1
|
Georgopoulos D, Taran S, Bolaki M, Akoumianaki E. Mechanical Ventilation in Patients with Acute Brain Injuries: A Pathophysiology-based Approach. Am J Respir Crit Care Med 2025; 211:932-945. [PMID: 39970391 DOI: 10.1164/rccm.202409-1813so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
Applying mechanical ventilation and selecting ventilatory strategies in patients with acute brain injuries, especially those with lung damage, is challenging. Static (positive end-expiratory pressure) and dynamic (intratidal) changes in ventilator pressure, via complex pathways, influence cerebral arterial inflow and cerebral venous pressure and thus cerebral blood volume and intracranial pressure. In this process, the relationship between airway pressure and pleural and transalveolar pressures, heavily affected by elastance of the chest wall and lung, respectively, plays a central role. This relationship determines the extent to which a static and dynamic increase in airway pressure affects the cardiac function and venous return curves, which govern the static and dynamic arterial and central venous pressures. The integrity of cerebral autoregulation determines whether static changes in arterial pressure alter cerebral arterial inflow. Conversely, dynamic changes in arterial pressure during the breath are followed by corresponding changes in cerebral arterial inflow because of the inability of autoregulation to control rapid arterial pressure fluctuations. The flow dynamics in the jugular veins and the relationship between intracranial and sagittal sinus pressures determine whether static and dynamic changes in central venous pressure alter cerebral venous pressure. Setting the ventilator and planning strategies should be individualized and guided by the complex, interactive effects among central nervous, respiratory, and cardiovascular systems on cerebral blood volume and cerebral perfusion and intracranial pressures. Following a logical framework, clinicians may anticipate the likely effects of ventilator settings and strategies on cerebral hemodynamics, enabling a more individualized approach in setting the ventilator and planning ventilatory strategies.
Collapse
Affiliation(s)
- Dimitrios Georgopoulos
- Medical School, University of Crete, Heraklion, Greece
- Intensive Care Medicine Department, University Hospital of Heraklion, Heraklion, Greece; and
| | - Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Bolaki
- Intensive Care Medicine Department, University Hospital of Heraklion, Heraklion, Greece; and
| | - Evangelia Akoumianaki
- Medical School, University of Crete, Heraklion, Greece
- Intensive Care Medicine Department, University Hospital of Heraklion, Heraklion, Greece; and
| |
Collapse
|
2
|
Markiewitz ND, Wang Y, Berg RA, Yehya N, Dixon C, Mercer-Rosa L, Himebauch AS. Right Atrial Dysfunction Is Prevalent in Pediatric Acute Respiratory Distress Syndrome and Reflects Pulmonary Hypertension and Right Ventricular Dysfunction. Crit Care Explor 2025; 7:e1230. [PMID: 40100967 PMCID: PMC11922415 DOI: 10.1097/cce.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
IMPORTANCE Right atrial (RA) dysfunction is associated with worse outcomes in some populations with pulmonary hypertension or respiratory failure but the prevalence and correlates of RA dysfunction in pediatric acute respiratory distress syndrome (PARDS) are unknown. OBJECTIVES The aim of this study was to evaluate RA function by characterizing the prevalence and pattern of RA dysfunction within the first 24 hours of PARDS onset. We hypothesized that RA dysfunction would be common and correlate with the presence of pulmonary hypertension and right ventricular (RV) systolic dysfunction. DESIGN, SETTING, AND PARTICIPANTS Retrospective, single-center cohort study at a tertiary care PICU of children (< 18 yr) with a clinically obtained echocardiogram within 24 hours following PARDS diagnosis and healthy controls without cardiopulmonary disease. MAIN OUTCOMES AND MEASURES Echocardiograms were evaluated for conventional and speckle-tracking (or strain) echocardiographic measures of RA and RV systolic function. Nonparametric summary statistics, comparisons, and correlational analyses were completed. RESULTS Ninety-two PARDS patients and 55 controls were included. Using a priori thresholds (> 2 sds of control values), 49% (n = 45) of PARDS patients demonstrated RA dysfunction in at least one RA functional metric. The maximal RA strain during the reservoir phase was reduced in PARDS compared with controls (median 40.2% vs. 53.7%; p < 0.001). Patients with echocardiographic evidence of pulmonary hypertension had lower maximal RA strain during the reservoir phase (31.7%) compared with patients without (40.5%; p < 0.05). Patients with higher brain-type natriuretic peptide plasma concentrations had worse RA function. RA function significantly correlated with conventional and strain measures of RV systolic function. CONCLUSIONS AND RELEVANCE RA dysfunction is common within the first 24 hours of PARDS onset. RA dysfunction during the reservoir phase is associated with pulmonary hypertension and RV systolic dysfunction. Future studies investigating trajectories of RA function and their association with outcomes in PARDS patients are needed.
Collapse
Affiliation(s)
- Nathan D. Markiewitz
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yan Wang
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Robert A. Berg
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nadir Yehya
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Celeste Dixon
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Laura Mercer-Rosa
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Adam S. Himebauch
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
3
|
Morales Castro D, Ferreyro BL, McAlpine D, Evangelatos N, Dragoi L, Teijeiro-Paradis R, Del Sorbo L, Fan E, Douflé G. Echocardiographic Findings in Critically Ill COVID-19 Patients Treated With and Without Extracorporeal Membrane Oxygenation. J Cardiothorac Vasc Anesth 2024; 38:3043-3054. [PMID: 39198124 DOI: 10.1053/j.jvca.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES To describe echocardiographic findings among mechanically ventilated patients with COVID-19 acute respiratory distress syndrome, comparing those with and without venovenous extracorporeal membrane oxygenation (VV ECMO) support. DESIGN Single-center, retrospective cohort study. SETTING Intensive care unit (ICU) of a quaternary academic center. PARTICIPANTS Patients with COVID-19 admitted between March 2020 and June 2021 receiving mechanical ventilation, with an echocardiogram within 72 hours of admission. INTERVENTIONS Admission and follow-up echocardiograms during ICU stay. MEASUREMENTS Patient characteristics and echocardiographic findings were analyzed. Mortality odds ratio (OR) for right ventricular (RV) systolic dysfunction and acute cor pulmonale (ACP) was calculated. MAIN RESULTS Among 242 patients, 145 (60%) received VV ECMO. Median (IQR) PaO2/FiO2 was 76 (65-95) and 98 (85-140) in ECMO and non-ECMO patients, respectively (p ≤ 0.001). Initial echocardiograms showed no significant differences in left ventricular systolic dysfunction (10% v 15 %, p = 0.31) and RV systolic dysfunction (38% v. 27%, p = 0.27) between ECMO and non-ECMO patients. ACP was more frequent in the ECMO group at baseline (41% v. 26 %, p = 0.02). During the ICU stay, patients on ECMO exhibited a higher prevalence of RV systolic dysfunction (55% v 34%, p = 0.001) and ACP (51% v 26%, p = 0.002). RV systolic dysfunction (OR 1.99; 95% CI 1.09-3.63) and ACP (OR 2.95; 95% CI 1.55-5.62) on the follow-up echocardiograms were associated with higher odds of ICU mortality. CONCLUSIONS The prevalence of echocardiographic abnormalities, in particular RV dysfunction, was frequent among patients with COVID-19 receiving VV ECMO support and was associated with worse clinical outcomes.
Collapse
Affiliation(s)
- Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - David McAlpine
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nikolaos Evangelatos
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laura Dragoi
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ricardo Teijeiro-Paradis
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Canada
| | - Ghislaine Douflé
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Dammassa V, Colombo CNJ, Erba M, Ciarrocchi F, Pagani M, Price S, Mojoli F, Tavazzi G. Echocardiographic assessment of right ventricular performance in COVID-19 related acute respiratory distress syndrome: the importance of systo-diastolic interaction. Ultrasound J 2024; 16:26. [PMID: 38713303 PMCID: PMC11076422 DOI: 10.1186/s13089-024-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The cardiac manifestations of COVID-19 have been described in patients with acute respiratory distress syndrome (ARDS) admitted to intensive care unit (ICU). The presence and impact of right ventricular (RV) diastolic function and performance has not been studied in this population yet. We describe the prevalence of RV diastolic dysfunction, assessed by the pulmonary valve pre-ejection A wave (PV A wave), and the RV systo-diastolic interaction, using the RV total isovolumic time (t-IVT), in COVID-19 ARDS. RESULTS Prospective observational study enrolling patients with moderate to severe COVID-19 ARDS admitted to ICU who underwent a transthoracic echocardiogram within 24 h of ICU admission and at least a second one during the ICU stay. Respiratory, hemodynamic and biochemistry parameters were collected. 163 patients (age 61.0 ± 9.3 years, 72% males) were enrolled. 36 patients (22.1%) had RV dysfunction, 45 (27.1%) LV systolic dysfunction. 73 patients (44.7%) had PV A wave. The RV t-IVT correlated with TAPSE at ICU admission (p < 0.002; r - 0.61), presence of PV A wave (p < 0.001; r 0.78), peak inspiratory pressure (PIP) (p < 0.001; r 0.42), PEEP (p < 0.001; r 0.68), dynamic driving pressure (DDP) (p < 0.001; r 0.58), and PaO2/FiO2 ratio (p < 0.01; r - 0.35). The presence of PV A wave was associated with higher PIP (p < 0.001; r 0.45), higher PEEP (p < 0.001; r 0.56), higher DDP (p < 0.01, r 0.51), and lower PaO2/FiO2 ratio (p < 0.001; r - 0.49). CONCLUSIONS RV t-IVT and the presence of PV A wave are non-invasive means to describe a significant RV diastolic dysfunction and may be consider descriptive signs of RV performance in COVID-19 ARDS.
Collapse
Affiliation(s)
- Valentino Dammassa
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Adult Intensive Care Unit, Royal Brompton Hospital, London, UK
| | - Costanza Natalia Julia Colombo
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimo Erba
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Ciarrocchi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Pagani
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Susanna Price
- Adult Intensive Care Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Francesco Mojoli
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Guido Tavazzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Lopez MP, Applefeld W, Miller PE, Elliott A, Bennett C, Lee B, Barnett C, Solomon MA, Corradi F, Sionis A, Mireles-Cabodevila E, Tavazzi G, Alviar CL. Complex Heart-Lung Ventilator Emergencies in the CICU. Cardiol Clin 2024; 42:253-271. [PMID: 38631793 DOI: 10.1016/j.ccl.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This review aims to enhance the comprehension and management of cardiopulmonary interactions in critically ill patients with cardiovascular disease undergoing mechanical ventilation. Highlighting the significance of maintaining a delicate balance, this article emphasizes the crucial role of adjusting ventilation parameters based on both invasive and noninvasive monitoring. It provides recommendations for the induction and liberation from mechanical ventilation. Special attention is given to the identification of auto-PEEP (positive end-expiratory pressure) and other situations that may impact hemodynamics and patients' outcomes.
