1
|
Carver JJ, Bunner WP, Denbrock RR, Yin C, Huang W, Szatmari EM, Didonna A. Loss of ADAP1/CentA1 Protects Against Autoimmune Demyelination. FASEB J 2025; 39:e70604. [PMID: 40326762 PMCID: PMC12054340 DOI: 10.1096/fj.202403078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
ArfGAP with dual PH domain-containing protein 1 (ADAP1), also known as Centaurin alpha-1 (CentA1), is an actin-binding protein highly expressed in the central nervous system (CNS) that was previously shown to regulate dendritic spine density and plasticity. In the context of disease, ADAP1/CentA1 has been linked to Alzheimer's disease (AD) pathogenesis, cancer progression, and human immunodeficiency virus (HIV) reactivation. Here, we document that ADAP1/CentA1 is also mechanistically involved in CNS autoimmunity. We show that ADAP1/CentA1 deficient mice exhibit partial resistance to developing experimental autoimmune encephalomyelitis (EAE), an in vivo disease model recapitulating several features of multiple sclerosis (MS) pathogenesis. MS is a chronic autoimmune disorder of the CNS characterized by focal immune cell infiltration, demyelination, and axonal injury. Its etiology is still elusive, but genetic and environmental factors contribute to disease risk. By combining detailed immunophenotyping and single-cell RNA sequencing (scRNA-seq), we demonstrate that ADAP1/CentA1 is necessary for mounting a sufficient autoimmune response for EAE initiation and progression. In particular, the current study highlights that ADAP1/CentA1 expression in the immune system mainly targets the functioning of regulatory T cells (Tregs), monocytes, and natural killer (NK) cells. In summary, our study defines a novel function for ADAP/CentA1 outside of the CNS and helps elucidate the early molecular events taking place in the peripheral immune system in response to encephalitogenic challenges.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Mice, Knockout
- Female
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Jonathan J. Carver
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Wyatt P. Bunner
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Center for Immunotherapy & Precision Immuno‐OncologyCleveland ClinicClevelandOhioUSA
| | - Rachael R. Denbrock
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Erzsebet M. Szatmari
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
2
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Natural Killer Cells in Alzheimer's Disease: From Foe to Friend. Eur J Neurosci 2025; 61:e70096. [PMID: 40207701 DOI: 10.1111/ejn.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
The neuroinflammatory aspect of Alzheimer's disease (AD) has been largely focused on microglia, the innate immune cells of the brain; however, recent evidence increasingly points to the importance of multiple alterations in the systemic immune response during disease development. Natural killer (NK) cells are also components of innate immunity, whose role in AD pathogenesis has been sporadically investigated and often conflicting results have been reported. Recent clinical trial has suggested the potential beneficial effects of AD immunotherapy based on ex vivo-expanded, genetically unmodified, NK cells. This has led to increased interest in understanding the function of these cells in the central nervous system in both physiological and pathological contexts such as AD. Considering that AD is predominantly a disease of the elderly population, in this review, we summarized the current state of knowledge on the physiological changes that occur in the NK cell compartment during the normal aging process and the pathophysiological alterations that occur throughout the AD continuum that could potentially explain the therapeutic efficacy of these cells.
Collapse
Affiliation(s)
- Milos Kostic
- Medical Faculty of Nis, Department of Immunology, University of Nis, Nis, Serbia
| | - Nikola Zivkovic
- Medical Faculty of Nis, Department of Pathology, University of Nis, Nis, Serbia
| | - Ana Cvetanovic
- Medical Faculty of Nis, Department of Oncology, University of Nis, Nis, Serbia
| | - Jelena Basic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| | - Ivana Stojanovic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| |
Collapse
|
3
|
Zúñiga CH, Acosta BI, Menchaca R, Amescua CA, Hong S, Hui L, Gil M, Rhee YH, Yoon S, Kim M, Chang PY, Kim YM, Song PY, Betito K. Treatment of Alzheimer's Disease subjects with expanded non-genetically modified autologous natural killer cells (SNK01): a phase I study. Alzheimers Res Ther 2025; 17:40. [PMID: 39939891 PMCID: PMC11817217 DOI: 10.1186/s13195-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The importance of natural killer (NK) cells of the innate immune system in neurodegenerative disease has largely been overlooked despite studies demonstrating their ability to reduce neuroinflammation (thought to be mediated by the elimination of activated T cells, degradation of protein aggregates and secretion of anti-inflammatory cytokines). SNK01 is an autologous non-genetically modified NK cell product showing increased activity in vitro. We hypothesized that SNK01 can be safely infused to reduce neuroinflammation in Alzheimer's Disease (AD) patients. METHODS SNK01 was produced and characterized for its ability to eliminate activated T cells, degrade protein aggregates and secrete anti-inflammatory cytokines. In this phase 1 study, SNK01 was administered intravenously every three weeks for a total of 4 treatments using a 3 + 3 dose escalation design (1, 2 and 4 × 109 cells) in subjects with either mild, moderate, or severe AD (median CDR-SB 10.0). Cognitive assessments and cerebrospinal fluid biomarkers associated with protein aggregation, neurodegeneration and neuroinflammation including amyloid-β42 and 42/40, α-synuclein, total Tau, pTau217 and pTau181, neurofilament light, GFAP and YKL-40 analyses were performed at baseline, at 1 and 12 weeks after the last dose. The primary endpoint was safety; secondary endpoints included changes in cognitive assessments and biomarker levels. RESULTS In preclinical in vitro studies, SNK01 were able to uptake and degrade the protein aggregates of amyloid-β and α-synuclein, produce anti-inflammatory cytokines and eliminate activated T cells. In the phase 1 clinical study, eleven subjects were enrolled (10 evaluable). No drug-related adverse events were observed. Despite 70% of subjects being treated at relatively low doses of SNK01 (1 and 2 × 109 cells), 50-70% of all enrolled subjects had stable/improved CDR-SB, ADAS-Cog and/or MMSE scores and 90% had stable/improved ADCOMS at one-week after the last dose. SNK01 also appeared to have beneficial effects on protein aggregate levels and neuroinflammatory biomarkers in the cerebrospinal fluid, with decreases in pTau181 and GFAP appearing to be dose-dependent. CONCLUSIONS SNK01 was well tolerated and appeared to have clinical activity in AD while also having beneficial effects on cerebrospinal fluid protein and neuroinflammatory biomarker levels. A larger trial with a higher dosing/duration has been initiated in the USA in 2023. TRIAL REGISTRATION www. CLINICALTRIALS gov NCT04678453, date of registration: 2020-12-22.
