins with protein species are found in the bacterium in response to serum stress. A weighted protein co-expression network shows that protein species are related to topological connection as a result of protein regulation. The node protein IleS is demonstrated to contribute to serum resistance using a gene-deleted mutant. These results have revealed general characteristic features of bacterial species, and also provided novel insights into the biological significance of bacterial protein species, particularly the role in serum resistance.
Collapse
Affiliation(s)
- Chang Guo
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
26
|
Brugnoli F, Grassilli S, Piazzi M, Palomba M, Nika E, Bavelloni A, Capitani S, Bertagnolo V. In triple negative breast tumor cells, PLC-β2 promotes the conversion of CD133high to CD133low phenotype and reduces the CD133-related invasiveness. Mol Cancer 2013; 12:165. [PMID: 24330829 PMCID: PMC3866498 DOI: 10.1186/1476-4598-12-165] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/03/2013] [Indexed: 02/04/2023] Open
Abstract
Background Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia. Methods To study the correlation between the levels of CD133 expression and the biology of breast-derived cells, CD133low and CD133high cell subpopulations isolated from triple negative MDA-MB-231 cells were compared in terms of malignant properties and protein expression. Results High expression of CD133 characterizes cells with larger adhesion area, lower proliferation rate and reduced migration speed, indicative of a less undifferentiated phenotype. Conversely, when compared with CD133low cells, CD133high cells show higher invasive capability and increased expression of proteins involved in metastasis and drug-resistance of breast tumors. Among the signalling proteins examined, PLC-β2 expression inversely correlates with the levels of CD133 and has a role in inducing the CD133high cells to CD133low cells conversion, suggesting that, in TNBC cells, the de-regulation of this PLC isoform is responsible of the switch from an early to a mature tumoral phenotype also by reducing the expression of CD133. Conclusions Since CD133 plays a role in determining the invasiveness of CD133high cells, it may constitute an attractive target to reduce the metastatic potential of TNBC. In addition, our data showing that the forced up-regulation of PLC-β2 counteracts the invasiveness of CD133-positive MDA-MB-231 cells might contribute to identify unexplored key steps responsible for the TNBC high malignancy, to be considered for potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeria Bertagnolo
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| |
Collapse
|
27
|
Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells. Food Chem Toxicol 2013; 63:195-204. [PMID: 24239894 DOI: 10.1016/j.fct.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 01/03/2023]
Abstract
Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.
Collapse
|
28
|
Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev 2013; 40:129-38. [PMID: 23891266 DOI: 10.1016/j.ctrv.2013.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
Abstract
Breast cancer is traditionally considered as a heterogeneous disease. Molecular profiling of breast cancer by gene expression studies has provided us an important tool to discriminate a number of subtypes. These breast cancer subtypes have been shown to be associated with clinical outcome and treatment response. In order to elucidate the functional consequences of altered gene expressions related to each breast cancer subtype, proteomic technologies can provide further insight by identifying quantitative differences at the protein level. In recent years, proteomic technologies have matured to an extent that they can provide proteome-wide expressions in different clinical materials. This technology can be applied for the identification of proteins or protein profiles to further refine breast cancer subtypes or for discovery of novel protein biomarkers pointing towards metastatic potential or therapy resistance in a specific subtype. In this review, we summarize the current state of knowledge of proteomic research on molecular breast cancer classification and discuss important aspects of the potential usefulness of proteomics for discovery of breast cancer-associated protein biomarkers in the clinic.