Collapse
Affiliation(s)
- Mireia Padilla Lopez
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Willard Applefeld
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - P. Elliott Miller
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Elliott
- Division of Cardiology, University of Minnesota, Minneapolis, MN, USA
| | - Courtney Bennett
- Heart and Vascular Institute, Leigh Valley Health Network, Allentown, PA, USA
| | - Burton Lee
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MA, USA
| | - Christopher Barnett
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Solomon
- Clinical Center and Cardiology Branch, Critical Care Medicine Department, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MA, USA
| | - Francesco Corradi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Sionis
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Mireles-Cabodevila
- Respiratory Institute, Cleveland Clinic, Ohio and the Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Guido Tavazzi
- Department of Critical Care Medicine, Intensive Care Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlos L Alviar
- The Leon H. Charney Division of Cardiovascular Medicine, New York University School of Medicine, USA.
| |
Collapse
|
6
|
Rubulotta F, Blanch Torra L, Naidoo KD, Aboumarie HS, Mathivha LR, Asiri AY, Sarlabous Uranga L, Soussi S. Mechanical Ventilation, Past, Present, and Future. Anesth Analg 2024; 138:308-325. [PMID: 38215710 DOI: 10.1213/ane.0000000000006701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Mechanical ventilation (MV) has played a crucial role in the medical field, particularly in anesthesia and in critical care medicine (CCM) settings. MV has evolved significantly since its inception over 70 years ago and the future promises even more advanced technology. In the past, ventilation was provided manually, intermittently, and it was primarily used for resuscitation or as a last resort for patients with severe respiratory or cardiovascular failure. The earliest MV machines for prolonged ventilatory support and oxygenation were large and cumbersome. They required a significant amount of skills and expertise to operate. These early devices had limited capabilities, battery, power, safety features, alarms, and therefore these often caused harm to patients. Moreover, the physiology of MV was modified when mechanical ventilators moved from negative pressure to positive pressure mechanisms. Monitoring systems were also very limited and therefore the risks related to MV support were difficult to quantify, predict and timely detect for individual patients who were necessarily young with few comorbidities. Technology and devices designed to use tracheostomies versus endotracheal intubation evolved in the last century too and these are currently much more reliable. In the present, positive pressure MV is more sophisticated and widely used for extensive period of time. Modern ventilators use mostly positive pressure systems and are much smaller, more portable than their predecessors, and they are much easier to operate. They can also be programmed to provide different levels of support based on evolving physiological concepts allowing lung-protective ventilation. Monitoring systems are more sophisticated and knowledge related to the physiology of MV is improved. Patients are also more complex and elderly compared to the past. MV experts are informed about risks related to prolonged or aggressive ventilation modalities and settings. One of the most significant advances in MV has been protective lung ventilation, diaphragm protective ventilation including noninvasive ventilation (NIV). Health care professionals are familiar with the use of MV and in many countries, respiratory therapists have been trained for the exclusive purpose of providing safe and professional respiratory support to critically ill patients. Analgo-sedation drugs and techniques are improved, and more sedative drugs are available and this has an impact on recovery, weaning, and overall patients' outcome. Looking toward the future, MV is likely to continue to evolve and improve alongside monitoring techniques and sedatives. There is increasing precision in monitoring global "patient-ventilator" interactions: structure and analysis (asynchrony, desynchrony, etc). One area of development is the use of artificial intelligence (AI) in ventilator technology. AI can be used to monitor patients in real-time, and it can predict when a patient is likely to experience respiratory distress. This allows medical professionals to intervene before a crisis occurs, improving patient outcomes and reducing the need for emergency intervention. This specific area of development is intended as "personalized ventilation." It involves tailoring the ventilator settings to the individual patient, based on their physiology and the specific condition they are being treated for. This approach has the potential to improve patient outcomes by optimizing ventilation and reducing the risk of harm. In conclusion, MV has come a long way since its inception, and it continues to play a critical role in anesthesia and in CCM settings. Advances in technology have made MV safer, more effective, affordable, and more widely available. As technology continues to improve, more advanced and personalized MV will become available, leading to better patients' outcomes and quality of life for those in need.
Collapse
Affiliation(s)
- Francesca Rubulotta
- From the Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Lluis Blanch Torra
- Department of Critical Care, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Kuban D Naidoo
- Division of Critical Care, University of Witwatersrand, Johannesburg, South Africa
| | - Hatem Soliman Aboumarie
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Lufuno R Mathivha
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, The Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand
| | - Abdulrahman Y Asiri
- Department of Internal Medicine and Critical Care, King Khalid University Medical City, Abha, Saudi Arabia
- Department of Critical Care Medicine, McGill University
| | - Leonardo Sarlabous Uranga
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sabri Soussi
- Department of Anesthesia and Pain Management, University Health Network - Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto
- UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), Institut national de la santé et de la recherche médicale (INSERM), Université de Paris Cité, France
| |
Collapse
|
7
|
Kameda T, Ishii H, Oya S, Katabami K, Kodama T, Sera M, Takei H, Taniguchi H, Nakao S, Funakoshi H, Yamaga S, Senoo S, Kimura A. Guidance for clinical practice using emergency and point-of-care ultrasonography. Acute Med Surg 2024; 11:e974. [PMID: 38933992 PMCID: PMC11201855 DOI: 10.1002/ams2.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Owing to the miniaturization of diagnostic ultrasound scanners and their spread of their bedside use, ultrasonography has been actively utilized in emergency situations. Ultrasonography performed by medical personnel with focused approaches at the bedside for clinical decision-making and improving the quality of invasive procedures is now called point-of-care ultrasonography (POCUS). The concept of POCUS has spread worldwide; however, in Japan, formal clinical guidance concerning POCUS is lacking, except for the application of focused assessment with sonography for trauma (FAST) and ultrasound-guided central venous cannulation. The Committee for the Promotion of POCUS in the Japanese Association for Acute Medicine (JAAM) has often discussed improving the quality of acute care using POCUS, and the "Clinical Guidance for Emergency and Point-of-Care Ultrasonography" was finally established with the endorsement of JAAM. The background, targets for acute care physicians, rationale based on published articles, and integrated application were mentioned in this guidance. The core points include the fundamental principles of ultrasound, airway, chest, cardiac, abdominal, and deep venous ultrasound, ultrasound-guided procedures, and the usage of ultrasound based on symptoms. Additional points, which are currently being considered as potential core points in the future, have also been widely mentioned. This guidance describes the overview and future direction of ultrasonography for acute care physicians and can be utilized for emergency ultrasound education. We hope this guidance will contribute to the effective use of ultrasonography in acute care settings in Japan.
Collapse
Affiliation(s)
- Toru Kameda
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Clinical Laboratory MedicineJichi Medical UniversityShimotsukeJapan
| | - Hiromoto Ishii
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and Critical Care MedicineNippon Medical SchoolTokyoJapan
| | - Seiro Oya
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency MedicineShizuoka Medical CenterShizuokaJapan
| | - Kenichi Katabami
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and Critical Care CenterHokkaido University HospitalSapporoJapan
| | - Takamitsu Kodama
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and General Internal MedicineTajimi City HospitalTajimiJapan
| | - Makoto Sera
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency MedicineFukui Prefectural HospitalFukuiJapan
| | - Hirokazu Takei
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency MedicineHyogo Prefectural Kobe Children's HospitalKobeJapan
| | - Hayato Taniguchi
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Advanced Critical Care and Emergency CenterYokohama City University Medical CenterYokohamaJapan
| | - Shunichiro Nakao
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Traumatology and Acute Critical MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hiraku Funakoshi
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and Critical Care MedicineTokyo Bay Urayasu Ichikawa Medical CenterUrayasuJapan
| | - Satoshi Yamaga
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Satomi Senoo
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and Critical Care MedicineSaiseikai Yokohamashi Tobu HospitalYokohamaJapan
| | - Akio Kimura
- Committee for the Promotion of Point‐of‐Care UltrasonographyJapanese Association for Acute MedicineJapan
- Department of Emergency and Critical CareCenter Hospital of the National Center for Global Health and MedicineTokyoJapan
| |
Collapse
|
8
|
McGuigan PJ, Bowcock EM, Barrett NA, Blackwood B, Boyle AJ, Cadamy AJ, Camporota L, Conlon J, Cove ME, Gillies MA, McDowell C, McNamee JJ, O'Kane CM, Puxty A, Sim M, Parsons-Simmonds R, Szakmany T, Young N, Orde S, McAuley DF. The Effect of Lower Tidal Volume Ventilation Facilitated by Extracorporeal Carbon Dioxide Removal Compared With Conventional Lung Protective Ventilation on Cardiac Function. Crit Care Explor 2024; 6:e1028. [PMID: 38213419 PMCID: PMC10783412 DOI: 10.1097/cce.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES Lower tidal volume ventilation (targeting 3 mL/kg predicted body weight, PBW) facilitated by extracorporeal carbon dioxide removal (ECCO2R) has been investigated as a potential therapy for acute hypoxemic respiratory failure (AHRF) in the pRotective vEntilation with veno-venouS lung assisT in respiratory failure (REST) trial. We investigated the effect of this strategy on cardiac function, and in particular the right ventricle. DESIGN Substudy of the REST trial. SETTING Nine U.K. ICUs. PATIENTS Patients with AHRF (Pao2/Fio2 < 150 mm Hg [20 kPa]). INTERVENTION Transthoracic echocardiography and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements were collected at baseline and postrandomization in patients randomized to ECCO2R or usual care. MEASUREMENTS The primary outcome measures were a difference in tricuspid annular plane systolic excursion (TAPSE) on postrandomization echocardiogram and difference in NT-proBNP postrandomization. RESULTS There were 21 patients included in the echocardiography cohort (ECCO2R, n = 13; usual care, n = 8). Patient characteristics were similar in both groups at baseline. Median (interquartile range) tidal volumes were lower in the ECCO2R group compared with the usual care group postrandomization; 3.6 (3.1-4.2) mL/kg PBW versus 5.2 (4.9-5.7) mL/kg PBW, respectively (p = 0.01). There was no difference in the primary outcome measure of mean (sd) TAPSE in the ECCO2R and usual care groups postrandomization; 21.3 (5.4) mm versus 20.1 (3.2) mm, respectively (p = 0.60). There were 75 patients included in the NT-proBNP cohort (ECCO2R, n = 36; usual care, n = 39). Patient characteristics were similar in both groups at baseline. Median (interquartile range [IQR]) tidal volumes were lower in the ECCO2R group than the usual care group postrandomization; 3.8 (3.3-4.2) mL/kg PBW versus 6.7 (5.8-8.1) mL/kg PBW, respectively (p < 0.0001). There was no difference in median (IQR) NT-proBNP postrandomization; 1121 (241-5370) pg/mL versus 1393 (723-4332) pg/mL in the ECCO2R and usual care groups, respectively (p = 0.30). CONCLUSIONS In patients with AHRF, a reduction in tidal volume facilitated by ECCO2R, did not modify cardiac function.
Collapse
Affiliation(s)
- Peter J McGuigan
- Royal Victoria Hospital, Belfast, United Kingdom
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Emma M Bowcock
- Nepean Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Nicholas A Barrett
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew J Boyle
- Royal Victoria Hospital, Belfast, United Kingdom
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew J Cadamy
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
- School of Medicine, Dentistry, and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Luigi Camporota
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - John Conlon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | | | - Clíona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | | | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alex Puxty
- Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Malcolm Sim
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Tamas Szakmany
- Royal Gwent Hospital, Aneurin Bevan University Health Board, Newport, United Kingdom
- Department of Anaesthesia Intensive Care and Pain Medicine, Cardiff University, Cardiff, United Kingdom
| | - Neil Young
- Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Sam Orde
- Nepean Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Daniel F McAuley
- Royal Victoria Hospital, Belfast, United Kingdom
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Ozen A, Lenardo MJ. Protein-Losing Enteropathy. Reply. N Engl J Med 2023; 389:1826. [PMID: 37937790 DOI: 10.1056/nejmc2311038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
10
|
Zila I, Kolomaznik M, Mikolka P, Kosutova P, Czippelova B, Javorka M, Calkovska A. Vagal cardiac control in rats with LPS-induced lung injury. Respir Physiol Neurobiol 2023; 316:104120. [PMID: 37473790 DOI: 10.1016/j.resp.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Heart rate variability (HRV) as an index of cardiac autonomic control in acute lung injury (ALI) has been evaluated in anaesthetized rats intratracheally instilled with bacterial lipopolysaccharide (LPS) and ventilated with breathing frequency of 60/min, 40% oxygen, inspiratory time 40%, tidal volume of 6 mL/kg. ECG was recorded before and 30, 60, 120, 180 and 240 min after LPS or saline (control) administration. HRV was quantified by time and frequency-domain analysis (mean RR interval, SDRR, RMSSD and spectral power in high frequency (HF) band. Lactate in plasma, and oxidative stress, IL-1β, IL-5, IL-12p70 and IL-13 and galectin-3 in heart tissue raised in LPS-injured rats. Overall HRV magnitude (SDRR) and marker of vagal heart rate control (RMSSD), as well as frequency domain parameter, spectral power HF was increased 120 and 180 min since ALI onset. In conclusion, LPS-induced ALI is accompanied by altered vagal cardiac control mediated by autonomic nervous system, likely based on the close relationship between immune response and vagally mediated autonomic nervous activity.
Collapse
Affiliation(s)
- I Zila
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - P Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - P Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Czippelova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M Javorka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
11
|
Xu Y, Zhang Y, Zhang J, Liang W, Wang Y, Zeng Z, Liang Z, Ling Z, Chen Y, Deng X, Huang Y, Liu X, Zhang H, Li Y. High driving pressure ventilation induces pulmonary hypertension in a rabbit model of acute lung injury. J Intensive Care 2023; 11:42. [PMID: 37749622 PMCID: PMC10518953 DOI: 10.1186/s40560-023-00689-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Mechanical ventilation may cause pulmonary hypertension in patients with acute lung injury (ALI), but the underlying mechanism remains elucidated. METHODS ALI was induced in rabbits by a two-hit injury, i.e., hydrochloric acid aspiration followed by mechanical ventilation for 1 h. Rabbits were then ventilated with driving pressure of 10, 15, 20, or 25 cmH2O for 7 h. Clinicopathological parameters were measured at baseline and different timepoints of ventilation. RNA sequencing was conducted to identify the differentially expressed genes in high driving pressure ventilated lung tissue. RESULTS The two-hit injury induced ALI in rabbits was evidenced by dramatically decreased PaO2/FiO2 in the ALI group compared with that in the control group (144.5 ± 23.8 mmHg vs. 391.6 ± 26.6 mmHg, P < 0.001). High driving pressure ventilation (20 and 25 cmH2O) significantly elevated the parameters of acute pulmonary hypertension at different timepoints compared with low driving pressure (10 and 15 cmH2O), along with significant increases in lung wet/dry ratios, total protein contents in bronchoalveolar lavage fluid, and lung injury scores. The high driving pressure groups showed more pronounced histopathological abnormalities in the lung compared with the low driving pressure groups, accompanied by significant increases in the cross-sectional areas of myocytes, right ventricular weight/body weight value, and Fulton's index. Furthermore, the expression of the genes related to ferroptosis induction was generally upregulated in high driving pressure groups compared with those in low driving pressure groups. CONCLUSIONS A rabbit model of ventilation-induced pulmonary hypertension in ALI was successfully established. Our results open a new research direction investigating the exact role of ferroptosis in ventilation-induced pulmonary hypertension in ALI.