Collapse
Affiliation(s)
| | - Blanca Isaura Acosta
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Rufino Menchaca
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Cesar A Amescua
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Sean Hong
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Lucia Hui
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Minchan Gil
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Yong-Hee Rhee
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sangwook Yoon
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Minji Kim
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Paul Y Chang
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Yong Man Kim
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Paul Y Song
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Katia Betito
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA.
| |
Collapse
|
4
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
5
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
6
|
Qi C, Liu F, Zhang W, Han Y, Zhang N, Liu Q, Li H. Alzheimer's disease alters the transcriptomic profile of natural killer cells at single-cell resolution. Front Immunol 2022; 13:1004885. [PMID: 36405736 PMCID: PMC9666759 DOI: 10.3389/fimmu.2022.1004885] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia without an effective cure at least partially due to incomplete understanding of the disease. Inflammation has emerged as a central player in the onset and progression of AD. As innate lymphoid cells, natural killer (NK) cells orchestrate the initiation and evolution of inflammatory responses. Yet, the transcriptomic features of NK cells in AD remain poorly understood. We assessed the diversity of NK cells using web-based single-cell RNA sequencing data of blood NK cells from patients with AD and control subjects and flow cytometry. We identified a contraction of NK cell compartment in AD, accompanied by a reduction of cytotoxicity. Unbiased clustering revealed four subsets of NK cells in AD, i.e., CD56bright NK cells, CD56dim effector NK cells, adaptive NK cells, and a unique NK cell subset that is expanded and characterized by upregulation of CX3CR1, TBX21, MYOM2, DUSP1, and ZFP36L2, and negatively correlated with cognitive function in AD patients. Pseudo-temporal analysis revealed that this unique NK cell subset was at a late stage of NK cell development and enriched with transcription factors TBX21, NFATC2, and SMAD3. Together, our study identified a distinct NK cell subset and its potential involvement in AD.
Collapse
Affiliation(s)
| | | | | | | | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Handong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Sadeghi Hassanabadi N, Broux B, Marinović S, Gotthardt D. Innate Lymphoid Cells - Neglected Players in Multiple Sclerosis. Front Immunol 2022; 13:909275. [PMID: 35784374 PMCID: PMC9247827 DOI: 10.3389/fimmu.2022.909275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a highly debilitating autoimmune disease affecting millions of individuals worldwide. Although classically viewed as T-cell mediated disease, the role of innate lymphoid cells (ILC) such as natural killer (NK) cells and ILC 1-3s has become a focal point as several findings implicate them in the disease pathology. The role of ILCs in MS is still not completely understood as controversial findings have been reported assigning them either a protective or disease-accelerating role. Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that ILCs infiltrate the central nervous system (CNS), mediate inflammation, and have a disease exacerbating role by influencing the recruitment of autoreactive T-cells. Elucidating the detailed role of ILCs and altered signaling pathways in MS is essential for a more complete picture of the disease pathology and novel therapeutic targets. We here review the current knowledge about ILCs in the development and progression of MS and preclinical models of MS and discuss their potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Bieke Broux
- University MSCenter; Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Sonja Marinović
- Division of Molecular Medicine, Laboratory of Personalized Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Dagmar Gotthardt,
| |
Collapse
|
8
|
Arbelaez CA, Palle P, Charaix J, Bettelli E. STAT1 signaling protects self-reactive T cells from control by innate cells during neuroinflammation. JCI Insight 2022; 7:148222. [PMID: 35587373 PMCID: PMC9309063 DOI: 10.1172/jci.insight.148222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The transcription factor STAT1 plays a critical role in modulating the differentiation of CD4+ T cells producing IL-17 and GM-CSF, which promote the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The protective role of STAT1 in MS and EAE has been largely attributed to its ability to limit pathogenic Th cells and promote Tregs. Using mice with selective deletion of STAT1 in T cells (STAT1CD4-Cre), we identified a potentially novel mechanism by which STAT1 regulates neuroinflammation independently of Foxp3+ Tregs. STAT1-deficient effector T cells became the target of NK cell–mediated killing, limiting their capacity to induce EAE. STAT1-deficient T cells promoted their own killing by producing more IL-2 that, in return, activated NK cells. Elimination of NK cells restored EAE susceptibility in STAT1CD4-Cre mice. Therefore, our study suggests that the STAT1 pathway can be manipulated to limit autoreactive T cells during autoimmunity directed against the CNS.
Collapse
Affiliation(s)
- Carlos A Arbelaez
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Pushpalatha Palle
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Jonathan Charaix
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Estelle Bettelli
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| |
Collapse
|
9
|
Rodríguez-Lorenzo S, van Olst L, Rodriguez-Mogeda C, Kamermans A, van der Pol SMA, Rodríguez E, Kooij G, de Vries HE. Single-cell profiling reveals periventricular CD56 bright NK cell accumulation in multiple sclerosis. eLife 2022; 11:e73849. [PMID: 35536009 PMCID: PMC9135404 DOI: 10.7554/elife.73849] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas - septum and choroid plexus - and of the circulation from donors with MS, dementia and controls without neurological disease. Using a 37-marker panel, we revealed the infiltration of T cells and antibody-secreting cells in periventricular brain regions and identified a novel NK cell signature specific to MS. CD56bright NK cells were accumulated in the septum of MS donors and displayed an activated and migratory phenotype, similar to that of CD56bright NK cells in the circulation. We validated this signature by multiplex immunohistochemistry and found that the number of NK cells with high expression of granzyme K, typical of the CD56bright subset, was increased in both periventricular lesions and the choroid plexus of donors with MS. Together, our multi-tissue single-cell data shows that CD56bright NK cells accumulate in the periventricular brain regions of MS patients, bringing NK cells back to the spotlight of MS pathology.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Lynn van Olst
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Carla Rodriguez-Mogeda
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Alwin Kamermans
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Susanne MA van der Pol
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Ernesto Rodríguez
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity InstituteAmsterdamNetherlands
| | - Gijs Kooij
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Helga E de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| |
Collapse
|
10
|
Beliën J, Goris A, Matthys P. Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Front Immunol 2022; 13:869447. [PMID: 35464427 PMCID: PMC9019710 DOI: 10.3389/fimmu.2022.869447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.
Collapse
Affiliation(s)
- Jarne Beliën
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
12
|
Khani L, Jazayeri MH, Nedaeinia R, Bozorgmehr M, Nabavi SM, Ferns GA. The frequencies of peripheral blood CD5 +CD19 + B cells, CD3 -CD16 +CD56 + NK, and CD3 +CD56 + NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:5. [PMID: 35031055 PMCID: PMC8760701 DOI: 10.1186/s13223-021-00596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3-CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. METHODS CD19+CD5+ B, CD3- CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing-remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The percentage of CD3-CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3-CD16+ and CD3-CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). CONCLUSIONS The lower proportion of CD3-CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.