Collapse
Affiliation(s)
- S W Lam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Hsu MC, Lee KT, Hsiao WC, Wu CH, Sun HY, Lin IL, Young KC. The dyslipidemia-associated SNP on the APOA1/C3/A5 gene cluster predicts post-surgery poor outcome in Taiwanese breast cancer patients: a 10-year follow-up study. BMC Cancer 2013; 13:330. [PMID: 23829168 PMCID: PMC3708770 DOI: 10.1186/1471-2407-13-330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/30/2013] [Indexed: 12/22/2022] Open
Abstract
Background Post-surgery therapies are given to early-stage breast cancer patients due to the possibility of residual micrometastasis, and optimized by clincopathological parameters such as tumor stage, and hormone receptor/lymph node status. However, current efficacy of post-surgery therapies is unsatisfactory, and may be varied according to unidentified patient genetic factors. Increases of breast cancer occurrence and recurrence have been associated with dyslipidemia, which can attribute to other known risk factors of breast cancer including obesity, diabetes and metabolic syndrome. Thus we reasoned that dyslipidemia-associated nucleotide polymorphisms (SNPs) on the APOA1/C3/A5 gene cluster may predict breast cancer risk and tumor progression. Methods We analyzed the distribution of 5 selected APOA1/C3/A5 SNPs in recruited Taiwanese breast cancer patients (n=223) and healthy controls (n=162). The association of SNP (APOA1 rs670) showing correlation with breast cancer with baseline and follow-up parameters was further examined. Results APOA1 rs670 A allele carriage was higher in breast cancer patients than controls (59.64% vs. 48.77%, p=0.038). The rs670 A allele carrying patients showed less favorable baseline phenotype with positive lymph nodes (G/A: OR=3.32, 95% CI=1.77-6.20, p<0.001; A/A: OR=2.58, 95% CI=1.05-6.32, p=0.039) and negative hormone receptor expression (A/A: OR=4.85, 95%CI=1.83-12.83, p=0.001) in comparison to G/G carriers. Moreover, rs670 A/A carrying patients had higher risks in both tumor recurrence (HR=3.12, 95% CI=1.29-7.56, p=0.012) and mortality (HR=4.36, 95% CI=1.52-12.47, p=0.006) than patients with no A alleles after adjustments for associated baseline parameters. Furthermore, the prognostic effect of rs670 A/A carriage was most evident in lymph node-negative patients, conferring to the highest risks of recurrence (HR=4.98, 95% CI=1.40-17.70, p=0.013) and mortality (HR=9.87, 95%CI=1.60-60.81, p=0.014) than patients with no A alleles. Conclusions APOA1 rs670 A/A carriage showed poor post-surgery prognosis in Taiwanese lymph node-negative breast cancer patients, whose prognosis were considered better and adjuvant treatment might be less stringent according to currently available assessment protocols. Our findings suggest that APOA1 rs670 indicate a post-surgery risk of breast cancer disease progression, and that carriers of this SNP may benefit from more advanced disease monitoring and therapy regimens than the current regular standards. Furthermore, control of lipid homeostasis might protect APOA1 rs670 minor allele carriers from breast cancer occurrence and progression.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, Kuhn W, Schild HH. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J 2013; 4:6. [PMID: 23418957 PMCID: PMC3615949 DOI: 10.1186/1878-5085-4-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
Breast cancer is a multifactorial disease. A spectrum of internal and external factors contributes to the disease promotion such as a genetic predisposition, chronic inflammatory processes, exposure to toxic compounds, abundant stress factors, a shift-worker job, etc. The cumulative effects lead to high incidence of breast cancer in populations worldwide. Breast cancer in the USA is currently registered with the highest incidence rates amongst all cancer related patient cohorts. Currently applied diagnostic approaches are frequently unable to recognise early stages in tumour development that impairs individual outcomes. Early diagnosis has been demonstrated to be highly beneficial for significantly enhanced therapy efficacy and possibly full recovery. Actual paper shows that the elaboration of an integrative diagnostic approach combining several levels of examinations creates a robust platform for the reliable risk assessment, targeted preventive measures and more effective treatments tailored to the person in the overall task of breast cancer management. The levels of examinations are proposed, and innovative technological approaches are described in the paper. The absolute necessity to create individual patient profiles and extended medical records is justified for the utilising by routine medical services. Expert recommendations are provided to promote further developments in the field.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str, 25, Bonn, 53105, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gam LH. Breast cancer and protein biomarkers. World J Exp Med 2012; 2:86-91. [PMID: 24520539 PMCID: PMC3905586 DOI: 10.5493/wjem.v2.i5.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/28/2012] [Accepted: 10/07/2012] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a healthcare concern of women worldwide. Despite procedures being available for diagnosis, prognosis and treatment of breast cancer, researchers are working intensively on the disease in order to improve the life quality of breast cancer patients. At present, there is no single treatment known to bring a definite cure for breast cancer. One of the possible solutions for combating breast cancer is through identification of reliable protein biomarkers that can be effectively used for early detection, prognosis and treatments of the cancer. Therefore, the task of identification of biomarkers for breast cancer has become the focus of many researchers worldwide.
Collapse
Affiliation(s)
- Lay-Harn Gam
- Lay-Harn Gam, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|