Collapse
Affiliation(s)
- Yonghao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Yu Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Jie Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Weibo Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Ya Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Zitao Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Zhenting Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Zhaoyi Ling
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Yubiao Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Xiumei Deng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Yongbo Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
| | - Haibo Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.
- The Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, M5B1W8, Canada.
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| | - Yimin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory and Health, Medical Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Bansal M, Mehta A, Machanahalli Balakrishna A, Kalyan Sundaram A, Kanwar A, Singh M, Vallabhajosyula S. RIGHT VENTRICULAR DYSFUNCTION IN SEPSIS: AN UPDATED NARRATIVE REVIEW. Shock 2023; 59:829-837. [PMID: 36943772 DOI: 10.1097/shk.0000000000002120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ABSTRACT Sepsis is a multisystem disease process, which constitutes a significant public health challenge and is associated with high morbidity and mortality. Among other systems, sepsis is known to affect the cardiovascular system, which may manifest as myocardial injury, arrhythmias, refractory shock, and/or septic cardiomyopathy. Septic cardiomyopathy is defined as the reversible systolic and/or diastolic dysfunction of one or both ventricles. Left ventricle dysfunction has been extensively studied in the past, and its prognostic role in patients with sepsis is well documented. However, there is relatively scarce literature on right ventricle (RV) dysfunction and its role. Given the importance of timely detection of septic cardiomyopathy and its bearing on prognosis of patients, the role of RV dysfunction has come into renewed focus. Hence, through this review, we sought to describe the pathophysiology of RV dysfunction in sepsis and what have we learnt so far about its multifactorial nature. We also elucidate the roles of different biomarkers for its detection and prognosis, along with appropriate management of such patient population.
Collapse
Affiliation(s)
- Mridul Bansal
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Aryan Mehta
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Arvind Kalyan Sundaram
- Section of Cardiovascular Medicine, Department of Medicine, UMass Chan-Baystate Medical Center, Springfield, Massachusetts
| | | | - Mandeep Singh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
13
|
Dong D, Jing C, Zong Y, Wang Y, Ren J. Effect of different titration methods on right heart function and prognosis in patients with acute respiratory distress syndrome. Heart Lung 2023; 61:127-135. [PMID: 37263145 DOI: 10.1016/j.hrtlng.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a common disease in intensive critical care(ICU), and the use of positive end-expiratory pressure(PEEP) during mechanical ventilation can increase the right heart afterload and eventually cause right heart dysfunction. For these factors causing acute cor pulmonale(ACP), especially inappropriate mechanical ventilation settings, it is important to explore the effect of PEEP on right heart function. OBJECTIVE To investigate the effects of three titration methods on right heart function and prognosis in patients with ARDS. METHODS Observational, prospective study in which ARDS patients were enrolled into three distinct PEEP-titration strategies groups: guide, transpulmonary pressure-oriented and driving pressure-oriented. Prognostic indicators, right heart systolic and diastolic echocardiographic function indices, ventilatory parameters, blood gas analysis results, and respiratory mechanics Monitoring indices were collated and analyzed statistically by STATA 15 software. RESULTS A total of 62 ARDS patients were enrolled into guide (G) group (n=40) for whom titrated PEEP values were 9±2cm H2O, driving pressure-oriented (DPO) group (n=12) with titrated PEEP values of 10±2cm H2O and transpulmonary pressure-oriented (TPO) group (n=10) with titrated PEEP values of 12±3cm H2O. Values were significantly higher for TPO than for G (p=0.616) or DPO (p=0.011). Compliance was significantly increased after 72 h in the TPO and DPO groups compared with the G group (p<0.001). Mean airway pressure at end-inspiratory obstruction (p=0.047), tricuspid annular plane systolic excursion (TAPSE, p<0.001) and right ventricular area change fraction (RVFAC, p=0.049) were all higher in the TPO and DPO groups than in the G group. E/A indices were significantly better in the TPO group than in the G or DPO groups (p=0.046). No significant differences in 28 day mortality were found among the three groups. Multivariate logistic regression analysis revealed that lung compliance and transpulmonary pressure-oriented PEEP titration method was negatively correlated to the increase in right ventricular systolic dysfunction. CONCLUSION Transpulmonary pressure-oriented PEEP titration improves oxygenation and pulmonary function and causes less right heart strain when compared to other PEEP-titration methods during mechanical ventilation of ARDS patients.
Collapse
Affiliation(s)
- Daoran Dong
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chengqiao Jing
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Yuan Zong
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yan Wang
- Department of ICU, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiawei Ren
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
14
|
Nabati M, Parsaee H. Combined use of double Doppler Tei index and lung ultrasound for predicting pulmonary hypertension and corpulmonale in neonates with respiratory distress. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:636-638. [PMID: 37125737 DOI: 10.1002/jcu.23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 05/03/2023]
Affiliation(s)
- Maryam Nabati
- Department of Cardiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Cardiovascular Research Center, Sari, Iran
| | - Homa Parsaee
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Integrated Assessment of Heart, Lung and Lower Extremity Veins Using Hand-Held Ultrasound Device in COVID-19 Patients: Feasibility and Clinical Application. Diagnostics (Basel) 2023; 13:diagnostics13040724. [PMID: 36832210 PMCID: PMC9954818 DOI: 10.3390/diagnostics13040724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
The emergence of the COVID-19 pandemic caused a significant shortage of medical personnel and the prioritization of life-saving procedures on internal medicine and cardiology wards. Thus, the cost- and time-effectiveness of each procedure proved vital. Implementing elements of imaging diagnostics into the physical examination of COVID-19 patients could prove beneficial to the treatment process, providing important clinical data at the moment of admission. Sixty-three patients with positive COVID-19 test results were enrolled into our study and underwent physical examination expanded with a handheld ultrasound device (HUD)-performed bedside assessment included: right ventricle measurement, visual and automated LVEF assessment, four-point compression ultrasound test (CUS) of lower extremities and lung ultrasound. Routine testing consisting of computed-tomography chest scanning, CT-pulmonary angiogram and full echocardiography performed on a high-end stationary device was completed in the following 24 h. Lung abnormalities characteristic for COVID-19 were detected in CT in 53 (84%) patients. The sensitivity and specificity of bedside HUD examination for detecting lung pathologies was 0.92 and 0.90, respectively. Increased number of B-lines had a sensitivity of 0.81, specificity 0.83 for the ground glass symptom in CT examination (AUC 0.82; p < 0.0001); pleural thickening sensitivity 0.95, specificity 0.88 (AUC 0.91, p < 0.0001); lung consolidations sensitivity 0.71, specificity 0.86 (AUC 0.79, p < 0.0001). In 20 patients (32%), pulmonary embolism was confirmed. RV was dilated in HUD examination in 27 patients (43%), CUS was positive in two patients. During HUD examination, software-derived LV function analysis failed to measure LVEF in 29 (46%) cases. HUD proved its potential as the first-line modality for the collection of heart-lung-vein imaging information among patients with severe COVID-19. HUD-derived diagnosis was especially effective for the initial assessment of lung involvement. Expectedly, in this group of patients with high prevalence of severe pneumonia, HUD-diagnosed RV enlargement had moderate predictive value and the option to simultaneously detect lower limb venous thrombosis was clinically attractive. Although most of the LV images were suitable for the visual assessment of LVEF, an AI-enhanced software algorithm failed in almost 50% of the study population.
Collapse
|
16
|
Kurnik M, Božič H, Vindišar A, Kolar P, Podbregar M. Pulmonary hypertension at admission predicts ICU mortality in elderly critically ill with severe COVID-19 pneumonia: retrospective cohort study. Cardiovasc Ultrasound 2023; 21:1. [PMID: 36653844 PMCID: PMC9847083 DOI: 10.1186/s12947-023-00300-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Point-of-care ultrasound (POCUS) is a useful diagnostic tool for non-invasive assessment of critically ill patients. Mortality of elderly patients with COVID-19 pneumonia is high and there is still scarcity of definitive predictors. Aim of our study was to assess the prediction value of combined lung and heart POCUS data on mortality of elderly critically ill patients with severe COVID-19 pneumonia. METHODS This was a retrospective observational study. Data of patients older than 70 years, with severe COVID-19 pneumonia admitted to mixed 25-bed, level 3, intensive care unit (ICU) was analyzed retrospectively. POCUS was performed at admission; our parameters of interest were pulmonary artery systolic pressure (PASP) and presence of diffuse B-line pattern (B-pattern) on lung ultrasound. RESULTS Between October 2020 and March 2021, 117 patients aged 70 years or more (average age 77 ± 5 years) were included. Average length of ICU stay was 10.7 ± 8.9 days. High-flow oxygenation, non-invasive ventilation and invasive mechanical ventilation were at some point used to support 36/117 (31%), 39/117 (33%) and 75/117 (64%) patients respectively. ICU mortality was 50.9%. ICU stay was shorter in survivors (8.8 ± 8.3 vs 12.6 ± 9.3 days, p = 0.02). PASP was lower in ICU survivors (32.5 ± 9.8 vs. 40.4 ± 14.3 mmHg, p = 0.024). B-pattern was more often detected in non-survivors (35/59 (59%) vs. 19/58 (33%), p = 0.005). PASP and B-pattern at admission, and also mechanical ventilation and development of VAP, were univariate predictors of mortality. PASP at admission was an independent predictor of ICU (OR 1.061, 95%CI 1.003-1.124, p = 0.039) and hospital (OR 1.073, 95%CI 1.003-1.146, p = 0.039) mortality. CONCLUSIONS Pulmonary artery systolic pressure at admission is an independent predictor of ICU and hospital mortality of elderly patients with severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Marko Kurnik
- grid.415428.e0000 0004 0621 9740Department of Internal Intensive Medicine, General Hospital Celje, Oblakova ulica 5, 3000 Celje, Slovenia
| | - Helena Božič
- grid.415428.e0000 0004 0621 9740Department of Internal Intensive Medicine, General Hospital Celje, Oblakova ulica 5, 3000 Celje, Slovenia
| | - Anže Vindišar
- grid.415428.e0000 0004 0621 9740Department of Internal Intensive Medicine, General Hospital Celje, Oblakova ulica 5, 3000 Celje, Slovenia
| | - Petra Kolar
- grid.415428.e0000 0004 0621 9740Department of Internal Intensive Medicine, General Hospital Celje, Oblakova ulica 5, 3000 Celje, Slovenia
| | - Matej Podbregar
- grid.415428.e0000 0004 0621 9740Department of Internal Intensive Medicine, General Hospital Celje, Oblakova ulica 5, 3000 Celje, Slovenia ,grid.8954.00000 0001 0721 6013Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Valenzuela ED, Mercado P, Pairumani R, Medel JN, Petruska E, Ugalde D, Morales F, Eisen D, Araya C, Montoya J, Gonzalez A, Rovegno M, Ramirez J, Aguilera J, Hernández G, Bruhn A, Slama M, Bakker J. Cardiac function in critically ill patients with severe COVID: A prospective cross-sectional study in mechanically ventilated patients. J Crit Care 2022; 72:154166. [PMID: 36244256 PMCID: PMC9557772 DOI: 10.1016/j.jcrc.2022.154166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate cardiac function in mechanically ventilated patients with COVID-19. MATERIALS AND METHODS Prospective, cross-sectional multicenter study in four university-affiliated hospitals in Chile. All consecutive patients with COVID-19 ARDS requiring mechanical ventilation admitted between April and July 2020 were included. We performed systematic transthoracic echocardiography assessing right and left ventricular function within 24 h of intubation. RESULTS 140 patients aged 57 ± 11, 29% female were included. Cardiac output was 5.1 L/min [IQR 4.5-6.2] and 86% of the patients required norepinephrine. ICU mortality was 29% (40 patients). Fifty-four patients (39%) exhibited right ventricle dilation out of whom 20 patients (14%) exhibited acute cor pulmonale (ACP). Eight out of the twenty patients with ACP exhibited pulmonary embolism (40%). Thirteen patients (9%) exhibited left ventricular systolic dysfunction (ejection fraction <45%). In the multivariate analysis acute cor pulmonale and PaO2/FiO2 ratio were independent predictors of ICU mortality. CONCLUSIONS Right ventricular dilation is highly prevalent in mechanically ventilated patients with COVID-19 ARDS. Acute cor pulmonale was associated with reduced pulmonary function and, in only 40% of patients, with co-existing pulmonary embolism. Acute cor pulmonale is an independent risk factor for ICU mortality.