Collapse
Affiliation(s)
- Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Regenerative Biomedicine, Cell Science Research Center, Neuroscience and Cognition Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
13
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
15
|
Dubik M, Marczynska J, Mørch MT, Webster G, Jensen KN, Wlodarczyk A, Khorooshi R, Owens T. Innate Signaling in the CNS Prevents Demyelination in a Focal EAE Model. Front Neurosci 2021; 15:682451. [PMID: 34149350 PMCID: PMC8209300 DOI: 10.3389/fnins.2021.682451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The pathological hallmark of multiple sclerosis (MS) is the formation of multifocal demyelinating lesions in the central nervous system (CNS). Stimulation of innate receptors has been shown to suppress experimental autoimmune encephalomyelitis (EAE), an MS-like disease in mice. Specifically, targeting Toll-like receptor 9 (TLR9) and NOD-like receptor 2 (NOD2) significantly reduced disease severity. In the present work we have developed a novel focal EAE model to further study the effect of innate signaling on demyelinating pathology. Focal lesions were induced by stereotactic needle insertion into the corpus callosum (CC) of mice previously immunized for EAE. This resulted in focal pathology characterized by infiltration and demyelination in the CC. We find that intrathecal delivery of MIS416, a TLR9 and NOD2 bispecific innate ligand, into the cerebrospinal fluid reduced focal lesions in the CC. This was associated with upregulation of type I and II interferons, interleukin-10, arginase-1, CCL-2 and CXCL-10. Analysis of draining cervical lymph nodes showed upregulation of type II interferons and interleukin 10. Moreover, intrathecal MIS416 altered the composition of early CNS infiltrates, increasing proportions of myeloid and NK cells and reducing T cells at the lesion site. This study contributes to an increased understanding of how innate immune responses can play a protective role, which in turn may lead to additional therapeutic strategies for the prevention and treatment of demyelinating pathologies.
Collapse
Affiliation(s)
- Magdalena Dubik
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Joanna Marczynska
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Marlene T Mørch
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Gill Webster
- Innate Immunotherapeutics, Auckland, New Zealand
| | - Kirstine Nolling Jensen
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Reza Khorooshi
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Neurobiology, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Deeba E, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. The expression profile of virus-recognizing toll-like receptors in natural killer cells of Cypriot multiple sclerosis patients. BMC Res Notes 2020; 13:460. [PMID: 32993761 PMCID: PMC7526110 DOI: 10.1186/s13104-020-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 11/14/2022] Open
Abstract
Objective The exact aetiology of multiple sclerosis (MS) remains elusive, although several environmental and genetic risk factors have been implicated to varying degrees. Among the environmental risk factors, viral infections have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control are largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. Additionally, the complex roles of different TLRs in MS pathology are highlighted in multiple, often contradictory, studies. The present work aims to analyse the TLR expression profile of NK cells isolated from MS patients. Highly purified CD56+CD3− NK cells isolated from peripheral blood of MS patients (n = 19) and healthy controls (n = 20) were analysed via flow cytometry for their expression of viral antigen-recognizing TLRs (TLR2, TLR3, TLR7, and TLR9). Results No difference was noted in TLR expression between MS patients and healthy controls. These results aim to supplement previous findings which study expressional or functional differences in TLRs present in various subsets of the immune system in MS, thus aiding in a better understanding of MS as a complex multifaceted disease.
Collapse
Affiliation(s)
- Elie Deeba
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus
| | - Anastasia Lambrianides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Krashias
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus. .,Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, P.O.Box 23462, 1683, Nicosia, Cyprus.
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, P.O.Box 23462, 1683, Nicosia, Cyprus
| |
Collapse
|
18
|
The role of natural killer cells in Parkinson's disease. Exp Mol Med 2020; 52:1517-1525. [PMID: 32973221 PMCID: PMC8080760 DOI: 10.1038/s12276-020-00505-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous lines of evidence indicate an association between sustained inflammation and Parkinson's disease, but whether increased inflammation is a cause or consequence of Parkinson's disease remains highly contested. Extensive efforts have been made to characterize microglial function in Parkinson's disease, but the role of peripheral immune cells is less understood. Natural killer cells are innate effector lymphocytes that primarily target and kill malignant cells. Recent scientific discoveries have unveiled numerous novel functions of natural killer cells, such as resolving inflammation, forming immunological memory, and modulating antigen-presenting cell function. Furthermore, natural killer cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that natural killer cells scavenge alpha-synuclein aggregates, the primary component of Lewy bodies, and systemic depletion of natural killer cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making them a highly relevant cell type in Parkinson's disease. However, the exact role of natural killer cells in Parkinson's disease remains elusive. In this review, we introduce the systemic inflammatory process seen in Parkinson's disease, with a particular focus on the direct and indirect modulatory capacity of natural killer cells in the context of Parkinson's disease.
Collapse
|
19
|
Natural killer cells as participants in pathogenesis of rat experimental autoimmune encephalomyelitis (EAE): lessons from research on rats with distinct age and strain. Cent Eur J Immunol 2020; 44:337-356. [PMID: 32140045 PMCID: PMC7050050 DOI: 10.5114/ceji.2019.92777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells, influencing dendritic cell (DC)-mediated CD4+ lymphocyte priming in draining lymph nodes (dLNs) and controlling spinal cord (SC) infiltration with encephalitogenic CD4+T lymphocytes, modulate EAE (multiple sclerosis model). This study examined their putative contribution to age-related differences in EAE development in Dark Agouti (DA) (exhibiting age-related decrease in EAE susceptibility) and Albino Oxford (AO) (becoming susceptible to EAE with aging) rats. Aging increased NK cell number in dLNs from rats of both strains. In AO rats, but not in DA ones, it also increased the numbers of IFN-γ-producing NK cells (important for DC activation) and activated/matured DCs, thereby increasing activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated CD25+Foxp3-CD4+ cell number. Aging in DA rats diminished activated/matured DC/conventional Foxp3-CD4+ cell ratio and activated Foxp3-CD4+ cell number. However, MBP-stimulated CD4+ cell proliferation did not differ in dLN cell cultures from young and aged AO rats (as more favorable activated/matured DC/Foxp3-CD4+ cell ratio was abrogated by lower intrinsic CD4+ cell proliferative capacity and a greater regulatory CD25+Foxp3+CD4+ lymphocyte frequency), but was lower in those from aged compared with young DA rats. At SC level, aging shifted Foxp3-CD4+/cytotoxic CX3CR1+ NK cell ratio towards the former in AO rats, so it was less favorable in aged AO rats exhibiting prolonged neurological deficit compared with their DA counterparts. The study showed strain and age differences in number of IFN-γ-producing NK cells in EAE rat dLNs, and suggested that their pathogenetic relevance depends on frequency and/or activity of other cells involved in CD4+ T cell (auto)immune response.