Collapse
Affiliation(s)
- Emilio Daniel Valenzuela
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Pablo Mercado
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana - Universidad del Desarrollo, Santiago, Chile
| | - Ronald Pairumani
- Unidad de Cuidados Intensivos, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Juan Nicolás Medel
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Edward Petruska
- Unidad de Cuidados Intensivos, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Diego Ugalde
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Felipe Morales
- Unidad de Cuidados Intensivos, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Daniela Eisen
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carla Araya
- Unidad de Cuidados Intensivos, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Jorge Montoya
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Alejandra Gonzalez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Ramirez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Aguilera
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana - Universidad del Desarrollo, Santiago, Chile
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michel Slama
- Medical Intensive Care Unit, CHU Sud Amiens, Amiens, France
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Department of intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, Netherlands,Department of Pulmonary and Critical Care, New York University, NYU Langone Health, New York, USA,Department of Pulmonary and Critical Care, Columbia University Medical Center, New York, USA
| |
Collapse
|
18
|
Beyls C, Martin N, Booz T, Viart C, Boisgard S, Daumin C, Crombet M, Epailly J, Huette P, Dupont H, Abou-Arab O, Mahjoub Y. Prognostic value of acute cor pulmonale in COVID-19-related pneumonia: A prospective study. Front Med (Lausanne) 2022; 9:824994. [PMID: 36267616 PMCID: PMC9576859 DOI: 10.3389/fmed.2022.824994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND It is known that acute cor pulmonale (ACP) worsens the prognosis of non-coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (NC-ARDS). The ACP risk score evaluates the risk of ACP occurrence in mechanically ventilated patients with NC-ARDS. There is less data on the risk factors and prognosis of ACP induced by COVID-19-related pneumonia. OBJECTIVE The objective of this study was to evaluate the prognostic value of ACP, assessed by transthoracic echocardiography (TTE) and clinical factors associated with ACP in a cohort of patients with COVID-19-related pneumonia. MATERIALS AND METHODS Between February 2020 and June 2021, patients admitted to intensive care unit (ICU) at Amiens University Hospital for COVID-19-related pneumonia were assessed by TTE within 48 h of admission. ACP was defined as a right ventricle/left ventricle area ratio of >0.6 associated with septal dyskinesia. The primary outcome was mortality at 30 days. RESULTS Among 146 patients included, 36% (n = 52/156) developed ACP of which 38% (n = 20/52) were non-intubated patients. The classical risk factors of ACP (found in NC-ARDS) such as PaCO2 >48 mmHg, driving pressure >18 mmHg, and PaO2/FiO2 < 150 mmHg were not associated with ACP (all P-values > 0.1). The primary outcome occurred in 32 (22%) patients. More patients died in the ACP group (n = 20/52 (38%) vs. n = 12/94 (13%), P = 0.001). ACP [hazards ratio (HR) = 3.35, 95%CI [1.56-7.18], P = 0.002] and age >65 years (HR = 2.92, 95%CI [1.50-5.66], P = 0.002) were independent risk factors of 30-day mortality. CONCLUSION ACP was a frequent complication in ICU patients admitted for COVID-19-related pneumonia. The 30-day-mortality was 38% in these patients. In COVID-19-related pneumonia, the classical risk factors of ACP did not seem relevant. These results need confirmation in further studies.
Collapse
Affiliation(s)
- Christophe Beyls
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Nicolas Martin
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Thomas Booz
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Christophe Viart
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Solenne Boisgard
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Camille Daumin
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Maxime Crombet
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Julien Epailly
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Pierre Huette
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Hervé Dupont
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Osama Abou-Arab
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Yazine Mahjoub
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
19
|
Zhang H, Liu Z, Shu H, Yu Y, Yang X, Li R, Xu J, Zou X, Shang Y. Prone positioning in ARDS patients supported with VV ECMO, what we should explore? J Intensive Care 2022; 10:46. [PMID: 36195935 PMCID: PMC9531855 DOI: 10.1186/s40560-022-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS), a prevalent cause of admittance to intensive care units, is associated with high mortality. Prone positioning has been proven to improve the outcomes of moderate to severe ARDS patients owing to its physiological effects. Venovenous extracorporeal membrane oxygenation (VV ECMO) will be considered in patients with severe hypoxemia. However, for patients with severe hypoxemia supported with VV ECMO, the potential effects and optimal strategies of prone positioning remain unclear. This review aimed to present these controversial questions and highlight directions for future research. Main body The clinically significant benefit of prone positioning and early VV ECMO alone was confirmed in patients with severe ARDS. However, a number of questions regarding the combination of VV ECMO and prone positioning remain unanswered. We discussed the potential effects of prone positioning on gas exchange, respiratory mechanics, hemodynamics, and outcomes. Strategies to achieve optimal outcomes, including indications, timing, duration, and frequency of prone positioning, as well as the management of respiratory drive during prone positioning sessions in ARDS patients receiving VV ECMO, are challenging and controversial. Additionally, whether and how to implement prone positioning according to ARDS phenotypes should be evaluated. Lung morphology monitored by computed tomography, lung ultrasound, or electrical impedance tomography might be a potential indication to make an individualized plan for prone positioning therapy in patients supported with VV ECMO. Conclusion For patients with ARDS supported with VV ECMO, the potential effects of prone positioning have yet to be clarified. Ensuring an optimal strategy, especially an individualized plan for prone positioning therapy during VV ECMO, is particularly challenging and requires further research.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Zhengdong Liu
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Jani V, Kapoor K, Meyer J, Lu J, Goerlich E, Metkus TS, Madrazo JA, Michos E, Wu K, Bavaro N, Kutty S, Hays AG, Mukherjee M. Unsupervised machine learning demonstrates the prognostic value of TAPSE/PASP ratio among hospitalized patients with COVID-19. Echocardiography 2022; 39:1198-1208. [PMID: 35907784 PMCID: PMC10687738 DOI: 10.1111/echo.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The ratio of tricuspid annular plane systolic excursion (TAPSE) to pulmonary artery systolic pressure (PASP) is a validated index of right ventricular-pulmonary arterial (RV-PA) coupling with prognostic value. We determined the predictive value of TAPSE/PASP ratio and adverse clinical outcomes in hospitalized patients with COVID-19. METHODS Two hundred and twenty-nine consecutive hospitalized racially/ethnically diverse adults (≥18 years of age) admitted with COVID-19 between March and June 2020 with clinically indicated transthoracic echocardiograms (TTE) that included adequate tricuspid regurgitation (TR) velocities for calculation of PASP were studied. The exposure of interest was impaired RV-PA coupling as assessed by TAPSE/PASP ratio. The primary outcome was in-hospital mortality. Secondary endpoints comprised of ICU admission, incident acute respiratory distress syndrome (ARDS), and systolic heart failure. RESULTS One hundred and seventy-six patients had both technically adequate TAPSE measurements and measurable TR velocities for analysis. After adjustment for age, sex, BMI, race/ethnicity, diabetes mellitus, and smoking status, log(TAPSE/PASP) had a significantly inverse association with ICU admission (p = 0.015) and death (p = 0.038). ROC analysis showed the optimal cutoff for TAPSE/PASP for death was 0.51 mm mmHg-1 (AUC = 0.68). Unsupervised machine learning identified two groups of echocardiographic function. Of all echocardiographic measures included, TAPSE/PASP ratio was the most significant in predicting in-hospital mortality, further supporting its significance in this cohort. CONCLUSION Impaired RV-PA coupling, assessed noninvasively via the TAPSE/PASP ratio, was predictive of need for ICU level care and in-hospital mortality in hospitalized patients with COVID-19 suggesting utility of TAPSE/PASP in identification of poor clinical outcomes in this population both by traditional statistical and unsupervised machine learning based methods.
Collapse
Affiliation(s)
- Vivek Jani
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Karan Kapoor
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph Meyer
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jim Lu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Erin Goerlich
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Thomas S Metkus
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jose A Madrazo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Erin Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Katherine Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicole Bavaro
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shelby Kutty
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Russ M, Steiner E, Boemke W, Busch T, Melzer-Gartzke C, Taher M, Badulak J, Weber-Carstens S, Swenson ER, Francis RC, Pickerodt PA. Extracorporeal Membrane Oxygenation Blood Flow and Blood Recirculation Compromise Thermodilution-Based Measurements of Cardiac Output. ASAIO J 2022; 68:721-729. [PMID: 34860710 PMCID: PMC9067097 DOI: 10.1097/mat.0000000000001592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The contribution of veno-venous (VV) extracorporeal membrane oxygenation (ECMO) to systemic oxygen delivery is determined by the ratio of total extracorporeal blood flow () to cardiac output (). Thermodilution-based measurements of may be compromised by blood recirculating through the ECMO (recirculation fraction; Rf). We measured the effects of and Rf on classic thermodilution-based measurements of in six anesthetized pigs. An ultrasound flow probe measured total aortic blood flow () at the aortic root. Rf was quantified with the ultrasound dilution technique. was set to 0-125% of and was measured using a pulmonary artery catheter (PAC) in healthy and lung injured animals. PAC overestimated () at all settings compared to . The mean bias between both methods was 2.1 L/min in healthy animals and 2.7 L/min after lung injury. The difference between and increased with an of 75-125%/ compared to QEC <50%/. Overestimation of was highest when resulted in a high Rf. Thus, thermodilution-based measurements can overestimate cardiac output during VV ECMO. The degree of overestimation of depends on the EC/ ratio and the recirculation fraction.
Collapse
Affiliation(s)
- Martin Russ
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elvira Steiner
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Willehad Boemke
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thilo Busch
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christoph Melzer-Gartzke
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mahdi Taher
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jenelle Badulak
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| | - Steffen Weber-Carstens
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Erik R. Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
- VA Puget Sound Health Care System, Seattle, Washington
| | - Roland C.E. Francis
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp A. Pickerodt
- From the Department of Anesthesiology and Intensive Care Medicine (CCM, CVK); Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
The Effect and Mechanism of Lipoxin A4 on Neutrophil Function in LPS-Induced Lung Injury. Inflammation 2022; 45:1950-1967. [PMID: 35438373 DOI: 10.1007/s10753-022-01666-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
Excessive inflammatory response caused by infiltration of a large number of neutrophils is one of the important features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Lipoxin A4 (LXA4) is an important endogenous mediator in the process of inflammation resolution, which has a strong role in promoting inflammation resolution. In this study, we examined the impact of LXA4 on the pulmonary inflammatory response and the neutrophil function in ARDS rats. Our results indicated that exogenous administration of LXA4 could reduce the degree of lung injury in ARDS rats and inhibit the release of pro-inflammatory factors TNF-α and IL-1β in lung tissue homogenate. However, LXA4 has no lung protective effect on ARDS rats of neutropenia, nor can it inhibit the levels of pro-inflammatory factors TNF-α and IL-1β in lung tissue homogenate. LXA4 can inhibit the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in peripheral blood neutrophils of ARDS rats. At the same time, LXA4 can promote the phagocytosis of neutrophils in ARDS rats in vitro and can also promote the apoptosis of neutrophils in ARDS rats. In addition, the effect of LXA4 on the function of neutrophils in ARDS rats is mediated by its receptor ALX. LXA4 can inhibit the release of NE and MPO from neutrophils, thereby reducing the production of NETs. In summary, these findings indicate that LXA4 has a protective effect on LPS-induced ARDS rats by affecting the function of neutrophils.
Collapse
|
23
|
Bertini M, D'Aniello E, Di Ienno L, Gibiino F, Tavazzi G, Volta CA, Contoli M, Papi A, Campo G, Ferrari R, Rapezzi C. Phenotypic heterogeneity of COVID-19 pneumonia: clinical and pathophysiological relevance of the vascular phenotype. ESC Heart Fail 2022; 9:263-269. [PMID: 34755468 PMCID: PMC8652942 DOI: 10.1002/ehf2.13602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
Recent data support the existence of a distinctive 'vascular' phenotype with the involvement of both pulmonary parenchyma and its circulation in COVID-19 pneumonia. Its prompt identification is important for the accurate management of COVID-19 patients. The aim is to analyse the pro and contra of the different modalities to identify the 'vascular' phenotype. Chest computed tomography scan and angiogram may quantify both parenchyma and vascular damage, but the presence of thrombosis of pulmonary microcirculation may be missed. Increased d-dimer concentration confirms a thrombotic state, but it cannot localize the thrombus. An elevation of troponin concentration non-specifically reflects cardiac injury. Echocardiogram and electrocardiogram provide specific signs of right ventricular pressure overload. This is particularly relevant for the 'vascular' phenotype, which does not necessarily represent the result of thrombo-embolic venous complications, but more frequently, it is the result of pulmonary microcirculation thrombosis in situ and needs immediate therapeutic action. CONDENSED ABSTRACT: Despite diagnosis of the 'vascular' phenotype of COVID-19 pneumonia may be subtle, the evidence indicates a reasonable possibility of identifying it already in the initial stage of the infection. Chest computed tomography scan and angiogram, increased d-dimer concentration, and elevation of troponin concentration may be not sufficient to identify 'vascular' phenotype. Echocardiogram and electrocardiogram provide specific signs of right ventricular pressure overload. This is particularly relevant for the 'vascular' phenotype, which does not necessarily represent the result of thrombo-embolic venous complications, but more frequently, it is the result of pulmonary microcirculation thrombosis in situ and needs immediate therapeutic action.
Collapse
Affiliation(s)
- Matteo Bertini
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
| | - Emanuele D'Aniello
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
| | - Luca Di Ienno
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
| | - Federico Gibiino
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
| | - Guido Tavazzi
- Anesthesia and Intensive CareFondazione Policlinico San Matteo Hospital IRCCSPaviaItaly
| | - Carlo Alberto Volta
- Section of Anaesthesia and Intensive Care MedicineUniversity of FerraraFerraraItaly
| | - Marco Contoli
- Malattie dell'Apparato Respiratorio, Dipartimento di Morfologia, Chirurgia e Medicina SperimentaleUniversity of FerraraFerraraItaly
| | - Alberto Papi
- Malattie dell'Apparato Respiratorio, Dipartimento di Morfologia, Chirurgia e Medicina SperimentaleUniversity of FerraraFerraraItaly
| | - Gianluca Campo
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
| | | | - Claudio Rapezzi
- Cardiological Center, Translational Medicine DepartmentUniversity of FerraraFerraraItaly
- Maria Cecilia HospitalGVM Care & ResearchCotignolaItaly
| |
Collapse
|
24
|
Riessen R, Haap M, Hellwege RS. [Intensive care monitoring]. Dtsch Med Wochenschr 2021; 147:34-41. [PMID: 34963172 DOI: 10.1055/a-1226-9164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monitoring the function of essential organ systems is a hallmark of critical care. In combination with the medical history, physical examination and selective diagnostic tests. Monitoring facilitates the bed-side diagnosis of many diseases in critical care and guides therapeutic management while providing optimal patient safety. The availability of monitoring compensates in the very often complex and multimorbid patients and the very dynamic course of their diseases the lack of universally applicable treatment protocols, that are based on the results of randomized critical care trials. In the future clinical decision support systems based on artificial intelligence might support intensivists in the analysis of monitoring data in terms of individual prognosis assessment and choice of therapy.
Collapse
|
25
|
Ghidini S, Gasperetti A, Winterton D, Vicenzi M, Busana M, Pedrazzini G, Biasco L, Tersalvi G. Echocardiographic assessment of the right ventricle in COVID-19: a systematic review. Int J Cardiovasc Imaging 2021; 37:3499-3512. [PMID: 34292433 PMCID: PMC8295549 DOI: 10.1007/s10554-021-02353-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cardiac involvement has been frequently reported in COVID-19 as responsible of increased morbidity and mortality. Given the importance of right heart function in acute and chronic respiratory diseases, its assessment in SARS-CoV-2 infected patients may add prognostic accuracy. Transthoracic echocardiography has been proposed to early predict myocardial injury and risk of death in hospitalized patients. This systematic review presents the up-to-date sum of literature regarding right ventricle ultrasound assessment. We evaluated commonly used echocardiographic parameters to assess RV function and discussed their relationship with pathophysiological mechanisms involved in COVID-19. We searched Medline and Embase for studies that used transthoracic echocardiography for right ventricle assessment in patients with COVID-19.
Collapse
Affiliation(s)
- Simone Ghidini
- Cardiovascular Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dario Winterton
- Department of Anesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Marco Vicenzi
- Cardiovascular Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mattia Busana
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Giovanni Pedrazzini
- Department of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
- Division of Cardiology, Cardiocentro Ticino Institute, Lugano, Switzerland
| | - Luigi Biasco
- Department of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
- Division of Cardiology, Azienda Sanitaria Locale Torino 4, Ospedale di Ciriè, Ciriè, Italy
| | - Gregorio Tersalvi
- Division of Cardiology, Cardiocentro Ticino Institute, Lugano, Switzerland.
- Department of Internal Medicine, Hirslanden Klinik St. Anna, Sankt-Anna-Strasse 32, 6006, Lucerne, Switzerland.
| |
Collapse
|
26
|
Gierhardt M, Pak O, Walmrath D, Seeger W, Grimminger F, Ghofrani HA, Weissmann N, Hecker M, Sommer N. Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. Eur Respir Rev 2021; 30:30/161/210059. [PMID: 34526314 DOI: 10.1183/16000617.0059-2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.
Collapse
Affiliation(s)
- Mareike Gierhardt
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI) Bad Nauheim, Germany
| | - Oleg Pak
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Dieter Walmrath
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Institute for Lung Health (ILH), Giessen, Germany
| | - Friedrich Grimminger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Hossein A Ghofrani
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK
| | - Norbert Weissmann
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Matthias Hecker
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Both authors contributed equally
| | - Natascha Sommer
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Both authors contributed equally
| |
Collapse
|
27
|
Riessen R, Hellwege RS. [Pharmacological therapy of circulatory shock]. Med Klin Intensivmed Notfmed 2021; 116:541-553. [PMID: 34338810 DOI: 10.1007/s00063-021-00838-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Circulatory shock requires treatment of the underlying pathology in addition to supportive pharmacological therapy that is guided by hemodynamic monitoring. Based on the evaluation of the patient's volume, perfusion and cardiac status, the following therapeutic goals should be achieved: (1) Normalization of the intra- and extravascular fluid volume. (2) Provision of sufficient perfusion pressure and organ perfusion. (3) Optimization of cardiac function including protecting an ischemic and exhausted myocardium from overload. The most important therapeutic substances are balanced electrolyte solutions and the vasopressor noradrenaline. Because there is little scientific evidence for the use of alternative drugs, these should only be given if there is a good pathophysiologic rationale and if their effect is continuously monitored and re-evaluated.
Collapse
Affiliation(s)
- Reimer Riessen
- Internistische Intensivstation, Department für Innere Medizin, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland.
| | - Rubi Stephani Hellwege
- Internistische Intensivstation, Department für Innere Medizin, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| |
Collapse
|
28
|
Esposito A, Palmisano A, Toselli M, Vignale D, Cereda A, Rancoita PMV, Leone R, Nicoletti V, Gnasso C, Monello A, Biagi A, Turchio P, Landoni G, Gallone G, Monti G, Casella G, Iannopollo G, Nannini T, Patelli G, Di Mare L, Loffi M, Sergio P, Ippolito D, Sironi S, Pontone G, Andreini D, Mancini EM, Di Serio C, De Cobelli F, Ciceri F, Zangrillo A, Colombo A, Tacchetti C, Giannini F. Chest CT-derived pulmonary artery enlargement at the admission predicts overall survival in COVID-19 patients: insight from 1461 consecutive patients in Italy. Eur Radiol 2021; 31:4031-4041. [PMID: 33355697 PMCID: PMC7755582 DOI: 10.1007/s00330-020-07622-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Enlarged main pulmonary artery diameter (MPAD) resulted to be associated with pulmonary hypertension and mortality in a non-COVID-19 setting. The aim was to investigate and validate the association between MPAD enlargement and overall survival in COVID-19 patients. METHODS This is a cohort study on 1469 consecutive COVID-19 patients submitted to chest CT within 72 h from admission in seven tertiary level hospitals in Northern Italy, between March 1 and April 20, 2020. Derivation cohort (n = 761) included patients from the first three participating hospitals; validation cohort (n = 633) included patients from the remaining hospitals. CT images were centrally analyzed in a core-lab blinded to clinical data. The prognostic value of MPAD on overall survival was evaluated at adjusted and multivariable Cox's regression analysis on the derivation cohort. The final multivariable model was tested on the validation cohort. RESULTS In the derivation cohort, the median age was 69 (IQR, 58-77) years and 537 (70.6%) were males. In the validation cohort, the median age was 69 (IQR, 59-77) years with 421 (66.5%) males. Enlarged MPAD (≥ 31 mm) was a predictor of mortality at adjusted (hazard ratio, HR [95%CI]: 1.741 [1.253-2.418], p < 0.001) and multivariable regression analysis (HR [95%CI]: 1.592 [1.154-2.196], p = 0.005), together with male gender, old age, high creatinine, low well-aerated lung volume, and high pneumonia extension (c-index [95%CI] = 0.826 [0.796-0.851]). Model discrimination was confirmed on the validation cohort (c-index [95%CI] = 0.789 [0.758-0.823]), also using CT measurements from a second reader (c-index [95%CI] = 0.790 [0.753;0.825]). CONCLUSION Enlarged MPAD (≥ 31 mm) at admitting chest CT is an independent predictor of mortality in COVID-19. KEY POINTS • Enlargement of main pulmonary artery diameter at chest CT performed within 72 h from the admission was associated with a higher rate of in-hospital mortality in COVID-19 patients. • Enlargement of main pulmonary artery diameter (≥ 31 mm) was an independent predictor of death in COVID-19 patients at adjusted and multivariable regression analysis. • The combined evaluation of clinical findings, lung CT features, and main pulmonary artery diameter may be useful for risk stratification in COVID-19 patients.
Collapse
Affiliation(s)
- Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy.
| | - Anna Palmisano
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | - Marco Toselli
- GVM Care & Research Maria Cecilia Hospital, Cotignola, Italy
| | - Davide Vignale
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | - Alberto Cereda
- GVM Care & Research Maria Cecilia Hospital, Cotignola, Italy
| | - Paola Maria Vittoria Rancoita
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
- Centro Universitario di Statistica per le Scienze Biomediche, Vita-Salute San Raffaele University, Milan, Italy
| | - Riccardo Leone
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | - Valeria Nicoletti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | - Chiara Gnasso
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | | | | | | | - Giovanni Landoni
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
- Anesthesia and Intensive Care Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guglielmo Gallone
- Division of Cardiology, Department of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Giacomo Monti
- Anesthesia and Intensive Care Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | - Clelia Di Serio
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
- Centro Universitario di Statistica per le Scienze Biomediche, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | - Fabio Ciceri
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
- Department of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Zangrillo
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
- Anesthesia and Intensive Care Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Colombo
- GVM Care & Research Maria Cecilia Hospital, Cotignola, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| | | |
Collapse
|
29
|
Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS-A Prospective Observational Study. J Clin Med 2021; 10:jcm10091944. [PMID: 34062729 PMCID: PMC8125118 DOI: 10.3390/jcm10091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: To evaluate time-dependent right ventricular (RV) performance in patients with COVID-19-associated acute respiratory distress syndrome (ARDS) undergoing intensive care (ICU) treatment. (2) Methods: This prospective observational study included 21 ICU patients with COVID-19-associated ARDS in a university hospital in 2020 (first wave). Patients were evaluated by transthoracic echocardiography at an early (EE) and late (LE) stage of disease. Echocardiographic parameters describing RV size and function as well as RV size in correlation to PaO2/FiO2 ratio were assessed in survivors and nonsurvivors. (3) Results: Echocardiographic RV parameters were within normal range and not significantly different between EE and LE. Comparing survivors and nonsurvivors revealed no differences in RV performance at EE. Linear regression analysis did not show a correlation between RV size and PaO2/FiO2 ratio over all measurements. Analysing EE and LE separately showed a significant increase in RV size correlated to a lower PaO2/FiO2 ratio at a later stage of COVID-19 ARDS. (4) Conclusion: The present study reveals neither a severe RV dilatation nor an impairment of systolic RV function during the initial course of COVID-19-associated ARDS. A trend towards an increase in RV size in correlation with ARDS severity in the second week after ICU admission was observed.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Among noninvasive lung imaging techniques that can be employed at the bedside electrical impedance tomography (EIT) and lung ultrasound (LUS) can provide dynamic, repeatable data on the distribution regional lung ventilation and response to therapeutic manoeuvres.In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT and Point of Care Ultrasound (PoCUS, mainly but not limited to LUS) in the management of mechanically ventilated patients. RECENT FINDINGS The use of EIT in clinical practice is supported by several studies demonstrating good correlation between impedance tomography data and other validated methods of assessing lung aeration during mechanical ventilation. Similarly, LUS also correlates with chest computed tomography in assessing lung aeration, its changes and several pathological conditions, with superiority over other techniques. Other PoCUS applications have shown to effectively complement the LUS ultrasound assessment of the mechanically ventilated patient. SUMMARY Bedside techniques - such as EIT and PoCUS - are becoming standards of the care for mechanically ventilated patients to monitor the changes in lung aeration, ventilation and perfusion in response to treatment and to assess weaning from mechanical ventilation.