Collapse
|
20
|
Romero-Suárez S, Del Rio Serrato A, Bueno RJ, Brunotte-Strecker D, Stehle C, Figueiredo CA, Hertwig L, Dunay IR, Romagnani C, Infante-Duarte C. The Central Nervous System Contains ILC1s That Differ From NK Cells in the Response to Inflammation. Front Immunol 2019; 10:2337. [PMID: 31649664 PMCID: PMC6795712 DOI: 10.3389/fimmu.2019.02337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.
Collapse
Affiliation(s)
- Silvina Romero-Suárez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Alba Del Rio Serrato
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Roemel Jeusep Bueno
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Daniel Brunotte-Strecker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Caio Andreeta Figueiredo
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Laura Hertwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ildiko R Dunay
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
21
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 PMCID: PMC6804597 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
22
|
Cohan SL, Lucassen EB, Romba MC, Linch SN. Daclizumab: Mechanisms of Action, Therapeutic Efficacy, Adverse Events and Its Uncovering the Potential Role of Innate Immune System Recruitment as a Treatment Strategy for Relapsing Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010018. [PMID: 30862055 PMCID: PMC6480729 DOI: 10.3390/biomedicines7010018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/07/2023] Open
Abstract
Daclizumab (DAC) is a humanized, monoclonal antibody that blocks CD25, a critical element of the high-affinity interleukin-2 receptor (IL-2R). DAC HYP blockade of CD25 inhibits effector T cell activation, regulatory T cell expansion and survival, and activation-induced T-cell apoptosis. Because CD25 blockade reduces IL-2 consumption by effector T cells, it increases IL-2 bioavailability allowing for greater interaction with the intermediate-affinity IL-2R, and therefore drives the expansion of CD56bright natural killer (NK) cells. Furthermore, there appears to be a direct correlation between CD56bright NK cell expansion and DAC HYP efficacy in reducing relapses and MRI evidence of disease activity in patients with RMS in phase II and phase III double-blind, placebo- and active comparator-controlled trials. Therapeutic efficacy was maintained during open-label extension studies. However, treatment was associated with an increased risk of rare adverse events, including cutaneous inflammation, autoimmune hepatitis, central nervous system Drug Reaction with Eosinophilia Systemic Symptoms (DRESS) syndrome, and autoimmune Glial Fibrillary Acidic Protein (GFAP) alpha immunoglobulin-associated encephalitis. As a result, DAC HYP was removed from clinical use in 2018. The lingering importance of DAC is that its use led to a deeper understanding of the underappreciated role of innate immunity in the potential treatment of autoimmune disease.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Elisabeth B Lucassen
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Meghan C Romba
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR 97225, USA.
| | - Stefanie N Linch
- Providence Health and Services, Regional Research Department, Portland, OR 97213, USA.
| |
Collapse
|
23
|
Ott M, Avendaño-Guzmán E, Ullrich E, Dreyer C, Strauss J, Harden M, Schön M, Schön MP, Bernhardt G, Stadelmann C, Wegner C, Brück W, Nessler S. Laquinimod, a prototypic quinoline-3-carboxamide and aryl hydrocarbon receptor agonist, utilizes a CD155-mediated natural killer/dendritic cell interaction to suppress CNS autoimmunity. J Neuroinflammation 2019; 16:49. [PMID: 30808363 PMCID: PMC6390632 DOI: 10.1186/s12974-019-1437-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Quinoline-3-carboxamides, such as laquinimod, ameliorate CNS autoimmunity in patients and reduce tumor cell metastasis experimentally. Previous studies have focused on the immunomodulatory effect of laquinimod on myeloid cells. The data contained herein suggest that quinoline-3-carboxamides improve the immunomodulatory and anti-tumor effects of NK cells by upregulating the adhesion molecule DNAX accessory molecule-1 (DNAM-1). Methods We explored how NK cell activation by laquinimod inhibits CNS autoimmunity in experimental autoimmune encephalomyelitis (EAE), the most utilized model of MS, and improves immunosurveillance of experimental lung melanoma metastasis. Functional manipulations included in vivo NK and DC depletion experiments and in vitro assays of NK cell function. Clinical, histological, and flow cytometric read-outs were assessed. Results We demonstrate that laquinimod activates natural killer (NK) cells via the aryl hydrocarbon receptor and increases their DNAM-1 cell surface expression. This activation improves the cytotoxicity of NK cells against B16F10 melanoma cells and augments their immunoregulatory functions in EAE by interacting with CD155+ dendritic cells (DC). Noteworthy, the immunosuppressive effect of laquinimod-activated NK cells was due to decreasing MHC class II antigen presentation by DC and not by increasing DC killing. Conclusions This study clarifies how DNAM-1 modifies the bidirectional crosstalk of NK cells with CD155+ DC, which can be exploited to suppress CNS autoimmunity and strengthen tumor surveillance. Electronic supplementary material The online version of this article (10.1186/s12974-019-1437-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Erika Avendaño-Guzmán
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Evelyn Ullrich
- LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany.,Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carolin Dreyer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Judith Strauss
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Harden
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Göttingen, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Gebäude I11 OE 5240, 30625, Hannover, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Wegner
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Present Address: Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
25
|
Darlington PJ, Stopnicki B, Touil T, Doucet JS, Fawaz L, Roberts ME, Boivin MN, Arbour N, Freedman MS, Atkins HL, Bar-Or A. Natural Killer Cells Regulate Th17 Cells After Autologous Hematopoietic Stem Cell Transplantation for Relapsing Remitting Multiple Sclerosis. Front Immunol 2018; 9:834. [PMID: 29867923 PMCID: PMC5951114 DOI: 10.3389/fimmu.2018.00834] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
In autoimmunity, the balance of different helper T (Th) cell subsets can influence the tissue damage caused by autoreactive T cells. Pro-inflammatory Th1 and Th17 T cells are implicated as mediators of several human autoimmune conditions such as multiple sclerosis (MS). Autologous hematopoietic stem cell transplantation (aHSCT) has been tested in phase 2 clinical trials for MS patients with aggressive disease. Abrogation of new clinical relapses and brain lesions can be seen after ablative aHSCT, accompanied by significant reductions in Th17, but not Th1, cell populations and activity. The cause of this selective decrease in Th17 cell responses following ablative aHSCT is not completely understood. We identified an increase in the kinetics of natural killer (NK) cell reconstitution, relative to CD4+ T cells, in MS patients post-aHSCT, resulting in an increased NK cell:CD4+ T cell ratio that correlated with the degree of decrease in Th17 responses. Ex vivo removal of NK cells from post-aHSCT peripheral blood mononuclear cells resulted in higher Th17 cell responses, indicating that NK cells can regulate Th17 activity. NK cells were also found to be cytotoxic to memory Th17 cells, and this toxicity is mediated through NKG2D-dependent necrosis. Surprisingly, NK cells induced memory T cells to secrete more IL-17A. This was preceded by an early rise in T cell expression of RORC and IL17A mRNA, and could be blocked with neutralizing antibodies against CD58, a costimulatory receptor expressed on NK cells. Thus, NK cells provide initial co-stimulation that supports the induction of a Th17 response, followed by NKG2D-dependent cytotoxicity that limits these cells. Together these data suggest that rapid reconstitution of NK cells following aHSCT contribute to the suppression of the re-emergence of Th17 cells. This highlights the importance of NK cells in shaping the reconstituting immune system following aHSCT in MS patients.