Collapse
|
31
|
See KC. Acute cor pulmonale in patients with acute respiratory distress syndrome: A comprehensive review. World J Crit Care Med 2021; 10:35-42. [PMID: 33728264 PMCID: PMC7941786 DOI: 10.5492/wjccm.v10.i2.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/01/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS)-related acute cor pulmonale (ACP) is found in 8%-50% of all patients with ARDS, and is associated with adverse hemodynamic and survival outcomes. ARDS-related ACP is an echocardiographic diagnosis marked by combined right ventricular dilatation and septal dyskinesia, which connote simultaneous diastolic (volume) and systolic (pressure) overload respectively. Risk factors include pneumonia, hypercapnia, hypoxemia, high airway pressures and concomitant pulmonary disease. Current evidence suggests that ARDS-related ACP is amenable to multimodal treatments including ventilator adjustment (aiming for arterial partial pressure of carbon dioxide < 60 mmHg, plateau pressure < 27 cmH2O, driving pressure < 17 cmH2O), prone positioning, fluid balance optimization and pharmacotherapy. Further research is required to elucidate the optimal frequency and duration of routine bedside echocardiography screening for ARDS-related ACP, to more clearly delineate the diagnostic role of transthoracic echocardiography relative to transesophageal echocardiography, and to validate current and novel therapies.
Collapse
Affiliation(s)
- Kay Choong See
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
32
|
Assessment of Right Ventricular Function With CT and Echocardiography in Patients With Severe Acute Respiratory Distress Syndrome on Extracorporeal Membrane Oxygenation. Crit Care Explor 2021; 3:e0345. [PMID: 33634265 PMCID: PMC7901809 DOI: 10.1097/cce.0000000000000345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Changes in right ventricular size and function are frequently observed in patients with severe acute respiratory distress syndrome. The majority of patients who receive venovenous extracorporeal membrane oxygenation undergo chest CT and transthoracic echocardiography. The aims of this study were to compare the use of CT and transthoracic echocardiography to evaluate the right ventricular function and to determine the prevalence of acute cor pulmonale in this patient population.
Collapse
|
33
|
Withers A, Ching Man TC, D'Cruz R, de Vries H, Fisser C, Ribeiro C, Shah N, Van Hollebecke M, Vosse BAH, Heunks L, Patout M. Highlights from the Respiratory Failure and Mechanical Ventilation 2020 Conference. ERJ Open Res 2021; 7:00752-2020. [PMID: 33585653 PMCID: PMC7869593 DOI: 10.1183/23120541.00752-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
The Respiratory Intensive Care Assembly of the European Respiratory Society organised the first Respiratory Failure and Mechanical Ventilation Conference in Berlin in February 2020. The conference covered acute and chronic respiratory failure in both adults and children. During this 3-day conference, patient selection, diagnostic strategies and treatment options were discussed by international experts. Lectures delivered during the event have been summarised by Early Career Members of the Assembly and take-home messages highlighted. During #RFMV2020, patient selection, diagnostic strategies and treatment options were discussed by international experts. This review summarises the most important take-home messages.https://bit.ly/3murkoa
Collapse
Affiliation(s)
- Adelaide Withers
- Respiratory Medicine, Perth Children's Hospital, Perth, Australia
| | - Tiffany Choi Ching Man
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, New Territories, Hong Kong
| | - Rebecca D'Cruz
- Lane Fox Clinical Respiratory Physiology Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | - Heder de Vries
- Intensive Care Department, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Christoph Fisser
- Dept of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Carla Ribeiro
- Pulmonology Dept, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Neeraj Shah
- Lane Fox Clinical Respiratory Physiology Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Centre for Human and Applied Physiological Sciences (CHAPS), King's College London, London, UK
| | | | - Bettine A H Vosse
- Dept of Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Centre of Home Mechanical Ventilation Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leo Heunks
- Intensive Care Department, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Maxime Patout
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
34
|
Lan Y, Liu W, Zhou Y. Right Ventricular Damage in COVID-19: Association Between Myocardial Injury and COVID-19. Front Cardiovasc Med 2021; 8:606318. [PMID: 33665210 PMCID: PMC7920943 DOI: 10.3389/fcvm.2021.606318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, is a global pandemic. It has resulted in considerable morbidity and mortality around the world. The respiratory system is the main system invaded by the virus involved in COVID-19. In addition to typical respiratory manifestations, a certain proportion of severe COVID-19 cases present with evidence of myocardial injury, which is associated with excessive mortality. With availability of an increasing amount of imaging data, right ventricular (RV) damage is prevalent in patients with COVID-19 and myocardial injury, while left ventricular damage is relatively rare and lacks specificity. The mechanisms of RV damage may be due to increased RV afterload and decreased RV contractility caused by various factors, such as acute respiratory distress syndrome, pulmonary thrombosis, direct viral injury, hypoxia, inflammatory response and autoimmune injury. RV dysfunction usually indicates a poor clinical outcome in patients with COVID-19. Timely and effective treatment is of vital importance to save patients' lives as well as improve prognosis. By use of echocardiography or cardiovascular magnetic resonance, doctors can find RV dilatation and dysfunction early. By illustrating the phenomenon of RV damage and its potential pathophysiological mechanisms, we will guide doctors to give timely medical treatments (e.g., anticoagulants, diuretics, cardiotonic), and device-assisted therapy (e.g., mechanical ventilation, extracorporeal membrane oxygenation) when necessary for these patients. In the paper, we examined the latest relevant studies to investigate the imaging features, potential mechanisms, and treatments of myocardial damage caused by COVID-19. RV damage may be an association between myocardial damage and lung injury in COVID-19. Early assessment of RV geometry and function will be helpful in aetiological determination and adjustment of treatment options.
Collapse
Affiliation(s)
- Yonghao Lan
- Department of Cardiology, Beijing Jishuitan Hospital, Peking University Fourth Hospital, Beijing, China.,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Coronavirus Disease 2019 Acute Respiratory Failure: Almitrine Drug Resuscitation or Resuscitating Patients by Almitrine? Crit Care Med 2021; 49:387-389. [PMID: 33186137 DOI: 10.1097/ccm.0000000000004765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Willder JM, McCall P, Messow CM, Gillies M, Berry C, Shelley B. Study protocol for COVID-RV: a multicentre prospective observational cohort study of right ventricular dysfunction in ventilated patients with COVID-19. BMJ Open 2021; 11:e042098. [PMID: 33441361 PMCID: PMC7811959 DOI: 10.1136/bmjopen-2020-042098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION COVID-19 can cause severe acute respiratory failure requiring management in intensive care unit with invasive ventilation and a 40% mortality rate. Cardiovascular manifestations are common and studies have shown an increase in right ventricular (RV) dysfunction associated with mortality. These studies, however, comprise heterogeneous patient groups with few requiring invasive ventilation. This study will investigate the prevalence and prognostic significance of RV dysfunction in ventilated patients with COVID-19 which may lead to targeted interventions to improve patient outcomes. METHODS AND ANALYSIS This prospective multicentre observational cohort study will perform transthoracic echocardiography (TTE) in 150 patients with COVID-19 requiring invasive ventilation for more than 48 hours. RV dysfunction will be defined as TTE evidence of RV dilatation along with the presence of septal flattening. Baseline demographics, disease severity data and clinical information relating to proposed aetiological mechanisms of RV dysfunction (acute respiratory distress syndrome (ARDS), disordered coagulation, direct myocardial injury and ventilation) will be collected and analysed.Primary outcome measures include the prevalence of RV dysfunction and its association with 30-day mortality. Exploratory outcome measures will investigate the association of the proposed aetiological mechanisms of RV dysfunction to the primary outcomes.Prevalence of RV dysfunction will be determined along with 95% Clopper-Pearson CIs and 30-day survival will be analysed using logistic regression adjusting for patient demographics, phase of disease and baseline severity of illness. The role of potential aetiological factors (ARDS, disordered coagulation, direct myocardial injury and ventilation) in relation to the primary outcomes will be analysed using logistic regression. ETHICS AND DISSEMINATION Approval was gained from Scotland A Research Ethics Committee (REC reference 20/SS/0059). Findings will be disseminated by various methods including webinars, international presentations and publication in peer-reviewed journals.
Collapse
Affiliation(s)
- Jennifer Mary Willder
- West of Scotland School of Anaesthesia, NHS Education for Scotland West Region, Glasgow, UK
| | - Philip McCall
- Academic Unit of Anaesthesia, Pain and Critical Care Medicine, University of Glasgow, Glasgow, UK
- Department of Anaesthesia, Golden Jubilee Hospital, Clydebank, West Dunbartonshire, UK
| | | | - Mike Gillies
- Anaesthesia, Care and Pain Medicine, The University of Edinburgh, Edinburgh, UK
- Department of Anaesthesia, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Colin Berry
- Department of Cardiology, Golden Jubilee Hospital, Clydebank, West Dunbartonshire, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | - Benjamin Shelley
- Academic Unit of Anaesthesia, Pain and Critical Care Medicine, University of Glasgow, Glasgow, UK
- Department of Anaesthesia, Golden Jubilee Hospital, Clydebank, West Dunbartonshire, UK
| |
Collapse
|
37
|
Mikolka P, Kosutova P, Balentova S, Cierny D, Kopincova J, Kolomaznik M, Adamkov M, Calkovska A, Mokra D. Early cardiac injury in acute respiratory distress syndrome: comparison of two experimental models. Physiol Res 2020; 69:S421-S432. [PMID: 33471542 DOI: 10.33549/physiolres.934591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung damage, inflammation, oedema formation, and surfactant dysfunction leading to hypoxemia. Severe ARDS can accelerate the injury of other organs, worsening the patient´s status. There is an evidence that the lung tissue injury affects the right heart function causing cor pulmonale. However, heart tissue changes associated with ARDS are still poorly known. Therefore, this study evaluated oxidative and inflammatory modifications of the heart tissue in two experimental models of ARDS induced in New Zealand rabbits by intratracheal instillation of neonatal meconium (100 mg/kg) or by repetitive lung lavages with saline (30 ml/kg). Since induction of the respiratory insufficiency, all animals were oxygen-ventilated for next 5 h. Total and differential counts of leukocytes were measured in the arterial blood, markers of myocardial injury [(troponin, creatine kinase - myocardial band (CK-MB), lactate dehydrogenase (LD)] in the plasma, and markers of inflammation [tumour necrosis factor (TNF)alpha, interleukin (IL)-6], cardiovascular risk [galectin-3 (Gal-3)], oxidative changes [thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine (3NT)], and vascular damage [receptor for advanced glycation end products (RAGE)] in the heart tissue. Apoptosis of heart cells was investigated immunohistochemically. In both ARDS models, counts of total leukocytes and neutrophils in the blood, markers of myocardial injury, inflammation, oxidative and vascular damage in the plasma and heart tissue, and heart cell apoptosis increased compared to controls. This study indicates that changes associated with ARDS may contribute to early heart damage what can potentially deteriorate the cardiac function and contribute to its failure.
Collapse
Affiliation(s)
- P Mikolka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hussain A, Via G, Melniker L, Goffi A, Tavazzi G, Neri L, Villen T, Hoppmann R, Mojoli F, Noble V, Zieleskiewicz L, Blanco P, Ma IWY, Wahab MA, Alsaawi A, Al Salamah M, Balik M, Barca D, Bendjelid K, Bouhemad B, Bravo-Figueroa P, Breitkreutz R, Calderon J, Connolly J, Copetti R, Corradi F, Dean AJ, Denault A, Govil D, Graci C, Ha YR, Hurtado L, Kameda T, Lanspa M, Laursen CB, Lee F, Liu R, Meineri M, Montorfano M, Nazerian P, Nelson BP, Neskovic AN, Nogue R, Osman A, Pazeli J, Pereira-Junior E, Petrovic T, Pivetta E, Poelaert J, Price S, Prosen G, Rodriguez S, Rola P, Royse C, Chen YT, Wells M, Wong A, Xiaoting W, Zhen W, Arabi Y. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus. Crit Care 2020; 24:702. [PMID: 33357240 PMCID: PMC7759024 DOI: 10.1186/s13054-020-03369-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.
Collapse
Affiliation(s)
- Arif Hussain
- Department of Cardiac Sciences, King Abdulaziz Medical City and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Gabriele Via
- Cardiac Anesthesia and Intensive Care, Cardiocentro Ticino, Lugano, Switzerland
| | - Lawrence Melniker
- New York Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Alberto Goffi
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Guido Tavazzi
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
- Anaesthesia and Intensive Care, Fondazione Istituto Di Ricovero E Cura a Carattere Scientifico, Policlinico San Matteo Foundation, Pavia, Italy
| | - Luca Neri
- Emergency Medicine and Critical Care Consultant, King Fahad Specialist Hospital - Dammam, Dammam, Saudi Arabia
| | - Tomas Villen
- School of Medicine, Francisco de Vitoria University, Madrid, Spain
| | - Richard Hoppmann
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Francesco Mojoli
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi Di Pavia, Pavia, Italy
| | - Vicki Noble
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Laurent Zieleskiewicz
- Service D'Anesthésie Réanimation Hôpital Nord, APHM, Chemin des Bourrely, 13015, Marseille, France
| | - Pablo Blanco
- Department of Teaching and Research, Hospital "Dr. Emilio Ferreyra", Necochea, Argentina
| | - Irene W Y Ma
- Division of General Internal Medicine, Department of Medicine, University of Calgary, Calgary, Canada
| | - Mahathar Abd Wahab
- Emergency and Trauma Department, Hospital Kuala Lumpur, 50586, Kuala Lumpur, Malaysia
| | - Abdulmohsen Alsaawi
- King Abdulaziz Medical City, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majid Al Salamah
- College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Martin Balik
- Dept of Anaesthesiology and Intensive Care, First Medical Faculty, Charles University, Prague, Czechia
| | - Diego Barca
- Médico Ecografista IADT, Buenos Aires, Argentina
| | - Karim Bendjelid
- Intensive Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Belaid Bouhemad
- Department of Anaesthesiology and Intensive Care, C.H.U. Dijon and Université Bourgogne Franche-Comté, LNC UMR866, 21000, Dijon, France
| | | | - Raoul Breitkreutz
- FOM University of Economy & Management, Frankfurt Campus, Frankfurt, Germany
| | - Juan Calderon
- Hospital General, Instituto Mexicano del Seguro Social, De Zona 4 Monterrey, Nuevo Leon, Mexico
| | - Jim Connolly
- Great North Trauma and Emergency Care Newcastle, Newcastle upon Tyne, UK
| | - Roberto Copetti
- Emergency Department, Latisana General Hospital, Latisana, Italy
| | - Francesco Corradi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | - Young-Rock Ha
- Dept. of Emergency Medicine, Bundang Jesaeng Hospital, Seoul, Korea
| | | | - Toru Kameda
- Department of Clinical Laboratory Medicine and Department of Emergency Medicine, Jichi Medical University, Tokyo, Japan
| | | | - Christian B Laursen
- Department of Respiratory Medicine, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Francis Lee
- Khoo Teck Puat Hospital, Singapore, Singapore
| | - Rachel Liu
- Dept. of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Miguel Montorfano
- Department of Ultrasound & Doppler Hospital de Emergencias "Dr. Clemente Alvarez", Rosario, Santa Fe, Argentina
| | - Peiman Nazerian
- Department of Emergency Medicine, Careggi University Hospital, Firenze, Italia
| | - Bret P Nelson
- Department of Emergency Medicine, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Aleksandar N Neskovic
- Clinical Hospital Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ramon Nogue
- Faculty of Medecine, University of Lleida, Lleida, Spain
| | - Adi Osman
- Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - José Pazeli
- FAME - Medicine School of Barbacena - MG-Brasil, Barbacena, Brazil
| | | | | | - Emanuele Pivetta
- Città Della Salute E Della Scienza Di Torino Hospital, University of Turin, Turin, Italy
| | - Jan Poelaert
- Faculty of Medicine and Pharmacy VUB, Univ Hospital Brussels, Brussels, Belgium
| | | | - Gregor Prosen
- Emergency Department, University Clinical Centre Maribor, Maribor, Slovenia
| | | | | | - Colin Royse
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
- Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
| | - Yale Tung Chen
- Department of Emergency Medicine, Hospital Universitario La Paz, Madrid, Spain
| | - Mike Wells
- Division of Emergency Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Wang Xiaoting
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wang Zhen
- The Fourth Military Medical University, Xi'an, 710032, China
| | - Yaseen Arabi
- King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Bertini M, Ferrari R, Guardigli G, Malagù M, Vitali F, Zucchetti O, D’Aniello E, Volta CA, Cimaglia P, Piovaccari G, Corzani A, Galvani M, Ortolani P, Rubboli A, Tortorici G, Casella G, Sassone B, Navazio A, Rossi L, Aschieri D, Rapezzi C. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: an insight into the mechanisms of cardiac involvement. Europace 2020; 22:1848-1854. [PMID: 32944767 PMCID: PMC7543398 DOI: 10.1093/europace/euaa258] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Our aim was to describe the electrocardiographic features of critical COVID-19 patients. METHODS AND RESULTS We carried out a multicentric, cross-sectional, retrospective analysis of 431 consecutive COVID-19 patients hospitalized between 10 March and 14 April 2020 who died or were treated with invasive mechanical ventilation. This project is registered on ClinicalTrials.gov (identifier: NCT04367129). Standard ECG was recorded at hospital admission. ECG was abnormal in 93% of the patients. Atrial fibrillation/flutter was detected in 22% of the patients. ECG signs suggesting acute right ventricular pressure overload (RVPO) were detected in 30% of the patients. In particular, 43 (10%) patients had the S1Q3T3 pattern, 38 (9%) had incomplete right bundle branch block (RBBB), and 49 (11%) had complete RBBB. ECG signs of acute RVPO were not statistically different between patients with (n = 104) or without (n=327) invasive mechanical ventilation during ECG recording (36% vs. 28%, P = 0.10). Non-specific repolarization abnormalities and low QRS voltage in peripheral leads were present in 176 (41%) and 23 (5%), respectively. In four patients showing ST-segment elevation, acute myocardial infarction was confirmed with coronary angiography. No ST-T abnormalities suggestive of acute myocarditis were detected. In the subgroup of 110 patients where high-sensitivity troponin I was available, ECG features were not statistically different when stratified for above or below the 5 times upper reference limit value. CONCLUSIONS The ECG is abnormal in almost all critically ill COVID-19 patients and shows a large spectrum of abnormalities, with signs of acute RVPO in 30% of the patients. Rapid and simple identification of these cases with ECG at hospital admission can facilitate classification of the patients and provide pathophysiological insights.
Collapse
Affiliation(s)
| | - Roberto Ferrari
- Cardiological Center, University of Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | | | | | | | | | - Carlo Alberto Volta
- U.O. Terapia Intensiva Universitaria, Azienda Ospedaliero-Universitaria di Ferrara ‘Arcispedale S. Anna’, Cona, Ferrara, Italy
| | - Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | | | | | | | | | | | | | | | | | - Luca Rossi
- Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | | | - Claudio Rapezzi
- Cardiological Center, University of Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| |
Collapse
|
40
|
Sherren PB, Ostermann M, Agarwal S, Meadows CIS, Ioannou N, Camporota L. COVID-19-related organ dysfunction and management strategies on the intensive care unit: a narrative review. Br J Anaesth 2020; 125:912-925. [PMID: 32988604 PMCID: PMC7833857 DOI: 10.1016/j.bja.2020.08.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in a significant surge of critically ill patients and an unprecedented demand on intensive care services. The rapidly evolving understanding of pathogenesis, limited disease specific evidence, and demand-resource imbalances have posed significant challenges for intensive care clinicians. COVID-19 is a complex multisystem inflammatory vasculopathy with a significant mortality implication for those admitted to intensive care. Institutional strategic preparation and meticulous intensive care support are essential to maximising outcomes during the pandemic. The significant mortality variation observed between institutions and internationally, despite a single aetiology and uniform presentation, highlights the potential influence of management strategies on outcome. Given that optimal organ support and adjunctive therapies for COVID-19 have not yet been well defined by trial-based outcomes, strategies are predicated on existing literature and experiential learning. This review outlines the relevant pathophysiology and management strategies for critically ill patients with COVID-19, and shares some of the collective learning accumulated in a high volume severe respiratory failure centre in London.
Collapse
Affiliation(s)
| | | | - Sangita Agarwal
- Department of Rheumatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | |
Collapse
|
41
|
Dyla A, Zając M, Mielnicki W. Severe Acute Respiratory Distress Syndrome in Potential Organ Donors-Rescue Prone Positioning: A Case Report. Transplant Proc 2020; 53:1342-1344. [PMID: 33358525 DOI: 10.1016/j.transproceed.2020.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/03/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
Organ transplantation is a recognized treatment for many critical organ insufficiencies. One of the main problems in transplantation is the mismatch between organ donation and demand. It is very important to improve donor eligibility after brain stem death and to minimize insult to donatable organs by appropriate donor management. We present prone positioning as an effective supportive method of organ optimization in patients with acute respiratory distress syndrome with severe hypoxemia and hemodynamic instability.
Collapse
Affiliation(s)
- Agnieszka Dyla
- Anaesthesiology and Intensive Care Unit, District Hospital in Oława, Oława, Poland.
| | - Marta Zając
- Anaesthesiology and Intensive Care Unit, District Hospital in Oława, Oława, Poland
| | - Wojciech Mielnicki
- Anaesthesiology and Intensive Care Unit, District Hospital in Oława, Oława, Poland
| |
Collapse
|
42
|
Ridge CA, Desai SR, Jeyin N, Mahon C, Lother DL, Mirsadraee S, Semple T, Price S, Bleakley C, Arachchillage DJ, Shaw E, Patel BV, Padley SPG, Devaraj A. Dual-Energy CT Pulmonary Angiography (DECTPA) Quantifies Vasculopathy in Severe COVID-19 Pneumonia. Radiol Cardiothorac Imaging 2020; 2:e200428. [PMID: 33778632 PMCID: PMC7605077 DOI: 10.1148/ryct.2020200428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of dual energy computed tomographic pulmonary angiography (DECTPA) in revealing vasculopathy in coronavirus disease 2019 (COVID-19) has not been fully explored. PURPOSE To evaluate the relationship between DECTPA and disease duration, right ventricular dysfunction (RVD), lung compliance, D-dimer and obstruction index in COVID-19 pneumonia. MATERIALS AND METHODS This institutional review board approved this retrospective study, and waived the informed consent requirement. Between March-May 2020, 27 consecutive ventilated patients with severe COVID-19 pneumonia underwent DECTPA to diagnose pulmonary thrombus (PT); 11 underwent surveillance DECTPA 14 ±11.6 days later. Qualitative and quantitative analysis of perfused blood volume (PBV) maps recorded: i) perfusion defect 'pattern' (wedge-shaped, mottled or amorphous), ii) presence of PT and CT obstruction index (CTOI) and iii) PBV relative to pulmonary artery enhancement (PBV/PAenh); PBV/PAenh was also compared with seven healthy volunteers and correlated with D-Dimer and CTOI. RESULTS Amorphous (n=21), mottled (n=4), and wedge-shaped (n=2) perfusion defects were observed (M=20; mean age=56 ±8.7 years). Mean extent of perfusion defects=36.1%±17.2. Acute PT was present in 11/27(40.7%) patients. Only wedge-shaped defects corresponded with PT (2/27, 7.4%). Mean CTOI was 2.6±5.4 out of 40. PBV/PAenh (18.2 ±4.2%) was lower than in healthy volunteers (27 ±13.9%, p = 0.002). PBV/PAenh correlated with disease duration (β = 0.13, p = 0.04), and inversely correlated with RVD (β = -7.2, p = 0.001), persisting after controlling for confounders. There were no linkages between PBV/PAenh and D-dimer or CTOI. CONCLUSION Perfusion defects and decreased PBV/PAenh are prevalent in severe COVID-19 pneumonia. PBV/PAenh correlates with disease duration and inversely correlates with RVD. PBV/PAenh may be an important marker of vasculopathy in severe COVID-19 pneumonia even in the absence of arterial thrombus.
Collapse
Affiliation(s)
| | | | - Nidhish Jeyin
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Ciara Mahon
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Dione L Lother
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Saeed Mirsadraee
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Tom Semple
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Susanna Price
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Caroline Bleakley
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Deepa J Arachchillage
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Elizabeth Shaw
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Brijesh V Patel
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Simon PG Padley
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| | - Anand Devaraj
- From the Department of Imaging, Royal Brompton Hospital, London, UK (C.A.R., S.R.D., C.M., D.L.L., S.M., T.S., E.S., S.P.P, A.D.); Imperial College London, London, UK (N.J.); Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK (S.P., C.B., B.V.P.); Department of Haematology, Imperial College London, London, UK and Department of Haematology, Royal Brompton Hospital, London, UK (D.J.A)
| |
Collapse
|
43
|
Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O'Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert D. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat Med 2020; 26:1654-1662. [PMID: 32839619 PMCID: PMC7613250 DOI: 10.1038/s41591-020-1009-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart-brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.