Collapse
Affiliation(s)
- Peter J Darlington
- Departments of Exercise Science and Biology, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Brandon Stopnicki
- Departments of Exercise Science and Biology, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Tarik Touil
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Jean-Sebastien Doucet
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Lama Fawaz
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Morgan E Roberts
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Marie-Noëlle Boivin
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada.,Clinical Biological Imaging and Genetic Repository, McGill University, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Mark S Freedman
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Harold L Atkins
- Blood and Marrow Transplant Program, Ottawa General Hospital, Ottawa, ON, Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada.,Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol 2018; 327:13-20. [DOI: 10.1016/j.cellimm.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
|
27
|
Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018; 153:399-414. [PMID: 29159928 PMCID: PMC5838423 DOI: 10.1111/imm.12869] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Genes encoding antigen-presenting molecules within the human major histocompatibility complex (MHC) account for the highest component of genetic risk for many neurological diseases, such as multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. Myriad genetic, immunological and environmental factors may contribute to an individual's susceptibility to neurological disease. Here, we review and discuss the decades long research on the influence of genetic variation at the MHC locus and the role of immunogenetic killer cell immunoglobulin-like receptor (KIR) loci in neurological diseases, including multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. The findings of immunogenetic association studies are consistent with a polygenic model of inheritance in the heterogeneous and multifactorial nature of complex traits in various neurological diseases. Future investigation is highly recommended to evaluate both coding and non-coding variation in immunogenetic loci using high-throughput high-resolution next-generation sequencing technologies in diverse ethnic groups to fully appreciate their role in neurological diseases.
Collapse
Affiliation(s)
- Maneesh K. Misra
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Vincent Damotte
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jill A. Hollenbach
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
28
|
Soriani A, Stabile H, Gismondi A, Santoni A, Bernardini G. Chemokine regulation of innate lymphoid cell tissue distribution and function. Cytokine Growth Factor Rev 2018; 42:47-55. [PMID: 29472011 DOI: 10.1016/j.cytogfr.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Three groups of innate lymphoid cells (ILCs) can be defined based on transcription factor requirements, cytokine production profiles, and roles in immunity. Given their strategic anatomical location into barrier tissues and the ability to rapidly produce cytokines and to cross-talk with other immune and non-immune cells, ILCs play fundamental functions in tissue homeostasis and regulation of immune responses. Several members of the chemokine family influence ILC tissue localization in the correct microenvironment by regulating their release from the bone marrow as well as their homing and retention in the tissues. In this review, we discuss the recent advances on how chemokine regulation of ILC tissue-positioning and functional interaction with other cells play essential roles in tissue-specific regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur -Italia, 00161-Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur -Italia, 00161-Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy.
| |
Collapse
|
29
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
30
|
Velarde-de la Cruz EE, Sánchez-Hernández PE, Muñoz-Valle JF, Palafox-Sánchez CA, Ramírez-de Los Santos S, Graciano-Machuca O, García-Iglesias T, Montoya-Buelna M, Ramírez-Dueñas MG. KIR2DL2 and KIR2DS2 as genetic markers to the methotrexate response in rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2017; 38:303-9. [PMID: 27251940 DOI: 10.1080/08923973.2016.1194429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Disease Modifying Anti-Rheumatic Drugs (DMARDs) are aimed to interfere with rheumatoid arthritis (RA) progression and reduce the joint damage; however, not all patients respond alike. Killer-cell immunoglobulin-like receptors (KIR) and their ligands, human leucocyte antigen class I (HLA-I), have been associated with RA pathology; therefore, KIR and HLA genes may influence the treatment response. MATERIALS AND METHODS We evaluated the association of KIR genotype and their ligands HLA-C genes with the response to DMARDs in RA patients. We included 69 patients diagnosed with RA and 82 healthy individuals as the reference group. KIR and HLA-C genotyping was performed using SSP-PCR. RA patients were assessed at baseline and under treatment at 6 and 12 months; subsequently classified as responders and non-responders in each time period. We evaluated the association between DMARD response and genes using statistical analysis by using Fisher exact test with Bonferroni correction; results were regarded as statistically significant at p < 0.05. RESULTS Significant difference was observed in gene frequencies of patients and the reference group, KIR2DL2 was associated with RA (p = 0.031, OR = 2.119). We also observed an association between KIR2DS2 and the response to methotrexate (MTX), moreover, the combination KIR2DL2+/KIR2DS2+ was more frequent in responders to MTX (p = 0.043). DISCUSSION AND CONCLUSIONS In our results, responders and non-responders to DMARDs showed KIR2DS2 and KIR2DL2 different gene frequencies, therefore, these genes could be used as response predictors to DMARDs treatment. Thus, these genes were also associated with disease severity, as well as the treatment response possibly by the immunoregulatory function of NK cells.
Collapse
Affiliation(s)
- Erandi Enif Velarde-de la Cruz
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Pedro Ernesto Sánchez-Hernández
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - José Francisco Muñoz-Valle
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Claudia Azucena Palafox-Sánchez
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Saúl Ramírez-de Los Santos
- d Departamento de Clínicas , Centro Universitario de los Altos, Universidad de Guadalajara , Tepatitlán , Jalisco , México
| | - Omar Graciano-Machuca
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Trinidad García-Iglesias
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Margarita Montoya-Buelna
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - María Guadalupe Ramírez-Dueñas
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| |
Collapse
|
31
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
32
|
Orthmann-Murphy JL, Calabresi PA. Therapeutic Application of Monoclonal Antibodies in Multiple Sclerosis. Clin Pharmacol Ther 2016; 101:52-64. [PMID: 27804128 DOI: 10.1002/cpt.547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disorder of the central nervous system (CNS). People with MS typically have a relapsing remitting disease course, with episodic neurological dysfunction corresponding to inflammation in the brain or spinal cord. Some relapsing patients develop a secondary progressive disease course, with accumulation of disability over time, yet other people with MS only experience a primary progressive course. Over the past 20 years, 14 immunomodulatory therapies have been approved in MS in order to reduce the frequency of inflammatory relapses and prevent CNS damage. Of the available types of therapies, the monoclonal antibodies are generally the most effective at dampening MS disease activity. In this review we will discuss the development of effective monoclonal antibody therapies coinciding with a better understanding of the complex immunopathogenesis of MS, both successes and failures, as well as targets for future development that address the mechanisms underlying progressive disease.
Collapse
Affiliation(s)
- J L Orthmann-Murphy
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - P A Calabresi
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Cohan S. Therapeutic efficacy of monthly subcutaneous injection of daclizumab in relapsing multiple sclerosis. Biologics 2016; 10:119-38. [PMID: 27672308 PMCID: PMC5026217 DOI: 10.2147/btt.s89218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite the availability of multiple disease-modifying therapies for relapsing multiple sclerosis (MS), there remains a need for highly efficacious targeted therapy with a favorable benefit-risk profile and attributes that encourage a high level of treatment adherence. Daclizumab is a humanized monoclonal antibody directed against CD25, the α subunit of the high-affinity interleukin 2 (IL-2) receptor, that reversibly modulates IL-2 signaling. Daclizumab treatment leads to antagonism of proinflammatory, activated T lymphocyte function and expansion of immunoregulatory CD56(bright) natural killer cells, and has the potential to, at least in part, rectify the imbalance between immune tolerance and autoimmunity in relapsing MS. The clinical pharmacology, efficacy, and safety of subcutaneous daclizumab have been evaluated extensively in a large clinical study program. In pivotal studies, daclizumab demonstrated superior efficacy in reducing clinical and radiologic measures of MS disease activity compared with placebo or intramuscular interferon beta-1a, a standard-of-care therapy for relapsing MS. The risk of hepatic disorders, cutaneous events, and infections was modestly increased. The monthly subcutaneous self-injection dosing regimen of daclizumab may be advantageous in maintaining patient adherence to treatment, which is important for optimal outcomes with MS disease-modifying therapy. Daclizumab has been approved in the US and in the European Union and represents an effective new treatment option for patients with relapsing forms of MS, and is currently under review by other regulatory agencies.
Collapse
Affiliation(s)
- Stanley Cohan
- Providence Multiple Sclerosis Center
- Providence Brain and Spine Institute
- Providence Health & Services, Portland, OR, USA
| |
Collapse
|
34
|
Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol 2016; 46:1984-96. [PMID: 27325505 DOI: 10.1002/eji.201546194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals.
Collapse
Affiliation(s)
- Laura Hertwig
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Isabell Hamann
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jason M Millward
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rebekka Pietrek
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Coralie Chanvillard
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hanna Stuis
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karolin Pollok
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,German Rheumatism Research Center, Germany and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
35
|
Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R. Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2015; 6:492. [PMID: 26483787 PMCID: PMC4586507 DOI: 10.3389/fimmu.2015.00492] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more than 30 years. Several studies attribute this cytokine a prominent proinflammatory and pathogenic function in these pathologies. However, accumulating evidence shows that IFN-γ also plays a protective role inducing regulatory cell activity and modulating the effector T cell response. Several innate and adaptive immune cells also develop opposite functions strongly associated with the production of IFN-γ in EAE. Even the suppressive activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent data supports a stage-specific participation of IFN-γ in EAE providing a plausible explanation for previous conflicting results. In this review, we will summarize and discuss such literature, emphasizing the protective role of IFN-γ on immune cells. These findings are fundamental to understand the complex role of IFN-γ in the pathogenesis of these diseases and can provide basis for potential stage-specific therapy for MS targeting IFN-γ-signaling or IFN-γ-producing immune cells.
Collapse
Affiliation(s)
- Gabriel Arellano
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Payton A Ottum
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián , Santiago , Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Rodrigo Naves
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| |
Collapse
|
36
|
Edwards SC, McGinley AM, McGuinness NC, Mills KHG. γδ T Cells and NK Cells - Distinct Pathogenic Roles as Innate-Like Immune Cells in CNS Autoimmunity. Front Immunol 2015; 6:455. [PMID: 26441960 PMCID: PMC4561808 DOI: 10.3389/fimmu.2015.00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarah C Edwards
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Aoife M McGinley
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Niamh C McGuinness
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland ; Trinity College Institute of Neuroscience, Trinity College Dublin , Dublin , Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
37
|
Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun 2015; 64:13-25. [PMID: 26142251 DOI: 10.1016/j.jaut.2015.06.010] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and common cause of non-traumatic neurological disability in young adults. The likelihood for an individual to develop MS is strongly influenced by her or his ethnic background and family history of disease, suggesting that genetic susceptibility is a key determinant of risk. Over 100 loci have been firmly associated with susceptibility, whereas the main signal genome-wide maps to the class II region of the human leukocyte antigen (HLA) gene cluster and explains up to 10.5% of the genetic variance underlying risk. HLA-DRB1*15:01 has the strongest effect with an average odds ratio of 3.08. However, complex allelic hierarchical lineages, cis/trans haplotypic effects, and independent protective signals in the class I region of the locus have been described as well. Despite the remarkable molecular dissection of the HLA region in MS, further studies are needed to generate unifying models to account for the role of the MHC in disease pathogenesis. Driven by the discovery of combinatorial associations of Killer-cell Immunoglobulin-like Receptor (KIR) and HLA alleles with infectious, autoimmune diseases, transplantation outcome and pregnancy, multi-locus immunogenomic research is now thriving. Central to immunity and critically important for human health, KIR molecules and their HLA ligands are encoded by complex genetic systems with extraordinarily high levels of sequence and structural variation and complex expression patterns. However, studies to-date of KIR in MS have been few and limited to very low resolution genotyping. Application of modern sequencing methodologies coupled with state of the art bioinformatics and analytical approaches will permit us to fully appreciate the impact of HLA and KIR variation in MS.
Collapse
Affiliation(s)
- Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
38
|
Rodríguez-Martín E, Picón C, Costa-Frossard L, Alenda R, Sainz de la Maza S, Roldán E, Espiño M, Villar LM, Álvarez-Cermeño JC. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol 2015; 180:243-9. [PMID: 25565222 DOI: 10.1111/cei.12580] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2014] [Indexed: 01/12/2023] Open
Abstract
Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56(bright) /CD56(dim) ) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56(bright) and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease.