Collapse
Affiliation(s)
- Wenjia Bai
- Data Science Institute, Imperial College London, London, UK. .,Department of Brain Sciences, Imperial College London, London, UK.
| | - Hideaki Suzuki
- Department of Brain Sciences, Imperial College London, London, UK.,Department of Cardiovascular Medicine, Tohoku University Hospital, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Jian Huang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - Catherine Francis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shuo Wang
- Data Science Institute, Imperial College London, London, UK
| | - Giacomo Tarroni
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.,CitAI Research Centre, Department of Computer Science, City University of London, London, UK
| | | | - Nay Aung
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Kenneth Fung
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Steffen E Petersen
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Stefan K Piechnik
- NIHR Oxford Biomedical Research Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- NIHR Oxford Biomedical Research Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Evangelos Evangelou
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Abbas Dehghan
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| |
Collapse
|
44
|
Gürsel G, Özdemir U, Güney T, Karaarslan N, Tekin Ö, Öztürk B. The usefulness of subxiphoid view in the evaluation of acceleration time and pulmonary hypertension in ICU patients. Echocardiography 2020; 37:1345-1352. [PMID: 32789889 DOI: 10.1111/echo.14822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PHT) is very frequent in ICUs. Estimation of systolic pulmonary artery pressure (PASP) by using tricuspid regurgitation velocity (TRV) is impossible in 25% of patients. However, it may be possible to estimate PHT in these patients by obtaining subxiphoid imaging of short axis (SX-SAX) and measuring pulmonary artery diameter (PAD) and right ventricular outflow tract (RVOT) acceleration time (AT). We first aimed to compare the values of AT and PAD measured at the parasternal short axis view (PSAX) and SX-SAX and then to compare AT measurements obtained in the RVOT and pulmonary artery (PA) in ICU patients. METHODS This prospective observational study was conducted in a 7-bed ICU of a tertiary academic teaching hospital. Measurements of TRV, PAD, and AT in parasternal and subxiphoid SAX were obtained. AT was measured in RVOT and PA locations. We measured other echocardiographic signs of PHT to assess the probability of PHT in addition to TRV measurements. RESULTS The study consisted of 61 patients. TRV was measured in 85% of the patients, and SX-SAX was visualized in 78%. The probability of PHT was high (49%) in this study population. There were agreement and no proportional bias between the measurements of PAD and AT at both SX-SAX and PSAX. Measurements of AT in the RVOT and PA were similar, as well. CONCLUSION These results suggested that measurements of AT in the PSAX and SX-SAX and RVOT and PA were similar in the ICU patients.
Collapse
Affiliation(s)
- Gül Gürsel
- Department of Pulmonary Critical Care Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Uğur Özdemir
- Division of Critical Care Medicine, Department of Internal Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Tuba Güney
- Division of Critical Care Medicine, Department of Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Nur Karaarslan
- Division of Critical Care Medicine, Department of Anesthesiology, Gazi University School of Medicine, Ankara, Turkey
| | - Ömer Tekin
- Division of Critical Care Medicine, Department of Internal Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Burcu Öztürk
- Department of Pulmonary Critical Care Medicine, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
45
|
Matera MG, Rogliani P, Bianco A, Cazzola M. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother 2020; 21:2169-2183. [PMID: 32783481 DOI: 10.1080/14656566.2020.1801636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION There is still no definite drug for acute respiratory distress syndrome (ARDS) that is capable of reducing either short-term or long-term mortality. Therefore, great efforts are being made to identify a pharmacological approach that can be really effective. AREAS COVERED This review focuses on current challenges and future directions in the pharmacological management of ARDS, regardless of anti-infective treatments. The authors have excluded small randomized controlled trials (RCTs) with less than 60 patients because those studies do not have statistical power for outcome data, and also anecdotal trials but have considered the last meta-analysis on any drug. EXPERT OPINION There has been substantial progress in our knowledge of ARDS over the past two decades and many drugs have been used in its treatment. Nevertheless, effective targeted pharmacological treatments for ARDS are still lacking. The likely reason why a pharmacological approach is beneficial for some patients, but harmful for others is that ARDS is an extremely heterogeneous syndrome. To overcome this issue, a precision approach for ARDS, whereby therapies are specifically targeted to patients most likely to benefit, has been proposed. At present, however, the application of this approach seems to be a difficult task.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"/Monaldi Hospital , Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| |
Collapse
|
46
|
Ferreira AH, Pazin-Filho A. Lung Ultrasound in a Patient With ARDS Secondary to Pancreatitis. Chest 2020; 158:e85-e87. [DOI: 10.1016/j.chest.2019.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 10/23/2022] Open
|
47
|
Metkus TS, Mathai SC, Leucker T, Hassoun PM, Tedford RJ, Korley FK. Pulmonary and systemic hemodynamics are associated with myocardial injury in the acute respiratory distress syndrome. Pulm Circ 2020; 10:2045894020939846. [PMID: 32754308 PMCID: PMC7378723 DOI: 10.1177/2045894020939846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background Whether right and left heart hemodynamics are associated with myocardial
injury in the acute respiratory distress syndrome (ARDS) is not known. Methods We performed a retrospective cohort study of subjects who had right heart
catheterization within the ALVEOLI trial and Fluid and Catheter Treatment
Trial. Myocardial injury was assessed using a highly sensitive troponin
assay (hsTn; Abbot ARCHITECT). Hemodynamic variables included right atrial
pressure, pulmonary artery wedge pressure, cardiac index and stroke volume,
pulmonary vascular resistance, pulmonary arterial compliance, and pulmonary
effective arterial elastance. We performed linear, logistic, and Cox
regression to determine the association of hemodynamic variables with
myocardial injury and to determine if hemodynamics mediated the association
between myocardial injury and death. Results Among 252 ARDS patients, median day 0 troponin was 65.4 (13.8–397.8) ng/L.
Lower cardiac index (β −0.23 SE 0.10; P < 0.001) and stroke volume (β
−0.26 SE 0.005; P < 0.001), higher pulmonary vascular resistance (β 0.22
SE 0.11; P < 0.001), lower pulmonary arterial compliance (β −0.24 SE
0.06; P < 0.001), and higher arterial elastance (β 0.27 SE 0.43;
P < 0.001) were associated with greater myocardial injury in univariable
and adjusted models. Changes in stroke volume, cardiac index, pulmonary
arterial compliance, pulmonary vascular resistance, and arterial elastance
were all associated with progressive myocardial injury over three days. hsTn
levels were associated with mortality; however, the association was
attenuated after adjustment for each of stroke volume, pulmonary vascular
resistance, pulmonary arterial compliance, and arterial elastance. Conclusion Pulmonary vascular hemodynamics are associated with myocardial injury in
ARDS, while filling pressures are not. Pulmonary vascular disease may
represent a treatable contributor to myocardial injury in ARDS.
Collapse
Affiliation(s)
- Thomas S Metkus
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thorsten Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ryan J Tedford
- Department of Medicine, Medical University of South Carolina, Charleston, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
48
|
Cameli M, Pastore MC, Soliman Aboumarie H, Mandoli GE, D'Ascenzi F, Cameli P, Bigio E, Franchi F, Mondillo S, Valente S. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography 2020; 37:1278-1286. [PMID: 32654210 PMCID: PMC7404652 DOI: 10.1111/echo.14779] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID‐19) outbreak is a current global healthcare burden, leading to the life‐threatening severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). However, evidence showed that, even if the prevalence of COVID‐19 damage consists in pulmonary lesions and symptoms, it could also affect other organs, such as heart, liver, and spleen. Particularly, some infected patients refer to the emergency department for cardiovascular symptoms, and around 10% of COVID‐19 victims had finally developed heart injury. Therefore, the use of echocardiography, according to the safety local protocols and ensuring the use of personal protective equipment, could be useful firstly to discriminate between primary cardiac disease or COVID‐19–related myocardial damage, and then for assessing and monitoring COVID‐19 cardiovascular complications: acute myocarditis and arrhythmias, acute heart failure, sepsis‐induced myocardial impairment, and right ventricular failure derived from treatment with high‐pressure mechanical ventilation. The present review aims to enlighten the applications of transthoracic echocardiography for the diagnostic and therapeutic management of myocardial damage in COVID‐19 patients.
Collapse
Affiliation(s)
- Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | | | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Paolo Cameli
- Department of Clinical Medical and Neurosciences, Respiratory Disease and Lung Transplantation Section, Le Scotte Hospital, University of Siena, Siena, Italy
| | - Elisa Bigio
- Anesthesiology Unit, Alta Val D'Elsa Hospital, Siena, Italy
| | - Federico Franchi
- Department of Medical Biotechnologies, Anesthesia and Intensive Care, University of Siena, Siena, Italy
| | - Sergio Mondillo
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Serafina Valente
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| |
Collapse
|
49
|
Chieffo A, Stefanini GG, Price S, Barbato E, Tarantini G, Karam N, Moreno R, Buchanan GL, Gilard M, Halvorsen S, Huber K, James S, Neumann FJ, Möllmann H, Roffi M, Tavazzi G, Ferré JM, Windecker S, Dudek D, Baumbach A. EAPCI Position Statement on Invasive Management of Acute Coronary Syndromes during the COVID-19 pandemic. EUROINTERVENTION 2020; 16:233-246. [PMID: 32404302 DOI: 10.4244/eijy20m05_01] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic poses an unprecedented challenge to healthcare worldwide. The infection can be life threatening and require intensive care treatment. The transmission of the disease poses a risk to both patients and healthcare workers. The number of patients requiring hospital admission and intensive care may overwhelm health systems and negatively affect standard care for patients presenting with conditions needing emergency interventions. This position statements aims to assist cardiologists in the invasive management of acute coronary syndrome (ACS) patients in the context of the COVID-19 pandemic. To that end, we assembled a panel of interventional cardiologists and acute cardiac care specialists appointed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) and from the Acute Cardiovascular Care Association (ACVC) and included the experience from the first and worst affected areas in Europe. Modified diagnostic and treatment algorithms are proposed to adapt evidence-based protocols for this unprecedented challenge. Various clinical scenarios, as well as management algorithms for patients with a diagnosed or suspected COVID-19 infection, presenting with ST- and non-ST-segment elevation ACS are described. In addition, we address the need for re-organization of ACS networks, with redistribution of hub and spoke hospitals, as well as for in-hospital reorganization of emergency rooms and cardiac units, with examples coming from multiple European countries. Furthermore, we provide a guidance to reorganization of catheterization laboratories and, importantly, measures for protection of healthcare providers involved with invasive procedures.
Collapse
Affiliation(s)
- Alaide Chieffo
- Interventional Cardiology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Lian H, Zhang Q, Chen X, Wang X, Liu D. Prognostic implications of tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio in septic shock patients. Cardiovasc Ultrasound 2020; 18:20. [PMID: 32532300 PMCID: PMC7293130 DOI: 10.1186/s12947-020-00198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Background To explore the association between the ratio of tricuspid annular plane systolic excursion (TAPSE) and pulmonary arterial systolic pressure (PASP), and long- and short-term outcomes in mechanically ventilated septic shock patients. Methods Septic shock patients admitted to the intensive care unit (ICU) were screened for enrollment. Echocardiographic parameters including TAPSE and tricuspid regurgitation velocity, haemodynamic and respiratory parameters, and prognostic data were obtained. Results One hundred eighteen subjects were enrolled in this study, among whom 75 survived and 43 died at the one-year follow-up. ROC curve analysis revealed that the TAPSE/PASP ratio was able to assess one-year all-cause mortality with an area under the curve of 0.817 (95% CI: 0.739–0.896, p < 0.001) and the optimal cutoff value was 0.50 mm/mmHg. Kaplan-Meier survival analysis showed that one-year all-cause mortality was significantly higher in patients with TAPSE/PASP ≤0.5 mm/mmHg than in patients with TAPSE/PASP > 0.5 mm/mmHg (log-rank 32.934, p < 0.001). According to the Cox regression survival analyses, the TAPSE/PASP ratio was independently associated with one-year all-cause mortality (HR 0.007, 95% CI:0.000–0.162, p = 0.002) and ICU mortality (HR 0.027, 95% CI:0.001–0.530, p = 0.017). According to the multivariable analysis, the TAPSE/PASP ratio was an independent variable associated with mechanical ventilation (MV) duration (standard coefficient − 0.240, p = 0.010). Conclusion The TAPSE/PASP ratio demonstrated prognostic value for one-year all-cause mortality, ICU mortality and MV duration in mechanically ventilated septic shock patients.
Collapse
Affiliation(s)
- Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukai Chen
- Pittsburgh Heart, Lung, Blood and Vascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|