Collapse
Affiliation(s)
- E Rodríguez-Martín
- Department of Immunology, Multiple Sclerosis Unit, Hospital Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain; Red Española de Esclerosis Múltiple, REEM, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2015; 34:16784-95. [PMID: 25505331 DOI: 10.1523/jneurosci.1867-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells-cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells-that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.
Collapse
|
40
|
Elkins J, Sheridan J, Amaravadi L, Riester K, Selmaj K, Bielekova B, Parr E, Giovannoni G. CD56(bright) natural killer cells and response to daclizumab HYP in relapsing-remitting MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e65. [PMID: 25635261 PMCID: PMC4309527 DOI: 10.1212/nxi.0000000000000065] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
Objective: To assess the relationship between CD56bright natural killer (NK) cells and multiple sclerosis (MS) disease activity in patients with relapsing-remitting MS treated with daclizumab high-yield process (DAC HYP). Methods: Data were from patients enrolled in a 52-week randomized, double-blind, placebo-controlled study of DAC HYP and its extension study. Assessments included relationships of CD56bright NK cell numbers (identified using fluorescence-activated cell sorting) at weeks 4 and 8 with the numbers of new or newly enlarging T2-hyperintense lesions between weeks 24 and 52 and the annualized relapse rate. Results: In DAC HYP–treated patients but not placebo-treated patients, the numbers of CD56bright NK cells increased over 52 weeks of treatment, and their numbers at weeks 4 and 8 predicted the number of new or newly enlarging T2-hyperintense lesions between weeks 24 and 52 of treatment (p ≤ 0.005 for each comparison). Similar but nonsignificant trends were observed between CD56bright NK cell counts and the annualized relapse rate in DAC HYP–treated patients. DAC HYP–treated patients who showed lower levels of expansion of CD56bright NK cells still developed fewer new or newly enlarging T2-hyperintense lesions than placebo-treated patients during the first year of treatment. Conclusions: CD56bright NK cells appear to mediate some of the treatment-related effects of DAC HYP, but their numbers do not account for the full effect of DAC HYP on MS-related outcomes.
Collapse
Affiliation(s)
- J Elkins
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - J Sheridan
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - L Amaravadi
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - K Riester
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - K Selmaj
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - B Bielekova
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - E Parr
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - G Giovannoni
- Biogen Idec (J.E., L.A., K.R.), Cambridge, MA; AbbVie Biotherapeutics Inc. (J.S.), Redwood City, CA; Medical University of Lodz (K.S.), Poland; Neuroimmunology Branch (B.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Excel Scientific Solutions (E.P.), Southport, CT; and Blizard Institute (G.G.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
41
|
Mandal A, Viswanathan C. Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther 2014; 8:47-55. [PMID: 25571788 DOI: 10.1016/j.hemonc.2014.11.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/07/2014] [Accepted: 11/22/2014] [Indexed: 01/26/2023] Open
Abstract
Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy.
Collapse
Affiliation(s)
- Arundhati Mandal
- Regenerative Medicine, Reliance Life Sciences Pvt Ltd, Dhirubhai Ambani Life Sciences Centre, R-282, TTC Industrial Area of MIDC, Thane Belapur Road, Rabale, Navi Mumbai 400 701, India
| | - Chandra Viswanathan
- Regenerative Medicine, Reliance Life Sciences Pvt Ltd, Dhirubhai Ambani Life Sciences Centre, R-282, TTC Industrial Area of MIDC, Thane Belapur Road, Rabale, Navi Mumbai 400 701, India.
| |
Collapse
|
42
|
Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS One 2014; 9:e111401. [PMID: 25337791 PMCID: PMC4206459 DOI: 10.1371/journal.pone.0111401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/02/2014] [Indexed: 12/02/2022] Open
Abstract
Numerous neurological disorders are characterized by central nervous system (CNS) vascular permeability. However, the underlying contribution of inflammatory-derived factors leading to pathology associated with blood-brain barrier (BBB) disruption remains poorly understood. In order to address this, we developed an inducible model of BBB disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide induced fatal syndrome (PIFS) model is initiated by virus-specific CD8 T cells and results in severe CNS vascular permeability and death in the C57BL/6 mouse strain. While perforin is required for BBB disruption, the cellular source of perforin has remained unidentified. In addition to CD8 T cells, various innate immune cells also express perforin and therefore could also contribute to BBB disruption. To investigate this, we isolated the CD8 T cell as the sole perforin-expressing cell type in the PIFS model through adoptive transfer techniques. We determined that C57BL/6 perforin−/− mice reconstituted with perforin competent CD8 T cells and induced to undergo PIFS exhibited: 1) heightened CNS vascular permeability, 2) increased astrocyte activation as measured by GFAP expression, and 3) loss of linear organization of BBB tight junction proteins claudin-5 and occludin in areas of CNS vascular permeability when compared to mock-treated controls. These results are consistent with the characteristics associated with PIFS in perforin competent mice. Therefore, CD8 T cells are sufficient as a sole perforin-expressing cell type to cause BBB disruption in the PIFS model.
Collapse
|
43
|
The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int 2014; 2014:285245. [PMID: 25374694 PMCID: PMC4211315 DOI: 10.1155/2014/285245] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterised by widespread areas of focal demyelination. Its aetiology and pathogenesis remain unclear despite substantial insights gained through studies of animal models, most notably experimental autoimmune encephalomyelitis (EAE). MS is widely believed to be immune-mediated and pathologically attributable to myelin-specific autoreactive CD4+ T cells. In recent years, MS research has expanded beyond its focus on CD4+ T cells to recognise the contributions of multiple immune and glial cell types to the development, progression, and amelioration of the disease. This review summarises evidence of T and B lymphocyte, natural killer cell, macrophage/microglial, astrocytic, and oligodendroglial involvement in both EAE and MS and the intercommunication and influence of each cell subset in the inflammatory process. Despite important advances in the understanding of the involvement of these cell types in MS, many questions still remain regarding the various subsets within each cell population and their exact contribution to different stages of the disease.
Collapse
|
44
|
Galazka G, Jurewicz A, Domowicz M, Cannella B, Raine CS, Selmaj K. HINT1 peptide/Hsp70 complex induces NK-cell-dependent immunoregulation in a model of autoimmune demyelination. Eur J Immunol 2014; 44:3026-44. [PMID: 25092109 DOI: 10.1002/eji.201444694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 07/31/2014] [Indexed: 12/29/2022]
Abstract
Heat shock proteins (Hsps) interact with the immune system and have been shown to contribute to immunoregulation. As efficient chaperones, Hsps bind many peptides and these complexes have many yet-to-be-clarified functions. We have shown that Hsp70 is complexed within the mouse CNS with peptide CLAFHDISPQAPTHFLVIPK derived from histidine triad nucleotide-binding protein-1 (HINT1₃₈₋₅₇/Hsp70). Only this complex, in contrast to other peptides complexed with Hsp70, was able to prevent experimental autoimmune encephalomyelitis (EAE) by induction of immunoregulatory mechanisms dependent on NK cells. Pretreatment of proteolipid protein peptide ₁₃₉₋₁₅₁(PLP₁₃₉₋₁₅₁) sensitized SJL/J mice with HINT1₃₈₋₅₇/Hsp70 prevented the development of EAE, suppressed PLP₁₃₉₋₁₅₁-induced T-cell proliferation, and blocked secretion of IL-17. HINT1₃₈₋₅₇ /Hsp70 stimulation of NK cells depended on synergistic activation of two NK-cell receptors, CD94 and NKG2D. NK cells with depleted CD94 or with blocked NKG2D did not inhibit PLP₁₃₉₋₁₅₁-induced spleen cell (SC) proliferation. The HINT1₃₈₋₅₇/Hsp70 complex enhanced surface expression of the NKG2D ligand-H60. Downstream signaling of CD94 and NKG2D converged at the adaptor proteins DAP10 and DAP12, and in response to HINT1₃₈₋₅₇ /Hsp70 stimulation, expression of DAP10 and DAP12 was significantly increased in NK cells. Thus, we have shown that the HINT1₃₈₋₅₇ /Hsp70 complex affects NK-cell function by enhancing NK-cell-dependent immunoregulation in the EAE model of autoimmune demyelination.
Collapse
Affiliation(s)
- Grazyna Galazka
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Høglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med 2014; 4:27-37. [PMID: 25254187 PMCID: PMC4172701 DOI: 10.5493/wjem.v4.i3.27] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/29/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease with many different immune cells involved in its pathogenesis, and in particular T cells as the most recognized cell type. Recently, the innate immune system has also been researched for its effect on the disease. Hence, cells of the immune system play vital roles in either ameliorating or exacerbating the disease. The genetic and environmental factors, as well as the etiology and pathogenesis are of utmost importance for the development of MS. An insight into the roles play by T cells, B cells, natural killer cells, and dendritic cells in MS and the animal model experimental autoimmune encephalomyelitis, will be presented. Understanding the mechanisms of action for current therapeutic modalities should help developing new therapeutic tools to treat this disease and other autoimmune diseases.
Collapse
|
46
|
TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol 2014; 11:564-70. [PMID: 25027967 DOI: 10.1038/cmi.2014.54] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
T helper 17 (TH17) cells have been identified as a new lineage of helper T cells and have been shown to be important in host defense against extracellular infectious agents, autoimmune disease and chronic inflammatory diseases. Recently, TH17 cells have also been shown to participate in successful pregnancy, as well as in the pathogenesis of diseases of pregnancy, such as recurrent spontaneous abortion (RSA) and pre-eclampsia (PE). Here, we review our current knowledge of TH17 cells in human RSA and PE. We also discuss how the local uterine microenvironment affects the differentiation of TH17 cells and the mechanisms that regulate TH17 cells during pregnancy. Research into TH17 cells will not only advance our understanding of TH17-related pregnancy complications, but will also facilitate the design of novel therapies for reproductive diseases.
Collapse
|
47
|
Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects. Immunology 2014; 141:483-9. [PMID: 24303897 DOI: 10.1111/imm.12224] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022] Open
Abstract
Human natural killer (NK) cells have distinct functions as NK(tolerant) , NK(cytotoxic) and NK(regulatory) cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27⁺ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs.
Collapse
Affiliation(s)
- Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | | | | |
Collapse
|
48
|
Xu H, Li XL, Yue LT, Li H, Zhang M, Wang S, Wang CC, Duan RS. Therapeutic potential of atorvastatin-modified dendritic cells in experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells and NKR-P1(+) cells. J Neuroimmunol 2014; 269:28-37. [PMID: 24565076 DOI: 10.1016/j.jneuroim.2014.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
Statins have pleiotropic effects which include anti-inflammatory and immunomodulatory effects. In the present study, dendritic cells treated with atorvastatin (statin-DCs) could be induced into tolerogenic DCs. Administration of these tolerogenic DCs ameliorated clinical symptoms in experimental autoimmune neuritis (EAN), which was associated with reduced number of inflammatory cells in sciatic nerves, inhibited CD4(+) T cells proliferation, down-regulated expression of co-stimulatory molecules (CD80 and CD86) and MHC class II, decreased levels of IFN-γ, TNF-α and IL-17A, increased number of NKR-P1(+) cells (including NK and NKT cells), up-regulated number of Treg cells in lymph node MNC as well as increased Foxp3 expression in the thymus. These data indicated that statin-DCs could develop as a new therapeutic strategy to GBS in the future.
Collapse
MESH Headings
- Animals
- Atorvastatin
- Cattle
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Heptanoic Acids/pharmacology
- Heptanoic Acids/therapeutic use
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Neuritis, Autoimmune, Experimental/drug therapy
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/metabolism
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Rats
- Rats, Inbred Lew
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Taian City Central Hospital, Taian 271000, PR China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Shan Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
49
|
Killer immunoglobulin-like receptor and their HLA ligands in Guillain–Barré Syndrome. J Neuroimmunol 2014; 267:92-6. [DOI: 10.1016/j.jneuroim.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
|
50
|
Zeng X, Chen H, Gupta R, Paz-Altschul O, Bowcock AM, Liao W. Deletion of the activating NKG2C receptor and a functional polymorphism in its ligand HLA-E in psoriasis susceptibility. Exp Dermatol 2013; 22:679-81. [PMID: 24079744 PMCID: PMC3813441 DOI: 10.1111/exd.12233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 01/16/2023]
Abstract
Psoriasis is an inflammatory, immune-mediated disease of the skin. Several studies have suggested that natural killer (NK) cells and their receptors may be important for its pathogenesis. Here, we examined whether deletion of the activating natural killer receptor gene NKG2C, which has a frequency of 20% in the European population, was associated with psoriasis susceptibility. The NKG2C deletion and a functional polymorphism in its ligand HLA-E were genotyped in a Caucasian cohort of 611 psoriasis cases and 493 controls. We found that the NKG2C deletion was significantly increased in cases compared with controls [0.258 vs 0.200, P = 0.0012, OR = 1.43 (1.15-1.79)]. The low-expressing HLA-E*01:01 allele was associated with psoriasis (P = 0.0018), although this association was dependent on HLA-C. Our findings support a potential immunoregulatory role for NK cells in psoriasis and suggest the importance of future studies to investigate the contribution of NK cells and their regulatory receptors to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA; Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|